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Abstract: The hyper-arid environment is characterized by high inter-annual climatic fluctuations. 
The yearly average rainfall can change substantially for several years, forming wet or dry 
sub-periods. Observing rainfall trends over a sub-period can lead to a false perception of a change 
in the trend but may in fact represent a periodic cycle when examined on a larger time scale. We 
aimed to better characterize the rainfall regime prevailing in the hyper-arid Arava Valley 
(Israel/Jordan), and to examine the response of vegetation to annual rainfall. We hypothesized that 
annual and perennial vegetation would respond differently to wet and dry sub-periods, and that 
grazing activities will impact vegetation growth. We used a time series of monthly rainfall, from 
which we calculated Standard Precipitation Index (SPI), and calculated proxies of perennial and 
annual vegetation over the last four decades using Landsat-derived Normalized Difference 
Vegetation Index (NDVI). We found no clear trend in rainfall amounts during this period, however 
we did identify wet and dry sub-periods which were statistically distinct in rain and in vegetation 
patterns from each other. The highest levels of correlation between rainfall and the NDVI derived 
proxies were found when examining average rainfall over a period of two- three years for the 
annual vegetation and over four years for perennial vegetation. Using the Mann-Kendall test, we 
identified a time lag of two to four years, with the proxies of annual vegetation responding faster 
than the proxies of perennial vegetation, to shifts between wet and dry sub-period. In addition, we 
found a consistent difference between natural vegetation cover in Jordan (grazed) and Israel 
(non-grazed), favoring the development of natural vegetation on the Israeli side. We conclude that 
integrating between long-term remote sensing satellite imagery and climatic records revealed the 
greater resilience of perennial vegetation in the hyper-arid region to climatic fluctuation, and 
enabled us to identify the vegetation’s sensitivity to anthropogenic impact. 

Keywords: Hyper arid environment; rainfall trend; vegetation dynamics; time lag; land 
management 

 

1. Introduction 

Drylands constitute about 40% of the world’s land area, of which about a quarter are considered 
to be hyper-arid environments  (HAE) with harsh climatic conditions [1]. Drylands are characterized 
by high inter-annual variability in rainfall [2,3], however, the variability and the uncertainty of 
rainfall events are much greater in the hyper-arid climate zone, and prolonged droughts occur more 
regularly [4–7]. To survive the high inter-annual climatic fluctuations, vegetation in arid 
environments has developed various mechanisms to survive, including flowering strategies, seed 
dormancy, germination when suitable environmental conditions occur, and many others [8]. 
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Statistically, the re-occurrence of extreme events under the arid lands hardens the identification of 
rainfall trends [8], often leading to contradicting results with limited statistical significance, that can 
also vary based on the temporal window over which observations are available [9]. Therefore, we 
propose that by identifying dry and wet sub-periods, we can better understand the climate and 
vegetation relations in areas with high interannual variability in rainfall amounts. 

The response of vegetation entering or exiting a drought period often reflects not only the 
current climatic conditions but also prior conditions. Water surpluses from rainy years may enable 
plants to survive the first years of drought through local underground water reservoirs, whereas 
post-drought vegetation recovery may be delayed as the plant rehabilitates its root system that 
deteriorated during the dry period [9,10]. The time between the change in the climatic conditions to 
the response of the vegetation is termed vegetation recovery/decline time lag. Wu et al. [11], who 
studied the recovery period following drought periods in temperate regions, revealed that grass 
recovers the year after the drought ends, shrubs recover after two years, and trees recover fully only 
after four years. Siegal et al. [12] showed similar results for the recovery period of perennial desert 
dune vegetation in an arid region. Zhao et al. [10] demonstrated the decline of shrub vegetation 
following a three-month drought period, claiming that the major factor limiting vegetation growth 
was soil moisture. None of these studies were executed in the hyper-arid environment and they did 
not examine the full process of vegetation recovery and decline over a long time scale. 

As vegetation cover is not only influenced by climatic conditions but also by direct 
anthropogenic impact, attributing the extent of the human impact is a challenging task. Grazing by 
domesticated animals, such as goats, sheep, and camels, is widely recognized for its broad spatial 
effects on vegetation cover [12–17]. These effects encompass changes in foliage density, variations in 
the composition of vegetation types, disruption of topsoil layers, impacts on water penetration, and 
many more. The nature of these effects can vary based on numerous parameters, including local 
geographical factors such as climate, soil characteristics, and topography, or by specific grazing 
practices such as species, grazing intensity, duration, and various other factors. While grazing has 
been extensively studied, the effect of grazing in a hyper-arid environment has received much less 
attention in the scientific literature, A Web of Science search we conducted using the keywords 
“grazing” and “arid environment” in the last 50 years retrieved 1855 papers, compared with only 17 
papers using “grazing” and “hyper-arid environment”, a mere 1% of studies compared with its 
neighboring arid environment. This substantial difference emphasizes the importance of evaluating 
the effects of grazing on the hyper-arid environment. 

Climatic rainfall conditions can be evaluated by normalizing monthly rainfall measurements 
into local adjusted drought indices such as the Standard Precipitation Index (SPI), [18]. The use of 
SPI to identify droughts and determine their temporal variability and severity in the hyper-arid 
environment was evaluated and confirmed by Ejaz and Bahrawi [19]. Khosravi et al. [20] evaluated 
the correlation between SPI and several vegetation classes indicating that pasture vegetation is 
highly sensitive to changes in the level of SPI, while farming lands showed less sensitivity in the 
short term when deep wells are used for irrigation. Previous studies [8,12,21,22] have indicated that 
the cumulative effect of changes in vegetation cover due to successive drought years or 
anthropogenic interference must be observed at a multiyear time scale, as perennial plant mortality 
can be delayed by several years.  

Remote Sensing (RS) imagery has been proven to be a useful and objective method for 
monitoring changes in vegetation cover over large areas throughout relatively long periods 
(multiple years) [20]. The Normalized Difference Vegetation Index (NDVI) [23] is a well-known RS 
method used to asses temporal vegetation cover and identify the trend in which changes occur over 
time, under a variety of climatic conditions, including the scarce vegetation cover of dry lands 
[7,12,14,24–27]. 

Between 1994 and 2009, 15 consecutive years of drought prevailed in the Arava Valley, a desert 
valley shared between Israel and Jordan [28]. The significantly lower yearly rainfall and fewer flash 
floods during those years caused a decline in the natural vegetation cover in the open lands and near 
the natural springs of the area [28,29]. Several papers documenting this period claimed that southern 
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Israel was undergoing a drying process [28,30,31]. However, in recent years a different trend has 
been observed, with a significant increase in precipitation and in the number of flash floods per year 
[32]. Such fluctuations in rainfall demonstrate the importance of observing long-term climatic 
records and conducting valid statistical analyses [3,33–36]. 

Integrating long-term climate records with RS monitoring of vegetation cover can improve our 
understanding of the resilience of desert vegetation experiencing dramatic climatic changes. The 
Arava Valley, with its unique ability to provide comprehensive long-term data, serves as an ideal 
study area for assessing the response of natural vegetation to climatic fluctuations. 

In this study, we focused on the open areas of the Arava Valley, (Figure 1) and assessed the 
rainfall amounts according to their trend and by clusters of wet and dry sub periods. We studied the 
relations between natural vegetation and observed climatic variability, assessed vegetation's 
response to climatic changes, and compared areas that have been directly affected by anthropogenic 
stressors to ones which haven’t. Our study evaluated the temporal and spatial patterns in the 
response of vegetation to climatic variability separately for the two common forms of vascular 
vegetation in the desert: annual and perennial vegetation [37,38]. 

The study addressed these topics through the following research objectives: 
1. Assessing the long-term trends in rainfall patterns in the Arava Valley over the past four 

decades and investigating the potential subdivision into climatic periods based on clusters of 
distinct "wet" and "dry" sub-periods;  

2. Evaluating the correlation between the yearly and the multi yearly accumulated rainfall and 
NDVI proxies for perennial and annual vegetation in a hyper-arid environment;  

3. Comparing the temporal dynamics of vegetation recovery and decline in response to climatic 
changes within the Arava Valley, specifically examining whether these dynamics differ 
between annual and perennial vegetation types; 

4. Identifying differences in vegetation growth between grazed and non-grazed areas within a 
hyper-arid environment. 
We hypothesized that we would be able to detect short-term cycles of climatic variability in 

annual rainfall, i.e., distinct wet and dry sub-periods. Given that rainfall is the main limiting factor 
for vegetation in hot deserts [39,40], we assumed that the proxies for vegetation cover of annual and 
of perennial plants will be highly correlated to rainfall amounts in the hyper-arid region. We 
expected that the proxies for vegetation cover of the annuals and the perennials will respond 
differently to dry or wet periods, because of their different adaptations to this extreme environment. 
As for the impact of human activity, we hypothesized that vegetation cover in the non-grazed areas 
would be higher than in the grazed areas. 
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Figure 1. Left: A broad view of the research area showing the aridity index of the Arava region 
[41,42], together with the main watersheds and the primary natural streams draining to the Arava 
Valley [43]. Right: Categorization of land use and land cover alongside the primary natural streams 
[44]. 

2. Methodology 

2.1. Study Area 

The Arava desert is a long and narrow geographical zone (180 km long and 5-15 km wide) 
bounded by the Dead Sea and the Gulf of Aqaba in the north and south, and the Negev Hills (Israel) 
and the Edom Mountains (Jordan) in the west and east. The Arava varies in elevation between -380m 
and 210m above sea level. The Arava Valley is the southern segment of the Dead Sea transform fault. 
Geomorphologically, it acts as a sedimentary basin filled with many fluvial and alluvial materials. 
The young geological sedimentary surface of the Arava is comprised of active and non-active 
alluvial fans, sand dunes, and salt marsh sediments (mostly clays and gypsum). The young sediment 
layers range in depth between several meters and up to 10 km near the Dead Sea [45,46]. 

Rain in the Arava is mainly associated with the Red Sea Trough synoptic system, which is 
mostly active during autumn (October-November), and spring (March-April) [47,48]. The northern 
Arava can also be affected by the Cyprus Lows, which bring moisture from the Mediterranean Sea 
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[49]. The annual rainfall in the Arava Valley ranges between 25-50mm. Spatial and temporal 
variability in rainfall and in evaporation are high in this region [50]. According to the aridity index 
[42], the area is defined as hyper-arid (aridity index values range between 1-2; Figure 1). In the 
hyper-arid region, as opposed to the arid or more humid environments, the vegetation grows only 
within the active ephemeral streams, and not under any morphological structure, to increase water 
availability [5,37] as can be seen in Figure 2.  

The Arava Valley desert is a highly important ecological habitat and transition zone that 
bridges between Africa, Asia, and Europe. The Arava geographical topographical structure, a 
bottleneck plateau, facilitates the movement of plants and animals and a home for many endemic 
species [51]. A well-known example is the bird migration route [52], in which about 500 million birds 
cross the Arava Valley in spring and autumn. The birds rely on the warm thermocline of the Valley 
and the presence of dense vegetation islands for resting and refueling for their journey [53]. The 
Arava is considered a phytogeographic part of the Saharo-Arabian region but due to its warm 
winters, some of the vegetation is classified as Sudanic vegetation. The dominant canopy trees are 
Acacia Tortilis and Acacia Raddiana [37], which grow within the wadis. 

 

Figure 2. a. Aerial imagery from Menuha Ridge, Arava Valley. b. A wadi near Wadi Paran, Arava 
Valley. In both images, the vegetation cover is concentrated within the ephemeral channels. Both 
images were taken in March 2020. 

2.2. Database, Processing and Analysis 

The rainfall and vegetation dynamics at the Arava Valley were assessed using the following 
methodological approach (Figure 3). 
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Figure 3. The figure gives a general overview of the methodological approach which was used in this 
research. 

2.2.1. Meteorological Rainfall Data 

The rainfall database was obtained from the Israeli Meteorological Survey (IMS). Rainfall data 
was collected from meteorological rain stations in the Arava Valley with a minimum of 30 years of 
records. The selected rain stations include Eilat (1950-2022), Yotveta (1954-1968, 1974-2022), Hatzeva 
(1973-1975, 1988-2022), and Sdom (1959-2022) (Figure 1). 

To answer the first research question, we evaluated climatic rainfall in two stages. (1). We used 
the Mann-Kendall Tau test to evaluate possible trends in rainfall, and (2). We identified the rainfall 
sub-periods using the Standardized Precipitation Index and differentiated extreme sub-periods. 

These two steps were performed as follows: 

Assessing the Rainfall Trend 

We have used the Mann-Kendall Tau test (M-K) to assess temporal trends in rainfall. the M-K 
method is a widely-used non-parametric trend test that ranks the magnitude and direction of the 
trend of a variable over time [54,55]. It is commonly used in spatial and climatic geographical studies 
[22,56]. The daily rainfall measurements were summed into a yearly cumulative rainfall amounts, 
according to rain years (a time period of 12 months which starts on the 1st of October and ends on 
30th September) and the trend was assessed at a significance level of p≤0.05. 

Computing the Standardized Precipitation Index (SPI) 

The SPI computation was based on the calculation developed by Kumar et al. and the World 
Meteorological Organization [18,57]. The data of the long-term monthly rainfall time series from 
each station was fitted to a gamma distribution function which was thus transformed into a normal 
distribution. The SPI values can be interpreted as the number of standard deviations by which the 
observed anomaly deviates from the long-term mean. The definition of the SPI values is seen in 
Table 1. The SPI was calculated for 12, 24, 36, and 48 months, and we adopted the 36-month window 
to capture localized temporal trends. The 36 month calculation is in accordance with the WMO 
recommendations for SPIs for long accumulation periods. The calculations were done using the 
Python script given in a GitHub page [58].  
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Table 1. The description of the SPI values (based on [59,60]). 

SPI values  Drought and humid category 
≥ (+) 2 Extreme wet 

(+) 1.5 to (+) 1.99 Very wet 
(+) 1 to (+) 1.49 Moderate wet 

0 to (+) 0.99 Mild wet 
0 to (-) 0.99 Mild drought 

(-) 1 to (-) 1.49 Moderate drought 
(-) 1.5 to (-) 1.99 Severe drought 

≤ (-) 2 Extreme drought 

Evaluating Climatic Sub-Periods 

Based on the SPI results, we clustered the years in which the maximum (> 1) or minimum (< -1) 
value in a moving window of 19 months was defined as wet or drought. The cluster is based on a 
19-month running window as it is half (+1 to evenly account for periods before and after each 
assessed year) of the 36-month period used for the SPI calculation. 

Additionally, we examined the correspondence between the rainfall at the four meteorological 
stations to better characterize the rainfall over the Arava. We have done so with the use of the 
Spearman correlation test over the 36-month SPI results and the monthly rainfall measurements at 
each station (n=432) for the period 1987-2022 (the period over which the data is continuous in all the 
stations). 

2.2.2. Remote Sensing Imagery 

To evaluate vegetation cover we used the NDVI remote sensing index. We opted the NDVI over 
other indices such as SAVI or MSAVI [61], because they require additional adjustments according to 
soil type and vegetation density. Given our extensive time frame, spatial coverage, and diverse soil 
compositions, applying such adjustments would have been impractical [62]. 

We derived NDVI from Landsat 5, 7, and 8 satellites, using the Landsat L2, C2, Tier 1 collection, 
1984-2021, revisit time of 16 days, the data is atmospherically and radiometrically corrected [63,64]. 
We processed and downloaded at a spatial resolution of 30 meters using the Google Earth Engine 
(GEE) Platform. We used the ESRI 2020 land use mapping [65] to exclude any land use which is not 
natural, (i.e., built-up or agricultural areas, see Figure 1) from the images. 

We used the time series of NDVI to differentiate vegetation cover into a proxy of the two 
common types of vascular vegetation in the desert: annual and perennial vegetation. The vegetation 
proxies were constructed based on the typical local vegetation phenological cycle of each. 

Proxies of Vegetation Cover 

1. Annual vegetation cover reaches its highest NDVI values following a few intensive rainfall 
events and diminishes quickly as temperatures rise and water becomes unavailable at the end 
of the winter season [66–68]. 
• Thus, for every image in the Landsat collection, we calculated per-pixel the yearly 

maximum NDVI values within the rainfall season, (a 12-month period beginning October 
1) and constructed them as a yearly mosaic of the maximum NDVI values. Together they 
form the time series of the annual vegetation for the years 1984-2021. The proxy is referred, 
annualprox. The annualprox cover was done similarly to [14,69] 

2. Perennial vegetation can be photosynthetically active throughout the year but shows its highest 
spectral response towards the late spring (May-June), while at this time the annual vegetation is 
mostly absent [12,68]. 
• Thus, for every set of annual images in the Landsat collection, we calculated per-pixel the 

yearly maximum NDVI values found in May and June (i.e., late spring) and constructed 
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them as a yearly mosaic of the values. Together they form the time series of the proxy for 
perennial vegetation for the years 1984-2021 The proxy is referred, perennialprox. 

Data Sampling 

Vegetation at the HAE, grows naturally only within active ephemeral cannels [5,37]. The data of 
the vegetation cover for both proxies was extracted only there. We used a polyline GIS rivers layer 
which was obtained from the HydroSHEDS database [70], seen in Figure 1. To equally sample the 
vegetation cover over the Arava and to reduce possible spatial autocorrelation, we generated 10,000 
random vector points which were distributed over the natural streams of Arava. The points were 
equally divided along the river's stream orders at a minimum distance between each two points of 
100m. Each point was linked to the nearest rain station (numerous points were linked to each station: 
Eilat n=1305, Yotveta n=2707, Hatzeva n=3991, and Sdom n=1990). The value of the raster data from 
both datasets (the NDVI and the M-K) was sampled according to the described vector points using 
the ESRI, ArcPro-software. 

We evaluated the correspondence between the average NDVI values for each of the proxies 
along the time series between the different stations (N=39). We have done so with the use of the 
Spearman correlation, at significance of p ≤ 0.05. 

To answer the second research question, the relationships between rainfall  and the vegetation 
proxies we used a Spearman correlation rest. To take into consideration possible lag responses of 
vegetation, we examined the correlation between the vegetation proxies and rainfall over 1, 2, 3, 4 
and 5 years, as done by Siegal et al. [12]. The correlation was done separately for the values of the 
points related to each rain station, and its rainfall amounts. 

2.2.3. Trend Analysis of Vegetation Cover  

To answer the third research question, we estimated temporal trends of the vegetation proxies 
for the entire Landsat time series (YEARS X-X) and also over shorter periods of 10-year window to 
capture the effect of the wet or dry sub-period. We compared the difference in response of recovery 
and decline (i.e., time lag response) of the annual and the perennial vegetation. We chose a 10-year 
window to assess the effect of the wet and dry sub-periods, as we initially identified that these 
periods lasted between 3-9 consecutive years.  

Similarly, to the rainfall trend assessment we used the M-K method. But as each imagery is 
composed of a large quantity of pixels, we used high levels of significance p ≤ 0.01 to increase the 
certainty that a trend occurred in the NDVI values and was not an artifact due to the extensive 
number of pixels used. 

The medium (10 years) time scale was applied as follows:  
1. Each time series of the NDVI proxies (annual and perennial) dataset was divided into 29 short 

10-year periods of consecutive years.  
2. We executed the M-K Tau test for each short period (e.g., 1990-1999, 1991-2000, 1992-2001, etc.). 
3. The M-K calculation provided a new, pixel-based imagery dataset composed of a pair of 

images: a 10-year trend image (ranging between -1 to +1, for negative and positive trends), and 
a significant level image. 

4. We used the significant level imagery at p ≤ 0.01, pixels whose significance level were lower 
than sig0.01 received a new value of 0, and the two images were multiplied. 

5. Each of the two newly constructed datasets contains 29 images expressing a 10-year NDVI 
trend at a high significance level. Hereafter, the new datasets will be referred to as M-K time 
series.  

6. In the M-K time series, each image refers to the middle of the measured period; for example, 
M-K annual/perennial 1990 refers to the M-K test based on NDVI time series for the years 1985 – 
1994 for annual or perennial vegetation. 
The time-lag of the annual and perennial vegetation's response to changes in the rainfall trend 

was evaluated based on the difference in response of the vegetation proxies of the M-K time series. 
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The recovery period starts when M-K values are above zero, and the decline period starts when M-K 
values are below zero.  

2.2.4. Effect of Land Use  

To answer the fourth research question regarding the impact of anthropogenic activity on 
vegetation cover, we examined the difference in land management regulation between the state of 
Israel (non-grazed) and Jordan (grazed). On the Israeli side of the Arava Valley, grazing is 
prohibited, while on the Jordanian side, grazing is not restricted [14,71,72]. As the 
geological-pedological setting of the two countries is different in many areas [73], we choose to 
assess the difference in vegetation cover only at alluvial areas which are similar in size and climate 
on both sides of the border. We compared the NDVI values of both proxies for each year, with the to 
the Mann Whitney test at a significance level of p < 0.05.  

3. Results  

3.1. Rainfall Correlation and Climatic Periods  

The correlations between the four Arava Valley meteorological stations (between 1987 and 
2022) for the monthly rainfall totals and the 36-months SPI calculation is presented in Table 2. The 
table illustrates a moderate fit between each pair of stations, except for the northern Sdom station 
which was only correlated with the Hatzeva station (for SPI, but not for rainfall). The correlation 
strength increased as stations become geographically closer to each other.  

Table 2. Spearman rank correlation coefficients matrix between the rainfall station for the period 
1987-2023. The correlation above the diagonal represents the fit according to the 36 monthly SPI 
calculations, and the correlation below the diagonal represents the fit based on the monthly rainfall 
measurements (n=432). The asterisk indicates a statistically significant test result (p ≤ 0.05). 

Correlations 
for monthly 

rainfall 

Correlations for SPI 
 Eilat Yotveta Hatzeva Sdom 

Eilat  0.77* 0.55* -0.07 
Yotveta 0.64*  0.61* 0.03 
Hatzeva 0.58* 0.53*  0.48* 

Sdom 0.28 0.30 0.37  

According to the M-K Tau test, results seen within Figure 4, none of the rain station exhibited a 
positive or negative statistically validated trend since the start of the rainfall measurements at each 
station. But several of statistically significant rainfall sub periods could be identified with relevance 
to the start of the measurements at each stations Figure 4 and Table 3. In accordance with the 
availability Landsat time series, we will focus on the rainfall sub periods which occurred since the 
1980’s. The Eilat, Yotveta, and Hatzeva stations collectively experienced a relatively wet period from 
the mid-1980s to the early 1990s, followed by a prolonged dry period (which was documented in all 
4 station), which started in 1995/7 until 2013/14. The drought documented at the Sdom station was 
shorter, extending between 1997 and 2004. Since 2014, all stations recorded a comparatively wet 
period that lasted until 2021/23. These similarities led us to define three main climatic sub-periods 
exhibiting discernible fluctuations between wet followed by dry and another wet period in the 
Arava Valley over the past four decades. 
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Figure 4. The monthly rainfall at each station in blue line, the 36-month SPI calculation for each 
station and the wet and dry periods in horizontal green lines. The wet and dry sub periods represent 
a cluster of months in which the maximum SPI value was > 1 (wet) or the minimum SPI value was < 
-1 (dry) in a moving window of 19 months. The table below, depicts the trend of the rainfall at each 
station accroding to the M-K test. 

Table 3. A detailed description of the wet and dry sub periods of each rain station, based on Figure 3, 
and its relevance with the Landsat time series. 

Rain stations Prior to the Landsat time series During the Landsat time series 

Eilat  
Wet 

1952-1957 
Dry 

1958-1964 

Wet 
1965-1971, 
1973-1978 

Wet 
1987-1990 

Dry 
1996-2014 

Wet 
2017-2023 

Yotveta   Dry 
1958-1965 

Dry 
1978-1980 

Wet 
1985-1997 

Dry 
2003-2014 

Wet 
2015-2023 

Hatzeva     
Wet 

1987-1993 

Dry 
1998-2005, 
2008-2014 

Wet 
2015-2022 

Sdom   
Wet 

1968-1971 
1972-1977 

Dry 
1978-1986 

Dry 
1997-2004 

Wet 
2005-2013, 
2015-2021 

3.2. Yearly Vegetation Cover  

The NDVI and M-K time series, expressing the relation between the vegetation proxies and the 
yearly and accumulated yearly rainfall, are presented in Figure 5. The NDVI values demonstrated a 
clear pattern of increasing vegetation from south to north, corresponding with increasing annual 
rainfall from south to north: Eilat (23mm), Yotveta (30 mm), Hatzeva (42.0 mm), Sdom (51.0 mm). 
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Figure 5. The temporal profiles of rainfall, and NDVI and M-K for both proxies surrounding each 
station along the Arava. The NDVI results were normalized between 0-1, to facilitate a direct 
comparison to the M-K values on the same graph. 

3.2.1. Correlations between the Yearly Vegetation Proxies along the Arava Valley 

A strong correlation between both vegetation proxies related to each station was evident, as 
seen in Table 4. The perennialprox correlations were slightly higher than the annualprox. Notably, the 
correlation for both proxies declined as the distance between stations increased. Such as the 
correlations between close stations, (Hatzeva- Yotveta) annualprox and perennialprox were corr(r) ≅ 0.97 
and 0.98; while between the farthest station (Eilat and Sdom) annualprox and perennialprox the corr(r) ≅ 
0.52 and 0.89. 
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Table 4. Spearman year to year correlation between the types of proxies for annual and perennial 
vegetation between the different stations. The correlations above the diagonal represent the 
correlations of the proxy for perennial vegetation between the different regions (named by the 
representative meteorological station to which the points are the closest). The correlations below the 
diagonal represent the year to year correlations of the proxy for annual vegetation between the 
different regions (named by the representative meteorological station to which they are closest). The 
asterisk indicates a statistically significant test result (p ≤ 0.05). 

 perennialprox 

annualprox 

 Stations Eilat Yotveta Hatzeva Sdom 
Eilat  0.97 * 0.94 * 0.89 * 

Yotveta 0.86 *  0.98 * 0.95 * 
Hatzeva 0.78 * 0.97*  0.97 * 

Sdom 0.53 * 0.76 * 0.85 *  

3.2.2. Correlations between Rainfall and Vegetation Proxies 

The correlations between yearly and multi-year average rainfall and NDVI proxies for both the 
annualprox and perennialprox can be seen in Table 5. The annualprox around Eilat and Sdom stations 
correlated moderately after 3 years of average rainfall (corr(r) ≅ 0.45), while the annualprox around 
Yotveta and Hatzeva stations and the rainfall was highly correlated for 2-3 consecutive years (corr(r) 
≅ 0.63). The perennialprox reached the highest levels after three to four years of average rainfall. The 
highest levels of correlation were related to the Hatzeva station (corr(r) ≅ 0.79), while the other 
stations showed moderate levels (corr(r) ≅ 0.53). 

Table 5. The Spearman correlation table between the rainfall and the proxies of the annual and the 
perennial vegetation in the Arava from 1984- 2021. The asterisk indicates a statistically significant test 
result (p<0.05). 

Rainfall Vegetation proxy Eilat Yotveta Hatzeva Sdom 
Yearly rainfall  

annualprox 

0.26 0.56* 0.48* 0.27 
2 Yr. average rainfall 0.36* 0.65* 0.64* 0.33 
3 Yr. average rainfall 0.44* 0.62* 0.65* 0.46* 
4 Yr. average rainfall 0.17 0.55* 0.52* 0.26 

Yearly rainfall 

perennialprox 

0.31 0.43* 0.55** 0.25* 
2 Yr. average rainfall 0.45* 0.50* 0.73* 0.38* 
3 Yr. average rainfall 0.49* 0.53* 0.79* 0.44* 
4 Yr. average rainfall 0.52* 0.54* 0.73* 0.53* 
5 Yr. average rainfall 0.57* 0.54* 0.70* 0.35 

3.3. The Medium- and Long-Term Trends of the Vegetation  

Figure 5 illustrates the spatial pattern of the M-K results at a significance level of 0.01. Figure 5a 
displays the M-K test outcomes for the entire examined period (1984-2021); no discernible trend was 
evident. In contrast, the subsequent maps depict a 10-year running window of the same analysis. 
The maps exhibit a fluctuating process that the vegetation has gone through: the vegetation has 
experienced a positive trend (recovery) followed by a negative trend (decline) followed again by a 
positive trend (recovery), all taking place in the last four decades.  

The first recovery was relatively minor (compared later with the second recovery) occurred 
while comparing the vegetation cover in the years 1986-7 with 1995-6 (Figure 5, maps of 1991-2). This 
recovery in vegetation coincides with the wet period which started in 1985/7 (Table 3). A major 
decline in vegetation cover throughout the entire Arava can be observed while comparing the 
vegetation cover of the years 1993-5 with 2005-7 (Figure 5, maps 1998-2000). The negative trend 
continued in the central - south of the Arava until 2010 (Figure 5, maps 2001-2004). The decline 
coincided with the dry period over the Arava in the years 1997-2014 (ended in Sdom in 2005). Lastly, 
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a major vegetation recovery period occurred while comparing the vegetation cover of 2005-2013 
with 2014-2021 (Figure 5, maps 2009-2017) coincides with the wet period which starts in 2015.  

3.3.1. Time Lags in the Recovery and Decline of NDVI Proxies 

Due to the high correspondence between the vegetation proxies in the four stations (Table 4), 
and the low variance between the stations value of the M-K results (ANOVAtest, p ≥ 0.05), we 
calculated the mean M-K value taken from the 4 stations to inspect the recovery and the decline 
between the NDVI proxies (Figure 6 and Table 3). We identified a time lag difference between the 
response of the two proxies which was captured twice during the recovery, and once during the 
decline. In all cases the annualprox has responded prior the perennialprox, while shifting between the 
sub- periods. The first vegetation recovery while shifting into the wet period revealed a two-year 
time lag between the positive trend of the two proxies. The negative trend in vegetation while 
shifting to a dry period has also shown a lag of two years between the proxies. The second recovery 
which was followed after a relatively long dry period revealed a time lag of three years. 

Table 6. The positive and negative trend of the vegetation proxies based on the 10-year M-K 
calculation (psig. ≤ 0.01), each mentioned year is the middle year within the time span of 10 years. 

Trend M-K annualprox M-K perennialprox 
Positive  1989- 1995 1991- 1995 
Negative 1996-2005 1997-2003 
Positive 2008-2017 2011-2018 

 
Figure 6. The large map shows the Landsat max M – K1984–2021 which serves as a proxy for the annual 
vegetation trend for the entire inspected period. The small maps show a 10-year running window of 

Mann Kendall results  The year shown represents the middle of the inspected 10-year period. 

3.4. Differences in Vegetation Cover Affected by Land Management 

The time series comparing NDVI proxies between Israel and Jordan are presented in Figure 7. 
On the Israeli side, where no grazing occurs, the average values were consistently higher than those 
on the grazed Jordanian side, for both proxies. Based on the Mann-Whitney statistical test (with a 
significance level of p<0.01), significant differences were observed in the annualprox throughout the 
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entire time series, except between 2005 and 2008. Regarding perennialprox, a consistent and statistically 
significant difference between Israel and Jordan was evident across all years. 

 

Figure 7. The graphs is based on the M-K results of both proxies over the entire sampling points in 
the Arava Valley. The light green arrows express recovery lags, the brown arrow expresses the 
decline lag between the responses of each proxy. 

 

Figure 8. A comparison between the vegetation proxies in Israel and Jordan. The black dots placed 
over the time series indicate a statistically significant difference between Israel and Jordan, as 
determined by the Mann-Whitney test (p < 0.01). 

4. Discussion 

4.1. Climatic Trend and Sub-Periods in the Arava Valley 

While studies focusing on the rainfall trends of central and northern Israel have received much 
interest in the scientific literature [31,49,74–77], very few studies have researched southern Israel and 
Jordan. This may be due to the natural variability of rainfall in the hyper-arid environment and the 
scarcity of meteorological stations, which makes it difficult to reach conclusive results [3,5]. Several 
studies have identified a decline in the amount of yearly rainfall in the Arava region in the last 
decades [28,30,78]. In the present study, we did not identify a clear positive or negative trend, but 
rather identified three statistically significant wet and dry sub-periods in the last four decades. A 
previous study on droughts in the hyper-arid environment of Saudia Arabia observed similar 
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fluctuations in SPI [19]. The results from our study and the latter may reflect the climatic nature of 
the hyper-arid environment. 

4.2. The Spatial Correlation between Rainfall and Vegetation Proxies 

To correctly evaluate the correlation between the rainfall and the vegetation proxies we first 
separated each of the parameters and spatially evaluated them to identify any discrepancies. The 
monthly rainfall and the SPI calculation were moderately correlated between the four stations, with 
slightly higher correlations for SPI. The Sdom station showed a very low correlation by both 
parameters, we attributed this difference to its northern geographical location. The northern Arava 
Valley (where the Sdom station is located) is influenced by two weather systems - the Cyprus Lows 
which originates in the Mediterranean Sea, and the Red Sea Trough which originates in the south. 
Conversely, the other three stations receive their rainfall only via the Rea Sea Trough weather 
system  [47,48,79]. Additionally, the similarity in between the rainfall station was expected due to the 
natural spatial autocorrelation which characterizes rainfall events [80,81]. 

Despite the low correlations between the stations’ rainfall, the vegetation proxies yielded very 
high levels of correlations, while the perennialprox was slightly strongly correlated then the annualprox. 
Similarly, to the rainfall, the correlation strengthened with proximity between the stations. The 
vegetation proxies even exhibited a high correlation for the vegetation around Sdom station. Based 
on the difference between the two levels of correlation, we infer that the Sdom rain station might not 
effectively represent the Arava study but rather areas north of the Arava, as it is located at the 
northern tip of the Arava Valley, and it is also impacted by rain systems whose origin is from the 
Mediterranean Sea. 

The difference in the two evaluated correlations may be explained by the characteristics of rain 
events in the HAE. Due to the significant spatial-temporal variability of rainfall events [82,83], a rain 
event may or may not be captured by rain station, but the vegetation around the rain station will 
certainly be affected by it, because of runoff and floods from upstream areas where the rain fell. This 
discrepancy between the correlation of the rainfall at each station compared with the spatial 
consistency of vegetation proxies strengthens the option of using the last as an indicator of the yearly 
and multi-yearly water availability for the natural vegetation in arid environments. 

4.2.1. The Correlation between Rainfall and Vegetation Proxies 

A correlation difference between the NDVI for both proxies and the rainfall was found between 
the different rainfall stations. We assume that the disparity in correlation levels is attributed to the 
difference in the hydrological pedological settings of these regions. Both Hatzeva and Yotveta 
receive water from watersheds originating in the arid and hyper-arid environments, with similar 
geological compositions primarily comprising alluvium from carbonate rocks [73]. Eilat's rainfall is 
contributed by local watersheds, with a thin growing bed, primarily composed of alluvium from 
granite sources, whereas Sdom’s rainfall station as was claimed (section 5.2), might represent 
northern areas, and does not represent the potential water input around it. 

The correlation between rainfall and NDVI reached its peak when averaging the cumulative 
data of several years. This finding reinforces our perspective that observing vegetation cover 
requires a multi-year time frame, strengthening our approach of observing the vegetation dynamics 
through the M-K approach for several consecutive years. The multi-year approach is further 
supported by additional studies [2,8,11,27]. 

In relative proximity with the Arava study site, lies the arid Nitzana dune field on the border 
between Israel and Egypt. The area is influenced by similar synoptic systems such as the Arava 
[47,48]). Siegal et al., 2013 found a higher correlation (~0.88) between the NDVI and annual average 
rainfall (after seven years) than were found in our study results. The difference between the levels of 
correlation between the two studies may be caused by the geo-morphological differences between 
the two study areas. The Nitzana study site is a relatively homogenous sandy dune area at the 
Israel-Egypt border. The high porosity of the sand particles creates high water infiltration and low 
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runoff compared to the heterogeneous sedimentary basin of the Arava Valley, where vegetation is 
highly dependent on flash floods [14,84–86]. 

Two parameters that were not included in our study, as it was not the scope of this study, 
which may have enhanced the correlation between rainfall and vegetation are the timing 
distribution of rainfall throughout the year and the amount of rainfall in each event. These factors 
are crucial in understanding vegetation growth in arid environments. The timing of rain throughout 
the year determines the water availability for different types of vegetation [37,67,87]. For example, 
rain events in the late spring are unlikely to contribute to annual vegetation growth, thus lowering 
the correlation between the two parameters. Secondly, as the vegetation in the HAE, grows only in 
the ephemeral channels, it is dependent on the occurrence of flash flood events, while sparse rain 
events that do not create water flow over the surface hardly contribute to vegetation growth [37]. 
Flash flood generation is dependent on the intensity of the rainfall, thus several millimeters of 
rainfall that do not cause a flash flood may be ineffective for the plant's growth [47]. Unfortunately, 
continuous data on the occurrence of flash floods was unavailable for the Arava Valley, so we could 
not include them in our analysis. 

4.3. Vegetation Dynamics in Response to Rainfall Fluctuations 

4.3.1. The Mann-Kendall Time Series Approach 

Figure 6 demonstrates the strength of creating medium-term M-K time series compared to 
long-term time series. The 10-year M-K time series enabled us to observe the multi-year climatic 
variability, which would have otherwise been obscured. In accordance with the long-term rainfall 
trend, for which we haven’t found a clear trend, we did not find a clear monotonic trend in 
vegetation cover in over last four decades. Observing the vegetation trend in segments of several 
years is particularly important in an area where the annual rainfall highly fluctuates, such as the 
Arava Valley. We chose to calculate M-K trends with a 10-year window as we aimed to observe the 
effect of wet and dry sub-periods, which as shown in Table 3 can vary from 3 years to about a 
decade. Noy et al. [22] used a moving window of 5 years, to observe changes in the vegetation cover 
due to changes in land uses which would affect the vegetation cover at a much shorter time scale. 

4.3.2. Differences in the Recovery and Decline between the Vegetation Proxies 

The M-K time series has enabled us to evaluate the recovery time lag between the vegetation 
proxies. In the three documented occurrences of rainfall sub-periods, the annualprox responded more 
quickly than the perennialprox. During the first recovery, the difference between the proxies was two 
years, while in the second recovery, it occurred after three years. It seems that the time lag between 
the recovery depends on the length of the preceding dry period. Moreover, the recovery intensity of 
the second phase was significantly higher than the first as seen in Figure 6. This difference can likely 
be attributed to the extreme contrast between the severe drought conditions that persisted from the 
mid-1990s until about 2010, in comparison to the subsequent very wet period from 2013/14 onwards. 
The change between wet to dry has shown a time lag where the annualprox, preceded the perennialprox 
in two - three years. The results coincide with previous studies conducted in arid environments that 
concluded that perennial vegetation declines 2-3 years after annual vegetation in arid areas facing 
drought [10,12]. But more surprising is that the same results are achieved in much more humid 
areas, such as the study of [11], who evaluated the recovery of grass, shrubs, and trees (equivalent to 
our proxies of annuals and perennials) following droughts in the vast temperate regions and found 
similar results; Grass recovers most rapidly, shrubs after two years, and trees recover fully only four 
years after the drought ends. The similarity in the recovery or decline time lag of vegetation growing 
under extremely different climatic conditions is attributed to the vegetation’s incredible ability to 
fully adapt to the local climatic conditions, independent of the biome. 

As conducting fieldwork measurements was beyond the scope of our study, our findings can be 
supported by studies that have done field sampling in the Arava in recent years [28,29]. Bruins et al., 
2012 concluded that the vegetation around natural springs located in the Arava has significantly 
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decreased during the drought prevailing in the Arava from 1995 until the publication of his study in 
2012. Armoza-Zvuloni et al. 2021 executed long-term monitoring of the Acacia trees at two wadis in 
southern Arava. They observed a substantial increase in Acacia tree mortality  (A. raddiana Savi and 
A. tortilis) during the severe drought spanning the Eilat – Yotveta area between 1995 and 2014. Later, 
extensive Acacia germination was documented in 2017, which is attributed to the post-drought wet 
period. Both examples are evident in our results, where the latter demonstrates the 3 years lag of the 
perennial recovery which was seen in our study. 

4.4. The Impact of Land Use 

The results of the comparison between Israel and Jordan presented consistently higher 
vegetation cover values in the Israeli side. For the annualprox, we did not find a significant differences 
between Israel and Jordan for the years 2005-2008. Presumably, after a sequence of continuous 
drought years, the annual vegetation was at minimum levels due to the lack of rainfall. Thus, in 
years when both sides of the border experience a drought period, differences in vegetation cover are 
negligible. However, the perennialprox consistently shown higher values on the Israeli side. These 
results coincide with other works [12,14,16,88,89]. A study by [90] showed that following prolonged 
human disturbances, such as grazing in the Sonoran desert, it took over 50 years for the perennial 
vegetation to fully recover. Israel prohibited grazing at the Arava since the 1950’s [14,91], thus we 
can assume that the perennial vegetation of the two sides will maintain its difference over a 
relatively long period, as seen during the second dry period. 

5. Conclusions 

In the last decades, the Arava Valley has experienced substantial changes in its rainfall regime. 
Within these changes, the typical average annual rainfall was low, but the multi-year standard 
deviation was very high. Although we haven't recognized any clear trend in the rainfall amounts 
over the years, we were able to distinguish wet and dry sub-periods using SPI calculation. Similarly, 
to the rainfall, vegetation proxies have not shown a clear trend over the entire time series but 
responded significantly to each sub-period either through recovery or decline. The highly consistent 
correlations among vegetation proxies along the Arava, compared with the moderate correlation of 
rainfall measurements among the stations, demonstrates the potential of using vegetation cover as 
an indicator for the water availability for plants in the HAE. We have demonstrated that annualprox 
exhibits a more immediate response than perennialprox when transitioning between wet and dry 
periods with a time lag of two to four years depending on the length of the previous sub period. We 
have shown that the non-grazed Israeli side exhibits higher values of both vegetation proxies 
compared to the grazed Jordanian side. The differences were significant throughout most of the 
study period, excluding several years of drought when the vegetation on both sides was at its 
lowest. This paper focused on the dynamic relationship between the fluctuating rainfall and the 
response of the vegetation cover under the harsh hyper-arid environment. In this study, we 
developed a comprehensive approach that integrates satellite imagery remote sensing together with 
climatic records. This work improves the understanding of ecological dynamics in hyper-arid areas. 
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