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Abstract: The hyper-arid environment is characterized by high inter-annual climatic fluctuations.
The yearly average rainfall can change substantially for several years, forming wet or dry
sub-periods. Observing rainfall trends over a sub-period can lead to a false perception of a change
in the trend but may in fact represent a periodic cycle when examined on a larger time scale. We
aimed to better characterize the rainfall regime prevailing in the hyper-arid Arava Valley
(Israel/Jordan), and to examine the response of vegetation to annual rainfall. We hypothesized that
annual and perennial vegetation would respond differently to wet and dry sub-periods, and that
grazing activities will impact vegetation growth. We used a time series of monthly rainfall, from
which we calculated Standard Precipitation Index (SPI), and calculated proxies of perennial and
annual vegetation over the last four decades using Landsat-derived Normalized Difference
Vegetation Index (NDVI). We found no clear trend in rainfall amounts during this period, however
we did identify wet and dry sub-periods which were statistically distinct in rain and in vegetation
patterns from each other. The highest levels of correlation between rainfall and the NDVI derived
proxies were found when examining average rainfall over a period of two- three years for the
annual vegetation and over four years for perennial vegetation. Using the Mann-Kendall test, we
identified a time lag of two to four years, with the proxies of annual vegetation responding faster
than the proxies of perennial vegetation, to shifts between wet and dry sub-period. In addition, we
found a consistent difference between natural vegetation cover in Jordan (grazed) and Israel
(non-grazed), favoring the development of natural vegetation on the Israeli side. We conclude that
integrating between long-term remote sensing satellite imagery and climatic records revealed the
greater resilience of perennial vegetation in the hyper-arid region to climatic fluctuation, and
enabled us to identify the vegetation’s sensitivity to anthropogenic impact.

Keywords: Hyper arid environment; rainfall trend; vegetation dynamics; time lag; land
management

1. Introduction

Drylands constitute about 40% of the world’s land area, of which about a quarter are considered
to be hyper-arid environments (HAE) with harsh climatic conditions [1]. Drylands are characterized
by high inter-annual variability in rainfall [2,3], however, the variability and the uncertainty of
rainfall events are much greater in the hyper-arid climate zone, and prolonged droughts occur more
regularly [4-7]. To survive the high inter-annual climatic fluctuations, vegetation in arid
environments has developed various mechanisms to survive, including flowering strategies, seed
dormancy, germination when suitable environmental conditions occur, and many others [8].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Statistically, the re-occurrence of extreme events under the arid lands hardens the identification of
rainfall trends [8], often leading to contradicting results with limited statistical significance, that can
also vary based on the temporal window over which observations are available [9]. Therefore, we
propose that by identifying dry and wet sub-periods, we can better understand the climate and
vegetation relations in areas with high interannual variability in rainfall amounts.

The response of vegetation entering or exiting a drought period often reflects not only the
current climatic conditions but also prior conditions. Water surpluses from rainy years may enable
plants to survive the first years of drought through local underground water reservoirs, whereas
post-drought vegetation recovery may be delayed as the plant rehabilitates its root system that
deteriorated during the dry period [9,10]. The time between the change in the climatic conditions to
the response of the vegetation is termed vegetation recovery/decline time lag. Wu et al. [11], who
studied the recovery period following drought periods in temperate regions, revealed that grass
recovers the year after the drought ends, shrubs recover after two years, and trees recover fully only
after four years. Siegal et al. [12] showed similar results for the recovery period of perennial desert
dune vegetation in an arid region. Zhao et al. [10] demonstrated the decline of shrub vegetation
following a three-month drought period, claiming that the major factor limiting vegetation growth
was soil moisture. None of these studies were executed in the hyper-arid environment and they did
not examine the full process of vegetation recovery and decline over a long time scale.

As vegetation cover is not only influenced by climatic conditions but also by direct
anthropogenic impact, attributing the extent of the human impact is a challenging task. Grazing by
domesticated animals, such as goats, sheep, and camels, is widely recognized for its broad spatial
effects on vegetation cover [12-17]. These effects encompass changes in foliage density, variations in
the composition of vegetation types, disruption of topsoil layers, impacts on water penetration, and
many more. The nature of these effects can vary based on numerous parameters, including local
geographical factors such as climate, soil characteristics, and topography, or by specific grazing
practices such as species, grazing intensity, duration, and various other factors. While grazing has
been extensively studied, the effect of grazing in a hyper-arid environment has received much less
attention in the scientific literature, A Web of Science search we conducted using the keywords
“grazing” and “arid environment” in the last 50 years retrieved 1855 papers, compared with only 17
papers using “grazing” and “hyper-arid environment”, a mere 1% of studies compared with its
neighboring arid environment. This substantial difference emphasizes the importance of evaluating
the effects of grazing on the hyper-arid environment.

Climatic rainfall conditions can be evaluated by normalizing monthly rainfall measurements
into local adjusted drought indices such as the Standard Precipitation Index (SPI), [18]. The use of
SPI to identify droughts and determine their temporal variability and severity in the hyper-arid
environment was evaluated and confirmed by Ejaz and Bahrawi [19]. Khosravi et al. [20] evaluated
the correlation between SPI and several vegetation classes indicating that pasture vegetation is
highly sensitive to changes in the level of SPI, while farming lands showed less sensitivity in the
short term when deep wells are used for irrigation. Previous studies [8,12,21,22] have indicated that
the cumulative effect of changes in vegetation cover due to successive drought years or
anthropogenic interference must be observed at a multiyear time scale, as perennial plant mortality
can be delayed by several years.

Remote Sensing (RS) imagery has been proven to be a useful and objective method for
monitoring changes in vegetation cover over large areas throughout relatively long periods
(multiple years) [20]. The Normalized Difference Vegetation Index (NDVI) [23] is a well-known RS
method used to asses temporal vegetation cover and identify the trend in which changes occur over
time, under a variety of climatic conditions, including the scarce vegetation cover of dry lands
[7,12,14,24-27].

Between 1994 and 2009, 15 consecutive years of drought prevailed in the Arava Valley, a desert
valley shared between Israel and Jordan [28]. The significantly lower yearly rainfall and fewer flash
floods during those years caused a decline in the natural vegetation cover in the open lands and near
the natural springs of the area [28,29]. Several papers documenting this period claimed that southern
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Israel was undergoing a drying process [28,30,31]. However, in recent years a different trend has
been observed, with a significant increase in precipitation and in the number of flash floods per year
[32]. Such fluctuations in rainfall demonstrate the importance of observing long-term climatic
records and conducting valid statistical analyses [3,33-36].

Integrating long-term climate records with RS monitoring of vegetation cover can improve our
understanding of the resilience of desert vegetation experiencing dramatic climatic changes. The
Arava Valley, with its unique ability to provide comprehensive long-term data, serves as an ideal
study area for assessing the response of natural vegetation to climatic fluctuations.

In this study, we focused on the open areas of the Arava Valley, (Figure 1) and assessed the
rainfall amounts according to their trend and by clusters of wet and dry sub periods. We studied the
relations between natural vegetation and observed climatic variability, assessed vegetation's
response to climatic changes, and compared areas that have been directly affected by anthropogenic
stressors to ones which haven’t. Our study evaluated the temporal and spatial patterns in the
response of vegetation to climatic variability separately for the two common forms of vascular
vegetation in the desert: annual and perennial vegetation [37,38].

The study addressed these topics through the following research objectives:

1. Assessing the long-term trends in rainfall patterns in the Arava Valley over the past four
decades and investigating the potential subdivision into climatic periods based on clusters of
distinct "wet" and "dry" sub-periods;

2. Evaluating the correlation between the yearly and the multi yearly accumulated rainfall and
NDVI proxies for perennial and annual vegetation in a hyper-arid environment;

3. Comparing the temporal dynamics of vegetation recovery and decline in response to climatic
changes within the Arava Valley, specifically examining whether these dynamics differ
between annual and perennial vegetation types;

4. Identifying differences in vegetation growth between grazed and non-grazed areas within a
hyper-arid environment.

We hypothesized that we would be able to detect short-term cycles of climatic variability in
annual rainfall, i.e., distinct wet and dry sub-periods. Given that rainfall is the main limiting factor
for vegetation in hot deserts [39,40], we assumed that the proxies for vegetation cover of annual and
of perennial plants will be highly correlated to rainfall amounts in the hyper-arid region. We
expected that the proxies for vegetation cover of the annuals and the perennials will respond
differently to dry or wet periods, because of their different adaptations to this extreme environment.
As for the impact of human activity, we hypothesized that vegetation cover in the non-grazed areas
would be higher than in the grazed areas.
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Figure 1. Left: A broad view of the research area showing the aridity index of the Arava region
[41,42], together with the main watersheds and the primary natural streams draining to the Arava
Valley [43]. Right: Categorization of land use and land cover alongside the primary natural streams
[44].

2. Methodology

2.1. Study Area

The Arava desert is a long and narrow geographical zone (180 km long and 5-15 km wide)
bounded by the Dead Sea and the Gulf of Aqaba in the north and south, and the Negev Hills (Israel)
and the Edom Mountains (Jordan) in the west and east. The Arava varies in elevation between -380m
and 210m above sea level. The Arava Valley is the southern segment of the Dead Sea transform fault.
Geomorphologically, it acts as a sedimentary basin filled with many fluvial and alluvial materials.
The young geological sedimentary surface of the Arava is comprised of active and non-active
alluvial fans, sand dunes, and salt marsh sediments (mostly clays and gypsum). The young sediment
layers range in depth between several meters and up to 10 km near the Dead Sea [45,46].

Rain in the Arava is mainly associated with the Red Sea Trough synoptic system, which is
mostly active during autumn (October-November), and spring (March-April) [47,48]. The northern
Arava can also be affected by the Cyprus Lows, which bring moisture from the Mediterranean Sea
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[49]. The annual rainfall in the Arava Valley ranges between 25-50mm. Spatial and temporal
variability in rainfall and in evaporation are high in this region [50]. According to the aridity index
[42], the area is defined as hyper-arid (aridity index values range between 1-2; Figure 1). In the
hyper-arid region, as opposed to the arid or more humid environments, the vegetation grows only
within the active ephemeral streams, and not under any morphological structure, to increase water
availability [5,37] as can be seen in Figure 2.

The Arava Valley desert is a highly important ecological habitat and transition zone that
bridges between Africa, Asia, and Europe. The Arava geographical topographical structure, a
bottleneck plateau, facilitates the movement of plants and animals and a home for many endemic
species [51]. A well-known example is the bird migration route [52], in which about 500 million birds
cross the Arava Valley in spring and autumn. The birds rely on the warm thermocline of the Valley
and the presence of dense vegetation islands for resting and refueling for their journey [53]. The
Arava is considered a phytogeographic part of the Saharo-Arabian region but due to its warm
winters, some of the vegetation is classified as Sudanic vegetation. The dominant canopy trees are
Acacia Tortilis and Acacia Raddiana [37], which grow within the wadis.

Figure 2. a. Aerial imagery from Menuha Ridge, Arava Valley. b. A wadi near Wadi Paran, Arava

Valley. In both images, the vegetation cover is concentrated within the ephemeral channels. Both
images were taken in March 2020.

2.2. Database, Processing and Analysis

The rainfall and vegetation dynamics at the Arava Valley were assessed using the following
methodological approach (Figure 3).
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Figure 3. The figure gives a general overview of the methodological approach which was used in this

research.

2.2.1. Meteorological Rainfall Data

The rainfall database was obtained from the Israeli Meteorological Survey (IMS). Rainfall data
was collected from meteorological rain stations in the Arava Valley with a minimum of 30 years of
records. The selected rain stations include Eilat (1950-2022), Yotveta (1954-1968, 1974-2022), Hatzeva
(1973-1975, 1988-2022), and Sdom (1959-2022) (Figure 1).

To answer the first research question, we evaluated climatic rainfall in two stages. (1). We used
the Mann-Kendall Tau test to evaluate possible trends in rainfall, and (2). We identified the rainfall
sub-periods using the Standardized Precipitation Index and differentiated extreme sub-periods.

These two steps were performed as follows:

Assessing the Rainfall Trend

We have used the Mann-Kendall Tau test (M-K) to assess temporal trends in rainfall. the M-K
method is a widely-used non-parametric trend test that ranks the magnitude and direction of the
trend of a variable over time [54,55]. It is commonly used in spatial and climatic geographical studies
[22,56]. The daily rainfall measurements were summed into a yearly cumulative rainfall amounts,
according to rain years (a time period of 12 months which starts on the 1st of October and ends on
30th September) and the trend was assessed at a significance level of p<0.05.

Computing the Standardized Precipitation Index (SPI)

The SPI computation was based on the calculation developed by Kumar et al. and the World
Meteorological Organization [18,57]. The data of the long-term monthly rainfall time series from
each station was fitted to a gamma distribution function which was thus transformed into a normal
distribution. The SPI values can be interpreted as the number of standard deviations by which the
observed anomaly deviates from the long-term mean. The definition of the SPI values is seen in
Table 1. The SPI was calculated for 12, 24, 36, and 48 months, and we adopted the 36-month window
to capture localized temporal trends. The 36 month calculation is in accordance with the WMO
recommendations for SPIs for long accumulation periods. The calculations were done using the
Python script given in a GitHub page [58].
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Table 1. The description of the SPI values (based on [59,60]).

SPI values Drought and humid category
>(+)2 Extreme wet
(+) 1.5 to (+) 1.99 Very wet
(+)1to (+) 1.49 Moderate wet
0 to (+) 0.99 Mild wet
0to (-) 0.99 Mild drought
(-)1to(-)1.49 Moderate drought
(-)1.5to (-) 1.99 Severe drought
<(-)2 Extreme drought

Evaluating Climatic Sub-Periods

Based on the SPI results, we clustered the years in which the maximum (> 1) or minimum (< -1)
value in a moving window of 19 months was defined as wet or drought. The cluster is based on a
19-month running window as it is half (+1 to evenly account for periods before and after each
assessed year) of the 36-month period used for the SPI calculation.

Additionally, we examined the correspondence between the rainfall at the four meteorological
stations to better characterize the rainfall over the Arava. We have done so with the use of the
Spearman correlation test over the 36-month SPI results and the monthly rainfall measurements at
each station (n=432) for the period 1987-2022 (the period over which the data is continuous in all the
stations).

2.2.2. Remote Sensing Imagery

To evaluate vegetation cover we used the NDVI remote sensing index. We opted the NDVI over
other indices such as SAVI or MSAVI [61], because they require additional adjustments according to
soil type and vegetation density. Given our extensive time frame, spatial coverage, and diverse soil
compositions, applying such adjustments would have been impractical [62].

We derived NDVI from Landsat 5, 7, and 8 satellites, using the Landsat L2, C2, Tier 1 collection,
1984-2021, revisit time of 16 days, the data is atmospherically and radiometrically corrected [63,64].
We processed and downloaded at a spatial resolution of 30 meters using the Google Earth Engine
(GEE) Platform. We used the ESRI 2020 land use mapping [65] to exclude any land use which is not
natural, (i.e., built-up or agricultural areas, see Figure 1) from the images.

We used the time series of NDVI to differentiate vegetation cover into a proxy of the two
common types of vascular vegetation in the desert: annual and perennial vegetation. The vegetation
proxies were constructed based on the typical local vegetation phenological cycle of each.

Proxies of Vegetation Cover

1. Annual vegetation cover reaches its highest NDVI values following a few intensive rainfall
events and diminishes quickly as temperatures rise and water becomes unavailable at the end
of the winter season [66—68].

e Thus, for every image in the Landsat collection, we calculated per-pixel the yearly
maximum NDVI values within the rainfall season, (a 12-month period beginning October
1) and constructed them as a yearly mosaic of the maximum NDVI values. Together they
form the time series of the annual vegetation for the years 1984-2021. The proxy is referred,
annualprox. The annualprox cover was done similarly to [14,69]

2. Perennial vegetation can be photosynthetically active throughout the year but shows its highest
spectral response towards the late spring (May-June), while at this time the annual vegetation is
mostly absent [12,68].

e  Thus, for every set of annual images in the Landsat collection, we calculated per-pixel the
yearly maximum NDVI values found in May and June (i.e., late spring) and constructed
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them as a yearly mosaic of the values. Together they form the time series of the proxy for
perennial vegetation for the years 1984-2021 The proxy is referred, perennialprox.

Data Sampling

Vegetation at the HAE, grows naturally only within active ephemeral cannels [5,37]. The data of
the vegetation cover for both proxies was extracted only there. We used a polyline GIS rivers layer
which was obtained from the HydroSHEDS database [70], seen in Figure 1. To equally sample the
vegetation cover over the Arava and to reduce possible spatial autocorrelation, we generated 10,000
random vector points which were distributed over the natural streams of Arava. The points were
equally divided along the river's stream orders at a minimum distance between each two points of
100m. Each point was linked to the nearest rain station (numerous points were linked to each station:
Eilat n=1305, Yotveta n=2707, Hatzeva n=3991, and Sdom n=1990). The value of the raster data from
both datasets (the NDVI and the M-K) was sampled according to the described vector points using
the ESRI, ArcPro-software.

We evaluated the correspondence between the average NDVI values for each of the proxies
along the time series between the different stations (N=39). We have done so with the use of the
Spearman correlation, at significance of p < 0.05.

To answer the second research question, the relationships between rainfall and the vegetation
proxies we used a Spearman correlation rest. To take into consideration possible lag responses of
vegetation, we examined the correlation between the vegetation proxies and rainfall over 1, 2, 3, 4
and 5 years, as done by Siegal et al. [12]. The correlation was done separately for the values of the
points related to each rain station, and its rainfall amounts.

2.2.3. Trend Analysis of Vegetation Cover

To answer the third research question, we estimated temporal trends of the vegetation proxies
for the entire Landsat time series (YEARS X-X) and also over shorter periods of 10-year window to
capture the effect of the wet or dry sub-period. We compared the difference in response of recovery
and decline (i.e., time lag response) of the annual and the perennial vegetation. We chose a 10-year
window to assess the effect of the wet and dry sub-periods, as we initially identified that these
periods lasted between 3-9 consecutive years.

Similarly, to the rainfall trend assessment we used the M-K method. But as each imagery is
composed of a large quantity of pixels, we used high levels of significance p < 0.01 to increase the
certainty that a trend occurred in the NDVI values and was not an artifact due to the extensive
number of pixels used.

The medium (10 years) time scale was applied as follows:

1. Each time series of the NDVI proxies (annual and perennial) dataset was divided into 29 short
10-year periods of consecutive years.

2. We executed the M-K Tau test for each short period (e.g., 1990-1999, 1991-2000, 1992-2001, etc.).

3. The M-K calculation provided a new, pixel-based imagery dataset composed of a pair of
images: a 10-year trend image (ranging between -1 to +1, for negative and positive trends), and
a significant level image.

4. We used the significant level imagery at p < 0.01, pixels whose significance level were lower
than sigoo received a new value of 0, and the two images were multiplied.

5. Each of the two newly constructed datasets contains 29 images expressing a 10-year NDVI
trend at a high significance level. Hereafter, the new datasets will be referred to as M-K time
series.

6. In the M-K time series, each image refers to the middle of the measured period; for example,
M-K annual/perennial 1990 refers to the M-K test based on NDVI time series for the years 1985 —
1994 for annual or perennial vegetation.

The time-lag of the annual and perennial vegetation's response to changes in the rainfall trend
was evaluated based on the difference in response of the vegetation proxies of the M-K time series.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 February 2024 i:10. reprints202402.1277.v1

The recovery period starts when M-K values are above zero, and the decline period starts when M-K
values are below zero.

2.2.4. Effect of Land Use

To answer the fourth research question regarding the impact of anthropogenic activity on
vegetation cover, we examined the difference in land management regulation between the state of
Israel (non-grazed) and Jordan (grazed). On the Israeli side of the Arava Valley, grazing is
prohibited, while on the Jordanian side, grazing is not restricted [14,71,72]. As the
geological-pedological setting of the two countries is different in many areas [73], we choose to
assess the difference in vegetation cover only at alluvial areas which are similar in size and climate
on both sides of the border. We compared the NDVI values of both proxies for each year, with the to
the Mann Whitney test at a significance level of p <0.05.

3. Results

3.1. Rainfall Correlation and Climatic Periods

The correlations between the four Arava Valley meteorological stations (between 1987 and
2022) for the monthly rainfall totals and the 36-months SPI calculation is presented in Table 2. The
table illustrates a moderate fit between each pair of stations, except for the northern Sdom station
which was only correlated with the Hatzeva station (for SPI, but not for rainfall). The correlation
strength increased as stations become geographically closer to each other.

Table 2. Spearman rank correlation coefficients matrix between the rainfall station for the period
1987-2023. The correlation above the diagonal represents the fit according to the 36 monthly SPI
calculations, and the correlation below the diagonal represents the fit based on the monthly rainfall
measurements (n=432). The asterisk indicates a statistically significant test result (p < 0.05).

Correlations for SPI

C lati Eilat Yotveta Hatzeva Sdom
) orrela gﬁ‘s Eilat 0.77* 0.55* -0.07
Or MOMY ™7, tveta 0.64* 0.61* 0.03
rainfall
Hatzeva 0.58* 0.53* 0.48*
Sdom 0.28 0.30 0.37

According to the M-K Tau test, results seen within Figure 4, none of the rain station exhibited a
positive or negative statistically validated trend since the start of the rainfall measurements at each
station. But several of statistically significant rainfall sub periods could be identified with relevance
to the start of the measurements at each stations Figure 4 and Table 3. In accordance with the
availability Landsat time series, we will focus on the rainfall sub periods which occurred since the
1980’s. The Eilat, Yotveta, and Hatzeva stations collectively experienced a relatively wet period from
the mid-1980s to the early 1990s, followed by a prolonged dry period (which was documented in all
4 station), which started in 1995/7 until 2013/14. The drought documented at the Sdom station was
shorter, extending between 1997 and 2004. Since 2014, all stations recorded a comparatively wet
period that lasted until 2021/23. These similarities led us to define three main climatic sub-periods
exhibiting discernible fluctuations between wet followed by dry and another wet period in the
Arava Valley over the past four decades.
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Figure 4. The monthly rainfall at each station in blue line, the 36-month SPI calculation for each
station and the wet and dry periods in horizontal green lines. The wet and dry sub periods represent
a cluster of months in which the maximum SPI value was > 1 (wet) or the minimum SPI value was <
-1 (dry) in a moving window of 19 months. The table below, depicts the trend of the rainfall at each
station accroding to the M-K test.
Table 3. A detailed description of the wet and dry sub periods of each rain station, based on Figure 3,
and its relevance with the Landsat time series.
Rain stations  Prior to the Landsat time series During the Landsat time series
Wet
Eilat Wet DIy ggsa971, | Ve Dry Wet
1952-1957 1958-1964 i " 1987-1990 1996-2014 2017-2023
1973-1978
Dr D Wet D Wet
Yotveta Y Y ¢ Y ¢
1958-1965 1978-1980 1985-1997 2003-2014 2015-2023
Dry
Wet Wet
Hatzeva 1998-2005
1987-1993 ! 2015-2022
2008-2014
Wet Wet
sd 19681971 Pry Dry 20052013
om - -
1978-1986 1997-2004 ’
1972-1977 2015-2021

3.2. Yearly Vegetation Cover

The NDVI and M-K time series, expressing the relation between the vegetation proxies and the
yearly and accumulated yearly rainfall, are presented in Figure 5. The NDVI values demonstrated a
clear pattern of increasing vegetation from south to north, corresponding with increasing annual
rainfall from south to north: Eilat (23mm), Yotveta (30 mm), Hatzeva (42.0 mm), Sdom (51.0 mm).
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Figure 5. The temporal profiles of rainfall, and NDVI and M-K for both proxies surrounding each
station along the Arava. The NDVI results were normalized between 0-1, to facilitate a direct
comparison to the M-K values on the same graph.

3.2.1. Correlations between the Yearly Vegetation Proxies along the Arava Valley

A strong correlation between both vegetation proxies related to each station was evident, as
seen in Table 4. The perennialyx correlations were slightly higher than the annualyox. Notably, the
correlation for both proxies declined as the distance between stations increased. Such as the
correlations between close stations, (Hatzeva- Yotveta) annualprox and perennialprox were corr(r) = 0.97
and 0.98; while between the farthest station (Eilat and Sdom) annualyrx and perennialprox the corr(r) =
0.52 and 0.89.
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Table 4. Spearman year to year correlation between the types of proxies for annual and perennial
vegetation between the different stations. The correlations above the diagonal represent the
correlations of the proxy for perennial vegetation between the different regions (named by the
representative meteorological station to which the points are the closest). The correlations below the
diagonal represent the year to year correlations of the proxy for annual vegetation between the
different regions (named by the representative meteorological station to which they are closest). The
asterisk indicates a statistically significant test result (p < 0.05).

perennialprox
Stations Eilat Yotveta Hatzeva Sdom
Eilat 0.97* 0.94* 0.89*
annualprox Yotveta 0.86* 0.98* 0.95*
Hatzeva 0.78* 0.97* 0.97*
Sdom 0.53* 0.76* 0.85*

3.2.2. Correlations between Rainfall and Vegetation Proxies

The correlations between yearly and multi-year average rainfall and NDVI proxies for both the
annualprox and perennialpox can be seen in Table 5. The annualyox around Eilat and Sdom stations
correlated moderately after 3 years of average rainfall (corr(r) = 0.45), while the annualprox around
Yotveta and Hatzeva stations and the rainfall was highly correlated for 2-3 consecutive years (corr(r)
= 0.63). The perennialprox reached the highest levels after three to four years of average rainfall. The
highest levels of correlation were related to the Hatzeva station (corr(r) = 0.79), while the other
stations showed moderate levels (corr(r) = 0.53).

Table 5. The Spearman correlation table between the rainfall and the proxies of the annual and the
perennial vegetation in the Arava from 1984- 2021. The asterisk indicates a statistically significant test

result (p<0.05).

Rainfall Vegetation proxy Eilat Yotveta Hatzeva Sdom

Yearly rainfall 0.26 0.56* 0.48* 0.27

2 Yr. average rainfall ——— 0.36* 0.65* 0.64* 0.33
3 Yr. average rainfall 0.44* 0.62* 0.65* 0.46*

4 Yr. average rainfall 0.17 0.55* 0.52* 0.26
Yearly rainfall 0.31 0.43* 0.55** 0.25*

2 Yr. average rainfall 0.45* 0.50% 0.73* 0.38*
3 Yr. average rainfall perennialprox 0.49% 0.53* 0.79% 0.44*
4 Yr. average rainfall 0.52% 0.54* 0.73* 0.53*
5 Yr. average rainfall 0.57* 0.54* 0.70* 0.35

3.3. The Medium- and Long-Term Trends of the Vegetation

Figure 5 illustrates the spatial pattern of the M-K results at a significance level of 0.01. Figure 5a
displays the M-K test outcomes for the entire examined period (1984-2021); no discernible trend was
evident. In contrast, the subsequent maps depict a 10-year running window of the same analysis.
The maps exhibit a fluctuating process that the vegetation has gone through: the vegetation has
experienced a positive trend (recovery) followed by a negative trend (decline) followed again by a
positive trend (recovery), all taking place in the last four decades.

The first recovery was relatively minor (compared later with the second recovery) occurred
while comparing the vegetation cover in the years 1986-7 with 1995-6 (Figure 5, maps of 1991-2). This
recovery in vegetation coincides with the wet period which started in 1985/7 (Table 3). A major
decline in vegetation cover throughout the entire Arava can be observed while comparing the
vegetation cover of the years 1993-5 with 2005-7 (Figure 5, maps 1998-2000). The negative trend
continued in the central - south of the Arava until 2010 (Figure 5, maps 2001-2004). The decline
coincided with the dry period over the Arava in the years 1997-2014 (ended in Sdom in 2005). Lastly,
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a major vegetation recovery period occurred while comparing the vegetation cover of 2005-2013
with 2014-2021 (Figure 5, maps 2009-2017) coincides with the wet period which starts in 2015.

3.3.1. Time Lags in the Recovery and Decline of NDVI Proxies

Due to the high correspondence between the vegetation proxies in the four stations (Table 4),
and the low variance between the stations value of the M-K results (ANOVAes, p 2 0.05), we
calculated the mean M-K value taken from the 4 stations to inspect the recovery and the decline
between the NDVI proxies (Figure 6 and Table 3). We identified a time lag difference between the
response of the two proxies which was captured twice during the recovery, and once during the
decline. In all cases the annualprx has responded prior the perennialyrx, while shifting between the
sub- periods. The first vegetation recovery while shifting into the wet period revealed a two-year
time lag between the positive trend of the two proxies. The negative trend in vegetation while
shifting to a dry period has also shown a lag of two years between the proxies. The second recovery
which was followed after a relatively long dry period revealed a time lag of three years.

Table 6. The positive and negative trend of the vegetation proxies based on the 10-year M-K
calculation (psis. <0.01), each mentioned year is the middle year within the time span of 10 years.

Trend M-K annualprox M-K perennialprox
Positive 1989- 1995 1991- 1995
Negative 1996-2005 1997-2003
Positive 2008-2017 2011-2018

1984-2021 1989
12 T gﬁ %
.fs@ /

2009
Mann-Kendall tau T
Value i é‘
W | Positive trend k?

. -1 Negative trend F

Figure 6. The large map shows the Landsat max M — Kisss-2021 which serves as a proxy for the annual
vegetation trend for the entire inspected period. The small maps show a 10-year running window of

Mann Kendall results. The year shown represents the middle of the inspected 10-year period.

3.4. Differences in Vegetation Cover Affected by Land Management

The time series comparing NDVI proxies between Israel and Jordan are presented in Figure 7.
On the Israeli side, where no grazing occurs, the average values were consistently higher than those
on the grazed Jordanian side, for both proxies. Based on the Mann-Whitney statistical test (with a
significance level of p<0.01), significant differences were observed in the annualyx throughout the
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entire time series, except between 2005 and 2008. Regarding perennialprox, a consistent and statistically
significant difference between Israel and Jordan was evident across all years.

Average 10 Yr. M-K for vegetation proxies

0.5
3
=
g o —
E
g —  M-K annual,,oxy
M-K Perennialy, oy,
Recovery time lag
"7 - Decline time lag
-0.5
1989 1994 1999 2004 2009 2014 2019

Figure 7. The graphs is based on the M-K results of both proxies over the entire sampling points in
the Arava Valley. The light green arrows express recovery lags, the brown arrow expresses the
decline lag between the responses of each proxy.

Comparison of vegetation proxies in Israel and Jordan
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Figure 8. A comparison between the vegetation proxies in Israel and Jordan. The black dots placed

over the time series indicate a statistically significant difference between Israel and Jordan, as
determined by the Mann-Whitney test (p < 0.01).

4. Discussion

4.1. Climatic Trend and Sub-Periods in the Arava Valley

While studies focusing on the rainfall trends of central and northern Israel have received much
interest in the scientific literature [31,49,74-77], very few studies have researched southern Israel and
Jordan. This may be due to the natural variability of rainfall in the hyper-arid environment and the
scarcity of meteorological stations, which makes it difficult to reach conclusive results [3,5]. Several
studies have identified a decline in the amount of yearly rainfall in the Arava region in the last
decades [28,30,78]. In the present study, we did not identify a clear positive or negative trend, but
rather identified three statistically significant wet and dry sub-periods in the last four decades. A
previous study on droughts in the hyper-arid environment of Saudia Arabia observed similar
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fluctuations in SPI [19]. The results from our study and the latter may reflect the climatic nature of
the hyper-arid environment.

4.2. The Spatial Correlation between Rainfall and Vegetation Proxies

To correctly evaluate the correlation between the rainfall and the vegetation proxies we first
separated each of the parameters and spatially evaluated them to identify any discrepancies. The
monthly rainfall and the SPI calculation were moderately correlated between the four stations, with
slightly higher correlations for SPI. The Sdom station showed a very low correlation by both
parameters, we attributed this difference to its northern geographical location. The northern Arava
Valley (where the Sdom station is located) is influenced by two weather systems - the Cyprus Lows
which originates in the Mediterranean Sea, and the Red Sea Trough which originates in the south.
Conversely, the other three stations receive their rainfall only via the Rea Sea Trough weather
system [47,48,79]. Additionally, the similarity in between the rainfall station was expected due to the
natural spatial autocorrelation which characterizes rainfall events [80,81].

Despite the low correlations between the stations’ rainfall, the vegetation proxies yielded very
high levels of correlations, while the perennialyrox was slightly strongly correlated then the annualpror.
Similarly, to the rainfall, the correlation strengthened with proximity between the stations. The
vegetation proxies even exhibited a high correlation for the vegetation around Sdom station. Based
on the difference between the two levels of correlation, we infer that the Sdom rain station might not
effectively represent the Arava study but rather areas north of the Arava, as it is located at the
northern tip of the Arava Valley, and it is also impacted by rain systems whose origin is from the
Mediterranean Sea.

The difference in the two evaluated correlations may be explained by the characteristics of rain
events in the HAE. Due to the significant spatial-temporal variability of rainfall events [82,83], a rain
event may or may not be captured by rain station, but the vegetation around the rain station will
certainly be affected by it, because of runoff and floods from upstream areas where the rain fell. This
discrepancy between the correlation of the rainfall at each station compared with the spatial
consistency of vegetation proxies strengthens the option of using the last as an indicator of the yearly
and multi-yearly water availability for the natural vegetation in arid environments.

4.2.1. The Correlation between Rainfall and Vegetation Proxies

A correlation difference between the NDVI for both proxies and the rainfall was found between
the different rainfall stations. We assume that the disparity in correlation levels is attributed to the
difference in the hydrological pedological settings of these regions. Both Hatzeva and Yotveta
receive water from watersheds originating in the arid and hyper-arid environments, with similar
geological compositions primarily comprising alluvium from carbonate rocks [73]. Eilat's rainfall is
contributed by local watersheds, with a thin growing bed, primarily composed of alluvium from
granite sources, whereas Sdom’s rainfall station as was claimed (section 5.2), might represent
northern areas, and does not represent the potential water input around it.

The correlation between rainfall and NDVI reached its peak when averaging the cumulative
data of several years. This finding reinforces our perspective that observing vegetation cover
requires a multi-year time frame, strengthening our approach of observing the vegetation dynamics
through the M-K approach for several consecutive years. The multi-year approach is further
supported by additional studies [2,8,11,27].

In relative proximity with the Arava study site, lies the arid Nitzana dune field on the border
between Israel and Egypt. The area is influenced by similar synoptic systems such as the Arava
[47,48]). Siegal et al., 2013 found a higher correlation (~0.88) between the NDVI and annual average
rainfall (after seven years) than were found in our study results. The difference between the levels of
correlation between the two studies may be caused by the geo-morphological differences between
the two study areas. The Nitzana study site is a relatively homogenous sandy dune area at the
Israel-Egypt border. The high porosity of the sand particles creates high water infiltration and low
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runoff compared to the heterogeneous sedimentary basin of the Arava Valley, where vegetation is
highly dependent on flash floods [14,84-86].

Two parameters that were not included in our study, as it was not the scope of this study,
which may have enhanced the correlation between rainfall and vegetation are the timing
distribution of rainfall throughout the year and the amount of rainfall in each event. These factors
are crucial in understanding vegetation growth in arid environments. The timing of rain throughout
the year determines the water availability for different types of vegetation [37,67,87]. For example,
rain events in the late spring are unlikely to contribute to annual vegetation growth, thus lowering
the correlation between the two parameters. Secondly, as the vegetation in the HAE, grows only in
the ephemeral channels, it is dependent on the occurrence of flash flood events, while sparse rain
events that do not create water flow over the surface hardly contribute to vegetation growth [37].
Flash flood generation is dependent on the intensity of the rainfall, thus several millimeters of
rainfall that do not cause a flash flood may be ineffective for the plant's growth [47]. Unfortunately,
continuous data on the occurrence of flash floods was unavailable for the Arava Valley, so we could
not include them in our analysis.

4.3. Vegetation Dynamics in Response to Rainfall Fluctuations

4.3.1. The Mann-Kendall Time Series Approach

Figure 6 demonstrates the strength of creating medium-term M-K time series compared to
long-term time series. The 10-year M-K time series enabled us to observe the multi-year climatic
variability, which would have otherwise been obscured. In accordance with the long-term rainfall
trend, for which we haven’t found a clear trend, we did not find a clear monotonic trend in
vegetation cover in over last four decades. Observing the vegetation trend in segments of several
years is particularly important in an area where the annual rainfall highly fluctuates, such as the
Arava Valley. We chose to calculate M-K trends with a 10-year window as we aimed to observe the
effect of wet and dry sub-periods, which as shown in Table 3 can vary from 3 years to about a
decade. Noy et al. [22] used a moving window of 5 years, to observe changes in the vegetation cover
due to changes in land uses which would affect the vegetation cover at a much shorter time scale.

4.3.2. Differences in the Recovery and Decline between the Vegetation Proxies

The M-K time series has enabled us to evaluate the recovery time lag between the vegetation
proxies. In the three documented occurrences of rainfall sub-periods, the annualyrox responded more
quickly than the perennialpror. During the first recovery, the difference between the proxies was two
years, while in the second recovery, it occurred after three years. It seems that the time lag between
the recovery depends on the length of the preceding dry period. Moreover, the recovery intensity of
the second phase was significantly higher than the first as seen in Figure 6. This difference can likely
be attributed to the extreme contrast between the severe drought conditions that persisted from the
mid-1990s until about 2010, in comparison to the subsequent very wet period from 2013/14 onwards.
The change between wet to dry has shown a time lag where the annualyox, preceded the perennialprox
in two - three years. The results coincide with previous studies conducted in arid environments that
concluded that perennial vegetation declines 2-3 years after annual vegetation in arid areas facing
drought [10,12]. But more surprising is that the same results are achieved in much more humid
areas, such as the study of [11], who evaluated the recovery of grass, shrubs, and trees (equivalent to
our proxies of annuals and perennials) following droughts in the vast temperate regions and found
similar results; Grass recovers most rapidly, shrubs after two years, and trees recover fully only four
years after the drought ends. The similarity in the recovery or decline time lag of vegetation growing
under extremely different climatic conditions is attributed to the vegetation’s incredible ability to
fully adapt to the local climatic conditions, independent of the biome.

As conducting fieldwork measurements was beyond the scope of our study, our findings can be
supported by studies that have done field sampling in the Arava in recent years [28,29]. Bruins et al.,
2012 concluded that the vegetation around natural springs located in the Arava has significantly
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decreased during the drought prevailing in the Arava from 1995 until the publication of his study in
2012. Armoza-Zvuloni et al. 2021 executed long-term monitoring of the Acacia trees at two wadis in
southern Arava. They observed a substantial increase in Acacia tree mortality (A. raddiana Savi and
A. tortilis) during the severe drought spanning the Eilat — Yotveta area between 1995 and 2014. Later,
extensive Acacia germination was documented in 2017, which is attributed to the post-drought wet
period. Both examples are evident in our results, where the latter demonstrates the 3 years lag of the
perennial recovery which was seen in our study.

4.4. The Impact of Land Use

The results of the comparison between Israel and Jordan presented consistently higher
vegetation cover values in the Israeli side. For the annualprx, we did not find a significant differences
between Israel and Jordan for the years 2005-2008. Presumably, after a sequence of continuous
drought years, the annual vegetation was at minimum levels due to the lack of rainfall. Thus, in
years when both sides of the border experience a drought period, differences in vegetation cover are
negligible. However, the perennialyrox consistently shown higher values on the Israeli side. These
results coincide with other works [12,14,16,88,89]. A study by [90] showed that following prolonged
human disturbances, such as grazing in the Sonoran desert, it took over 50 years for the perennial
vegetation to fully recover. Israel prohibited grazing at the Arava since the 1950’s [14,91], thus we
can assume that the perennial vegetation of the two sides will maintain its difference over a
relatively long period, as seen during the second dry period.

5. Conclusions

In the last decades, the Arava Valley has experienced substantial changes in its rainfall regime.
Within these changes, the typical average annual rainfall was low, but the multi-year standard
deviation was very high. Although we haven't recognized any clear trend in the rainfall amounts
over the years, we were able to distinguish wet and dry sub-periods using SPI calculation. Similarly,
to the rainfall, vegetation proxies have not shown a clear trend over the entire time series but
responded significantly to each sub-period either through recovery or decline. The highly consistent
correlations among vegetation proxies along the Arava, compared with the moderate correlation of
rainfall measurements among the stations, demonstrates the potential of using vegetation cover as
an indicator for the water availability for plants in the HAE. We have demonstrated that annualprox
exhibits a more immediate response than perennialyx when transitioning between wet and dry
periods with a time lag of two to four years depending on the length of the previous sub period. We
have shown that the non-grazed Israeli side exhibits higher values of both vegetation proxies
compared to the grazed Jordanian side. The differences were significant throughout most of the
study period, excluding several years of drought when the vegetation on both sides was at its
lowest. This paper focused on the dynamic relationship between the fluctuating rainfall and the
response of the vegetation cover under the harsh hyper-arid environment. In this study, we
developed a comprehensive approach that integrates satellite imagery remote sensing together with
climatic records. This work improves the understanding of ecological dynamics in hyper-arid areas.
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