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Abstract: This paper presents an uncertainty quantification analysis of the first fix in a Time-Differenced
Carrier Phase (TDCP) observation model. TDCP is a widely used method in GNSS-based odometry
for precise positioning and displacement estimation. A key point in the TDCP modeling is the
assumption that the GNSS receiver’s initial position is perfectly known, which is never exactly the
case in real-world applications. This study assesses impact of initial position errors on estimated
displacement by formulating a correct TDCP model and a misspecified one, where the first position is
not correct. Theoretical derivations provide a generic framework of estimation under misspecified
model and its associated mean squared error (MSE), as well as estimation peformance bounds through
the Misspecified Cramer Rao bound (MCRB) for the considered case. These theoretical considerations
are then used to build an estimator of the receiver’s displacement, with comparisons to the MCRB for
performance evaluation. Extensive simulations using realistic GNSS geometry assess the influence of a
first-fix error under various conditions, including different time intervals, first-fix error norms and
first-fix error direction. The results indicate that the displacement estimation error is linearly related to
the initial position error and the time interval between observations, highlighting the importance of
accurate first-fix estimation for reliable TDCP-based odometry. The findings contribute to highlighting
the order of magnitude of errors on solutions as a function of the error on parameters.

Keywords: GNSS; TDCP; uncertainty quantification; odometry; positioning error; navigation

1. Introduction
Odometry is a fundamental technique used in robotics, autonomous vehicles, and geospatial

applications for estimating the change in position of a moving system. It relies on sensors or data from
systems like wheel encoders, inertial measurement units, vision sensors, lasers, or global navigation
satellite systems (GNSS) to measure the motion of a vehicle or object. GNSS-based odometry has
become an essential tool for achieving precise and reliable positioning and displacement estimation
over long distances.

In GNSS-based odometry, the system estimates its positions and/or displacements by processing
satellites observations. One of the most precise observation is the carrier phase observation. The
carrier phase refers to the phase of the carrier wave used by satellites to transmit signals. This carrier
phase observation is particularly valuable because it provides much higher accuracy (on the order of
millimeters) compared to standard pseudorange measurements (with a meter level accuracy), making
it ideal for precise positioning and odometry. However, this observation is ambiguous, the ambiguity
being the integer number of wavelengths traveled by the signal. One way to get rid of this ambiguity,
if constant over time, is to use the substraction of two consecutive carrier phase observations and form
what is known as the time-differenced carrier phase (TDCP) observation. This method is widely used
in GNSS-based odometry to estimate the change in position over time. In TDCP, it is assumed that
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the integer ambiguities present in both carrier phase observations cancel out when the substraction is
built, allowing for highly accurate displacement estimation.

Uncertainty quantification refers to the process of quantifying the uncertainties in quantity-of-
interest by propagating the uncertainties in the input of a system. Uncertainty in GNSS measurements
arises from various factors, such as observation noise or an approximate assumed position used when
building observation models. Reviews about sources of error and their impact within GNSS systems
are available in [1].

This paper proposes to focus on one of them involved in the TDCP model: when constructing
the TDCP equations as a function of the receiver displacement, the receiver’s position must be known
at one of the two epochs. This knowledge on position is never perfect, and can affect the estimated
displacement. To account for this, uncertainty quantification is used to assess the impact of this
inaccuracy on the displacement estimate. By quantifying the uncertainty in the receiver’s position, one
can evaluate how this error propagates through the TDCP equations and influences the displacement
estimation. This helps in understanding the potential error margins and ensuring that the odometry
results remain reliable, even when position uncertainties are present, thus improving the reliability of
GNSS-based odometry in real-world applications.

2. Related Work
2.1. TDCP Models

Using a GNSS receiver, a system could estimate its speed vector at a given instant by means
of Doppler observations. Once integrated, these speeds provide an estimation of the system’s dis-
placement. It is known that the Doppler observations, when integrated, are noisier than carrier phase
observations, though not sensitive to cycle slip [2]. For this reason, it is interesting to estimate a receiver
displacement between two instants by means of TDCP.

In [3], the authors assume perfectly known receiver position at first epoch and use this information
to run a Kalman filter with TDCP and substracted TDCP observations between satellites, along with a
cycle slip detector. The source of first position is not specified in the experiments. Also, the receiver to
satellite unit vectors at the two epochs are known. To assess potential cycle slips, the cycle slip detector
first generates a set of valid solutions (from a previous estimate, integrated IMU measurements and
IMU specifications), and checks if the TDCP solution is within that set.

In [3,4], the authors build substracted TDCPs, i.e., the substraction of TDCPs between two different
satellites, in order to remove the receiver clock bias difference. The substraction is done with the
satellite with highest elevation, as the receiver most likely receives a direct signal from this one. Still, to
estimate the receiver displacement with these substracted TDCPs, the authors assume known receiver
to satellite vectors and receiver position at first epoch of substracted TDCPs.

Some authors go further in the approximations of the TDCP model. In [5,6], the receiver to
satellite unit vectors are assumed constant at the two TDCP epochs, leading to a unique receiver to
satellite vector. It should be noted that this approximation requires the knowledge of the receiver
position. Then, the receiver and satellite displacement vectors are projected onto this vector thanks to
a scalar product. This makes the TDCP a linear model of the receiver displacement.

The same approximation is made in [2,7], where the author explains that the TDCP model is
linearized around the estimated position at previous epoch. Also, the authors build the single difference
of carrier phase observations between satellites and between epochs.

In [8], a similar TDCP model is built, with a time between the two epochs ranging from 1 s up
to 60 s. Regarding the geometric part, the model includes two terms, the first one being a change of
range between the satellite and the receiver, which requires the receiver position, and a second term
where the estimated receiver displacement vector is projected onto the unit line-of-sight vector at the
second epoch, which also requires the receiver position to be known. Also, a single line-of-sight vector
is considered, even if the time of interval is of 60 s. This TDCP model is used to build a TDCP factor
inside a factor graph optimization problem. At the first epoch, a first position is set from a prior factor,
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and for other epochs, the first position is set from previous nodes. It should be noted that cycle slip
factors are used to handle cycle slips.

In [9], the geometric part of the TDCP model is split into three terms, the first one due to the
satellite motion along the line-of-sight, a second term that contains the receiver position at the first
epoch, and the last term is a linear term of the receiver displacement and of the line-of-sight vector at
the second epoch. All these terms require the knowledge of the receiver coordinates at the two epochs.

In [10], the authors leave the TDCP model as a function of the two receiver positions. The TDCPs
are used in a factor of a factor graph optimization problem, where relative displacement factors from
preintegrated inertial measurements are used. In the experimental part of their work, their proposed
method outperforms two filtering methods that also use TDCP observations. This is likely due to a
prior factor that sets the receiver position at the first epoch, although no details are given regarding
this assumption.

Overall, within the GNSS community, many approximations of the TDCP model are provided,
which all assume the known receiver coordinates in order to estimate a displacement.

2.2. Uncertainty Quantification

Uncertainty quantification can be defined as the process of assessing (and if possible, reducing)
the impact of an uncertainty within a system on its output. It is a very general topic that applies to
any engineering problem. In case of deterministic system, the uncertainty can either come from a lack
of knowledge, or from a probabilistic modeling of it. Indeed, when the system is probabilistic, the
uncertainty directly comes from it. Regarding the quantification, multiple methods exist, depending
on where the uncertainty comes from.

In [11], the authors deliver a Python library for uncertainty quantification, for very general cases,
ranging from physics to applied mathematics, and with many algorithms.

Within the GNSS community, uncertainty quantification has already been applied. For example,
in [12], the authors consider multiple sources of uncertainty, which propagates in GNSS reflectometry
observations to estimate a sea level. The quantification is made using the RMSE metric. In [13], the
authors estimate a GNSS receiver position using noisy observations. The uncertainty is modeled by
an Ornstein-Uhlenbeck random process, a Brownian random process, with learned parameters. The
observations are run in a Kalman filter, and they find out that all these methods outperform, in term of
uncertainty, the direct approach which consists of running the Kalman Filter in a traditional way. In
[14], from confidence volumes of Gaussian distributions, the authors provide analytical extensions of
these volumes into zonotopes, that take into account uncertainties of an observation model, containing
potential biases and/or random errors.

2.3. Overview of Proposed Method

In the estimation community, work on estimators built with misspecified models exist [15–17].
On the other hand, in the GNSS community, to the best of the author’s knowledge, the impact of a
misspecified first position in a TDCP model has never been studied. Therefore, a correct TDCP model
as well as a misspecified one are going to be built. The misspecified one will be different from the
correct one by the fact that the true receiver position at the first epoch is never known perfectly. The
receiver displacement will be estimated, and the receiver position at the second epoch will be deduced
from the receiver position at the first epoch and the estimated displacement. No approximations will
be made in these models. They will contain the substraction of ranges, but these ranges will not be
projected onto a line-of-sight vector, as it has been done by previously mentioned authors. These two
models will be compared experimentally, with multiple values around the true receiver position at
the first epoch, in order to assess the importance of the receiver position at the first epoch in a TDCP
model to properly estimate a receiver displacement.
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3. Carrier Phase Observation Model and TDCP
3.1. Carrier Phase Observation Model

A GNSS receiver at epoch t of coordinates rt ∈ R3 with a clock bias with respect to GPS time dtr
t

is tracking a satellite of coordinates st ∈ R3 and with a clock bias with respect to GPS time dts
t .

The carrier phase observation is modeled as follows:

λΦt = ∥st − rt∥+ c · (dtr
t − dts

t) + λNt − It + Tt + mt + εΦ
t (1)

where the subscript t is used to indicate that the parameters are expressed at epoch t, Φt is the carrier
phase raw measurement, λ is the wavelength of the considered frequency band, c is the speed of light,
It is the ionospheric delay, Tt is the tropospheric delay, mt is the multipath error, Nt ∈ Z is the integer
ambiguity, εΦ

t is a centered Gaussian noise with standard deviation σϕ, and the norm of a vector v ∈ R3

is defined as ∥v∥ =
√

vTv.
In this model, the satellite coordinates st and its clock bias dts

t are known from the ephemerides
informations. In a precise point positioning (PPP) framework, the unknown quantities that are
estimated are the receiver coordinates rt, the clock bias dtr

t , the integer ambiguity Nt, and possibly
other atmospheric states.

3.2. TDCP Observation Model and Corrections

Considering two carrier phase observations as in equation (1) at epochs t1 and t2 from the same
satellite, the TDCP model is built:

λ(Φ2 − Φ1) = ∥s2 − r2∥ − ∥s1 − r1∥+ c · (dtr
2 − dts

2)− c · (dtr
1 − dts

1)

+ λ · (N2 − N1)− I2 + I1 + T2 − T1 + m2 − m1 + εΦ
2 − εΦ

1 . (2)

Correcting all the atmospheric terms [18,19] and satellite clock biases, assuming the difference between
the two multipath terms is an additive centered Gaussian noise, and assuming no cycle slip (N2 − N1 =

0), the model (2) becomes:

λ(Φ̃2 − Φ̃1) = ∥s2 − r2∥ − ∥s1 − r1∥+ c · (dtr
2 − dtr

1) + ε (3)

where Φ̃t corresponds to the corrected carrier phase observation, ε is the contribution of the two
independent errors εΦ

2 − εΦ
1 , as well as all other mutually independent Gaussian centered residual

errors after correction. Therefore, ε is a centered Gaussian noise with standard deviation σTDCP >
√

2σϕ.
The assumption of constant ambiguity requires the use of a properly working cycle slip detector [20].

Written this way, the model in equation (3) is a function of the receiver coordinates r1 and r2 and
receiver clock biases dtr

1 and dtr
2. While the use of multiple observations from other satellites (at least 4

for each epoch) with this model would still permit to estimate all these quantities, depending on the
time elapsed between epochs t1 and t2, the obtained result would be highly sensitive to noise, and the
mean error of an optimal unbiased estimator would be very large. This is due to the fact that between
two epochs, the receiver to satellite unit vectors would not change much, hence a linear approximation
that is badly conditioned. This point discourages a user to estimate all these quantities directly using
TDCP observations only, unless considering a very large time interval between the two considered
epochs.

Regarding the ephemerides, in [9], the authors compared the use of final products (i.e., high
precision satellites coordinates in post-processing conditions) versus real-time navigation data and
figured out that the use of final products would not improve the solution with respect to the use of
navigation data, as between the two epochs, if the same set of ephemerides is used, the satellites
positions errors are approximately constant. On the other hand, they figured out that when the set of
ephemerides parameters are updated, a gap appears in the satellite positions, which adds an important
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error in a TDCP model if this update happens between the two epochs. To cancel this phenomena, it is
therefore important to use the same set of ephemerides in a TDCP model.

3.3. TDCP Model with True Receiver Position and Receiver Displacement

The model in equation (3) can be expressed in terms of receiver displacement and clock bias
difference. The receiver displacement vector between epochs t1 and t2 is defined as r1,2 ≜ r2 − r1, and
the receiver clock bias difference between epochs t1 and t2 is defined as dtr

1,2 ≜ dtr
t2
− dtr

t1
. With these

notations, the model equation (3) is written as:

λ(Φ̃2 − Φ̃1) = fr1(r1,2, dtr
1,2) + ε. (4)

where

fr1 : R3 ×R → R
(x1, x2) 7→ ∥s2 − (r1 + x1)∥ − ∥s1 − r1∥+ c · x2. (5)

The index indicates that this function is not a function of the receiver coordinates but of its displacement,
with the position at epoch t1 set to r1, and not of a receiver clock bias, but of its clock bias difference.
Given a set of visible satellites, this observation model and TDCP observations can be built for each
satellite. The set of models and observations can then be used to estimate the receiver displacement
vector and clock bias difference by solving a maximum likelihood problem. In practice, the receiver
position r1 is not perfectly known. Therefore, in the next subsection, an error term will be introduced,
leading to a different model.

3.4. TDCP Model with Assumed Receiver Position and Receiver Displacement

The previous model fr1 in equation (5) assumed perfect knowledge of the true receiver coordinates
r1. In practice, these coordinates can be inaccurate. A first fix denotes an estimated initial position r̂1 of
the true initial position r1. Therefore, the error between the true coordinates and the assumed ones
are defined as ∆r1 ≜ r̂1 − r1. From these notations, the true model is the one in equation (5) while the
assumed one is:

fr̂1 : R3 ×R → R
(x1, x2) 7→ ∥s2 − (r̂1 + x1)∥ − ∥s1 − r̂1∥+ c.x2. (6)

One can notice that r̂1 = r1 ⇔ fr̂1 = fr1 .
In order to quantify the difference between the two models as a function of ∆r1, one defines the

difference between the assumed model equation (6) and the true model equation (5), expressed as a
function of the error ∆r1, for the true receiver displacement and the true receiver clock bias difference:

∆ f : R3 → R
∆r1 7→ fr1+∆r1(r1,2, dtr

1,2)− fr1(r1,2, dtr
1,2). (7)

It can be noted that this application cancels all the clock biases terms, and only the difference in the
geometric ranges remains:

∆ f (∆r1) = ∥s2 − (r1 + ∆r1 + r1,2)∥ − ∥s1 − (r1 + ∆r1)∥
− ∥s2 − (r1 + r1,2)∥+ ∥s1 − r1∥. (8)

Therefore, the first fix r̂1 may have an impact on the estimated receiver displacement and clock bias
difference.
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In general, the use of a misspecified model to estimate parameters has an impact on the estimation.
The objective of the following sections is to experimentally assess the estimation error due to a fix error
∆r1.

3.5. Estimation of a Receiver Displacement and Clock Bias Difference from TDCP Observations

Now that a misspecified TDCP model has been written in equation (6), one can estimate a receiver
displacement and clock bias difference from a set of m visible satellites at the two epochs t1 and t2 and
from the set of TDCP observations at these epochs. A receiver’s displacement estimator is going to be
defined and is denoted r̂1,2. The second epoch receiver’s position estimator is denoted r̂2 ≜ r̂1 + r̂1,2.
A 2D representation of the TDCP model, for a single satellite, is visible in Figure 1.

s1 s2

r1
r2

r̂1

r̂2

λΦ1 λΦ2

∆r1

r1,2

r̂1,2

Figure 1. Representation of the TDCP model, in 2D. The blue disks represent the satellite positions at the two
epochs, the green crosses represent the true receiver positions, the red ones represent the assumed receiver
positions.

To assess the degradation of the displacement estimation due to a misspecified first fix, one can
explicitly write this estimator, compute its statistical properties, and assess the impact of ∆r1 on it. In
the next section, theoretical elements are provided to achieve these objectives.

4. Estimation: Computation of Mean Squared Error and Its Lower Bound
This section uses a more general framework than the one used so far in this article and provides the

theoretical elements to build an estimator of a vector of parameters living in an Euclidean space, from a
multivariate Gaussian random variable. In the considered framework, the mean value of the Gaussian
random variable is misspecified. This uncertainty is going to impact the estimator’s performances,
and one proposes to quantify this impact. Additionally, this section provides a theory to compute
statistical properties of this estimator. Finally, the link with the original problem (the estimation of a
GNSS receiver’s displacement and clock bias difference, from a set of TDCP observations) is made.

4.1. Estimator of a Real Vector

Given an unknown vector θ ∈ Rn and a function g : Rn → Rm differentiable at θ, one obtains a
vector of observations:

y = g(θ) + ε, ε ∼ N (0, R). (9)

where N (µ, Σ) denotes the multivariate Gaussian distribution with mean vector µ and covariance
matrix Σ. In this study, the function g is unknown, i.e., the construction of an estimator of θ will be
based on a function h : Rn → Rm.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2025 doi:10.20944/preprints202504.1644.v1

https://doi.org/10.20944/preprints202504.1644.v1


7 of 20

Since y ∼ N (g(θ), R), but g is unknown, one defines the misspecified likelihood function:

qy : Rn → R

x 7→ 1

(2π)
m
2
√
|R|

exp
(
−1

2
∥y − h(x)∥2

R

)
(10)

where ∥v∥2
R ≜ vTR−1v. The mismatched maximum likelihood estimator (MMLE) is defined as:

θ̂ ≜ arg max
x∈Rn

qy(x) = arg min
x∈Rn

∥y − h(x)∥2
R (11)

as long as the above equation is a measurable function of y. In general, computing statistical properties
of the random variable θ̂ is not straightforward. Instead, an approximation of θ̂ is defined: assuming
that the function h is differentiable on a set S ⊆ Rn, then one can choose a vector θ0 ∈ S, and the
function can be written:

∀x ∈ Rn, h(x) = h(θ0) + Hθ0(x − θ0) + o(∥x − θ0∥) (12)

where Hθ0 represents the Jacobian matrix of h at θ0. This way, the function h is replaced by its first
order development at θ0 in the misspecified likelihood equation (10), leading to:

θ̂ ≈ arg min
x∈Rn

∥y −
(
h(θ0) + Hθ0(x − θ0)

)
∥2

R. (13)

The vector θ0 can be obtained by running the Gauss-Newton algorithm with a sample of y and an
arbitrary initial estimate. Under certain conditions on the function h and on the step size [21], the
Gauss-Newton algorithm is guaranteed to converge and to give an estimate (denoted θ0). The proposed
approach assumes that the function h is not too nonlinear (in particular, that from the definition of an
operator norm,

∣∣∣∣∣∣Hθ0 − Hθ

∣∣∣∣∣∣ ≈ 0).
If Hθ0 represents an injective application, one defines the matrix:

S ≜
(

HT
θ0

R−1Hθ0

)−1
HT

θ0
R−1. (14)

The solution of the optimization problem equation (13) is given by:

θ̂ = S(y − h(θ0)) + θ0. (15)

4.2. Properties of the Estimator

Now that an estimator equation (15) is available, some of its statistical properties are provided.
One figures out that:

• since y ∼ N (g(θ), R), the estimators’s mean vector is E
[
θ̂
]
= S(g(θ)− h(θ0)) + θ0,

• the estimator’s bias is b
[
θ̂
]
= S(g(θ)− h(θ0)) + θ0 − θ,

• since θ̂−E
[
θ̂
]
= Sε, the estimator’s covariance matrix is V

[
θ̂
]
= SRST =

(
HT

θ0
R−1Hθ0

)−1
.

Defining the mean squared error operator MSE
[
θ̂
]
≜ E

[
(θ̂− θ)(θ̂− θ)T

]
, it can be shown that:

MSE
[
θ̂
]
= V

[
θ̂
]
+ b

[
θ̂
]
b
[
θ̂
]T

. (16)

4.3. Lower Bound of the Mean Squared Error of a Biased Estimator

Formally, an estimator is a measurable function that takes as input a random variable (often called
observations), and with an output space that contains the vector of parameters to estimate. In the
estimation theory, it is known that among all estimators, with the same input random variable and
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the same output space, there exists a lower bound for the mean squared error [22]. Therefore, it is
interesting to construct it and compare it with the mean squared error of the considered estimator.

The Misspecified Cramer-Rao Bound (MCRB) is defined as [23]:

MCRB ≜ (In + Ψθ)I−1
θ (In + Ψθ)

T + b
[
θ̂
]
b
[
θ̂
]T

. (17)

where In represents the identity matrix of size n.
The term Ψθ represents the Jacobian matrix of the estimator’s bias, denoted b

[
θ̂
]
, at the vector θ,

when it is seen as a function of the true vector of parameters θ. The previous section has shown that in
general, the considered estimator θ̂ is biased. Therefore, one defines this bias function as:

ψ : Rn → Rn

x 7→ S(g(x)− h(θ0)) + θ0 − x. (18)

The Jacobian matrix of ψ at θ is given by:

Ψθ = SGθ − In (19)

where Gθ indicates the Jacobian matrix of g at θ.
The term Iθ denotes the Fisher Information matrix [23]. Since y ∼ N (g(θ), R), the likelihood

function is given by:

ly : Rn → R

x 7→ 1

(2π)
m
2
√
|R|

exp
(
−1

2
∥y − g(x)∥2

R

)
. (20)

Under some regularity conditions [22], the Fisher Information matrix is defined as:

Iθ ≜ −E
[
d2

θ(log ◦ly)
]

(21)

where d2
θ f corresponds to the Hessian matrix of a function f at θ. In the considered case, one can show

that:
Iθ = GT

θ R−1Gθ. (22)

Finally, assuming that Gθ represents an injective application, then the Fisher Information matrix
invert is well defined.

Finally, a theorem states that [23]:

MSE
[
θ̂
]
≥ MCRB (23)

where the inequality symbol ≥ represents the Loewner partial order.

4.4. Application to the Problem

Now that a theoretical framework has been written, it can be used to estimate a GNSS receiver
displacement and clock bias difference from a misspecified TDCP observation model, and quantify
the impact of this misspecified model on the estimated displacement. The link between the different
quantities introduced in the previous sections is summarized in Table 1. In the next section, the
receiver displacement and clock bias difference will be estimated from a set of TDCP observations of
m satellites.
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Table 1. Link between the terms introduced in section 3 and section 4.

Estimation TDCP

θ as in equation (9)
(

rT1,2, dtr
1,2

)T
as in equation (4)

y as in equation (9)
λ
((

Φ̃2 − Φ̃1
)1, . . . ,

(
Φ̃2 − Φ̃1

)m
)T

with λ
(
Φ̃2 − Φ̃1

)i as in equation (3)

g as in equation (9)
(

f 1
r1

, . . . , f m
r1

)
, with f i

r1
as in equation (5)

h as in equation (10)
(

f 1
r̂1

, . . . , f m
r̂1

)
, with f i

r̂1
as in equation (6)

R as in equation (9)
diag

(
σ2

TDCP1
, . . . , σ2

TDCPm

)
where σ2

TDCPi
is the variance of ε equation (3)

5. Experiments
In this experiment, the set of all visible GPS satellites in Toulouse, France, on the first of January

2024, 12:00 UTC are considered. A skyplot is provided in Figure 2. A synthetic GNSS receiver
is constructed, with known coordinates r1. Its displacement vector is a sample of a random zero-
mean Gaussian random variable with a covariance matrix proportional to the time interval between
successive epochs, i.e. r1,2 is a sample of the random variable N (03, (t2 − t1)I3), as this stochastic
model captures small random movements of the receiver between epochs, while maintaining a realistic
representation of a pedestrian receiver over short timescales [24,25]. The receiver clock bias difference
dtr

1,2 is a sample of the law N (0, t2 − t1).

Figure 2. Skyplot of GPS satellites in Toulouse, France, on the first of January 2024, 12:00 UTC.

The satellite positions are derived from precise orbit data provided in the Standard Product 3
(SP3) format. These SP3 files offer highly accurate satellite ephemerides, providing the real positions of
GPS satellites. This ensure that the data reflected actual satellite orbits, further enhancing the realism
of the simulation.

5.1. Experimental Uncertainty Quantification of TDCP Model

The first experiment characterizes the TDCP model equation (7), for a single satellite. A satellite is
chosen (G17). For each value of ∆r1, a value for ∆ f equation (7) is obtained, indicating the discrepancy
between the two TDCP models.

In Figure 3 and Figure 4, the set of values taken by ∆r1 is set to the unit sphere in order to study
the importance of its direction. The time between the two epochs is set to t2 − t1 = 1 s, which is
a common value in standard receivers. The figures indicate that the discrepancy between the two
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models is maximum and minimum on two antipodal points, is null on the equator defined by these
two antipodal points, and is continuous, as there is no rapid change of value.

Figure 3. ∥∆r1∥ = 1 m, t2 − t1 = 1 s. ux, uy and uz indicate the x, y and z components, in the ECEF frame, of ∆r1.
The dot indicates the satellite displacement direction.

Figure 4. ∥∆r1∥ = 1 m, t2 − t1 = 1 s. θ and ϕ are the spherical coordinates, in the ECEF frame, of ∆r1. The cross
indicates the satellite displacement direction.

In Appendix A, one shows that the maximum and minimum errors are along the direction given
by the vector s2 − s1 − r1,2, which approximately corresponds to the satellite displacement, and the
error is null for orthogonal vectors to this direction.

Overall, the error is low compared to the norm of the first position error, with a maximum error
that is approximately 104 lower than ∥∆r1∥.

The same experiment is conducted with a much higher first fix error (i.e., a larger sphere).
The results are visible in Figure 5 and Figure 6. Again, the worst direction is given by the vector
s2 − s1 − r1,2, and one observes a ratio between ∥∆r1∥ and ∆ f approximately equal to 104 in the worst
cases.

Figure 5. ∥∆r1∥ = 1 km, t2 − t1 = 1 s. ux, uy and uz indicate the x, y and z components, in the ECEF frame, of
∆r1

∥∆r1∥
. The dot indicates the satellite displacement direction.
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Figure 6. ∥∆r1∥ = 1 km, t2 − t1 = 1 s. θ and ϕ are the spherical coordinates, in the ECEF frame, of ∆r1. The cross
indicates the satellite displacement direction.

The study of the worst case direction is further extended, this time by observing the values taken
by ∆ f on the set ∆r1 ∝ s2 − s1 − r1,2, for multiple time intervals t2 − t1. The results are visible in
Figure 7. For convenience, a log-log plot is used. For all the considered time intervals t2 − t1, the plots
indicate a linear relation between the model mismatch ∆ f and the norm of the first-fix error ∥∆r1∥,
since the slope of all the curves are equal to 1 and from equation (8), ∆ f (0) = 0. For each value of the
time interval, the linear coefficient can be read at ∥∆r1∥ = 1 m. For example, in the case of t2 − t1 = 1 s,
this coefficient is equal to 1.2 × 10−4. See appendix B for a computation of these values. It is visible
that the linear coefficient depends on the time interval: the greater the time interval, the greater the
coefficient. One can conclude that for a given value of ∥∆r1∥, the greater the time interval, the greater
the model mismatch.

Figure 7. ∆r1 ∝ s2 − s1 − r1,2, which corresponds to the worst direction.

Finally, the largest value taken by ∆ f is computed, for the product of a set of values of ∥∆r1∥ and
of a set of time intervals between the two observation epochs. This is done in order to explore how the
movement of satellites over time would affect the model mismatch. By extending the time between
successive observations, the GNSS satellites in the sky change their positions more significantly due to
their dynamics. The purpose of this application is to capture a wider range of applications, which can
influence the accuracy and reliability of the positioning solutions. These values are visible in Table 2.
Omitting rounding errors, the values taken show a bilinear relation with ∥∆r1∥ and t2 − t1. This result
is hard to predict, as ∆ f is not a linear function of ∆r1, and is even harder to predict for t2 − t1, as the
time interval does not explicitly appear in ∆ f .
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Table 2. Maximum value of ∆ f equation (7) with respect to ∥∆r1∥ and t2 − t1.

∥∆r1∥
t2 − t1 1 s 1 min 30 min

1 m 1.2 × 10−4 m 7.1 × 10−3 m 2.1 × 10−1 m
10 m 1.2 × 10−3 m 7.1 × 10−2 m 2.1 m
1 km 1.2 × 10−1 m 7.1 m 2.1 × 101 m

1000 km 1.2 × 102 m 7.1 × 103 m 2.1 × 105 m

Now that the model mismatch has been characterized for a single satellite, multiple satellites are
going to be used to estimate the receiver’s displacement and clock bias difference.

5.2. Experimental Uncertainty Quantification of Estimated Displacement with Noiseless Measurements

In this experiment, the receiver true positions r1 and r2 are set as previously explained, and
the receiver’s clock bias difference follows a zero-mean Gaussian random variable, with a variance
proportional to the time interval t2 − t1. The set of all visible GPS satellites at the two epochs is
used to generate noiseless synthetic TDCP measurements, as in equation (3), with σTDCP = 0. They
are used to estimate the receiver displacement and clock bias difference between the two epochs,
following equation (6). The choice regarding noiseless measurements is made in order to have an error
of displacement estimation due to a first fix error only.

For the metric, since the interest is in the estimation of the receiver displacement vector r̂1,2,
the mean squared error matrix is expressed in a basis such that the submatrix corresponding to the
geometrical part is extracted and is denoted MSE, and the square root of the trace of this matrix is
computed, i.e.,

√
Tr(MSE). This choice is made in order to plot the mean Euclidean distance error.

Also, denoting PDOP the position dilution of precision, this metric is equal to σTDCP × PDOP, in the
case of independent and identically distributed noise [26].

In Figure 8 and Figure 9, the set of values taken by ∆r1 corresponds to two spheres, with different
radius, i.e., for two values of ∥∆r1∥. The time interval is set to t2 − t1 = 1 s. These two plots have
the same shape: two modes on the sphere, whose maximum values are close to antipodal and no
direction where the estimation error in null. Although these figures look similar, they differ by the
magnitude of the values. The local Up and North directions are displayed, but they do not show any
link with the errors. More generally, experiments lead to the conclusion that for any value of ∥∆r1∥,
the obtained plot has a shape similar to the ones in Figure 8 and Figure 9, and that the set of values
taken by

√
Tr(MSE) is linear with respect to ∥∆r1∥.

In order to show these conclusions, the estimation error is studied in a given direction, which is

defined by the angles θ =
π

2
and ϕ =

π

2
in the ECEF frame.

First, in Figure 10, the estimation error is displayed as a function of ∥∆r1∥, for multiple time
intervals. It shows a linear relation between the estimation error and the norm of the first-fix error,
for all the time intervals, as the slope of the curves are all equal to 1. The linear coefficient between√

Tr(MSE) and ∥∆r1∥ can be read for ∥∆r1∥ = 1 m: the greater is the time interval, the greater is
the coefficient. Again, the linearity is hard to predict, as writing the value of

√
Tr(MSE) as a linear

function of ∆r1, when restricted to a specific direction, is not straightforward.
In Figure 11, the estimation error is displayed as a function of t2 − t1, for multiple values of

∥∆r1∥. Again, it shows a linear relation between the estimation error
√

Tr(MSE) and the time interval
t2 − t1, for all the values of ∥∆r1∥. The linear coefficient between

√
Tr(MSE) and t2 − t1 can be read

for t2 − t1 = 1 s: the greater is ∥∆r1∥, the greater is the coefficient. This result is hard to predict, as√
Tr(MSE) is not an explicit function of t2 − t1.

Finally, in Table 3 and Table 4 are visible minimum and maximum values of
√

Tr(MSE) respec-
tively, for multiple values of t2 − t1 and for multiple values of ∥∆r1∥. Omitting rounding errors and
cases where both ∥∆r1∥ and t2 − t1 are very large, both the minimum and maximum values are linear
with respect to ∥∆r1∥, but not linear with respect to t2 − t1. The non-linearity with respect to time
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is due to the disappearance of G14 after a few minutes, meaning it is not considered in the solution
for t2 − t1 = 30 min. Again, the linearity is hard to predict, as writing the maximum or minimum
values of

√
Tr(MSE) on a sphere, as a linear function of ∥∆r1∥ is not straightforward. From these

tables, conclusions can be made regarding the validity of the first fix approximation. For example, if
one has to estimate a receiver displacement such that ∥r̂1,2 − r1,2∥ ≤ 1.3 mm, for a time interval of 1 s,
for an initial error of worst amplitude ∥∆r1∥ = 10 m, then the approximation r1 ≈ r̂1 is not acceptable,
without considering any other source of perturbation.

Figure 8.
√

Tr(MSE) for noiseless measurements, with ∥∆r1∥ = 1 m, t2 − t1 = 1 s. θ and ϕ are the spherical
coordinates, in the ECEF frame, of ∆r1.

Figure 9.
√

Tr(MSE) for noiseless measurements, with ∥∆r1∥ = 1 km, t2 − t1 = 1 s. θ and ϕ are the spherical
coordinates, in the ECEF frame, of ∆r1.

Table 3. Min values of
√

Tr(MSE) with respect to ∥∆r1∥ and t2 − t1.

∥∆r1∥
t2 − t1 1 s 1 min 30 min

1 m 2.4 × 10−5 m 1.3 × 10−3 m 7.7 × 10−2 m
10 m 2.4 × 10−4 m 1.3 × 10−2 m 7.7 × 10−1 m
1 km 2.4 × 10−2 m 1.3 m 7.7 × 101 m

1000 km 2.4 × 101 m 1.3 × 103 m 7 × 104 m
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Table 4. Max values of
√

Tr(MSE) with respect to ∥∆r1∥ and t2 − t1.

∥∆r1∥
t2 − t1 1 s 1 min 30 min

1 m 1.3 × 10−4 m 7.7 × 10−3 m 3.8 × 10−1 m
10 m 1.3 × 10−3 m 7.7 × 10−2 m 3.8 m
1 km 1.3 × 10−1 m 7.7 m 3.8 × 102 m

1000 km 1.3 × 102 m 7.8 × 103 m 3.8 × 105 m

Figure 10.
√

Tr(MSE) for noiseless measurements and for multiple values of t2 − t1, as a function of ∥∆r1∥, with

∆r1 in the direction given by the angles θ =
π

2
and ϕ =

π

2
in the ECEF frame.

Figure 11.
√

Tr(MSE) for noiseless measurements and for multiple values of ∥∆r1∥, as a function of t2 − t1, with

∆r1 in the direction given by the angles θ =
π

2
and ϕ =

π

2
in the ECEF frame.

Overall, it is experimentally shown that the greater is ∥∆r1∥, the greater is
√

Tr(MSE), with a
linear factor between these two quantities that depends on the time interval t2 − t1.

5.3. Experimental Uncertainty Quantification of Estimated Displacement with Noisy Measurements

In the same scenario as the previous section, noisy measurements are generated following equa-
tion (3), with σTDCP =

√
2σϕ and σϕ = λL1 × 10−1 m, with λL1 denoting the wavelength of the L1

frequency band. The time interval is set to t2 − t1 = 1 s.
As explained previously, since the interest is in the estimation of the receiver displacement vector

r̂1,2, the quantity
√

Tr(MSE) is computed by extracting the geometrical part of the MSE matrix. The
same process is applied to the MCRB matrix, and the square root of the trace is computed. This
choice is justified by the fact that the Loewner partial order has the following property: for all pair of
real symmetric positive semi-definite matrices A and B, A ≥ B ⇒

√
Tr(A) ≥

√
Tr(B) (in particular,√

Tr(A) ≥ 0).
In Figure 12 is visible

√
Tr(MSE) for ∥∆r1∥ = 1 m. On the same set, the difference between√

Tr(MSE) and its lower bound
√

Tr(MCRB) is visible in Figure 13. The results indicate that as it

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2025 doi:10.20944/preprints202504.1644.v1

https://doi.org/10.20944/preprints202504.1644.v1


15 of 20

was the case in the absence of noise, the error is characterized by two modes on the sphere. Also, the
estimator’s error is close to the lowest value that it can reach, with no particular direction appearing.

Figure 12.
√

Tr(MSE) for noisy measurements, with ∥∆r1∥ = 1 m, t2 − t1 = 1 s. θ and ϕ are the spherical
coordinates, in the ECEF frame, of ∆r1.

Figure 13. Difference between
√

Tr(MSE) and
√

Tr(MCRB), for noisy measurements, with ∥∆r1∥ = 1 m, t2 − t1 =

1 s. θ and ϕ are the spherical coordinates, in the ECEF frame, of ∆r1. The negative values exist due to numerical
errors.

In Figure 14 and in Figure 15 is conducted the same experiment, with ∥∆r1∥ = 1 km. Again, the
results indicate that the estimator’s error is close to the lowest value that it can reach.

Figure 14.
√

Tr(MSE) for noisy measurements, with ∥∆r1∥ = 1 km, t2 − t1 = 1 s. θ and ϕ are the spherical
coordinates, in the ECEF frame, of ∆r1.
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Figure 15. Difference between
√

Tr(MSE) and
√

Tr(MCRB), for noisy measurements, with ∥∆r1∥ = 1 km,
t2 − t1 = 1 s. θ and ϕ are the spherical coordinates, in the ECEF frame, of ∆r1.

Finally, as done previously, the estimation error is studied along an axis defined by the angles

θ =
π

2
and ϕ =

π

2
in the ECEF frame, Figure 16 shows the error and its lower bound. At ∆r1 = 0, the

estimation error is due to the variance of the additive noise within the observations. This noise term
adds up to the bias as ∥∆r1∥ increases, which produces the curve that is observed. For large values of
∥∆r1∥, the error is mainly due to the misspecified model. Also, the results indicate that the estimator’s
error has reached the lowest value possible.

Figure 16.
√

Tr(MSE) and
√

Tr(MCRB), for noisy measurements, as a function of ∥∆r1∥, with t2 − t1 = 1 s, with

∆r1 in the direction given by the angles θ =
π

2
and ϕ =

π

2
in the ECEF frame.

To conclude this section, one can say that all the estimators built in these experiments are close
to the MCRB. The mean error depends on the amount of noise in the observations, and on the
misspecification of the model used.

6. Conclusion & Future Work
The TDCP model is expressed as a function of a GNSS receiver displacement and clock bias

difference. The impact on the estimated displacement of the uncertainty regarding the receiver
coordinates at the first epoch has been quantified, for a given geometry at a given location. A similar
study can be run in real-time by any user anywhere in the world, as the proposed method does not
rely on final products, and that real time ephemerides would provide similar results. Considering the
displacement estimation error due to a misspecified first fix only, from a set of TDCP observations, and
given a criteria on the precision of the estimated displacement, the provided tables are an indicator
of the validity of the first fix. It is experimentally shown that for long time intervals, the impact is
important. This is due to the fact that for long time intervals, the satellites coordinates change more,
and leads to different receiver to satellite unit vectors. This effect would be more prominent when
the considered satellites are at a low altitude. Therefore, when considering Low Earth Orbit satellites,
whose displacements are much faster than GNSS satellites in Medium Earth Orbits, the impact would
be greater. One might also notice that the same experiment could be transposed to an RTK framework:
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at a given epoch, the station coordinates is known, the baseline vector corresponds to the receiver
displacement, and the single difference between receivers would correspond to TDCPs.
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Appendix A. Direction of Null and Extremum Model Error
Recalling that ∆r1 = r̂1 − r1 and that equation (8) is the function ∆ f that maps an error ∆r1 to a

model error:

∆ f (∆r1) = ∥s2 − r1 − r1,2 − ∆r1∥
− ∥s2 − r1 − r1,2∥
− (∥s1 − r1 − ∆r1∥ − ∥s1 − r1∥)

where ∥x∥ =
√
⟨x, x⟩ and ⟨x, y⟩ = xTy is the dot product on R3. Defining a ≜ s2 − r1 − r1,2 and

b ≜ s1 − r1, one obtains

∆ f (∆r1) = ∥a − ∆r1∥ − ∥a∥ − (∥b − ∆r1∥ − ∥b∥).

Given that ∆ f (0) = 0, one obtains

∆ f (∆r1) = d(∆ f )0(∆r1) + o(∥∆r1∥)

= −
〈

a
∥a∥ − b

∥b∥ , ∆r1

〉
+ o(∥∆r1∥)

where d(∆ f )0(∆r1) is the differential of ∆ f at 0, evaluated at ∆r1. If this term had to be expressed in
the canonical bases of R3 and R, it would be equal to the Jacobian matrix of ∆ f at 0 multiplied by ∆r1.
Therefore, in a neighborhood of 0, the linear approximation of ∆ f is given by:

∆ f (∆r1) ≈ −
〈

a
∥a∥ − b

∥b∥ , ∆r1

〉
.

Now, one has to study the vector
a

∥a∥ − b
∥b∥ and give it a geometrical interpretation, other than

being the difference between two very close unit vectors. One defines the function:

γ : R3 → R3, x 7→ a
∥a∥ − a + x

∥a + x∥ ,

and defining v ≜ b − a = −(s2 − s1 − r1,2), one obtains

a
∥a∥ − b

∥b∥ =
a

∥a∥ − a + v
∥a + v∥ = γ(v).
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Now that the vector
a

∥a∥ − b
∥b∥ is expressed as a valuation of the function γ, a linear approximation

of it is given: it can be shown that ∀α ∈ R3 \ {−a}, ∀x ∈ R3:

γ(α + x) = γ(α) + dγα(x) + o(∥x∥)

where dγα(x) is the differential of γ at α, evaluated at x. If this term had to be expressed in the
canonical basis of R3, it would be equal to the Jacobian matrix of γ at α multiplied by x.

One can show that:

dγα(x) = − 1
∥a + α∥

(
x − a + α

∥a + α∥

〈
a + α

∥a + α∥ , x
〉)

.

Since γ(0) = 0, the linear approximation of the function γ around 0 is given by:

γ(x) ≈ − 1
∥a∥

(
x − a

∥a∥

〈
a

∥a∥ , x
〉)

.

As the vector v is an infinitesimal and orthogonal vector, with respect to the vector a = s2 − r2,

the scalar product term
〈

a
∥a∥ , v

〉
is neglected:

⇒ a
∥a∥ − b

∥b∥ = γ(v) ≈ − v
∥a∥ =

a − b
∥a∥ .

Finally, ∆ f (∆r1) ≈ 0 ⇔
〈

a − b
∥a∥ , ∆r1

〉
≈ 0, i.e., the model error is null for any error ∆r1 orthogonal to

a − b = s2 − s1 − r1,2, and the directions of extremum error are given by the vector s2 − s1 − r1,2.

Appendix B. Model Error Along the Worst Direction
As a reminder, in appendix A, the vectors a ≜ s2 − r1 − r1,2 and b ≜ s1 − r1 are defined, and the

vector v = a − b is shown to be the vector that defines the direction of extremum error. Here, the
model error ∆ f of equation (7) is studied along a one-dimensional subspace: for any unit vector e,
considering the application:

ϕ : R → R
λ 7→ ∆ f (λe)

with

∆ f (λe) = ∥a − λe∥ − ∥a∥
− (∥b − λe∥ − ∥b∥),

one finds out that the derivative of ϕ at λ is given by:

ϕ′(λ) = −⟨a − λe, e⟩
∥a − λe∥ +

⟨b − λe, e⟩
∥b − λe∥ .

Finally, if e =
v

∥v∥ and ∆r1 = λe, λ ∈ R, then ∥∆r1∥ = |λ| and one has obtained the derivative of

ϕ at ∥∆r1∥ along the direction of v.
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