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Abstract

Modern agriculture relies on pesticides for pest management and yield improvement; however,
pesticide soil persistence creates major environmental and health threats through bioaccumulation,
groundwater contamination, and harm to non-target organisms. This comprehensive review
synthesizes current research findings on pesticide breakdown by soil bacteria and discusses their
mechanisms and implications for sustainable agriculture. The persistence of pesticide classes,
including  organophosphates, carbamates, pyrethroids, neonicotinoids, triazines, and
organochlorines, in soil varies from days to years, based on chemical structure and environmental
conditions. Soil bacteria Pseudomonas, Rhodococcus, Arthrobacter, and Bacillus break down these
compounds using enzymatic pathways, including hydrolysis, oxidation, and nitroreduction, while
plasmid-encoded genes and horizontal gene transfer boost soil bacterial efficiency. Pesticide
degradation rates are heavily influenced by environmental factors, including pH, temperature,
moisture, and organic matter, as optimal conditions enhance microbial activity, whereas stressors
like drought act as inhibitors. Bioremediation methods, including natural attenuation,
bioaugmentation, and synthetic consortia, offer environmentally friendly solutions, with omics
technologies and synthetic biology enabling the development of better degraders. Combining
microbial isolation techniques with kinetic assays and metagenomics enables researchers to identify
pathways. The use of modified soil bacteria in agriculture adheres to regulatory standards, ensuring
safety while addressing scalability issues in developing regions. Bacterial pesticide breakdown
reduces residue levels, enhances soil fertility, and supports resilient agroecosystems. Field-scale
validation and Al-driven predictive models are essential for optimizing degradation under climate
change conditions and demonstrate solutions as an interdisciplinary approach to mitigate pesticide
impacts and support sustainable agriculture.

Keywords: soil bacteria; pesticide degradation; bioremediation; soil bacterial enzymes; sustainable
agriculture; omics technologies; synthetic biology

1. Introduction

Modern agriculture depends on pesticides to enhance crop production while managing pests,
weeds, and diseases [1,2]. However, their widespread use causes significant environmental and
health problems, including soil and water contamination, damage to food chains, non-target
organisms, and human health [3,4,5,6]. Persistent pesticides, including organophosphates,
carbamates, pyrethroids, and neonicotinoids, accumulate in living organisms and cause long-lasting
ecological harm[4,5]. The need for sustainable solutions has positioned degradation by soil bacteria
as a natural and eco-friendly approach [7,8,9]. Soil bacteria possess diverse metabolic functions,
enabling them to decompose complex pesticide compounds into less toxic substances through
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enzymatic processes [10,11,12]. This review explores pesticide degradation mechanisms by soil
bacteria, their pathways, environmental factors influencing these processes, bioremediation
strategies, and their impact on sustainable agriculture. Drawing on recent studies, it highlights the
progress in omics technologies and synthetic biology and regulatory challenges [13,14,15,16]. Recent
field studies show that soil bacteria play a vital role in breaking down pesticide residues in both
tropical and temperate farming systems, helping to support global sustainability efforts[9,16,17].

The urgency of soil bacteria-based remediation is underscored by global reports indicating
escalating pesticide usage and associated risks, as evidenced by the UNEP’s Global Chemicals
Outlook, which calls for innovative solutions for managing contaminants [18]. Research on
endocrine-disrupting pesticides reveals their dual threat to reproductive health and biodiversity,
positioning bacterial degradation as a critical countermeasure [8]. Isolating degraders from
contaminated sites, such as sugarcane farms, demonstrates how indigenous bacteria, like those
degrading chlorpyrifos, can be used for targeted bioremediation practices [19].

2. Pesticide Classes and Environmental Persistence

Major pesticide categories are classified by chemical composition and mode of action, including
organophosphates (e.g., chlorpyrifos), carbamates (e.g., carbofuran), pyrethroids (e.g.,
cypermethrin), neonicotinoids (e.g., imidacloprid), triazines (e.g., atrazine), and organochlorines
(e.g., DDT, endosulfan) [20,21,22,23,24,25]. Their half-lives vary significantly for soil persistence, as
shown in Table 1, with glyphosate exhibiting a short half-life of 3-5 days, while organochlorines
persist for 2-15 years. Neurotoxic organophosphates and carbamates inhibit acetylcholinesterase
activity, persisting in soils for weeks to months, depending on environmental factors [26,27].
Pyrethroids, synthetic analogs of pyrethrins, possess hydrophobic properties and persist for several
months to years in anaerobic soils, causing aquatic toxicity [28,29,30]. Systemic neonicotinoids
dissolve easily in water, leading to groundwater contamination and extended exposure risks for
pollinators [31,32,33]. The herbicide atrazine, a triazine, exhibits a moderate persistence of 60-100
days and often contaminates surface water bodies [34]. Organochlorines, owing to their stability,
persist in the environment, despite restrictions on their use [3]. Pesticide persistence is influenced by
soil organic matter content, pH levels, and microbial activity, with some pesticide metabolites
becoming resistant to degradation, exacerbating pollution [22,33,35,36,37,38,39]. These residues are
widespread, impacting natural environments [25,40].

Phenylpyrazoles and sulfonylureas exhibit rapid degradation under high temperatures but
elevated leaching risks, as observed in field studies [41,42,43]. Glyphosate exhibits strong binding to
soil particles, but its potential to contaminate groundwater remains a concern, necessitating
integrated monitoring [35,36]. Neonicotinoid persistence varies between regions, as shown in
Colombian tomato production research, which found higher residue levels in greenhouses than open
fields [20]. Table 1 illustrates pesticide classes, their half-lives, and persistence categories,
highlighting their environmental behaviors.

Table 1. Pesticide classes and their environmental persistence.

- Representative Average soil half-life Persistence

Pesticide class Sources
compounds (DTs0) category
Chlorpyrifos,

Organophosphates Paratplziion 30-60 days Moderate [27,44]
Carbof ,

Carbamates A?éiéfbran 10-50 days Low to Moderate [23,45]

. Cypermethrin, 30-100 days (up to years in .

Pyrethroids Permethrin anaerobic conditions) Moderate to High [29,30,46]

Neonicotinoids Imidacloprid, 40-150  days - (dry pog0ate [31,32,33,47,48]
Acetamiprid conditions longer)

Triazines A;_razme, 60-100 days Moderate [34,49]

1mazine
Organochlorines DDT, Chlordane  2-15 years High [3,12]
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Others
Glyphosate)

(€8 Glyphosate 3-5 days (variable) Low [35,36]

3. Bacterial Taxa Involved in Pesticide Degradation

Soil bacteria are the primary agents of pesticide breakdown in soil, with various species in

contaminated sites exhibiting diverse degradation capabilities [9,10,11]. Table 2 presents

key

genera, including Pseudomonas, which degrades organophosphates and pyrethroids through

hydrolytic enzymes [10,50,51,52]. Rhodococcus species, such as R. koreensis, degrade endosulfan and

triazines, producing metabolites like endosulfan diol monosulfate [53,54]. Arthrobacter strains, such

as A. aurescens and A. sp. AD26, mineralize s-triazines like atrazine via dechlorination and ring

cleavage [52,55].

Table 2. Microbial taxa involved in pesticide degradation.

Bacterial . .
. Pesticides Degraded Mechanism/Notes Sources
genus/Species
Organophosphates, Hydrolysis,
Pyrethroids, Oxidation, genetically
Pseudomonas DDT, modified for phenolics; [10,50,51,52]
Phenolics consortia synergy
Opidative ey
Rhodococcus Triazines, . Y8 [53,54,56,57]
Chlorpyrifos Ring Cleavage,
Py Metabolite Formation
. Specialized hydrolytic
Arthrobacter Atragmg, pathways, [52,55,58]
aurescens TC1 S-Triazines S
Dechlorination
| Pyrethroids, Nitroredaction;
Bacillus Diphenyl Ethers, o S . [57,59,60,61,62]
~85%  triazoles; consortia
Carbamates
enhance rates
. Hydrolases, Oxidases,
Burkholderia Par;.athmn, Carbofura_n, Broad-Spectrum Degradation; [9,11,63,64]
Various Organochlorines . .
cometabolism with plants
Flavobacterium Organophosphates Hydrolysis [9,10,11]
Kiebsiella Neonicotinoids, Esterases [39,65,66]
Chlorpyrifos
. . PAHs, Sulfonylureas, . .
Novosphingobium Neonicotinoids Dioxygenases, Hydrolysis [67]
e . Esterases, Hydrolysis; up to
Acinetobacter  °OMICOBNOISS, DIAZINONY g0, diazinon removal in lab  [39,65,68]
rganophosphates .
settings
DDT,Endosulfan, Esterases, Cometablolic
S Diflufenican
treptomyces processes [39,47,69]
Carbamates, . . .
Actinobacterial Degradation
Organophosphates
Oxidases, Hydrolysis,
. Neonicotinoids, genetically ~ modified  for
Sphingomonas Sufonylureas carbamates/organophosphates; [28,70]
biofilm enhances stability
Stenotrophomonas Neonicotinoids, Hydrolysis, Cometabolism [43,71]
Sufonylureas
Alcaligenes Organochlorines Reductive, Dechlorination [72]
Achromobacter Triazines Hydrolysis, Ring Cleavage [29,73]
Paracoccus Pyrethroids Ester Hydrolysis [43,74]

Bacillus species, including B. subtilis and B. sp. Za, degrade pyrethroids and diphenyl ethers

through esterase activity and nitroreduction [57,59,60,61]. Actinobacteria, such as Streptomyces,

participate in the degradation of carbamates, organophosphates, and other pesticides [47]. Azotobacter

isolates from sugarcane soils remediate chlorpyrifos and other toxic pesticides [16]. These bacterial
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taxa often thrive in pesticide-enriched environments, adapting via horizontal gene transfer and
plasmid-encoded degradative genes [15,63,75]. Research in malaria-endemic regions demonstrates
simultaneous degradation of DDT and pyrethroids by indigenous bacteria [3,15]. This degradation
process is enhanced by fungal-bacterial interactions, but bacteria remain the primary agents for rapid
mineralization [9,26]. Recent studies have revealed additional bacterial genera, including
Sphingomonas and Alcaligenes, which can break down neonicotinoids and organochlorines through
oxidative and reductive pathways. These findings broaden our understanding of the diversity of
pesticide-degrading soil bacteria[28,39,76].

Figure 1 illustrates detailed pathways of microbial pesticide degradation.

Genomic analysis of metaldehyde-degraders shows that different strains share similar
pathways, suggesting selection pressure drives degradative capabilities [75]. Rhodococcus and other
endosulfan degradation capabilities of earthworm gut isolates demonstrate their adaptation to
specific ecological niches [54]. Recent global perspectives highlight the diversity of microbial
degraders, with new isolation techniques identifying strains for recalcitrant compounds [11,26]. Key
bacterial genera, their pesticide targets, and degradation processes are presented in Table 2.

 Pseudomonas Rhodococcus

/ Environmental \
. . Factors
Pesticide
Temperature
Hydrolysis Oxidation Mojskure
Modulates

Hydrolases Oxidoreductases degradation
efficiency

Dehalogenases
Nitroreductases

Dehalogenation
Nitroreductases

Non-toxic
Metabolites |

Figure 1. Microbial Pesticide Degradation Pathways.

4. Enzymatic and Genetic Mechanisms of Degradation

Soil bacteria degrade pesticides through enzymatic reactions that cleave chemical bonds via
oxidation and hydrolysis [10,22,23,77]. Table 3 outlines key enzyme classes and their roles in pesticide
degradation. Phosphotriesterases in Pseudomonas cleave P-O bonds in organophosphates, yielding
non-toxic alcohols and acids [10,78,79]. Carbamate degradation occurs through carboxylesterases and
amidases, with microbial genomes conserving motifs that enable ring [23,45,77]. Pyrethroids undergo
initial ester hydrolysis by carboxylesterases before being oxidized into carboxylic acids [29,46,56].
Neonicotinoids are metabolized via nitroreduction and demethylation by Rhodococcus and Bacillus
using nitroreductases [39,80,81]. Genetic mechanisms include plasmid-borne operons (e.g., opd for
organophosphates) and chromosomal genes (e.g., atz for atrazine degradation in Pseudomonas and
Arthrobacter) [52,55].

Metagenomic analyses reveal that CRISPR-Cas systems enable microbes to adapt to
environmental conditions [82]. Pesticide degradation via cometabolism occurs when pesticides serve
as carbon sources, with 3,56-trichloro-2-pyridinol from chlorpyrifos undergoing further
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mineralization [15]. Synthetic biology clarifies these mechanisms through gene knockouts, showing
esterases' pivotal role in multi-pesticide degradation [77,83]. Laccase-assisted systems can degrade
recalcitrant pesticides [84]. Studies have identified cytochrome P450 monooxygenases in
Sphingomonas and Alcaligenes, which enable the oxidative breakdown of neonicotinoids and
organochlorines, respectively, thereby expanding the enzymatic toolkit available for bioremediation
[29,85,86]. Carbamate degradation exhibits evolutionary conservation across microbes via hydrolysis
and oxidation, central to detoxification [23]. Organophosphate-degrading enzymes extend beyond
remediation, serving as medical countermeasures for poisoning [87]. Studies of pyrethroid catalysis
demonstrate how microbial adaptation enhances degradation efficiency [46].

Table 3. Enzymatic mechanisms of pesticide degradation.

Bacterial

Enzyme class Pesticide type Mechanism Sources
examples
Phosphotriesterases / Srganophosp}(l:te ﬁii?g%g;:s
Organophosphorus chlorpyrifos & Hydrolysis of Sphin obiun,1 [10,78,79,88,89
hydrolases di Py ’ hvl P-O bonds Bp 'llg 4 ]
(PTE/OPH) iazinon, methy acillus,
parathion) Arthrobacter
Bacillus,
Ester Pseudomonas,
Carboxylesterases / Carbamates, . Rhodococcus,
Esterases Pyrethroids }ﬁsi’fr(:)lyz;si’n Acinetobacter, [21,29,46,56]
& op & Stenotrophomona
5
Nitroreduction  Bacillus,
Neonicotinoids, , Rhodococcus
Nitroreductases Diphenyl ethers, Demethylation  Arthrobacter, [39,80,81]
Nitroaromatic , Enterobacter,
Nitroreduction Klebsiella
Cytochrome P450 Neonicotinoids, gl)exgl(::ctila:]t?on iﬁ?{;ﬁggﬁms’
l\odglr;(r)oxygenases/ g;f:tr}ﬁgﬂzrmes’ (hydroxylation  Pseudomonas, [90,91,92,93]
Monooxygenases Fungicides ! deglky} ation,  Bacillus,
N-oxidation) Streptomyces
Arthrobacter,

. . Pseudomonas,
Amidases/Hydrolase Ca.rbz'amates, Amide bond Burkholderia, [23,45,52,94]
S Triazines cleavage Vari

ariovorax,
Paenarthrobacter
Oxidases Recalcitrant Oxidation of Pseudomonas,
e.g., Laccases, I aromatic rings, chrobactrum,
g., L P ic rings, Ochrob
3 esticides, c 1 . [83,84,95,96,97

Peroxidases, Aromatics radical Bacillus, 1
Multicopper Dves ¢ mediated Azospirillum,

oxidases) Y reactions Streptomyces

5. Environmental Factors Affecting Degradation

Pesticide degradation rates in soil ecosystems are controlled by abiotic and biotic factors

[5,20,49], as shown in Table 4. Pyrethroid persistence increases in acidic conditions, but
organophosphate hydrolysis accelerates in neutral pH [35,49,98]. An optimal temperature range of
25-30°C and field capacity moisture levels enhance enzyme kinetics [99,100]. Organic matter content
binds pesticides, reducing bioavailability but promoting microbial adaptation [37,98,101]. Drought
and climate change exacerbate persistence by altering microbial communities and increasing
pesticide application rates [100,102]. Biochar amendments limit mobility and enhance microbial
colonization but can inhibit degradation if over-applied [98,103]. Heavy metals and co-contaminants
compete for enzymatic sites, slowing degradation [104].

Prior pesticide use influences microbial diversity, enhancing resilience as degraders are more
prevalent after repeated exposure [63,99]. Studies of tropical and greenhouse soils reveal that high
humidity accelerates degradation but heightens leaching risks [20,41]. Heavy metals, such as copper
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and zinc, can inhibit soil bacterial degradation by altering enzyme active sites or reducing microbial
diversity, necessitating strategies like biochar amendment to mitigate these effects [105][106,107].
Table 4 summarizes these factors and their impacts on degradation efficiency. Biochar critically
influences pesticide fate by altering soil properties, with balanced application recommended to
optimize microbial activity [98]. Climate change-driven increases in pesticide use necessitate
adaptive measures to maintain degradation efficiency [102]. Historical pesticide use has shaped soil
microbiomes, influencing their degradation capacity [99].

6. Bioremediation Strategies

Bioremediation leverages soil bacteria to detoxify pesticide-contaminated sites, offering cost-
effective alternatives to chemical methods [7,13,108,109,110]. Table 5 outlines bioremediation
strategies for pesticide degradation.

6.1. Natural Attenuation

Natural attenuation relies on native microbial populations to break down pesticides through a
cost-effective but slow process, independent of human intervention [13,108,110,111]. Attenuation of
chlorpyrifos and endosulfan involves hydrolysis and oxidation, accelerated by microbial adaptation
in periurban environments [111]. This process is slow, limited by natural factors and pesticide
stability [77]. It is effective for low pesticide pollution, but its slow pace and incomplete
mineralization pose challenges [22,112]. Success depends on diverse soil bacterial populations with
specific pesticide degradation capabilities, whose abundance varies between soil types and
geographic locations [83]. Sites with prior pesticide treatment harbor soil bacterial populations that
degrade contaminants at accelerated rates through soil bacterial priming [14].

Table 4. Environmental factors affecting pesticide degradation.

Environmental Effect on o . nal Range Negative Impact Source
Factor Degradation p 8 Examples
Influences Acidic soils slow
pH sorption and Neutral (6-7) pyrethroid [35,49,98]
enzyme activity breakdown
Affects enzyme L
kinetics and on temps
Temperature . . 25-30°C (<10°C)  reduce [99,102]
microbial
. rates
metabolism
Enhances
. microbial growth Field capacity Drought inhibits
Moisture and substrate  (60-80%) activity [82,76]
diffusion
Increases
Organic Matter sequestration but High content Low OM reduces [37,98,101]
; . bioavailability
aids adaptation
Anaerobic
Aeration/Oxygen gromoteg aerobic ngl—aerated conditions [29,30,35]
egradation soils prolong
persistence

Reviews confirm natural attenuation is effective in agricultural fields with diverse taxonomic
species [108,110]. Optimized soil conditions, including higher organic matter content and pH
adjustments, enhance the activity of indigenous microorganisms, particularly for organophosphate
degradation [60,101]. Biochar addition enhances natural pesticide attenuation by creating improved
environments for microorganisms and increasing pesticide bioavailability to microbial action [113].
In Brazilian soils, natural attenuation combined with other remediation techniques achieves better
performance [112]. Variable microbial responses necessitate site-specific assessments to ensure
effective results [11].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0474.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2025 d0i:10.20944/preprints202510.0474.v1

7 of 21

6.2. Bioaugmentation

Bioaugmentation accelerates pesticide degradation in contaminated soils by introducing specific
microbial strains or consortia [31,114]. Bacillus sp. degrades chlorpyrifos in contaminated soil systems,
and kinetic experiments verify first-order degradation [60]. Bacillus and Sphingomonas consortia
exhibit successful degradation of pyrethroids and neonicotinoids [14,56]. Rhodococcus pyridinivorans
Y6 efficiently degrades multiple pyrethroids [57]. Strain survival and competition are mitigated with
carrier materials [113,114]. Advanced delivery systems, encasing microorganisms in biodegradable
carriers, enhance performance in challenging soil conditions [15,115]. Combining biochar or compost
with biological methods yields synergistic effects, enhancing bacterial survival, pesticide
bioavailability, and activity [116]. Bioaugmentation, combined with these methods, enhances
degradation speed and microbial retention, making it suitable for large-scale remediation [101].

Field experiments in Brazil demonstrate its global applicability [115]. Studies in Argentine
horticultural soils show bioaugmentation is an effective approach to reduce endosulfan residues
[111].  Genetically modified Bacillus strains effectively reduce organochlorine residues [72].
Cyclodextrin-based technologies enhance herbicide removal in contaminated soil systems [117].

6.3. Synthetic Microbial Consortia

Engineered soil bacterial communities, comprising Pseudomonas, Bacillus, Streptomyces, and
Sphingomonas, demonstrate enhanced pesticide degradation efficiency over individual strains
[39,77,118]. These consortia achieve synergistic degradation by combining multiple strains
[107,117,118,119]. These consortia enhance degradation through complementary hydrolytic,
oxidative, and reductive enzymatic activities [57,119]. Quorum sensing regulates esterases expression
in Bacillus subtilis, ensuring synchronized metabolic processes [61]. Advanced genetic tools, such as
CRISPR-Cas9, enable optimization of consortia performance by enhancing metabolic output and
stability under variable soil conditions [120,121]. These consortia improve efficiency and offer
applications in soil fertility recovery [118,122,123].

Bioinformatics and machine learning predict strain interactions, enabling effective
bioremediation [122,124]. Pesticide-tolerant consortia effectively remediate multi-contaminated sites
[123]. Modular consortia designed for neonicotinoids and triazines include built-in stress tolerance
to withstand heavy metals and extreme pH [14,116,123]. Novel Pseudomonas and Streptomyces
consortia exhibit enhanced degradation capabilities for field-based pesticide residue removal [3,22].
Studies of complex consortium development show combined strains achieve complete mineralization
through synergistic reactions [119]. Quorum sensing circuits and synthetic regulatory elements
ensure stable function in contaminated soils [61,125,126]. Their application to soil fertility
enhancement demonstrates broader agricultural benefits, though deployment requires detailed
ecological and regulatory considerations [118].

6.4. Field-Scale Applications

Field-scale bioremediation represents a critical step in translating laboratory innovations into
practical strategies for managing pesticide contamination in agricultural systems. Common
approaches include the use of biomixtures and biobeds, soil amendments with biochar or compost,
phytoremediation, and application of adapted microbial consortia[127,128,129,130]. Biomixtures and
biobed systems consistently demonstrate effective pesticide dissipation under field and pilot
conditions, often exceeding 50% removal and, in optimized designs, achieving near-complete
dissipation within approximately 30-90 days. However, degradation rates remain highly dependent
on pesticide formulation, biomixture maturity (pre-incubation period), hydraulic load, and climatic
conditions [131,132,133,134]. Evidence from Mediterranean and temperate regions highlights that
composition, moisture content, and pre-incubation strongly determine the dissipation efficiency of
pesticides such as chlorpyrifos and triazine herbicides [129,135,136].
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Formulation strategies that enhance pesticide bioavailability (e.g., inclusion complexes) or
combine adsorption capacity (via biochar) with active degraders tend to accelerate degradation rates
and improve microbial persistence. Nonetheless, the effectiveness of biochar remains strongly
dependent on feedstock type, pyrolysis conditions, and environmental context [137,138,139,140].
Regional field studies further corroborate these outcomes: European and Brazilian biobed systems
have shown high removal efficiencies for organophosphates, triazines, and glyphosate, while tropical
systems employing alternative biomixture substrates such as banana stems, pine litter, or
vermicompost can also sustain rapid degradation when properly aged and [128,134,141,142].

Advances in synthetic biology have enabled the development of engineered strains and designer
microbial consortia, such as multi-enzyme Pseudomonas putida constructs, which exhibit strong
capacity for degrading mixed pesticide residues at laboratory and pilot scales. However, their
environmental application remains limited due to biosafety concerns and regulatory constraints
[50,128,143,144]. Integrating biochar or compost amendments with microbial inocula or plant-
assisted systems shows promise in enhancing microbial survival, modifying pesticide sorption and
bioavailability, and accelerating dissipation, though outcomes remain site-specific and require
systematic optimization and monitoring[140,141,145,146] To achieve scalable, environmentally safe,
and socially acceptable applications, standardized field monitoring protocols, ecological risk

assessments, and active engagement with regulatory bodies and stakeholders are
essential[115,127,133,134].
Table 5. Bioremediation strategies for pesticide degradation.
Strategy Descripti Mechanis  Advantag Limitatio Example Sources
on m es n s
Slow
Relies on rates,
indigeno Hvdrolvsis Cost- incomplet  Chlorpyrif
us anyd y effective, e 0S and
Natural microbes oxidation minimal mineraliz ~ endosulfa  [13,108,110,111,11
Attenuation  for bv  native ecological ation n 2]
passive GKZ mes disruptio  (varies attenuati
degradati Y n with soil on
on conditions
)
ir;troduc Bacillus
specific Targets Strain Sp: fQT
. . chlorpyrif
degrader Esterase- specific survival, 05
s to L ediated contamin  competiti R};O dococe
Bioaugment accelerat hvdrolvsis,  2Nts, on with S [57,60,114,115]
ation e ni}:croreﬁucgc accelerate natives, vidinivo A
processes . s cost of PY
. ion .. . rans Y6
, using degradati  inoculatio for
isolates on n hroi
or carrier pyrethrol
. ds
materials
Engineer
ed . Compleme Complex
combinat S . . . .
ions of ntary . ynergisti  engineeri
. enzymatic C ng, Pseud
Synthetic strains pathways efficiency, regulatory seuaomo
ynthet for ’ nas and [15,77,82,117,118,
Microbial svnereist (e.g. adaptable hurdles Bacillus 122,123]
Consortia ig & esterases, to multi- (e.g, consortia ’
deoradati oxidases) contamin  safety
ong via quorum ants assessmen
regulated sensing ts)
by
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quorum
sensing
Biobeds
Large- fc})lli .
scale chiorpyrt
depl Enhanced Requi fos;
Field-Scale EF oymf degradatio  Scalable, me?[l"trer%n biochar
Application ionsorti‘; n with high o ‘;iie_ for [147][132][148]
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7. Methodology

This review systematically synthesizes knowledge on microbial pesticide breakdown.
Information was collected from peer-reviewed databases, including PubMed, Scopus, and Web of

"non

Science, for publications from 1995 to 2025. Search terms included "pesticide degradation,” "soil

"nn nn

bacteria," "bioremediation," "microbial enzymes," "omics technologies," and "sustainable agriculture.”
The review selected scientific articles on microbial taxa, enzymatic and genetic mechanisms,
environmental factors, bioremediation methods, and sustainable agricultural applications. It
prioritized English peer-reviewed articles, reviews, and book chapters from high-impact journals,
particularly recent developments post-2019. It examined pesticide classes, microbial degradation
mechanisms, bioremediation approaches, and their regulatory and sustainability aspects.
Incorporating 119 references from primary research, reviews, and policy reports, it provides a

comprehensive, expert-level overview.

8. Advances in Omics Technologies and Synthetic Biology

Omics technologies have revolutionized pesticide degradation research by integrating
metagenomics, transcriptomics, and proteomics to reveal soil bacterial catabolic pathways, discover
new genes, enzymes, and regulatory systems [14,73,149,150,151]. Metagenomics identifies
degradation genes in bacteria metabolizing chlorpyrifos and unculturable microorganisms,
expanding bioremediation capabilities [14,15]. Proteomics reveals neonicotinoid degradation is
enhanced by esterase and laccase activity, while transcriptomics shows how environmental stressors
influence pathway regulation [152]. Integrating omics with machine learning facilitates prediction
and optimization of degradation pathways, revealing complex soil bacterial community interactions
and synergistic effects in contaminated sites [48,73,80,124,150,153]. Metabolomics tracks intermediary
metabolites to address pathway limitations, aiding the development of efficient synthetic consortia
[14].

Synthetic biology enhances bioremediation through genetic modifications of Pseudomonas putida
KT2440, enabling degradation of multiple pesticides via CRISPR-Cas and E. coli strains engineered
with multiple degradation genes for enhanced pollutant removal [50,82,87,116,121,152,154,155].
Epigenomics elucidates regulatory processes controlling degradation gene expression, maximizing
microbial function, and Al-based models predict engineered ecosystem outcomes, enabling precise
bioremediation [48,156]. Bacillus cells expressing nitroreductase accelerate herbicide degradation,
and microalgae-bacteria combinations facilitate large-scale pollutant management [81,121].
Integrated omics and machine learning position microbial bioremediation as a cornerstone for
sustainable environmental management [14,153]

9. Regulatory and Practical Considerations

Regulatory frameworks emphasize safety standards for genetically modified microbes [157,158].
Approving GMOs encounters challenges worldwide due to varying regulatory systems,
complicating GMO authorization and ecological protection [15,159]. The Global Chemicals Outlook
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advocates innovative approaches, but risk evaluation is required for outdoor releases [18]. Ecological
modelling-based risk assessment frameworks enhance GMO bioremediation evaluations, facilitating
regulatory approvals [15,158,159].

High bioremediation costs limit widespread use in developing countries, due to scale [160,161].
Scaling laboratory solutions to field applications is challenging due to environmental variability, such
as temperature fluctuations and soil composition, which reduce efficacy [77,162]. Implementing
bioremediation technologies involving GMOs requires public acceptance and stakeholder
engagement [14]. Standardized safety protocols and technology transfer are being developed to
establish global bioremediation standards and protect freshwater ecosystems [163]. Emerging policy
frameworks support sustainable agriculture by promoting pesticide reduction and ecosystem
restoration to ensure long-term environmental health [2,18]. Standardized assays help address
barriers to scalability and monitoring [24,164].

10. Implications for Sustainable Agriculture

Degradation by soil bacteria supports sustainable intensification by reducing pesticide
concentrations in soils and enhancing soil health [165,166,167,168]. It reduces chemical
contamination, enhances soil quality, biodiversity, and mitigates risks to health and ecosystems
[4,9,11,166]. Bioremediation restores soil fertility and microbial diversity, facilitating nutrient cycling
[109,118,149]. By restoring soil bacterial ecosystems, bioremediation fosters fertile conditions for
sustainable crop cultivation within global climate-smart agricultural programs [2]. Bio-pesticides
complement degradation strategies [7,159]. Integrating bioremediation with organic farming and
integrated pest management facilitates a shift to sustainability by reducing chemical pesticide
dependency [112,167]. Integrated pest management (IPM) combined with bioremediation reduces
pesticide inputs by leveraging natural bacterial degradation processes, promoting sustainable crop
production and ecosystem resilience [169][170].

Climate-resilient microbes reduce the need for increased pesticide use [102]. Microbial
bioremediation enhances climate resilience by improving soil carbon storage and reducing
greenhouse gas emissions from pesticide production and application [14,40]. This approach reduces
cleanup costs and improves yields [160,166]. Eco-friendly farming practices in Brazil and India
demonstrate global applicability [115,149]. Bioremediation supports pollinator health, enabling
essential ecosystem services for sustainable agriculture [39,110]. Bacteria are critical to sustainable
agriculture [167]. Recent studies confirm microbial consortia successfully restore polluted
agricultural land, contributing to global ecological restoration and food security [2,116].

11. Conclusions

Soil bacteria transform harmful pesticides into harmless substances via their metabolic
capabilities, offering a transformative approach to pollution. Pesticide degradation involves complex
enzymatic and genetic processes, executed by Pseudomonas and Streptomyces, among other taxa. These
pathways reduce environmental persistence and health risks. Bioremediation, combined with
synthetic biology and multi-omics technologies, enhances effectiveness, enabling large-scale, real-
world deployment. Deploying soil bacterial solutions in sustainable agricultural systems demands
regulatory frameworks that evolve to ensure safety standards. These approaches reduce pesticide
impacts, enhance soil health, and support resilient agroecosystems, contributing to global
sustainability goals. Furthermore, ongoing research should focus on developing more robust
microbial strains through genetic engineering to handle a wider range of pesticides under varying
environmental conditions. Collaboration between scientists, policymakers, and farmers is crucial to
implement these technologies effectively. By integrating bacterial degradation into agricultural
practices, we can significantly decrease reliance on chemical pesticides, promoting biodiversity and
reducing the carbon footprint of farming. Additionally, the use of Al and predictive modeling can
optimize bioremediation strategies, making them more efficient and cost-effective. Ultimately, this
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interdisciplinary strategy not only addresses current environmental challenges but also paves the
way for a more sustainable and resilient future in agriculture, ensuring food security for generations
to come.
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