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Abstract: The Genotype-Phenotype Working Group was established in November 2021 as part of the
AgBioData Consortium (https://www.agbiodata.org) with the goal of identifying current challenges in
annotating and integrating large-scale genotype and phenotype data. Over the course of the year, the members
of this working group identified different types of data sets, explored experimental platforms and methods for
data generation, and examined how these data are annotated including the metadata requirements. We
conducted a thorough review of publicly funded repositories for raw and processed data for each data type.
We also examined several secondary databases and knowledgebases that enable the integration of
heterogeneous data types in the context of the Genome Browser, Pathway Networks and tissue-specific gene
expression. The review revealed a need for additional infrastructural support, standards, and tools to connect
Genotype to Phenotype data and enhance data interoperability for knowledge synthesis and to foster
translational research.

Keywords: Genotype; phenotype; sequencing; phenomics; data integration; metadata;
standardization

1. Introduction

Genotype-phenotype (G2P) integration is the process of linking genetic data to measurable
qualitative and quantitative phenotypes and traits. Historically, linking genetic markers or genes
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associated with desirable traits have led to the development of improved cultivars with higher yields
and quality, enhanced disease resistance or climate resilience. In past two decades, the generation of
high-throughput Omics or “big data" including plant genomes and pan-genomes, genetic variation
data including Single Nucleotide Polymorphisms (SNPs) and structure variations (SVs),
transcriptomes, phenotype, proteomes, and metabolomes has changed the scale and scope of data
analysis, knowledge synthesis and its application in translational research (1,2). In addition,
researchers and breeders worldwide have collected classic mutant phenotype and trait data, and
more recently the large-scale phenotype data collection is peaking by. Often, a particular set of big
data is being analyzed to bridge specific knowledge gaps identified by the projects and remain
underexploited for synthesis of new knowledge. Going forward, the different data types produced
in various experiments can be reutilized for synthesizing new knowledge, developing data-driven
hypotheses, and for experimental research. The integration of large-scale datasets from diverse
sources, however, can be challenging and typically involves quality check, data re-formatting,
curation, and re-analysis. For example, genotype, phenotype and expression data for the same plant
accessions were generated from various projects over a decade, each using inconsistent sample
identifiers and different plant growth environments. Before utilizing these various datasets to
investigate the genetic and environmental factors influencing a particular phenotype, establishing
consistent sample names, gene Ids, and phenotypes across all datasets will be needed and possibly
require modification in the original data format. The fulfillment of the unprecedented potential of big
data depends on the data being Findable, Accessible, Interoperable, and Reusable (FAIR) (3-5). To
meet the FAIR standards, any dataset should include metadata providing the standard terms and
details necessary for data interpretation using plant ontologies or controlled vocabularies. Data and
metadata standardization can be achieved by developing common community standards of data
formats, and description so that diverse datasets from different sources can be accessible and
interoperable for visualization and knowledge synthesis. A clear, organized and consistent method
of capturing and exchanging agricultural data will ensure easier data discovery, comparisons, and
reuse by various stakeholders.

Making data FAIR requires concerted efforts and communications among all parties involved in
data generation and curation. In 2015, the AgBioData Consortium (https://www.agbiodata.org) was
formed to identify and promote the means to consolidate and standardize common Genetic Genomic
Breeding (GGB) database tools and operations, with the goal towards increased data interoperability
for future research (4). At present, AgBioData comprises over 40 GGB databases and more than 200
scientists, fostering collaborations and open discussions about the common practices, challenges and
solutions to big data agricultural research. A AgBioData consortium white paper (4) has previously
identified challenges facing GGB Databases and suggested common guidelines for bio-curation,
ontologies, metadata, GGB database platforms, programmatic (machine) access to data,
communication among various partners and stakeholders, and sustainability of genomic
resources/databases. AgBioData aims to (i) identify and address data-related issues by defining
community-based standards; (ii) expand the network by involving all the stakeholders of the
agricultural research community; (iii) develop educational material to train current and future
scientists on database usage and the FAIR principles; and (iv) develop a roadmap for a sustainable
GGB database ecosystem. As part of this NSF RCN project, working groups were formed around
major data-related challenges and needs. The Genotype-Phenotype working group (G2P-WG) was
formed in November 2021 with the goal of identifying current challenges in annotating and
integrating large-scale genotype and phenotype data. The efforts and work of the AgBioData GP-WG
brought to the current white paper, which summarizes the current status of FAIR practices of
phenotype and genotype data (see Figure 1). For common genotype and phenotype data, we report
(i) a brief introduction of the diverse data type and how they are generated, (ii) primary and
secondary data repositories and databases for these data types, (iii) requirements of associated
metadata and the minimum standards, (iv) examples of re-use and reanalysis of omics data, and (v)
limitations of data re-use.
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Figure 1. Current status of genotype to phenotype data integration. A summary of diverse genotype
and phenotype data is on the left, while on the right, a list of potential integrative analyses that can
be carried out by plant researchers using the various data types.

2. Genomics and Transcriptomics data

2.1. Whole genome and transcriptome sequences

In the past decade, sequencing technology has evolved rapidly from the early days of time-
consuming Sanger sequencing to high-throughput massive parallel sequencing that started the era
of the Whole Genome Sequencing (WGS) and transcriptome sequencing. There are basically three
general methods of DNA/cDNA sequencing : (i) Sanger chain termination sequencing and Maxam
Gilbert sequencing; (ii) short-read sequencing known as Next Generation Sequencing (NGS) (6)
including Ion Torrent, Solexa/Illumina, Roche/454 pyrosequencing; and (iii) more recent long-read
Third Generation Sequencing (3GS), primarily single molecule real time sequencing from Pacific
Bioscience (PacBio), and nanopore sequencing from Oxford Nanopore Technologies (ONT). At
present, Illumina is the dominant and most popular platform in NGS for both genomes and
transcriptome sequencing because of high accuracy, low cost, and global distribution. PacBio and
ONT are gaining popularity and becoming affordable for high-quality long-read/ full-length
sequences. Similarly, DNBSeq from MGI Tech, a subsidiary of Beijing Genomics Institute (BGI) group
and Ion Torrent Systems (7,8) are making advances. There are several file formats used in WGS and
the most common is the compressed FASTQ format that is used for both sequencing platforms, NGS
and 3GS. The original file formats for 3GS include legacy h5 format for PacBio, the industry-standard
BAM format, and the FAST5 format for ONT that is based on the hierarchical data format (HDF5)
used for ONT data storage sequencer. There are numerous basecallers available for conversion to
FASTQ format (9) and in general we find that sequencing data has achieved standard data formatting.

2.2. Genome Sequencing Strategies for Genotyping

Genotyping is a crucial component in linking genotype to phenotype. The first-generation
genotyping marker was Restriction Fragment Length Polymorphisms (RFLPs), which relied upon
underlying differences in base pair sequences to create an autoradiographic fingerprint after DNA
regions were digested with known restriction enzymes (10). These techniques progressed with
technological advancements in PCR and other DNA sequencing techniques to include genotyping
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via microsatellite markers, specifically simple sequence repeats (SSR) or short tandem repeats (11).
High throughput low- and high- density SNP arrays provide a cost-effective genotyping solution for
studies such as population structures, genomic diversity, gene discovery and molecular breeding.
Array technology can genotype a large number of samples in a short period of time, and data analysis
is much simpler. However, designing an efficient array with high quality SNPs for a particular crop
usually requires significant investment upfront. As genome sequencing has advanced even further,
researchers can now achieve whole-genome profiling through lower- or higher-coverage sequencing
strategies such as NGS and 3GS.

Various genome sequencing strategies can be employed based on research aims and funding.

Sequencing of sub-sampled loci (12) has been widely used in phylogenomics studies for cost-
effective large-scale genotyping. Skim sequencing (13) is a low coverage whole genome sequencing
approach. Target enrichment sequencing investigates specific genomic elements via pre-defined
probe sequences (14). Exome sequencing is a common type of target sequencing that focuses on
protein-coding regions of genes (15). Amplicon sequencing is a highly targeted approach addressing
specific genome loci. Genotyping-by-sequencing (GBS) (16,17) and restriction-site associated DNA
marker sequencing (RAD-seq) (18,19) are two popular cost-effective sequencing strategies for
shearing the genome via restriction enzyme(s). This advent of high-throughput sequencing has
generated immense amounts of data that plays into several areas of genomic concern. Regarding
genotyping data structure, the 1000 Genomes project (https://www.internationalgenome.org/)
spearheaded the first Variant Call Format (VCF) for standardizing the SNPs, indels, and structural
variation between two or more genomes at a given locus (20). The VCF has become the go-to format
for variant data and associated metadata; over time, modifications of the base VCF file have expanded
to include experiment-specific modifications, such as GWAS-VCF (21) and GVCF
(tinyurl.com/5f8wpmbhr), and accommodates variant information of polyploid genomes. In addition
to low coverage genome sequence, transcriptome sequence is routinely used for genotyping and
identification of useful genetic markers. More recently, integration of single cell genome sequencing
and single cell transcriptome sequencing tools have facilitated quantifying genetic and expression
variability between individual cells (22). Like sequence data, genotyping data has standardized
formats.

2.3. Public repositories for genomics and transcriptomics data

Regardless of the sequencing platform or strategy used, raw sequencing data in compressed
fastq.gz format is submitted to a public data repository such as National Center for Biotechnology
Information (NCBI) GenBank, Sequence Read Archive (SRA) and/or Gene Expression Omnibus
(GEO) via the NCBI submission portal. NCBI provides BioSample metadata templates based on
organism lineage validation. Besides NCBI, the data can be submitted to the DNA DataBank of Japan
(DDBJ), Sequence Read Archive (SRA) via DDB] submission navigation website, or the European
Nucleotide Archive (ENA) through BioStudies portal. DDBJ, ENA and NCBI GenBank (see Table 1
and Supplementary Table S1) form the International Nucleotide Sequence Database Collaboration
(INSDC) and exchange data daily. Prior to publishing the results, all the life science journals require
authors to submit their raw sequence data to the public INSDC repositories - a key component of the
data sharing policies in the community of biologists (23). Additional public platforms that host the
sequence data includes the US Department of Energy (DOE) Joint Genome Institute (JGI) that makes
sequencing data generated by its collaborating projects available immediately to registered users and
then follows public release on JGI and NCBI/ SRA or GeneBank after a one-year embargo period. JGI
also provides Phytozome (24), the Plant Comparative Genomics portal, for genome accessing,
comparison and visualization (see Table 2). Nature and Scientific Data request that sample metadata
is deposited in one of the INSDC BioSample databases in conjunction with sequence data. It is crucial
to use the standardized metadata both at the study and sample level to facilitate the curation and
processing of transcriptomics data in a FAIR-compliant way. A few sequence repositories such as
Zenodo (https://www.zenodo.org), DRYAD (https://datadryad.org), Figshare (https://figshare.com),
Harvard Dataverse (https://dataverse.harvard.edu), etc. accepts data submission in any file format.

doi:10.20944/preprints202306.1013.v1
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Outside the public databases hosted in the USA and Europe, the Genome Sequence Archive
(GSA, https://ngdc.cncb.ac.cn/gsa) in China follows INSDC-compliant data standards (25). The
Indian Biological Data Center (IBDC, https://ibdc.rcb.res.in) is a public repository in India to host
various life science data. For sequencing data, IBDC provides the INSDC-compatible Indian
Nucleotide Data Archive (INDA, https://inda.rcb.ac.in/home) with data synchronized to
NCBI/ENA/DDB]J; and the Indian Nucleotide Data Archive-Controlled Access (INDA-CA,
https://inda.rcb.ac.in/indasecure/home) for private data. In New Zealand, the Aotearoa Genomic
Data Repository (AGDR) hosts genomics data, especially for native taonga (‘treasure’ in Maori
language) species.

Data submission to cloud storage is also gaining popularity. Amazon Web Services (AWS) offers
Open Data (https://aws.amazon.com/opendata) for unregistered users to find and use publicly
available datasets, and allows subscribed customers to search and access third-party data
(https://docs.aws.amazon.com/data-exchange/index.html). In addition, it provides Amazon Omics
(https://aws.amazon.com/omics/) and Plant & Animal Genomics
(https://aws.amazon.com/solutions/agriculture/plant-animal-genomics/) platforms to facilitate omics
data analysis and integration. Other options include Google Cloud Life Sciences
(https://cloud.google.com/life-sciences) and Microsoft Genomics (https://azure.microsoft.com/en-
in/products/genomics/).

We compiled a list of public repositories for genome, genotyping and transcriptome sequence
data (see Table 1) that are active, maintained and updated. Detailed information about metadata
availability, data file formats related to these repositories are described in Supplementary Table S1.

Table 1. A list of public repositories for genomic, genotyping and transcriptom data that are active,
maintained and updated. The "+" and "-" symbols indicate the presence and absence, respectively, of
the supported data type and data format. Databases that support any data type beyond the specified
most common types are marked by "¥". Out of the INSDC source data bases were established and
maintained by a, National Genomics Data Centre, China, and China National Center for
Bioinformation; b, The Indian Biological Data Center; c, New Zealand Ministry for Business
Innovation and Employment; d, University of North Carolina at Chapel Hill, California Digital
Library; d, CERN; f, Digital Science. Holtzbricnck Publishing Group, Macmillan Publishers Limited.
"+" indicates that data is available upon request. "{" recommended by FAIRsharing.org. "?" means that
the information is not available. "+/-" means that this data type can be submitted only through
command line or programmatic approach but not by interactive interface. Detailed information about
metadata requirements and database URLs are available in Supplementary Table S1.

Database name NCBI DRA ENA GSA IBDC AGDR* DRYAD?¥ Zenodo#* FigShare
Genome sequence

data + + + + + + + +
WGS annotations + ? ? ? ? ? ? ?
Genotyping data + ? ? ? ? ?
Transcriptome N . N , ’ R . . .
sequence data

fq.gz + + + + + + + ¥
BAM + + + + + + + ¥
SFF + + + + + - + + ¥
HDF + + + + + - + + +
VCF + + + ? ? ? + + +
INSDC-Source + + + a b c d e f

The metadata associated with sequence and genotype data promotes a dataset’s discoverability
and reusability. We note here that many specific secondary public repositories exist that exclusively
host data on promoters, transcription factors, proteomes, various RNA types, epigenomic data and
Pangenomes (see Supplementary Table S2). However, here we limit our discussion to primary
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genotype and phenotype data and expect that detailed discussions on other related topics will be
provided by the other working groups of the AgBiodata consortium.

2.3.1. The metadata requirements on genomics and transcriptomics data set

The metadata associated with the genome/genotyping/transcriptome sequencing is crucial for
its re-use and interoperability. To maximize the implementation of FAIRstandards, the metadata
should be described with accurate Gene Ontology (GO) and Plant Ontology (PO) terms with proper
evidence codes wherever applicable. Project and sample level metadata typically include taxonomic
identifier (for species), tissue type (organism part) from which the sample was taken, disease state,
growth or developmental stage of the sample, the biological gender of the sample, and collection
date. Assay level metadata are directly related to the preparation of biological materials undergoing
the assay including method detail(bulk RNA-seq, scRNA-seq, etc), library information (single-end or
paired end), replicates (biological or technical), instrument metadata, quality control (QC) and
workflow metadata. For example, submission of sequencing data to NCBI GenBank and SRA requires
metadata for the submitter (i.e., name, affiliation and email of the data submitter, and other authors),
BioProject goals (i.e., genome sequencing and assembly; raw sequence reads, epigenomics, exome,
proteome, variation, etc.), and BioSamples information (i.e., organisms name and taxonomic
identifier, geographical origin of the sample and tissue type).

We note here that in most repositories, the organism’s name is the only required field for
biological targets, with optional fields of strain, breed, cultivar, isolate name, label, and description.
The data release date, project title, and public description of the study goals are the minimum general
information required for a project. Optional fields include a project’s relevance to a field(agricultural,
medical, industrial, environmental, evolution, model organism, and other), external links to other
websites associated with the study, grant information (number, title, grantee), research consortium
name and URL, data provider and URL (if different from the submitting organization), publication
information.

Optional but useful metadata for BioSamples include sample title, BioProject accession,
biomaterial provider (lab name and address, or a cultural collection identifier), name of the cell line,
cell type, collected by and date, culture identifier and source institute (refer to
http://www.insdc.org/controlled-vocabulary-culturecollection-qualifier), disease name and stage,
observed genotype, growth protocol, height or length measured, the growth environmental , the
geographical coordinates of the sample collection, phenotype of sampled organism (compliant with
the Phenotypic quality Ontology (PATO) terms at http://bioportal.bioontology.org/visualize/44601),
population (filial generation, number of progeny, genetic structure), sample type (cell culture, mixed
culture, tissue sample, whole organism, single cell, and so on), sex, specimen voucher, temperature
of the sample at time of sampling, treatment and sample description.

The mandatory attributes for library construction metadata are BioSample name, library ID, a
title, data type and method information (eg. WGA, WGS, RNA-Seq, EST, ChIP-Seq, and so on), source
(GENOMIC, TRANSCRIPTOMIC, GENOMIC SINGLE CELL, METAGENOMIC, etc.), selection
(PCR, RANDOM, RT-PCR, cDNA, DNAse, Restriction Digest, etc.), layout, platform, instrument
model, design description, file type and filename(s).

A few other sequence data repositories do not enforce submission of metadata but encourage
data submitters to provide as much details as possible. In this category AGDR
(https://repo.data.nesi.org.nz/DD) requires submitter ID, project ID, project code, project name,
programme name, database gap accession number, experiment type, number of samples and
replicates, and data type. In addition, it provides metadata templates for submitting detailed
information on samples and methods (Sample, Aliquot, RIN, adapter name and sequence, barcoding,
base caller name and version, experiment name, flowcell barcode, fragment sizes, instrument model,
lane number, library name, library preparation kits), project, publication, core metadata collection,
indigenous governance, and indigenous knowledge label templates.

The minimum metadata for a DRYAD submission requires a title describing the data and the
study, author(s) information, abstract (dataset structure and concepts, reuse potential, any legal or
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ethical considerations, etc.), and research domain. Optional metadata recommended are funding
information, research facility, keywords, technical methods details and publication details. However,
the biosample or plant accession metadata is not captured. Figshare recommends metadata
submission that is similar to INSDC repositories but does not enforce it as a requirement. The storage
quota for a free account is 20GB and up to 100 projects.

2.3.2. Genotyping data submission and metadata requirements

The major repository for submitting non-human VCF files containing genotyping related data is
the European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI)
European Variation Archive (EVA) (26), but a newer repository has also arisen in the Genome
Variation Map (GVM) (27). NCBI does host the dbSNP and dbVar databases, but those are intended
for human data. All repositories strive to adhere to FAIR practices, but additional recommendations
have been put forth by others (28). The EVA repository accepts VCEF file structures, including hapmap
formatted files (29) and SNP genotyping arrays, that are validated through a custom EBI VCF
Validation Suite software (https://github.com/EBIvariation/vcf-validator) with a minimum number
of data fields with accompanying metadata that includes, but are not limited to, project title,
sequencing platform information, software, reference organism and genome version, and date and
data generation location. The data fields for a VCF are the header lines that contain information about
the dataset and relevant reference sources (organism, genome version, alignment and mapping
method, etc.) followed by the variant site record row data: chromosome number, chromosome
position, reference allele, alternate allele, quality, filter tag, and additional allele info format
(https://gatk.broadinstitute.org). However, the naming structure within some of these fields is not
standardized, which can lead to interoperability concerns.

2.3.3. Crop/clad Community GGB Databases

Whole genome, transcriptome, and genotype data can also be submitted to most of the GGB
databases such as GDR (30-32), CottonGen (33,34), SoyBase (35,36), LIS (37,38), SGN (39,40),
MaizeGDB (41,42), TreeGenes (43,44), TAIR (45,46), KnowPulse (47), and InterMine (48,49) databases
(Table 2). Some of these databases, such as Gramene (50-52), SorghumBase (53) and InterMine
(48,(54), do not accept data from authors but obtain from the primary databases. Depending on the
GGB databases, different types of data and metadata can be submitted. Typically, these crop GGB
databases collect a wide variety of data such as QTL, GWAS, markers, alleles, genetic maps, and
cultivar/germplasm phenotyping data, and integrate them with whole genome, transcriptome, and
genotyping data. These GGB databases standardize various names, associate the data with various
ontologies to integrate data from various sources and of various types. This integration of different
types of data, not typically done in the primary databases specialized in particular types of data, is
one of the key steps in making the data FAIR. Integrating data from diverse sources enables
researchers to discover novel associations between different types of data, potentially leading to
valuable insights and breakthroughs. For example, combining SNP genotype data and phenotype
data from multiple locations of the same germplasm can reveal how particular genotypes manifest
specific phenotypes in distinct environments. However, achieving such insights requires meticulous
integration of data from multiple sources.
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Table 2. List of Crop/clad Community GGB Databases that integrate various types of data including
whole genome data, genotype, phenotype, QTL, GWAS, and germplasm data. Refer to
Supplementary Table S3 for data types and metadata for each database.

Species/Crop Database Database URL

Arabidopsis TAIR https://www.arabidopsis.org/

Cassava CassavaBase https://www.cassavabase.org/

Citrus Citrus Genome Database https://www.citrusgenomedb.org/

Citrus/Diaphorina

citri/Ca. Liberibacter Citrus Greening https://www.citrusgreening.org/

asiaticus

Cotton CottonGen https://www.cottongen.org/

Cucurbit Cucurbit Genomics http://cucurbitgenomics.org/
TreeGenes https://treegenesdb.org

Forest trees - -
Hardwood Genomics http://www.hardwoodgenomics.org/
GrainGenes https://wheat.pw.usda.gov
Gramene https://www.gramene.org/

Grains SorghumBase https://www.sorghumbase.org/
Triticeae toolbox, T3 https://wheat.triticeaetoolbox.org/
WheatlS https://wheatis.org
KitBase http://kitbase.ucdavis.edu/
KnowPulse https://knowpulse.usask.ca/

Legumes Legume Information System https://www.legumeinfo.org/
PeanutBase https://peanutbase.org

Pulses Pulse Crop Database https://www.pulsedb.org/
Soybase https://www.soybase.org/

Maize MaizeGDB https://maizegdb.org/

Musa MusaBase https://www.musabase.org/

Rosaceae Genome Database for Rosaceae https://www.rosaceae.org/

Solanaceae Sol Genomics https://solgenomics.net/

Sweet Potato SweetPotatoBase https://www.sweetpotatobase.org/

Vaccinium Genome Database for Vaccinium https://www.vaccinium.org/

Yam YamBase https://www.yambase.org/

Comparative genomic database used by multiple communities

A comparative

genomic database for Phytozome https://phytozome-next.jgi.doe.gov/
~300 plant species

A comparative

genomic database

hosting 118 genomes Gramene https://www.gramene.org/

from models, crops,

fruits, vegetables, etc.

AgBase https://agbase.arizona.edu/
Bio-Analytic Resource https://bar.utoronto.ca/

Others

2.3.4. Uses and Applications

WGS data can be reused in genome assembly, pan-genome construction, single nucleotide
variation (SNV), copy-number variation (CNV), and structure variation (SV) discovery,
phylogenomics, comparative genomics, and other genome research to study genome structure,
genome diversity, the evolution of gene families or organisms, and crop domestications. Genotyping
data in VCF format can be used for numerous purposes: storage of the location of given variants
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(including GWAS-associated variants); to identify targets of molecular markers for genotyping
purposes; evaluating the effects of given base pair and structural variants on gene function;
comparative genomics and evolutionary studies; and computational breeding approaches via
machine learning and other methods. Data extraction and manipulation of VCF files is easy with the
use of existing software toolkits such as VCFtools and SAMtools and can be utilized in conjunction
with existing and ad hoc bioinformatic pipelines due to its command line functionality. By integrating
VCF data with RNA-Seq and phenomics data, researchers can utilize these data sets quantitative
genetic studies including genome-wide association studies (GWAS), quantitative trait loci (QTL)
analysis, marker discovery, and genome selection (GS), to accelerate modern breeding techniques.
Integrating transcriptomics data with metabolomics data can help in predicting biomarkers, which
are often associated with biological pathways. This will assist in understanding the mechanism of
underlying molecular patterns driving a condition. Integration of genomic, epigenomic and
transcriptomic profiles will facilitate the prediction of key genomic variables and biological variation.
Integration of gene expression data and copy number variations can be used to categorize samples
into groups based on their similarity to two datasets.

3. Phenotype and Phenomics

3.1. Data types, Repositories, and Knowledge Bases

Plant phenotyping is the key for plant breeding, characterization of biodiversity, and genetic
and genomic-based approaches for translational research (55). The classical genetic and functional
genomics studies in model and crop plants have identified numerous mutants that show distinct
morphological and anatomical mutants and associated the individual mutant phenotypes with one
or more genes, pathways and molecular processes. Table 3 lists databases that host the mutant
collections and description of phenotype of individual mutants and associated genes, including
MaizeDIG (42), RIKEN Arabidopsis Genome Encyclopedia (56), Mutant Variety Database (57), Plant
Genome Editing Database (58), Tomato mutant Archive TOMATOMA (59), and Plant Editosome
Database (60).

In addition, complex phenotypic traits (i.e., morphological and physiological) related to the
fitness and performance of an organism are often quantitative in nature and have multiple genetic
determinants (61,62). Examples of traits that are determined by multiple genes (known as
Quantitative Trait Loci, QTLs) are crop yield, biomass, resistance to pests and pathogens, abiotic
stress tolerance, nutritional value, and ease of harvest. In addition to crop breeding, trait-based
approaches are widespread in ecological research (63), as they provide a general understanding of a
wide range of ecological and evolutionary phenomena such as impact of climate change, and
anthropogenic land use on biodiversity (64-66). In Table 3, we provide a list of a key databases (or
portal of bigger databases) that host information related to traits, QTLs, and associated data including
the Gramene QTL database (67), QTL database for wheat (68), GLOPNET (69), TRY (70), a database
of Ecological Flora of the Britain and Ireland (71), BIOPOP (72), GRIN (73), the USDA PLANTS
Database, BiolFlor (74), LEDA Traitbase (75), BROT database of plant traits for Mediterranean basin
species (76), and AusTraits (77). Trait and QTL data are also integrated with other types of data in
various crop community databases listed in Table 2.

Phenomics is the systematic analysis for the refinement and characterization of phenotypes on
a genome-wide scale. With the advent of high-throughput platforms, it became possible to collect
phenomics data at a single cell, organismal and/or population-wide scale (78). Phenomics can be used
for species recognition and biodiversity characterization (79), for stress quantification (79-81), and for
crop yield prediction (82,83). Thus, phenomics data sets are very large and have different formats
(e.g., JSON file). Some of the databases that host phenomics data include GnplIS (84,85), PGP (86),
Cartograplant (87), AgData commons (https://data.nal.usda.gov/; (88), PathoPlant (89,90), PncStress
(91), OSRGD (92).

Despite its analogy to genomes, it is not possible to fully characterize phenomes due to
heterogeneity and multifaceted nature of phenotypic data with added layers reflecting complexities
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at the cell, tissue, and whole plant level that have further variations according to development stages,
and growth environment (78,93). Thus, phenomics approaches may focus on specific factors of
phenotypic data. For example, an intensive phenomics study may focus on high-throughput digital
imaging across different stages and tissues of an organism under different growth stages or growth
environments and may include quantitative data about plant height, biomass, flowering time, yield,
and photosynthesis efficiency. Another study may employ orthomosaic images or time-series RGB
images and remote sensing to monitor the algal blooms in the ocean (94). As phenomics data can be
extremely variable in nature, necessary metadata includes information about plant species, tissue,
developmental stage, environmental conditions, experimental design, data collection, processing,
and analysis.

In addition to traditional phenotypes, molecular phenotypes include changes in the chromatin
organization, transcripts, proteins, metabolites and ions (95-97). The quantitative changes in the gene
expression, proteins and metabolite profiles in plants have far-reaching consequences for (i) the
nutritional values of cereals, legumes, fruits, vegetables; (ii) the quality of bio products such as wine,
beverages, vinegar, oil, and fuel; (iii) the ability of plants to adapt in response to various abiotic stress
conditions; and (iv) the innate ability to defend against pests, pathogens, and herbivores (98-102).

Proteome and metabolome datasets allow the deeper understanding of an organism’s metabolic
processes at the level of organ, tissue, and cell, as well as how these processes change in response to
intrinsic developmental programs and environmental factors. Proteome datasets further confirm the
subcellular localization, their comparative abundance between different tissues and cells, protein—
protein interactions, and post translational modifications (103). Once the original proteomic datasets
and associated metadata/manuscript have been submitted to public data repositories such as PRIDE
(103-105), MassIVE (https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp), JPOST (106,107), IProX
(108,109), Panorama (110), and Peptide Atlas (111,112), they are made available for re-analysis and
further exploration by other researchers. Metabolomics provides a comprehensive overview of the
metabolite profile of an organism, tissues, cells, or subcellular component at a specific time point and
is used to identify nutritional, medicinal, flavor, and disease resistance compounds as well as
chemical interactions between plants and other biological systems. A recent comprehensive review
of the methodologies to explore the highly complex and diverse metabolites of plants and associated
methodologies can be found in Tsugawa et al., 2021 (113). The types of data collected for
metabolomics depends on the method of chemical fingerprinting. As an example, in mass
spectrometry (MS), a typical dataset would consist of a matrix containing information on the
retention time and index (RT), mass-to-charge ratio (m/z), and peak characteristics such as the
number and width. These data go through pre-processing which converts raw instrument data into
organized formats using background subtraction, noise reduction, curve resolution, peak picking,
peak thresholding, and spectral deconvolution. There are various software tools for analyzing
metabolite data, each of which may be specific to a particular method of detection or instrument used
in the analysis. The most popular software are MZmine, XCMS, MSdial, metaMS, Progenesis QI and
MetAlign. For annotation for unknown metabolites, popular software tools include MS-FINDER,
MetDNA, MetFamily, and GNPS among others. Raw file formats generated by the machines include
d, raw, idb, cdf, wiff, scan, dat, cmp, cdf.cmp, lcd, abf, jpf, xps, mgf. Derived file formats are mzml,
nmrml, mzxml, xml, mzdata, cef, cnx, peakml, xy, smp, scan. Due to the complexity of metabolomic
data, several initiatives were undertaken. The Chemical Analyses Working group started the
Metabolomics Standard Initiative (MSI) to develop metabolomic standards (114,115) with revisions
suggested by (116). Community driven Metabolomics Society has a Data Standards Task Group
focusing on metabolomics data standardization and sharing. This was followed by the Coordination
of Standards in Metabolomics' (COSMOS) (117), and MetaboLights (118), for developing tools to
ease submission of metabolomic data (119). ProteomeCentral and Omics DI serve as central
repositories for these datasets, which are then re-used in protein knowledge bases (Uniprot and
NeXtProt), genome browsers (Ensembl and UCSC), proteomics resources and other bioinformatics
resources (ex. OpenProt and LNCipedia). The ProteomeXchange (PX) datasets are re-analyzed by
different proteomics resources of the PX consortium, making data more reliable. The Paired Omics
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Data Platform (PoDP) (120) links the metabolomics data submitted to MassIVE or MetaboLights to
genomes stored in NCBI or JGI. In Table 3 we list the two major repositories available for submission
of raw and processed metabolome data, the NIH Common Fund's National Metabolomics Data
Repository (NMDR) portal and the Metabolomics Workbench, and MetaboLights.

Some gene expression and metabolic phenotype often culminate in visible phenotypes, which
can be described using the Plant Ontology terms (121-123). More recently, Plant Ontology terms have
been extended to large scale phenomics data from a single species (124) to support the comparative
phenomics in plants (125) and describe trait phenotypes expressed under specific developmental
stage or specific environment and stress (126). For covering the genotype-phenotype gap, we need
integration of multiple types of data including genotypic, large-scale phenome, gene expression,
proteome and metabolome data, described using defined and standardized ontologies.

After collecting and generating phenotypic and phenomics data, it is recommended that they
are formatted using community guidelines and submitted to primary data repositories, along with
well-described metadata. The primary repositories serve as a source of primary or raw data (with
base annotations) to the secondary databases for their visualization on genome browser (127) or for
synthesizing new information by integrating them to other data types like plant metabolic networks
(128,129), system-level plant pathways (130-132), expression Atlas, metabolic models, etc. These
secondary knowledge bases are of primary importance to the plant researchers for formulating data-
driven hypothesis for experimental and translational research and for analyzing the high-throughput
omics data in the overall context of a species genome, systems-level pathway networks (133), and for
gaining evolutionary insights by conducting intraspecies and interspecies comparisons. The
implementation of standards and the development of infrastructure of public repositories are crucial
for FAIR phenotypic data, even if many public repositories are currently not supporting the
submission of the phenotype data (see Table 3).

Table 3. List of public repositories, databases and secondary knowledgebases host or integrate
various types of phenotypes, phenomics and molecular phenotype data.

Category Databases URLs
Database of image and
genome (MaizeDIG)

https://maizedig.maizegdb.org/

Mutant Variety Database  https://nucleus.iaea.org/sites/mvd/SitePages/Home.aspx

f;f;lfeii- El:l;;fse:ome Editing http://plantcrispr.org/cgi-bin/crispr/index.cgi
mutant RIKEN Arabidopsis
collections  Genome http://rarge-v2.psc.riken.jp/line
Encyclopedia (RARGE)
TOMATOMA https://tomatoma.nbrp.jp/index.jsp
Plant Editosome https://ngdc.cncb.ac.cn/ped/
Gramene QTL https://archive.gramene.org/qtl/
Wheatqtl http://www.wheatqtldb.net/
GLOPNET http://bio.mq.edu.au/~iwright/glopian.htm
TRY database https://www.try-db.org/TryWeb/Home.php
Ecological Flora of the

Britain and Ireland http://ecoflora.org.uk/

Traits and http://www.landeco.uni-

QTL BIOPOP oldenburg.de/Projects/biopop/main.htm
FloraWeb https://www.floraweb.de/
USDA GRIN https://www.ars-grin.gov/
BiolFlor https://wiki.ufz.de/biolflor/index.jsp
LEDA https://uol.de/en/landeco/research/leda

USDA PLANTS https://plants.usda.gov/home

doi:10.20944/preprints202306.1013.v1
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BROT

https://www.uv.es/jgpausas/brot.htm

AusTraits

https://austraits.org/

Community Databases in
Table 2 and

Supplementary Table S3
GnplS https://urgi.versailles.inra.fr/gnpis
PGP Repository https://edal-pgp.ipk-gatersleben.de/
Cartograplant https://cartograplant.org/
AgData commons https://data.nal.usda.gov/ag-data-commons-
Phenomics  Plants & Crops: hierarchy/plants-crops
PathoPlant http://www.pathoplant.de/
PncStress http://bis.zju.edu.cn/pncstress/
z?glljgl)Crop Phenome DB https://ibdc.rcb.res.in/icpd/
Ozone Stress Responsive
Gene Gene Database p https://www.osrgd.com
Expression  EBI-Plant Expression Atlas https://www.ebi.ac.uk/gxa/plant/experiments
CoNeKT https://conekt.sbs.ntu.edu.sg/
Expath http://expath.itps.ncku.edu.tw/
Proteome Xchange https://www.proteomexchange.org
Plant Proteome Database  http://ppdb.tc.cornell.edu/
PlantMWpIDB https://plantmwpidb.com/
Heat Shock Proteins http://hsfdb.bio2db.com/
database
WallProtDB https://www.polebio.lrsv.ups-tlse.fr/WallProtDB/
Aramemnon http://aramemnon.botanik.uni-koeln.de/
PhosPhAt https://phosphat.uni-hohenheim.de/db.html
Patabase of Phospho-sites http://dbppt.biocuckoo.org/browse.php
Protein, in Plants .
. Plant Protein
peptides and Phosphorylation https://www.p3db.org/home
proteomes
Database
gPTMplants http://qptmplants.omicsbio.info/
Plant PTM viewer https://www.psb.ugent.be/webtools/ptm-viewer/
PlaPPISite http://zzdlab.com/plappisite/index.ph
M. truncatula Small
Secreted https://mtsspdb.zhaolab.org/database
Peptide Database
PlantPepDB http://14.139.61.8/PlantPepDB/index.php
Arabidopsis PeptideAtlas  http://www.peptideatlas.org/builds/arabidopsis/
Ind1a'n Structural Data https://isda.rcb.ac.in/
Archive
Metabolites, Antimicrobial plant
biochemical, peptides http://phytamp.pfba-lab-tun.org/main.php
and (PhytAMP)
small PubChem https://pubchem.ncbi.nlm.nih.gov
chemical ChEBI https://www.ebi.ac.uk/chebi
entities Metabolomics Workbench  https://www.metabolomicsworkbench.org
Secondary MetaboLights https://www.ebi.ac.uk/metabolights/index
PoDP https://pairedomicsdata.bioinformatics.nl/
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Knowledgeba Plant Reactome pathway https://plantreactome.gramene.org

se knowledgebase
MetaCyc https://metacyc.org
PMN https://plantcyc.org/data
KEGG pathways https://www.genome.jp/kegg/pathway.html

PlantPathMarks (PPMdb)  http://ppmdb.easyomics.org/
The Bio-Analytic Resource
(BAR)

The protein-protein
interaction https://mai.fudan.edu.cn/ppim/
database for Maize (PPIM)

https://bar.utoronto.ca

3.2. Phenotype data formats, standards and metadata

The structure and characteristics of data types, along with any additional metadata, is crucial for
enabling future data re-use and re-analysis by other researchers. The most relevant metadata shared
across the various data types (generated by a diverse set of methods and platform) include taxonomic
identification of the plant, the individual or cultivar name or accession ID, geo-references or growth
conditions, field sampling or experimental design, cell, tissue, organ information (e.g., whole plant,
leaf, root, flower, shoot, single cell, etc.), plant maturity and health status, measurement date (season,
time of the day), and the type of phenotype measured (quantitative or qualitative) (70,134). These
metadata can be entered as simple text format during the submission of the raw data to any primary
repository and are easily exported from one database to another as TXT files.

Furthermore, plant phenotype/traits can be classified as categorical (qualitative and ordinal) or
quantitative (continuous) traits (135). Some phenotypes are rather stable within species (mostly
categorical traits), and some of these can be systematically compiled from species checklists and floras
(e.g., (136). Thus, not all phenotypes can be mapped from one species to another. It is also important
to note here that often, a phenotype is a cumulative outcome of the genotype, the environment and
their interaction. Many important agronomic traits, such as seed or fruit quality, yield, abiotic stress
tolerance, and pathogen resistance have a quantitative genetic architecture, involving minor and
major genes or QTLs. Thus, the research question and the method become important to set the scope
and goals of the study and require specific metadata and standards. For instance, most traits relevant
to ecology and earth system sciences are characterized by intraspecific variability and trait—
environment relationships (mostly quantitative traits). These traits have to be measured on
individual plants in their particular environmental context. Each such trait measurement has high
information content as it captures the specific response of a given genome to the prevailing
environmental conditions (70). Thus, the collection of these quantitative traits and their essential
environmental covariates is of vital importance. While trait measurements themselves may be
relatively simple, the selection of the adequate entity (e.g., a representative plant in a community, or
a representative leaf on a tree) and obtaining the relevant ancillary data (taxonomic identification,
soil and climate properties, disturbance history, etc.) may require sophisticated instruments and a
high degree of expertise and experience. Besides, these data are most often individual measurements
with a low degree of automation. This not only limits the number of measurements but also causes a
high risk of errors, which need to be corrected a posteriori, requiring substantial human work. Hence,
the integration of these data from different sources into a consistent data set requires a carefully
designed workflow with sufficient data quality assurance. These measurements of quantitative traits
are single sampling events for particular individuals at certain locations and times, which preserve
relevant information on intraspecific variation and provide the necessary detail to address questions
at the level of populations or communities (134). Hence, an accurate and careful collection of data,
their associated meta-data and ancillary data, is key to correctly preserve this valuable information,
as well as to perform a suitable data integration across studies, species and data types.
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4. Association mapping (GWAS) and linkage mapping (QTL)

Genome-Wide Association Study (GWAS) and QTL mapping are statistical methods used to
identify marker-trait associations and candidate genes (causative mutations) controlling traits of
interest. Both approaches rely on the linkage disequilibrium (LD) between the tested markers and the
functional polymorphisms at the causative genes. However, they differ on the type of genetic
populations used for the study: GWAS relies on diversity panel (e.g., germplasm collections) of,
ideally, unrelated individuals; on the contrary, QTL mapping investigates the co-segregation of
genetic markers with desired phenotypes in progeny purposely generated (e.g., F2 population or
recombinant inbred lines). Regardless of the fact that they are both analytical methods, their results
can be used as data inputs for other types of analysis (e.g. meta-analysis, estimation of polygenic
scores) (137). The genomic and genetic positions of trait-associated markers from GWAS and QTL
studies can also be integrated with other types of data, enabling data transfer among related species.
Thus, their outputs can be considered as a data type, and consequently, they require metadata
collection and the use of standards in order to make them FAIR. Therefore, the FAIRness of the
association mapping outputs is also key to contributing to link genotype and phenotype in the multi-
omics era.

The primary output of a GWAS analysis is a list of variant positions, SNP ID or Indel positions,
allele, strand information, effect size and associated standard error, p-value and corrected p-value,
test statistics, minor allele frequency and sample size (138). One of the key metadata for GWAS/QTL
data is the type of statistical method used to calculate and correct the p-values (GWAS/QTL).
Regarding the SNPs, the most important metadata include the model species and the version of the
reference genome against which these SNPs are mapped (see Genotype data section). The metadata
required to make the traits interoperable and reusable is explained in the section lab/field traits. In
the case of QTL analysis, a linkage map and pedigree information of the individuals, as well as the
heritability of each SNP, is also important to be collected (139).

Unlike the human and animal GWAS and QTL data open access resources such as the NHGRI-
EBI GWAS Catalog, GWAS Atlas (140), OpenGWAS, Animal QTL database, and Animal Genome
Informatics resources (USDA national infrastructure NRSP-8: A National Animal Genome Research
Program), QTL and GWAS data for plant species and major crops are mostly stored in crop
community database (Table 2). The databases typically integrate the QTL and GWAS data with other
types of data, playing a crucial role in improving the findability and accessibility of plant GWAS data
that would have otherwise been buried in publications. AraGWAS Catalog (140) contains
recomputed GWAS results using a standardized GWAS pipeline on all publicly available phenotypes
from AraPheno (141).

Meta-analysis is the widely used analysis for integrating the summary statistics from multiple
GWAS/QTL studies. It is a set of methods that allows the quantitative combination of data from
multiple studies, and the evaluation of the consistency, inconsistency, or heterogeneity of the results
across multiple datasets. Meta-analysis of GWAS/QTL datasets can improve the power to detect
association signals by increasing sample size and by examining more variants throughout the
genome than each dataset alone (142). However, in order to integrate datasets coming from different
studies in meta-analysis, a standardized data and meta-data collection among the studies is needed.
In addition, the genotype and phenotype data from the GWAS/QTL studies can be reused for further
knowledge discovery, especially for QTL by environment interaction, predicting plant response in
new environments, linking genomes to complex phenotypes across species.

5. Data reusability limitations and challenges

Accessing, reusing and integrating analytic data from various data types remain difficult (143).
Despite the significant progress made in agricultural research due to advances in genotyping and
phenotyping technologies, most of the data used and generated in research studies are not shared.
Even if the data is submitted to public repositories, it often remains inaccessible or unusable due to
missing fundamental metadata or improper formatting. The lack of community-based guidelines of
data sharing, coupled with the complexity of data size and type generated in GGB research are likely
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the biggest limitations for data reuse in this field. Another matter arises from various levels of attitude
of research journals/editorials for data sharing requirements and policy. Here we discuss limitations
to data reuse in genotype-to-phenotype studies in three aspects.

5.1. Challenges

Data diversity and data format heterogeneity. Agriculture and horticulture research involves a
wide range of genotypic, phenotypic, and environmental data, which often come from different
experimental protocols and data generation technologies, and data processing workflows. As a result,
data formats can be highly heterogeneous, making it difficult to integrate data from different sources
and reuse in future studies (70). This issue is even more significant for phenotypic data, especially
with the new emerging high-throughput phenotyping technologies. Digital imaging and remote
sensing allow researchers to explore new levels of trait variability that were previously inaccessible
using traditional and manual phenotyping methods. However, the large variety of data and metadata
generated by these technologies can be highly variable in terms of file size, format, and content. The
heterogeneity of data analysis pipeline also contributes to the complexity of standardization in
phenomics.

Data size, quality and versioning. Most genomics, transcriptomics, epigenetics, and phenomic
data are extremely large in file size and computationally intensive. For example, whole-genome
sequencing data used for variant calling or VCF files that collates multi-individual genome-wide
variants can be computationally challenging to handle, limiting their sharing in FAIR public
repositories, and making data manipulation difficult. Also, data quality and integrity may be
compromised before or during the submission process, which can prevent their reuse.

Object identification. Data submitted to a public domain often lacks a unique data object
identifier (e.g., DOI), and any plant or accession identifier (PID), which makes it challenging to trace
and integrate different types of data generated from the same individual plant across experiments
and research laboratories. To improve data findability and reuse, it would be desirable to have a
universal DOI associated with its PID. However, most data used and generated in research studies
are not shared or are inaccessible or not reusable because of missing fundamental metadata or
improper format of the data.

Metadata and data standardization.

Metadata are any type of data descriptor that can facilitate data interpretation and reuse. It is
very common that when data are submitted to public domains they are accompanied by incomplete,
inconsistent, or missing metadata. Developing and promoting standard data formats and metadata
can improve data discovery and reuse, facilitate data integration and interoperability, and allow data
from different sources. Some data standards for genomics and phenomics data have been developed,
such as the Minimum Information About a Genome Sequence (MIGS) from the Genomic Data
Standards Consortium, the Plant Phenotype Ontology (PPO), the Minimum Information About a
Plant Phenotyping Experiment (MIAPPE). For GWAS data, GWAS-VCF format (21) has been
proposed. However, the promotion and consistent application of these standards across different
research groups and databases remain a challenge. For instance, if there are standards for how to
collect and describe trait measurements, they are organism-specific (e.g., International Organization
of Vine and Wine (OIV); www.oiv.int) or based on model species.

The metabolomic research community faces similar challenges. An initiative to identify the
grand challenges of metabolomic research was coordinated by the USA Plant, Algae and Microbial
Metabolomics Research Coordination Network (PAMM-NET; (144)). As noted, the data obtained
from metabolomic analyses can often result in different chemical features values even in the same
biological treatments due to the variability associated with biological systems, differences in the
equipment, differences in the protocol and reagents. Therefore, identifying metabolites with
confidence and the limited metabolome depth of coverage are the key grand challenges in
metabolomic research (144). A recent review of LC-MS literature found a lack of details reported on
methodology and level of confidence for metabolites in most of the reviewed research articles (145).
To address these challenges, multi-dimensional analyses methods, the use of standard libraries for


https://doi.org/10.20944/preprints202306.1013.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2023 doi:10.20944/preprints202306.1013.v1

16

metabolite characterization, and tools that simplify the submission of metadata and data are being
developed (119,146).

Other barriers for FAIR data include considerations of data privacy and confidentiality, legal
and ethical issues, concerns of ownership, lack of incentive if not credited for sharing data, lack of
awareness of existing data standards or data repositories, or lack of resources to implement data
standards.

5.2. Resources and Funding

The submission of different data types (i.e, genomics, transcriptomics, proteomics,
metabolomics and phenomics data) to separate and specialized primary repositories is a common
practice, resulting in a heterogeneity of data repositories and multiple PIDs, limiting data
interoperability. It is challenging to locate phenotypic datasets for a particular set of plants that have
been characterized at the genomic or transcriptomic level due to the absence of common standards
among data repositories.

Incompatible software or hardware among different data platforms also make interoperability
challenging. Bulk data download or data movement across repositories is another issue due to data
size and a lack of standardization. Software development and maintenance are required for fast data
search and retrieval, as well as sufficient user support. For some types of plant data such as QTL and
GWAS, there are basically no primary repositories where researchers can submit their data.
Community GGB databases (Table 2) addresses this issue by collecting, curating, and integrating
various data types from different sources and related species, playing a key role in data integration.
Not all plant GWAS data, however, are timely stored in databases due to either lack of crop
community databases or funding for curation. In addition, community GGB databases often have
limited computational and personnel resources for curation and inclusion of all types of omics data
due to limited funding and lack of understanding of the importance of curation by funders.
Additionally, there is a lack of appropriate infrastructure for the raw data deposition in community
databases.

5.3. Implementation of FAIR data policy

FAIR data policy refers to the list of 15 guidelines elaborated to facilitate data search, access, and
reuse by human-driven and machine-driven activities (3). These principles apply to every type of
scholarly digital object archived in a repository, and their implementation has started in many
different research fields (147-149). In summary, these principles recommend that, when data are
submitted, they are very well described using richly detailed metadata, and are assigned a globally
unique and persistent identifier that allows everybody to find them in a searchable resource. Data
should be formatted according to community-based standards if available, or in a way that they can
be easily interpreted and exchanged by human and computer systems. The use of controlled
vocabularies and ontologies is strongly encouraged to facilitate data interoperability across database
resources. FAIR data, however, do not mean open-access or free, but refers to clarity and
transparency about the conditions governing access and reuse (e.g., credential system to access and
download data; (150). All these principles together aim to increase data transparency and improve
data reuse for new research purposes, enhancing data value across time.

The implementation of FAIR data policy, however, can be challenging due to several reasons.
Firstly, making data FAIR requires additional efforts and time commitment from researchers, which
can be a barrier to implementation. Secondly, many scientists are not aware of the FAIR principles,
community-based standards, and ontologies available to make their data FAIR. Thirdly, there is also
a need for long-term sustainability of database resources, which requires ongoing funding and
infrastructure support. Many databases struggle to secure funding and may face difficulties in
maintaining FAIR data quality and accessibility over time.
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6. Recommendations

With the latest advances in DNA sequencing and phenotyping technologies, the analysis of large
datasets can be used to study the genetic instructions from either a single gene or the whole genome
to be translated into the full set of phenotypic traits of an organism. The phenotypic data must be
high quality digital phenotypic data with robust metadata that can be used for further downstream
analysis and mathematical modeling of the phenotypic traits such as development, stress tolerance
etc. To improve the data collection and data sharing of genotypic to phenotypic data, here are the
several recommendations that can be taken to ensure their interoperability and reproducibility.

1. Standardization of data collection protocols: Standardizing data collection protocols and using
common data formats can help to ensure that data is collected in a consistent and comparable
way. Use of metadata standards and the requirement of new ontology terms will make it easier
to share and compare data across different studies.

2. Centralized data sharing platform: Developing and using centralized data sharing platforms,
the use of standardized data models and exchange formats and the deployment of existing and
emerging software components can help to facilitate the sharing of genotypic and phenotypic
data among researchers. It includes the use of online databases and repositories that are
specifically designed for the storage and sharing of the plant genetic and phenotypic data.

3. Consistent data annotation: Consistently annotating data with relevant information such as the
genotype, phenotype, and experimental treatments can help to make the data more easily
searchable and usable by other researchers.

4. Data quality control: More automated management of data flows and implementing data quality
control such as data curation and validation can help to ensure that the data is accurate, reliable
and can be used to make valid conclusions.

5. Data integration: Adoption of new database technologies and the development of robust data
standards can facilitate the global integration of G2P data in future. Data integration from
different resources such as genomics, transcriptomics, proteomics and metabolomics can help to
better understand the complex relationship between genotype and phenotype.

6. Community driven efforts: Community driven efforts such as open-source projects, workshops
and collaborations can help to promote the sharing and use of data among researchers, which in
turn will lead to better understanding of the G2P relationship. There should be encouragement
on integrated science training plans that enable biologists to think quantitatively and facilitate
collaboration with experts in physical, computational and engineering sciences. It can help the
scientists to get familiar with the development of computational pipelines and workflows that
will be essential for researchers to acquire, analyze and critically interpret G2P data.

7. Data storage infrastructure, data management software and data curation tools are necessary
to handle the large volumes of data in diverse formats.

8. A concerted effort to make multi-omics data sets interoperable by automated biocuration with
controlled ontology terms will help address this issue. Community databases address some of

this issue by collecting, curating, and integrating various data of different types, from different
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sources, and from different but related species. However, community databases need to have
sustainable funding.
9. Data security, backup and recovery must be considered and implemented for sustainability.

10. Data compliance with data sharing policies, privacy regulations and laws should be enforced.
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