
Review Not peer-reviewed version

Pesticide Degradation by Soil Bacteria:

Mechanisms, Bioremediation

Strategies, and Implications for

Sustainable Agriculture

Gyanendra Dhakal * , Srijana Thapa Magar * , Takeshi Fujino

Posted Date: 7 October 2025

doi: 10.20944/preprints202510.0474.v1

Keywords: soil bacteria; pesticide degradation; bioremediation; soil bacterial enzymes; sustainable

agriculture; omics technologies; synthetic biology

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1453297
https://sciprofiles.com/profile/3327311
https://sciprofiles.com/profile/1387640


 

 

Review 

Pesticide Degradation by Soil Bacteria: Mechanisms, 

Bioremediation Strategies, and Implications for 

Sustainable Agriculture 

Gyanendra Dhakal 1,2,*, Srijana Thapa Magar 1,* and Takeshi Fujino 1 

1  Department of Environmental Science and Technology, Graduate School of Science and Engineering, 

Saitama University, Saitama 338‐8570, Japan 

2  Agricultural Technology Centre (ATC) Pvt. Ltd., Lalitpur 44705, Nepal 

*  Correspondence: gyanudhakal@gmail.com (G.D.); sree.thapa89@gmail.com (S.T.M.) 

Abstract 

Modern  agriculture  relies  on  pesticides  for  pest management  and  yield  improvement;  however, 

pesticide soil persistence creates major environmental and health threats through bioaccumulation, 

groundwater  contamination,  and  harm  to  non‐target  organisms.  This  comprehensive  review 

synthesizes current research  findings on pesticide breakdown by soil bacteria and discusses  their 

mechanisms  and  implications  for  sustainable  agriculture.  The  persistence  of  pesticide  classes, 

including  organophosphates,  carbamates,  pyrethroids,  neonicotinoids,  triazines,  and 

organochlorines, in soil varies from days to years, based on chemical structure and environmental 

conditions.  Soil  bacteria  Pseudomonas,  Rhodococcus,  Arthrobacter,  and  Bacillus  break  down  these 

compounds using enzymatic pathways, including hydrolysis, oxidation, and nitroreduction, while 

plasmid‐encoded  genes  and  horizontal  gene  transfer  boost  soil  bacterial  efficiency.  Pesticide 

degradation  rates  are  heavily  influenced  by  environmental  factors,  including  pH,  temperature, 

moisture, and organic matter, as optimal conditions enhance microbial activity, whereas stressors 

like  drought  act  as  inhibitors.  Bioremediation  methods,  including  natural  attenuation, 

bioaugmentation,  and  synthetic  consortia,  offer  environmentally  friendly  solutions,  with  omics 

technologies  and  synthetic  biology  enabling  the  development  of  better  degraders.  Combining 

microbial isolation techniques with kinetic assays and metagenomics enables researchers to identify 

pathways. The use of modified soil bacteria in agriculture adheres to regulatory standards, ensuring 

safety while  addressing  scalability  issues  in  developing  regions.  Bacterial  pesticide  breakdown 

reduces  residue  levels,  enhances  soil  fertility,  and  supports  resilient  agroecosystems.  Field‐scale 

validation and AI‐driven predictive models are essential for optimizing degradation under climate 

change conditions and demonstrate    solutions as an interdisciplinary approach to mitigate pesticide 

impacts and support sustainable agriculture. 

Keywords: soil bacteria; pesticide degradation; bioremediation; soil bacterial enzymes; sustainable 

agriculture; omics technologies; synthetic biology 

 

1. Introduction 

Modern agriculture depends on pesticides to enhance crop production while managing pests, 

weeds,  and diseases  [1,2]. However,  their widespread  use  causes  significant  environmental  and 

health  problems,  including  soil  and  water  contamination,  damage  to  food  chains,  non‐target 

organisms,  and  human  health  [3,4,5,6].  Persistent  pesticides,  including  organophosphates, 

carbamates, pyrethroids, and neonicotinoids, accumulate in living organisms and cause long‐lasting 

ecological harm[4,5]. The need for sustainable solutions has positioned degradation by soil bacteria 

as  a  natural  and  eco‐friendly  approach  [7,8,9].  Soil  bacteria possess diverse metabolic  functions, 

enabling  them  to  decompose  complex  pesticide  compounds  into  less  toxic  substances  through 
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enzymatic  processes  [10,11,12].  This  review  explores  pesticide  degradation mechanisms  by  soil 

bacteria,  their  pathways,  environmental  factors  influencing  these  processes,  bioremediation 

strategies, and their impact on sustainable agriculture. Drawing on recent studies, it highlights the 

progress in omics technologies and synthetic biology and regulatory challenges [13,14,15,16]. Recent 

field studies show  that soil bacteria play a vital  role  in breaking down pesticide  residues  in both 

tropical and temperate farming systems, helping to support global sustainability efforts[9,16,17].   

The  urgency  of  soil  bacteria‐based  remediation  is  underscored  by  global  reports  indicating 

escalating  pesticide  usage  and  associated  risks,  as  evidenced  by  the UNEP’s  Global  Chemicals 

Outlook,  which  calls  for  innovative  solutions  for  managing  contaminants  [18].  Research  on 

endocrine‐disrupting pesticides  reveals  their dual  threat  to  reproductive health  and biodiversity, 

positioning  bacterial  degradation  as  a  critical  countermeasure  [8].  Isolating  degraders  from 

contaminated  sites,  such  as  sugarcane  farms,  demonstrates  how  indigenous  bacteria,  like  those 

degrading chlorpyrifos, can be used for targeted bioremediation practices [19]. 

2. Pesticide Classes and Environmental Persistence 

Major pesticide categories are classified by chemical composition and mode of action, including 

organophosphates  (e.g.,  chlorpyrifos),  carbamates  (e.g.,  carbofuran),  pyrethroids  (e.g., 

cypermethrin),  neonicotinoids  (e.g.,  imidacloprid),  triazines  (e.g.,  atrazine),  and  organochlorines 

(e.g., DDT, endosulfan) [20,21,22,23,24,25]. Their half‐lives vary significantly for soil persistence, as 

shown  in Table 1, with glyphosate exhibiting a short half‐life of 3–5 days, while organochlorines 

persist  for  2–15 years. Neurotoxic  organophosphates  and  carbamates  inhibit  acetylcholinesterase 

activity,  persisting  in  soils  for  weeks  to  months,  depending  on  environmental  factors  [26,27]. 

Pyrethroids, synthetic analogs of pyrethrins, possess hydrophobic properties and persist for several 

months  to  years  in  anaerobic  soils,  causing  aquatic  toxicity  [28,29,30].  Systemic  neonicotinoids 

dissolve  easily  in water,  leading  to groundwater  contamination  and  extended  exposure  risks  for 

pollinators  [31,32,33]. The herbicide atrazine, a  triazine, exhibits a moderate persistence of 60–100 

days and often contaminates surface water bodies  [34]. Organochlorines, owing  to  their stability, 

persist in the environment, despite restrictions on their use [3]. Pesticide persistence is influenced by 

soil  organic matter  content,  pH  levels,  and microbial  activity, with  some  pesticide metabolites 

becoming resistant to degradation, exacerbating pollution [22,33,35,36,37,38,39]. These residues are 

widespread, impacting natural environments [25,40]. 

Phenylpyrazoles  and  sulfonylureas  exhibit  rapid  degradation  under  high  temperatures  but 

elevated leaching risks, as observed in field studies [41,42,43]. Glyphosate exhibits strong binding to 

soil  particles,  but  its  potential  to  contaminate  groundwater  remains  a  concern,  necessitating 

integrated  monitoring  [35,36].  Neonicotinoid  persistence  varies  between  regions,  as  shown  in 

Colombian tomato production research, which found higher residue levels in greenhouses than open 

fields  [20].  Table  1  illustrates  pesticide  classes,  their  half‐lives,  and  persistence  categories, 

highlighting their environmental behaviors. 

Table 1. Pesticide classes and their environmental persistence. 

Pesticide class 
Representative 
compounds 

Average  soil  half‐life 
(DT₅₀) 

Persistence 
category 

Sources   

Organophosphates 
Chlorpyrifos, 
  Parathion 

30‐60 days  Moderate  [27,44] 

Carbamates 
Carbofuran,   
Aldicarb 

10‐50 days  Low to Moderate  [23,45] 

Pyrethroids 
Cypermethrin,   
Permethrin 

30‐100 days (up to years in 
anaerobic conditions) 

Moderate to High  [29,30,46] 

Neonicotinoids 
Imidacloprid,   
Acetamiprid 

40‐150  days  (dry 
conditions longer) 

Moderate  [31,32,33,47,48] 

Triazines 
Atrazine, 
  Simazine 

60‐100 days  Moderate  [34,49] 

Organochlorines  DDT, Chlordane  2‐15 years  High  [3,12] 
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Others  (e.g., 
Glyphosate) 

Glyphosate  3‐5 days (variable)  Low  [35,36] 

3. Bacterial Taxa Involved in Pesticide Degradation 

Soil bacteria  are  the primary  agents of pesticide breakdown  in  soil, with various  species  in 

contaminated  sites  exhibiting  diverse  degradation  capabilities  [9,10,11].  Table  2  presents    key 

genera,  including  Pseudomonas,  which  degrades  organophosphates  and  pyrethroids  through 

hydrolytic enzymes [10,50,51,52]. Rhodococcus species, such as R. koreensis, degrade endosulfan and 

triazines, producing metabolites like endosulfan diol monosulfate [53,54]. Arthrobacter strains, such 

as A.  aurescens  and A.  sp. AD26, mineralize  s‐triazines  like  atrazine  via dechlorination  and  ring 

cleavage [52,55]. 

Table 2. Microbial taxa involved in pesticide degradation. 

Bacterial 

genus/Species 
Pesticides Degraded  Mechanism/Notes  Sources 

Pseudomonas 

Organophosphates,   
Pyrethroids,   
DDT, 
Phenolics 

Hydrolysis,   
Oxidation,  genetically 
modified  for  phenolics; 
consortia synergy 

[10,50,51,52] 

Rhodococcus   
Endosulfan,   
Triazines,   
Chlorpyrifos 

Oxidative enzymes,   
Monooxygenases 
Ring Cleavage, 
Metabolite Formation 

[53,54,56,57] 

Arthrobacter 
aurescens TC1 

Atrazine,   
S‐Triazines 

Specialized hydrolytic   
pathways, 
Dechlorination 

[52,55,58] 

Bacillus 
Pyrethroids,   
Diphenyl Ethers,   
Carbamates 

Esterase Activity, 
Nitroreduction; 
~85%  triazoles;  consortia 
enhance rates 

[57,59,60,61,62] 

Burkholderia   
Parathion, Carbofuran,   
Various Organochlorines 

Hydrolases, Oxidases, 
Broad‐Spectrum  Degradation; 
cometabolism with plants 

[9,11,63,64] 

Flavobacterium  Organophosphates  Hydrolysis  [9,10,11] 

Klebsiella 
Neonicotinoids, 
Chlorpyrifos 

Esterases  [39,65,66] 

Novosphingobium   
PAHs,  Sulfonylureas, 
Neonicotinoids 

Dioxygenases, Hydrolysis  [67] 

Acinetobacter   
Neonicotinoids,  Diazinon, 
Organophosphates 

Esterases,  Hydrolysis;  up  to 
80%  diazinon  removal  in  lab 
settings 

[39,65,68] 

Streptomyces 

DDT,Endosulfan, 
Diflufenican 
Carbamates, 
Organophosphates 

Esterases, Cometablolic   
processes 
Actinobacterial Degradation 

[39,47,69] 

Sphingomonas   
Neonicotinoids, 
Sufonylureas   

Oxidases,  Hydrolysis, 
genetically  modified  for 
carbamates/organophosphates; 
biofilm enhances stability 

[28,70] 

Stenotrophomonas   
Neonicotinoids, 
Sufonylureas   

Hydrolysis, Cometabolism    [43,71] 

Alcaligenes  Organochlorines    Reductive, Dechlorination  [72] 
Achromobacter  Triazines  Hydrolysis, Ring Cleavage  [29,73] 
Paracoccus  Pyrethroids  Ester Hydrolysis  [43,74] 

Bacillus  species,  including B.  subtilis and B.  sp. Za, degrade pyrethroids and diphenyl ethers 

through  esterase  activity  and  nitroreduction  [57,59,60,61].  Actinobacteria,  such  as  Streptomyces, 

participate in the degradation of carbamates, organophosphates, and other pesticides [47]. Azotobacter 

isolates from sugarcane soils remediate chlorpyrifos and other toxic pesticides [16]. These bacterial 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 October 2025 doi:10.20944/preprints202510.0474.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0474.v1
http://creativecommons.org/licenses/by/4.0/


  4  of  21 

 

taxa  often  thrive  in  pesticide‐enriched  environments,  adapting  via  horizontal  gene  transfer  and 

plasmid‐encoded degradative genes [15,63,75]. Research  in malaria‐endemic regions demonstrates 

simultaneous degradation of DDT and pyrethroids by indigenous bacteria [3,15]. This degradation 

process is enhanced by fungal‐bacterial interactions, but bacteria remain the primary agents for rapid 

mineralization  [9,26].  Recent  studies  have  revealed  additional  bacterial  genera,  including 

Sphingomonas and Alcaligenes, which can break down neonicotinoids and organochlorines through 

oxidative and  reductive pathways. These findings broaden our understanding of  the diversity of 

pesticide‐degrading soil bacteria[28,39,76].   

Figure 1 illustrates detailed pathways of microbial pesticide degradation. 

Genomic  analysis  of  metaldehyde‐degraders  shows  that  different  strains  share  similar 

pathways, suggesting selection pressure drives degradative capabilities [75]. Rhodococcus and other 

endosulfan  degradation  capabilities  of  earthworm  gut  isolates  demonstrate  their  adaptation  to 

specific  ecological  niches  [54].  Recent  global  perspectives  highlight  the  diversity  of  microbial 

degraders, with new isolation techniques identifying strains for recalcitrant compounds [11,26]. Key 

bacterial genera, their pesticide targets, and degradation processes are presented in Table 2. 

 

Figure 1. Microbial Pesticide Degradation Pathways. 

4. Enzymatic and Genetic Mechanisms of Degradation 

Soil bacteria degrade pesticides  through  enzymatic  reactions  that  cleave  chemical bonds via 

oxidation and hydrolysis [10,22,23,77]. Table 3 outlines key enzyme classes and their roles in pesticide 

degradation. Phosphotriesterases  in Pseudomonas cleave P‐O bonds  in organophosphates, yielding 

non‐toxic alcohols and acids [10,78,79]. Carbamate degradation occurs through carboxylesterases and 

amidases, with microbial genomes conserving motifs that enable ring [23,45,77]. Pyrethroids undergo 

initial ester hydrolysis by carboxylesterases before being oxidized  into carboxylic acids  [29,46,56]. 

Neonicotinoids are metabolized via nitroreduction and demethylation by Rhodococcus and Bacillus 

using nitroreductases [39,80,81]. Genetic mechanisms include plasmid‐borne operons (e.g., opd for 

organophosphates) and chromosomal genes (e.g., atz for atrazine degradation  in Pseudomonas and 

Arthrobacter) [52,55]. 

Metagenomic  analyses  reveal  that  CRISPR‐Cas  systems  enable  microbes  to  adapt  to 

environmental conditions [82]. Pesticide degradation via cometabolism occurs when pesticides serve 

as  carbon  sources,  with  3,5,6‐trichloro‐2‐pyridinol  from  chlorpyrifos  undergoing  further 
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mineralization [15]. Synthetic biology clarifies these mechanisms through gene knockouts, showing 

esterasesʹ pivotal role in multi‐pesticide degradation [77,83]. Laccase‐assisted systems can degrade 

recalcitrant  pesticides  [84].  Studies  have  identified  cytochrome  P450  monooxygenases  in 

Sphingomonas  and  Alcaligenes,  which  enable  the  oxidative  breakdown  of  neonicotinoids  and 

organochlorines, respectively, thereby expanding the enzymatic toolkit available for bioremediation 

[29,85,86]. Carbamate degradation exhibits evolutionary conservation across microbes via hydrolysis 

and oxidation, central to detoxification [23]. Organophosphate‐degrading enzymes extend beyond 

remediation, serving as medical countermeasures for poisoning [87].    Studies of pyrethroid catalysis 

demonstrate how microbial adaptation enhances degradation efficiency [46]. 

Table 3. Enzymatic mechanisms of pesticide degradation. 

Enzyme class  Pesticide type  Mechanism 
Bacterial 
examples 

Sources 

Phosphotriesterases  / 
Organophosphorus 
hydrolases 
(PTE/OPH) 

Organophosphate
s  (e.g., 
chlorpyrifos, 
diazinon,  methyl 
parathion) 

Hydrolysis  of 
P‐O bonds 

Pseudomonas 
Roseomonas, 
Sphingobium,   
Bacillus, 
Arthrobacter 

[10,78,79,88,89
] 

Carboxylesterases  / 
Esterases 

Carbamates,   
Pyrethroids   

Ester 
hydrolysis, 
Ring opening 

Bacillus,   
Pseudomonas, 
Rhodococcus,   
Acinetobacter, 
Stenotrophomona
s 

[21,29,46,56] 

Nitroreductases 
Neonicotinoids,   
Diphenyl ethers,   
Nitroaromatic   

Nitroreduction
, 
Demethylation
, 
Nitroreduction 

Bacillus,   
Rhodococcus 
Arthrobacter,   
Enterobacter, 
Klebsiella 

[39,80,81] 

Cytochrome  P450 
Monooxygenases/ 
Other 
Monooxygenases 

Neonicotinoids,   
Organochlorines, 
Pyrethroids,   
Fungicides 

Oxidative 
degradation 
(hydroxylation
,  dealkylation, 
N‐oxidation) 

Sphingomonas, 
Alcaligenes,   
Pseudomonas,   
Bacillus,   
Streptomyces 

[90,91,92,93] 

Amidases/Hydrolase
s 

Carbamates,   
Triazines 

Amide  bond 
cleavage 

Arthrobacter, 
Pseudomonas, 
Burkholderia, 
Variovorax,   
Paenarthrobacter 

[23,45,52,94] 

Oxidases   
(e.g., Laccases,   
Peroxidases,   
Multicopper 
oxidases) 

Recalcitrant   
Pesticides, 
Aromatics,   
Dyes 

Oxidation  of 
aromatic  rings, 
radical‐
mediated 
reactions 

Pseudomonas, 
Ochrobactrum, 
Bacillus,   
Azospirillum, 
Streptomyces 

[83,84,95,96,97
] 

5. Environmental Factors Affecting Degradation 

Pesticide  degradation  rates  in  soil  ecosystems  are  controlled  by  abiotic  and  biotic  factors 

[5,20,49],  as  shown  in  Table  4.  Pyrethroid  persistence  increases  in  acidic  conditions,  but 

organophosphate hydrolysis accelerates in neutral pH [35,49,98]. An optimal temperature range of 

25–30°C and field capacity moisture levels enhance enzyme kinetics [99,100]. Organic matter content 

binds pesticides, reducing bioavailability but promoting microbial adaptation [37,98,101]. Drought 

and  climate  change  exacerbate  persistence  by  altering  microbial  communities  and  increasing 

pesticide  application  rates  [100,102].  Biochar  amendments  limit mobility  and  enhance microbial 

colonization but can inhibit degradation if over‐applied [98,103]. Heavy metals and co‐contaminants 

compete for enzymatic sites, slowing degradation [104]. 

Prior pesticide use influences microbial diversity, enhancing resilience as degraders are more 

prevalent after repeated exposure [63,99]. Studies of tropical and greenhouse soils reveal that high 

humidity accelerates degradation but heightens leaching risks [20,41]. Heavy metals, such as copper 
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and zinc, can inhibit soil bacterial degradation by altering enzyme active sites or reducing microbial 

diversity, necessitating  strategies  like biochar amendment  to mitigate  these  effects  [105][106,107]. 

Table  4  summarizes  these  factors  and  their  impacts  on  degradation  efficiency.  Biochar  critically 

influences  pesticide  fate  by  altering  soil  properties, with  balanced  application  recommended  to 

optimize  microbial  activity  [98].  Climate  change‐driven  increases  in  pesticide  use  necessitate 

adaptive measures to maintain degradation efficiency [102]. Historical pesticide use has shaped soil 

microbiomes, influencing their degradation capacity [99]. 

6. Bioremediation Strategies 

Bioremediation  leverages soil bacteria  to detoxify pesticide‐contaminated  sites, offering cost‐

effective  alternatives  to  chemical  methods  [7,13,108,109,110].  Table  5  outlines  bioremediation 

strategies for pesticide degradation. 

6.1. Natural Attenuation 

Natural attenuation relies on native microbial populations to break down pesticides through a 

cost‐effective but slow process, independent of human intervention [13,108,110,111]. Attenuation of 

chlorpyrifos and endosulfan involves hydrolysis and oxidation, accelerated by microbial adaptation 

in  periurban  environments  [111].  This  process  is  slow,  limited  by  natural  factors  and  pesticide 

stability  [77].  It  is  effective  for  low  pesticide  pollution,  but  its  slow  pace  and  incomplete 

mineralization pose challenges [22,112]. Success depends on diverse soil bacterial populations with 

specific  pesticide  degradation  capabilities,  whose  abundance  varies  between  soil  types  and 

geographic locations [83]. Sites with prior pesticide treatment harbor soil bacterial populations that 

degrade contaminants at accelerated rates through soil bacterial priming [14]. 

Table 4. Environmental factors affecting pesticide degradation. 

Environmental 
Factor 

Effect  on 
Degradation 

Optimal Range 
Negative  Impact 
Examples 

Source 

pH 
Influences 
sorption  and 
enzyme activity 

Neutral (6‐7) 
Acidic  soils  slow 
pyrethroid 
breakdown 

[35,49,98] 

Temperature 

Affects  enzyme 
kinetics  and 
microbial 
metabolism   

25‐30°C 
Low  temps 
(<10°C)  reduce 
rates 

[99,102] 

Moisture 

Enhances 
microbial growth 
and  substrate 
diffusion 

Field  capacity 
(60‐80%) 

Drought  inhibits 
activity 

[82,76] 

Organic Matter 
Increases 
sequestration but 
aids adaptation 

High content 
Low OM reduces 
bioavailability 

[37,98,101] 

Aeration/Oxygen 
Promotes aerobic 
degradation 

Well‐aerated 
soils 

Anaerobic 
conditions 
prolong 
persistence 

[29,30,35] 

Reviews confirm natural attenuation  is effective  in agricultural fields with diverse  taxonomic 

species  [108,110].  Optimized  soil  conditions,  including  higher  organic  matter  content  and  pH 

adjustments, enhance the activity of indigenous microorganisms, particularly for organophosphate 

degradation [60,101]. Biochar addition enhances natural pesticide attenuation by creating improved 

environments for microorganisms and increasing pesticide bioavailability to microbial action [113]. 

In Brazilian soils, natural attenuation combined with other remediation techniques achieves better 

performance  [112].  Variable  microbial  responses  necessitate  site‐specific  assessments  to  ensure 

effective results [11]. 
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6.2. Bioaugmentation 

Bioaugmentation accelerates pesticide degradation in contaminated soils by introducing specific 

microbial strains or consortia [31,114]. Bacillus sp. degrades chlorpyrifos in contaminated soil systems, 

and  kinetic  experiments  verify  first‐order  degradation  [60].  Bacillus  and  Sphingomonas  consortia 

exhibit successful degradation of pyrethroids and neonicotinoids [14,56]. Rhodococcus pyridinivorans 

Y6 efficiently degrades multiple pyrethroids [57]. Strain survival and competition are mitigated with 

carrier materials [113,114].   Advanced delivery systems, encasing microorganisms in biodegradable 

carriers, enhance performance in challenging soil conditions [15,115]. Combining biochar or compost 

with  biological  methods  yields  synergistic  effects,  enhancing  bacterial  survival,  pesticide 

bioavailability,  and  activity  [116].  Bioaugmentation,  combined  with  these  methods,  enhances 

degradation speed and microbial retention, making it suitable for large‐scale remediation [101].   

Field  experiments  in  Brazil  demonstrate  its  global  applicability  [115].  Studies  in Argentine 

horticultural  soils  show bioaugmentation  is  an  effective  approach  to  reduce  endosulfan  residues 

[111].    Genetically  modified  Bacillus  strains  effectively  reduce  organochlorine  residues  [72].   

Cyclodextrin‐based technologies enhance herbicide removal in contaminated soil systems [117].   

6.3. Synthetic Microbial Consortia 

Engineered  soil  bacterial  communities,  comprising  Pseudomonas,  Bacillus,  Streptomyces,  and 

Sphingomonas,  demonstrate  enhanced  pesticide  degradation  efficiency  over  individual  strains 

[39,77,118].  These  consortia  achieve  synergistic  degradation  by  combining  multiple  strains 

[107,117,118,119].  These  consortia  enhance  degradation  through  complementary  hydrolytic, 

oxidative, and reductive enzymatic activities [57,119]. Quorum sensing regulates esterases expression 

in Bacillus subtilis, ensuring synchronized metabolic processes [61]. Advanced genetic tools, such as 

CRISPR‐Cas9,  enable optimization of  consortia performance by  enhancing metabolic output  and 

stability  under  variable  soil  conditions  [120,121].  These  consortia  improve  efficiency  and  offer 

applications in soil fertility recovery [118,122,123]. 

Bioinformatics  and  machine  learning  predict  strain  interactions,  enabling  effective 

bioremediation [122,124]. Pesticide‐tolerant consortia effectively remediate multi‐contaminated sites 

[123]. Modular consortia designed for neonicotinoids and triazines include built‐in stress tolerance 

to  withstand  heavy  metals  and  extreme  pH  [14,116,123].  Novel  Pseudomonas  and  Streptomyces 

consortia exhibit enhanced degradation capabilities for field‐based pesticide residue removal [3,22]. 

Studies of complex consortium development show combined strains achieve complete mineralization 

through  synergistic  reactions  [119]. Quorum  sensing  circuits  and  synthetic  regulatory  elements 

ensure  stable  function  in  contaminated  soils  [61,125,126].  Their  application  to  soil  fertility 

enhancement  demonstrates  broader  agricultural  benefits,  though  deployment  requires  detailed 

ecological and regulatory considerations [118].   

6.4. Field‐Scale Applications 

Field‐scale bioremediation represents a critical step  in  translating  laboratory  innovations  into 

practical  strategies  for  managing  pesticide  contamination  in  agricultural  systems.  Common 

approaches include the use of biomixtures and biobeds, soil amendments with biochar or compost, 

phytoremediation, and application of adapted microbial consortia[127,128,129,130]. Biomixtures and 

biobed  systems  consistently  demonstrate  effective  pesticide  dissipation  under  field  and  pilot 

conditions,  often  exceeding  50%  removal  and,  in  optimized  designs,  achieving  near‐complete 

dissipation within approximately 30–90 days. However, degradation rates remain highly dependent 

on pesticide formulation, biomixture maturity (pre‐incubation period), hydraulic load, and climatic 

conditions  [131,132,133,134]. Evidence  from Mediterranean and  temperate  regions highlights  that 

composition, moisture content, and pre‐incubation strongly determine the dissipation efficiency of 

pesticides such as chlorpyrifos and triazine herbicides [129,135,136]. 
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Formulation  strategies  that  enhance  pesticide  bioavailability  (e.g.,  inclusion  complexes)  or 

combine adsorption capacity (via biochar) with active degraders tend to accelerate degradation rates 

and  improve  microbial  persistence.  Nonetheless,  the  effectiveness  of  biochar  remains  strongly 

dependent  on  feedstock  type,  pyrolysis  conditions,  and  environmental  context  [137,138,139,140]. 

Regional field studies further corroborate these outcomes: European and Brazilian biobed systems 

have shown high removal efficiencies for organophosphates, triazines, and glyphosate, while tropical 

systems  employing  alternative  biomixture  substrates  such  as  banana  stems,  pine  litter,  or 

vermicompost can also sustain rapid degradation when properly aged and [128,134,141,142]. 

Advances in synthetic biology have enabled the development of engineered strains and designer 

microbial  consortia,  such  as multi‐enzyme  Pseudomonas  putida  constructs,  which  exhibit  strong 

capacity  for  degrading mixed  pesticide  residues  at  laboratory  and  pilot  scales. However,  their 

environmental  application  remains  limited  due  to  biosafety  concerns  and  regulatory  constraints 

[50,128,143,144].  Integrating  biochar  or  compost  amendments  with  microbial  inocula  or  plant‐

assisted systems shows promise in enhancing microbial survival, modifying pesticide sorption and 

bioavailability,  and  accelerating  dissipation,  though  outcomes  remain  site‐specific  and  require 

systematic optimization and monitoring[140,141,145,146] To achieve scalable, environmentally safe, 

and  socially  acceptable  applications,  standardized  field  monitoring  protocols,  ecological  risk 

assessments,  and  active  engagement  with  regulatory  bodies  and  stakeholders  are 

essential[115,127,133,134]. 

Table 5. Bioremediation strategies for pesticide degradation. 

Strategy 
Descripti
on 

Mechanis
m 

Advantag
es 

Limitatio
n 

Example
s 

Sources 

Natural 
Attenuation 

Relies  on 
indigeno
us 
microbes 
for 
passive 
degradati
on 

Hydrolysis 
and 
oxidation 
by  native 
enzymes 

Cost‐
effective, 
minimal 
ecological 
disruptio
n 

Slow 
rates, 
incomplet
e 
mineraliz
ation 
(varies 
with  soil 
conditions
) 

Chlorpyrif
os  and 
endosulfa
n 
attenuati
on 

[13,108,110,111,11
2] 

Bioaugment
ation 

Introduc
es 
specific 
degrader
s  to 
accelerat
e 
processes
,  using 
isolates 
or  carrier 
materials 

Esterase‐
mediated 
hydrolysis, 
nitroreduct
ion 

Targets 
specific 
contamin
ants, 
accelerate
s 
degradati
on 

Strain 
survival, 
competiti
on  with 
natives, 
cost  of 
inoculatio
n 

Bacillus 
sp.  for 
chlorpyrif
os, 
Rhodococc
us 
pyridinivo
rans  Y6 
for 
pyrethroi
ds 

[57,60,114,115]       

Synthetic 
Microbial 
Consortia 

Engineer
ed 
combinat
ions  of 
strains 
for 
synergist
ic 
degradati
on, 
regulated 
by 

Compleme
ntary 
enzymatic 
pathways 
(e.g., 
esterases, 
oxidases) 
via quorum 
sensing 

Synergisti
c 
efficiency, 
adaptable 
to  multi‐
contamin
ants 

Complex 
engineeri
ng, 
regulatory 
hurdles 
(e.g., 
safety 
assessmen
ts) 

Pseudomo
nas  and 
Bacillus 
consortia 

[15,77,82,117,118,
122,123] 
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7. Methodology 

This  review  systematically  synthesizes  knowledge  on  microbial  pesticide  breakdown. 

Information was collected from peer‐reviewed databases,  including PubMed, Scopus, and Web of 

Science,  for publications  from  1995  to  2025.  Search  terms  included  ʺpesticide degradation,ʺ  ʺsoil 

bacteria,ʺ ̋ bioremediation,ʺ ̋ microbial enzymes,ʺ ̋ omics technologies,ʺ and ̋ sustainable agriculture.ʺ 

The  review  selected  scientific  articles  on  microbial  taxa,  enzymatic  and  genetic  mechanisms, 

environmental  factors,  bioremediation  methods,  and  sustainable  agricultural  applications.  It 

prioritized English peer‐reviewed articles, reviews, and book chapters  from high‐impact  journals, 

particularly  recent developments post‐2019.  It  examined pesticide  classes, microbial degradation 

mechanisms,  bioremediation  approaches,  and  their  regulatory  and  sustainability  aspects. 

Incorporating  119  references  from  primary  research,  reviews,  and  policy  reports,  it  provides  a 

comprehensive, expert‐level overview. 

8. Advances in Omics Technologies and Synthetic Biology 

Omics  technologies  have  revolutionized  pesticide  degradation  research  by  integrating 

metagenomics, transcriptomics, and proteomics to reveal soil bacterial catabolic pathways, discover 

new  genes,  enzymes,  and  regulatory  systems  [14,73,149,150,151].  Metagenomics  identifies 

degradation  genes  in  bacteria  metabolizing  chlorpyrifos  and  unculturable  microorganisms, 

expanding  bioremediation  capabilities  [14,15].  Proteomics  reveals  neonicotinoid  degradation  is 

enhanced by esterase and laccase activity, while transcriptomics shows how environmental stressors 

influence pathway regulation [152].  Integrating omics with machine  learning facilitates prediction 

and optimization of degradation pathways, revealing complex soil bacterial community interactions 

and synergistic effects in contaminated sites [48,73,80,124,150,153]. Metabolomics tracks intermediary 

metabolites to address pathway limitations, aiding the development of efficient synthetic consortia 

[14]. 

Synthetic biology enhances bioremediation through genetic modifications of Pseudomonas putida 

KT2440, enabling degradation of multiple pesticides via CRISPR‐Cas and E. coli strains engineered 

with multiple  degradation  genes  for  enhanced  pollutant  removal  [50,82,87,116,121,152,154,155]. 

Epigenomics elucidates regulatory processes controlling degradation gene expression, maximizing 

microbial function, and AI‐based models predict engineered ecosystem outcomes, enabling precise 

bioremediation  [48,156]. Bacillus  cells  expressing nitroreductase  accelerate herbicide degradation, 

and  microalgae‐bacteria  combinations  facilitate  large‐scale  pollutant  management  [81,121]. 

Integrated  omics  and machine  learning  position microbial  bioremediation  as  a  cornerstone  for 

sustainable environmental management [14,153]   

9. Regulatory and Practical Considerations 

Regulatory frameworks emphasize safety standards for genetically modified microbes [157,158]. 

Approving  GMOs  encounters  challenges  worldwide  due  to  varying  regulatory  systems, 

complicating GMO authorization and ecological protection [15,159]. The Global Chemicals Outlook 

quorum 
sensing 

Field‐Scale 
Application
s 

Large‐
scale 
deploym
ent  of 
consortia 
and 
amendm
ents 

Enhanced 
degradatio
n  with 
biochar and 
consortia 

Scalable, 
high 
efficiency 

Requires 
monitorin
g,  site‐
specific 

Biobeds 
for 
chlorpyri
fos; 
biochar 
for 
atrazine 
& 
Chlorpyr
ifos 
 

[147][132][148] 
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advocates innovative approaches, but risk evaluation is required for outdoor releases [18]. Ecological 

modelling‐based risk assessment frameworks enhance GMO bioremediation evaluations, facilitating 

regulatory approvals [15,158,159]. 

High bioremediation costs limit widespread use in developing countries, due to scale [160,161]. 

Scaling laboratory solutions to field applications is challenging due to environmental variability, such 

as  temperature  fluctuations  and  soil  composition, which  reduce  efficacy  [77,162].  Implementing 

bioremediation  technologies  involving  GMOs  requires  public  acceptance  and  stakeholder 

engagement  [14].  Standardized  safety  protocols  and  technology  transfer  are  being  developed  to 

establish global bioremediation standards and protect freshwater ecosystems [163]. Emerging policy 

frameworks  support  sustainable  agriculture  by  promoting  pesticide  reduction  and  ecosystem 

restoration  to  ensure  long‐term  environmental  health  [2,18].  Standardized  assays  help  address 

barriers to scalability and monitoring [24,164]. 

10. Implications for Sustainable Agriculture 

Degradation  by  soil  bacteria  supports  sustainable  intensification  by  reducing  pesticide 

concentrations  in  soils  and  enhancing  soil  health  [165,166,167,168].  It  reduces  chemical 

contamination,  enhances  soil  quality,  biodiversity,  and mitigates  risks  to  health  and  ecosystems 

[4,9,11,166]. Bioremediation restores soil fertility and microbial diversity, facilitating nutrient cycling 

[109,118,149].  By  restoring  soil  bacterial  ecosystems,  bioremediation  fosters  fertile  conditions  for 

sustainable  crop  cultivation within global  climate‐smart  agricultural programs  [2]. Bio‐pesticides 

complement degradation  strategies  [7,159].  Integrating bioremediation with organic  farming  and 

integrated  pest  management  facilitates  a  shift  to  sustainability  by  reducing  chemical  pesticide 

dependency  [112,167].  Integrated pest management  (IPM) combined with bioremediation reduces 

pesticide inputs by leveraging natural bacterial degradation processes, promoting sustainable crop 

production and ecosystem resilience [169][170]. 

Climate‐resilient  microbes  reduce  the  need  for  increased  pesticide  use  [102].  Microbial 

bioremediation  enhances  climate  resilience  by  improving  soil  carbon  storage  and  reducing 

greenhouse gas emissions from pesticide production and application [14,40]. This approach reduces 

cleanup  costs  and  improves  yields  [160,166].  Eco‐friendly  farming  practices  in  Brazil  and  India 

demonstrate  global  applicability  [115,149].  Bioremediation  supports  pollinator  health,  enabling 

essential ecosystem services for sustainable agriculture [39,110]. Bacteria are critical to sustainable 

agriculture  [167].  Recent  studies  confirm  microbial  consortia  successfully  restore  polluted 

agricultural land, contributing to global ecological restoration and food security [2,116]. 

11. Conclusions 

Soil  bacteria  transform  harmful  pesticides  into  harmless  substances  via  their  metabolic 

capabilities, offering a transformative approach to pollution. Pesticide degradation involves complex 

enzymatic and genetic processes, executed by Pseudomonas and Streptomyces, among other taxa. These 

pathways  reduce  environmental  persistence  and  health  risks.  Bioremediation,  combined  with 

synthetic biology and multi‐omics  technologies, enhances effectiveness, enabling  large‐scale,  real‐

world deployment. Deploying soil bacterial solutions in sustainable agricultural systems demands 

regulatory  frameworks  that evolve  to ensure safety standards. These approaches reduce pesticide 

impacts,  enhance  soil  health,  and  support  resilient  agroecosystems,  contributing  to  global 

sustainability  goals.  Furthermore,  ongoing  research  should  focus  on  developing  more  robust 

microbial strains through genetic engineering to handle a wider range of pesticides under varying 

environmental conditions. Collaboration between scientists, policymakers, and farmers is crucial to 

implement  these  technologies  effectively.  By  integrating  bacterial  degradation  into  agricultural 

practices, we can significantly decrease reliance on chemical pesticides, promoting biodiversity and 

reducing the carbon footprint of farming. Additionally, the use of AI and predictive modeling can 

optimize bioremediation strategies, making them more efficient and cost‐effective. Ultimately, this 
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interdisciplinary strategy not only addresses current environmental challenges but also paves  the 

way for a more sustainable and resilient future in agriculture, ensuring food security for generations 

to come. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

CRISPR‐

Cas9 

Clustered  Regularly  Interspaced  Short  Palindromic  Repeats  and  CRISPR‐

associated Protein 9 

DDT:    Dichlorodiphenyltrichloroethane 

DT50:    Disappearance Time 50, or half‐life 

FAO:    Food and Agriculture Organization 

GMOs:    Genetically Modified Organisms 

AI:    Artificial Intelligence 

SDGs:    Sustainable Development Goals 

PTE/OPH Phosphotriesterases/Organophosphorus Hydrolases 

UNEP:    United Nations Environment Programme 
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