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Abstract: The global smelting business of nickel using rotary kilns and electric furnaces is expanding due to 

the growth of the secondary battery market. Efficient operation of electric furnaces requires consistent calcine 

temperature in rotary kilns, which involves shearing processes. Direct measurement of calcine temperature in 

rotary kilns presents challenges due to inaccuracies and operational limitations, and while AI predictions are 

feasible, reliance on them without understanding influencing factors is risky. To address this challenge, various 

algorithms including XGBoost, LightGBM, CatBoost, and GRU were employed for calcine temperature 

prediction, with CatBoost achieving the best performance, followed by XGBoost, LightGBM, and GRU in terms 

of MAPE. The influential factors on calcine temperature were identified using SHAP from XAI in the context 

of the CatBoost model. By incorporating seven out of twenty operational factors, the calcine temperature 

increased from 840℃ in 2023 to 907℃ by April 2024, concurrently reducing the power ratio of the electric 

furnace by 7.8%. 
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1. Introduction 

The objective of this study is to identify the deviation between the actual calcine temperature of 

rotary kilns involved in ferronickel production and the predicted values generated by machine 

learning and deep learning models. Additionally, the study aims to identify key variables influencing 

the predictions using XAI's Shapley Value Explanations. Subsequently, the goal is to reduce the 

calcine temperature deviation by utilizing these key variables. A rotary kiln, utilized as a rotating 

furnace, utilizes a burner to provide a heat source for heating and processing raw materials while 

rotating a structure made of refractory material that can endure high temperatures within a lengthy 

steel cylinder [1]. In recent times, investments in rotary kilns using the rotary kiln and electric 

furnace(RK-EF) method for producing nickel, a primary material for secondary batteries, have been 

actively progressing in nations like Indonesia [2]. In the RK-EF process, a rotary kiln serves as a 

preliminary reduction process to create calcine which is sintered nickel ore for feeding to an electric 

furnace. The raw materials include nickel ore and a reductant, with a fuel like pulverized coal or LNG 

being injected into a burner to act as a heat source for burning the reducing agent. Nickel ore is 

initially supplied with around 30% moisture content, and as the adhering moisture is dried, the 

crystalized moisture is eliminated, following which it is discharged from the rotary kiln, reaching 

temperatures of approximately 700~1,000℃. Raw materials such as ore are natural resources, 

exhibiting significant variations in composition and particle size [3]. For instance, smelters producing 

ferronickel utilize a blend of ore with nickel content ranging from 1.4 to 2.6% and iron content 

between 9 to 25%. The reaction occurring in the rotary kiln alters with changes in the iron content of 

the ore, necessitating adjustments to the operational settings of the rotary kiln depending on the dust 

production rate [4]. Calcine is produced roughly ninety minutes after the ore is introduced into the 

rotary kiln and then discharged from the kiln. To ensure the effective and economical functioning of 

the electric furnace process downstream of the rotary kiln, enhancing the calcine temperature is 

imperative, along with minimizing temperature deviations[5]. Various factors can influence the 
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calcine temperature of a kiln, such as the quantity of ore, pellet, coal for reduction, coal through the 

scoop feeder, and amounts of pulverized coal to the burner, pressure in the rotary kiln, concentrations 

of CO(g), O2(g), SOx, NOx in the flue gas, and the temperature of the kiln body. Therefore, identifying 

the key variables that influence the calcine temperature and analyzing operational factors, such as 

coal input and air ratio, which can determine operational adjustments in response to changes, are 

essential for precise control of the calcine temperature in the rotary kiln [6]. 

A common method to measure calcine temperature involves utilizing a thermocouple [7]. Given 

that only around 6 to 8% of the internal volume of a rotary kiln comprises calcine, continuous 

temperature monitoring is challenging even with two thermocouples positioned at 180-degree 

intervals. The temperature of the calcine under measurement is directly influenced by the burner 

flame temperature, as well as the flow rate and pressure of primary and secondary combustion air 

supplied to the kiln burner [8]. Moreover, thermocouples placed in high-temperature zones have a 

relatively short lifespan of a few months due to oxidation in high-temperature environments and 

abrasion from ore, even when shielded in a protective tube [9]. Alternatively, non-contact 

temperature measurement devices like pyrometers that detect infrared radiation energy emitted by 

calcines can be employed, yet they face limitations in addressing issues related to significant errors 

in measured values linked to the extent of dust generation [10]. 

Numerous scholars have analyzed sintering conditions by examining flame images [11]. Raw 

materials within rotary kilns undergo sintering when they surpass a specific temperature, and the 

calcine temperature serves as an indicator for identifying sintering conditions [12]. However, flame 

images are subject to various influencing factors, including dust generation due to raw material 

characteristics, burner primary and secondary combustion air flow rates and pressures, as well as the 

quantity and quality of fuel supplied to the burner [13]. The utilization of flame images for measuring 

sintering conditions is constrained due to alterations in flame brightness and shape resulting from 

the mentioned factors [14]. Furthermore, research based on flame images is limited in deducing the 

factors influencing the control of calcine temperature to a predicted level by distinguishing and 

anticipating sintering conditions, such as overheating, normal sintering, and undercooling [15]. 

When it comes to the design of a rotary kiln, the initial step involves conducting mass balance 

and heat balance calculations. The heat produced by the burner through the combustion of coal 

injected with the raw material is used to generate heat, which is then discharged as sensible heat of 

calcine, shell heat loss of rotary kiln body, and exhaust gas. This heat is utilized to dry the moisture 

present in the raw material and alter the phase of the raw material. An assessment based on heat 

balance can be carried out to estimate the temperature of calcine using available data. However, such 

an evaluation necessitates the expertise of an individual with practical knowledge of the rotary kiln 

process [16]. The raw materials fed into the rotary kiln are transformed into calcine after a few hours. 

Since the heat supplied by the burner is released as exhaust gas after interacting with the raw material 

within a few seconds, it is essential to consider time delays [17]. Consequently, forecasting the 

temperature of calcine through induction modeling and simulation, as well as predicting calcine 

temperature based on mass and heat balance, is limited due to low accuracy levels because the 

internal condition of rotary kiln is varied in time not in equilibrium all the time [18]. 

To address these limitations, numerous researchers have predicted calcine temperature by 

modeling based on the analysis of extensive operational data. Firstly, fuzzy rules serve as an efficient 

method for managing uncertain and ambiguous information by simulating human reasoning 

processes. Nevertheless, interpreting the outcomes requires the expertise of individuals experienced 

in establishing numerous rules [19]. Secondly, Support Vector Machine (SVM) can optimize margins 

even with limited data, ensuring a well-suited model and reducing overfitting [20]. However, the 

process of converting time series data into a format for SVM modeling and feature extraction is 

complex. Since SVM is a black box model, it may pose challenges in identifying factors influencing 

model predictions and explaining results [21]. Moreover, SVM heavily relies on hyperparameters, 

leading to additional computational costs to determine optimal settings [22]. Thirdly, Recurrent 

Neural Networks (RNN) like Long Short-Term Memory (LSTM) necessitate substantial data and are 
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prone to overfitting [23]. Although they excel in nonlinear and time-delay studies, predictive 

calculations are time-consuming, especially during remodeling [24]. 

The raw materials utilized in rotary kilns, such as ore and coal, are sourced from nature, and 

variations in composition and particle size can impact rotary kiln operations [25]. Additionally, issues 

like malfunctions in front and rear end equipment which is from overheating(clinker formation, dust 

generation rate increasing) can alter the calcine quality and productivity of the rotary kiln.  

The primary objective of forecasting calcine temperature in rotary kilns is to sustain the target 

temperature with lowest variations, considering factors influencing its temperature. Despite the 

possibility of predicting calcine temperature using operational data through techniques like Fuzzy 

rules, SVM, and LSTM, limitations exist in identifying and modifying factors affecting calcine 

temperature in multivariate and time-series prediction models [26]. 

Explainable Artificial Intelligence (XAI) emerges as a solution to this challenge [27]. This study 

aims to elucidate the factors influencing calcine temperature by quantitatively predicting their 

contribution to model predictions using SHAP (SHapley Additive exPlanation) techniques of XAI. 

SHAP boasts game theory attributes that ensure a fair distribution of Shapley values, enabling 

intuitive and equitable calculation of predictive contributions. Being model-agnostic, SHAP can be 

applied across various machine learning models, ranging from simple linear models to intricate deep 

learning models. Furthermore, SHAP offers diverse visualization tools like summary plot, 

dependence plot, and force plot to facilitate a comprehensive understanding of prediction 

explanations [28]. 

The main contents of the paper are as follows. 

1) The primary focus of this research paper pertains to the intentional delineation of its contents, 

centering on the utilization of modeling techniques aimed at forecasting the temperature of calcine 

within the operational framework of a rotary kiln. Specifically, the data employed in this study 

emanates from the RK-EF process that facilitates the production of ferronickel. Through a meticulous 

analysis, the model that demonstrates the highest level of accuracy in predicting the calcine 

temperature is identified, followed by a comprehensive elucidation of the underlying reasons for its 

efficacy. 

2) In the pursuit of enhancing the precision of calcine temperature prognostication, a meticulous 

examination of the various factors influencing this predictive process is conducted for each model 

under consideration. This analytical endeavor is facilitated by the application of SHAP  techniques 

within the realm of XAI, leading to the derivation of pivotal insights into the dynamics governing the 

forecasted calcine temperature. 

3) To validate the reliability and robustness of the model exhibiting the most superior predictive 

capability in terms of calcine temperature, a meticulous verification process ensues. This verification 

methodology entails a comparative analysis of the deviations observed in the predicted changes in 

calcine temperature with the actual operational fluctuations recorded in the existing system. 

Furthermore, the objective is to achieve improvements over the existing operational standards by 

applying the optimal values of the key factors identified through SHAP analysis to the operations. 

The main contributions in this paper are as follows. 

1) A model that best predicts the calcine temperature using operational data from a rotary kiln 

producing ferronickel with actual nickel laterite was developed, and the rationale for its superior 

performance was provided. This model could be utilized in future research related to predictive 

models using operational data in the field of pyrometallurgy. 

2) Using XAI-based SHAP analysis on the best model, the key factors contributing most 

significantly to the prediction of calcine temperature were identified. These insights could be applied 

in future operations to maintain calcine temperature and reduce variations. 

The rest of this article is organized as follows. In Section 2 describes the rotary kiln process and 

XAI, Section 3 contains about materials and methods. Section 4 presents the details experimental 

results. And section 5 concludes the study. 

2. Rotary Kiln Process and XAI 
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2.1. Rotary Kiln Process 

The RK-EF process, used to produce ferronickel from laterite ore, involves a process in which a 

rotary kiln is utilized to elevate the temperature of calcine, eliminating nickel ore adhesion and 

crystalized moisture. This results in a reduction of the energy needed in the subsequent electric 

furnace process. The primary components of a rotary kiln include a burner system, kiln body, and 

exhaust gas treatment system. The burner system is responsible for providing heat for the combustion 

of a reducing agent mixed with the nickel ore inside the kiln body. Various heat sources such as LNG, 

oil, and pulverized coal are utilized for this purpose. The kiln body is lined with refractory material 

to ensure longevity at high temperatures. In inclined rotary kilns, nickel ore is transformed into 

calcine after rotation and is discharged after undergoing drying and preliminary reduction processes 

within. Some rotary kilns feature a scoop feeder, a device used to separately introduce a reducing 

agent into the kiln body. This agent extends the high-temperature zone of the kiln, enhancing the 

degree and temperature of the preliminary reduction process. Additionally, an environmental 

treatment facility is necessary to address air pollutants like NOx, SOx, and dust emitted during the 

combustion and processing phases in the rotary kiln. Efforts are required to minimize NOx emissions 

by reducing the amount produced by the burner within the kiln. If NOx levels surpass environmental 

standards, removal through facilities like SCR becomes essential. Roughly 30% of the sulfur content 

in the fuel and raw materials employed in the rotary kiln is released as SOx and can be eliminated 

through environmental treatment systems like SDR and Scrubber. Dust removal is commonly carried 

out using cyclone and bag filters. 

2.2. XAI 

XAI, also known as eXplainable Artificial Intelligence, proves to be a valuable approach in 

elucidating the rationale behind decision-making processes that stem from the outcomes generated 

by artificial intelligence models [29]. XAI is a technique that adds explainability to artificial 

intelligence models, allowing us to understand the rationale behind the decisions made by the model 

when reaching a specific conclusion. The term "explanatory power" refers to how well people can 

comprehend the basis of the decisions made by the AI model. As the amount of data (number of 

features) increases, the issue of complexity becomes more pronounced. XAI can help mitigate these 

complexity issues, enabling us to trust the system's output and confidently use AI for future decision-

making. For this reason, XAI is also referred to as "Interpretable AI" or "Transparent AI." 

We aim to utilize the SHAP method, one of the XAI techniques, to extract key variables that 

influence the preliminary reduction process in the rotary kiln and aid in process management and 

calcine temperature prediction. 

2.3. SHAP 

SHAP (SHapley Additive Explanations) is a technique based on game theory that expands its 

applicability by allowing additive usage grounded on the independence of variables. Shapley values 

quantify how much each variable contributes to the overall prediction. According to Shapley values, 

the contribution of each variable can be represented by the extent of change in the overall prediction 

when the contribution of the variable is excluded [30]. 

Shapley values can be negative, in which case it can be interpreted that a particular feature has 

a negative impact on the prediction. If the value is positive, it indicates that the feature is positively 

influencing the prediction. SHAP has characteristics that can overcome the drawbacks of other XAI 

techniques such as Feature Importance and Partial Dependence Plots (PDP). Feature Importance is a 

technique that identifies the variable that has the greatest impact on the prediction by permuting it. 

Permutation involves randomly changing the value of each feature in turn and measuring the effect 

of that change on the prediction. While this method is powerful, the importance can vary with each 

execution of the algorithm due to the limitations of the permutation process and error-based 

estimation. Additionally, Feature Importance overlooks feature dependencies, so it should be 

avoided in models where there is a correlation between features. 
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Partial Dependence Plots (PDP) work by adjusting the value of the feature of interest, inputting 

it into the model, and then averaging the prediction. However, PDPs have the limitation of only being 

able to display relationships up to three dimensions, meaning they cannot represent higher 

dimensions, which can lead to distorted results. 

SHAP, on the other hand, calculates the impact on the model while considering feature 

dependencies and has the advantage of being able to visualize even when there are many features. 

Given that the independent variables used to accurately predict calcine temperature have high inter-

variable correlation and high dimensionality, SHAP was deemed more suitable than Feature 

Importance or PDP, and the analysis was conducted based on this methodology. 

The SHAP methodology serves as an instrumental framework for the examination of operational 

datasets by augmenting the transparency of predictive models and facilitating the selection of 

pertinent features. Consequently, the implementation of SHAP to bolster the interpretive clarity and 

transparency of predictive maintenance models utilized within data centers has evidenced that 

quantifying the contribution of each variable permits data center managers to comprehend the 

model's outputs and promote anticipatory decision-making, thus enhancing both model 

transparency and operational efficacy [31]. SHAP has elucidated the influence of diverse variables on 

the incidence of expressway collisions, demonstrating its utility for the analysis of operational data 

through the lens of highway traffic safety management [32]. Furthermore, the analytical capabilities 

of the model were refined by evaluating the interpretability of the predictive model concerning arch 

dam stress, employing LightGBM in conjunction with SHAP to identify salient features impacting 

arch dam stress [33]. In this manner, SHAP is adeptly employed across various domains to fortify 

explanatory power and enhance model performance by shedding light on the determinants that affect 

predictive models. 

3. Materials and Methods 

The research methodology outlined in this paper consists of five main stages: the first stage is 

data collection, the second stage is data preprocessing, the third stage is model training, the fourth 

stage is model performance evaluation, and the fifth stage is key variable extraction and analysis of 

variable importance. Data collection utilized datasets from SNNC Co., Ltd., a subsidiary of POSCO. 

Data preprocessing considered techniques such as missing data imputation, outlier detection, and 

feature engineering. In the third stage, model training and forecasting were performed using 

Boosting-based algorithms and the GRU (Gated Recurrent Unit) method for time series modeling. 

The fourth stage involved evaluating the model performance using metrics such as Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE) to compare 

the models and select the optimal one. Finally, in the fifth stage, SHAP (SHapley Additive 

exPlanations) was applied to extract the key variables influencing the preliminary reduction process 

and to assess their importance, with the aim of adjusting variables to increase the calcine temperature. 

3.1. Data Collection 

The data used in this study were collected from the rotary kiln at SNNC Co., Ltd. The data 

collection period spans six months, from April 1, 2023, to September 30, 2023, with minute-by-minute 

data. The independent variables used can be found in Table 1; however, due to corporate security 

concerns, only about 6 variables will be disclosed, with the dependent variable being the calcine 

temperature. In this paper, we aim to propose a methodology to improve the calcine temperature in 

the rotary kiln preliminary reduction process by training models on the rotary kiln data, identifying 

key variables influencing the process using the SHAP technique, and evaluating the impact of these 

variables to implement improvements in operations. 
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Table 1. Independent variables of rotary kiln process data. 

Independent variable Unit Independent variable Unit 

Moisture % 
Dried ore feeding 

amount 
Ton 

Inner temperature of 

rotary kiln A 
℃ 

Reductant coal unit 

consumption 
kg/dmt 

Coal feeding ration 

through a scoop feeder 

facility 

% 
O2 content in the 

offgas 
% 

3.2. Data Processing  

The most critical step in data analysis is data preprocessing. In particular, handling missing 

values due to equipment malfunctions or human errors, and addressing outliers caused by scheduled 

maintenance, clinker discharge, and other factors are essential preprocessing tasks. Preprocessing can 

also involve removing or replacing highly correlated variables, eliminating variables with similar 

meanings, and generating derived variables. 

3.3. Model Training  

To predict calcine temperature, four algorithms were employed: XGBoost, LightGBM, CatBoost, 

and GRU. 

3.3.1. XGBoost  

XGBoost is designed to enhance the speed and accuracy of Gradient Boosting Machines (GBM). 

It features rapid training through parallel processing, a flexible learning system, overfitting 

prevention, and scalability for various scenarios. XGBoost adds a regularization term to the objective 

function to prevent overfitting and optimizes it quickly using second-order Taylor approximation. 

The algorithm uses an approximate method for finding the best split based on the percentile of feature 

distributions, which is more efficient than the exact greedy algorithm (EGA). It also addresses data 

sparsity with a sparsity-aware split and reduces the cost of sorting data for tree learning through a 

block structure in the in-memory unit, enabling parallel processing and supporting column 

subsampling. XGBoost has three main features. 

3.3.2. LightGBM  

LightGBM was developed to address the efficiency issues of XGBoost. It maintains the accuracy 

of previous algorithms while offering improved efficiency, being notably lightweight. LightGBM, 

based on Gradient Boosting Decision Tree (GBDT), is a powerful algorithm in terms of computational 

complexity. Unlike traditional GBDT, which requires accessing all features and data, LightGBM 

employs Gradient-based One-side Sampling (GOSS) and Exclusive Feature Bundling (EFB) to reduce 

computational complexity. GOSS balances the reduction of data instances with maintaining accuracy, 

and EFB groups mutually exclusive features to increase training speed without sacrificing accuracy. 

3.3.3. CatBoost  

CatBoost is an algorithm effective for handling categorical variables. To prevent data leakage, it 

uses Ordered Target Encoding and Ordered Boosting, which helps prevent overfitting due to the 

Random Permutation that shuffles the order of the data in the training set. In addition to these 

features, CatBoost efficiently encodes categorical features using multiple characteristics and 
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integrates them into the boosting process, reducing predictive shift and improving model 

performance. 

3.3.4. GRU  

GRU (Gated Recurrent Unit) is a type of Recurrent Neural Network (RNN) designed to solve 

the vanishing gradient problem and is a simplified version of Long Short-Term Memory (LSTM) with 

fewer parameters, often resulting in faster training times while maintaining performance. The GRU 

model is a type of RNN designed to address the long-term dependency problem associated with 

gradient vanishing. GRU enhances RNN by adding a cell state to the hidden state, allowing it to 

consider more past data and make more accurate future predictions. 

3.4. Model Evaluation  

To evaluate whether a model can effectively extract variables that explain key factors influencing 

calcine temperature prediction, the model's performance is compared using three primary evaluation 

metrics: MAE, MSE, and MAPE. MAE, which is the mean absolute error, is calculated by taking the 

absolute difference between the actual and predicted values, summing them up, and then averaging 

them. This metric is particularly useful when dealing with a high number of outliers. MSE, or mean 

squared error, is obtained by squaring the difference between the actual and predicted values and 

then averaging the results. MAPE, the mean absolute percentage error, expresses MAE as a 

percentage, addressing the issue of scale dependency in error measurement. 

𝑀𝐴𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦

^

𝑖)
2

𝑁

𝑖=1

 (1) 

𝑀𝑆𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦

^

𝑖|

𝑁

𝑖=1

 (2) 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑

|𝑦𝑖 − 𝑦
^

𝑖|

|𝑦𝑖|

𝑛

𝑖=1

 (3) 

3.5. Extraction of Key Variables  

The Shapley Value has the advantage of revealing the importance of each variable based on 

combinations of multiple independent variables, and it also allows us to understand the positive or 

negative impact of each variable. For example, if the Shapley Value of a certain independent variable 

is negative, it indicates that the variable lowers the calcine temperature, while a positive value 

suggests that it increases the calcine temperature. In this study, we aim to identify the key variables 

influencing the calcine temperature using the SHAP technique, focusing on the variables collected 

from the preliminary reduction process in the rotary kiln. 

4. Research Experiment and Results 

4.1. Data Collection 

This study utilized minute-by-minute operational data spanning six months, from April 1, 2023, 

to September 30, 2023, from SNNC Co., Ltd., a subsidiary of POSCO. A total of 115,619 data points 

were used. After data preprocessing, the training data consisted of approximately 94,019 data points 

from April 1 to August 31, while the test data consisted of approximately 21,600 data points from 

September 1 to September 30. Due to corporate security concerns, the exact number and nature of the 

30 explanatory variables cannot be disclosed. However, key variables such as temperatures at various 
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positions of the rotary kiln, reductant coal feeding rate, and NOx concentration in the offgas were 

employed, based on the expertise of operational specialists, to predict the dependent variable, calcine 

temperature (℃). A summary of the rotary kiln dataset is presented in Table 2, and an example of the 

rotary kiln data is provided in Table 3. 

Table 2. A summary of rotary kiln dataset. 

Description Variable name 

Explanatory variables 
27m(℃), Reductant, 

Feeding rate, NOx 
X01, …, X30 

Response variables Calcine temperature(℃) Calcine temperature(℃) 

Table 3. Examples of variables. 

Date X1 X2 … 

Calcine 

temperature(℃

) 

2023.04.01 

00:01:00 
36.22 -1.45 … 925 

2023.04.01 

00:02:00 
36.23 -1.39 … 930 

… … … … 943 

2023.09.30 

23:57:00 
46.13 -0.96 … 722 

2023.09.30 

23:58:00 
47.86 -0.69 … 714 

2023.09.30 

23:59:00 
47.86 -1.15 … 691 

4.2. Data Processing  

Due to the nature of the smelting industry, which utilizes naturally sourced raw ore, there is 

significant variability in the operational data which is shown in Figure 1.  

  

(a) Example of regular maintenance period 

and calcine temperature(℃) 

(b) Example of calcine temperature(℃) with 

different patterns and temperatures(℃) 

Figure 1. Raw operation data with variabilities and noises. 
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The primary objective of this study is to accurately predict the minute-by-minute calcine 

temperature (℃). Given the inherent variability and noise in the raw operational data, immediate 

analysis is not feasible. Therefore, we performed three types of data preprocessing before proceeding 

with the analysis.  

First, we addressed missing values. Each variable had missing values, and we employed 

different imputation methods based on the characteristics of each variable. Specifically, missing 

values caused by equipment anomalies or unclear reasons were replaced with the preceding values. 

For the rotary kiln internal temperatures, which exhibited high inter-variable correlations, we used 

regression imputation. 

Second, we handled outliers. There were two types of outliers: those with identifiable causes 

and those without. We employed rule-based outlier detection, replacing outliers with the 10-minute 

average or median values preceding the outlier. Notably, for the dependent variable calcine 

temperature (℃), outliers often occurred due to clumping of calcine inside the kiln, clinker discharge, 

scheduled maintenance, or other operational patterns causing sudden temperature drops. 

Consequently, we removed instances where values continuously fell below a specific threshold. 

Third, we generated derived variables and identified relationships between variables to reduce 

dimensionality. New variables were generated by combining existing variables with new derived 

variables that were not originally present in the data. Additionally, variables with comparable 

meanings were eliminated if they exhibited lower correlation coefficient values in relation to the 

dependent variables. 

4.3. Model Training  

The purpose of this study is to accurately predict the calcine temperature, extract and identify 

key variables influencing calcine temperature predictions. The dependent variable is calcine 

temperature, and the independent variables consist of 30 variables collected from the rotary kiln. In 

this study, the training data covers the period from April 1 to August 31, 2023, while the test data 

spans the month of September 2023. The goal is to predict approximately 21,600 data points. 

Modeling was performed using boosting models such as XGBoost, LightGBM, and CatBoost, and 

predictions were made using the deep learning time series model GRU. To prevent overfitting, 5-fold 

cross-validation was employed, and Bayesian optimization was used to optimize the 

hyperparameters. 

4.4. Model Evaluation 

The performance results of the XGBoost, LightGBM, CatBoost, and GRU models are shown in 

Table 4. CatBoost outperformed all other models across all evaluation metrics (MAE, MSE, MAPE). 

Based on these comparison results, CatBoost was selected as the model to be used for the SHAP 

technique to extract and identify key variables. 

Table 4. Model evaluation metrics results. 

Model MAE MSE MAPE 

XGBoost 41.73 2,539.72 0.045 

LightGBM 39.24 2,575.97 0.040 

CatBoost 38.22 2,500.36 0.036 

GRU 48.13 3,200.14 0.079 

4.5. Extraction of Key Variables 

The SHAP method, a technique in XAI was employed to analyze the variables used in the 

prediction model. The primary variable identified was X10, and the top 10 variables collectively 
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explained a significant percentage of the model's predictive power. Specifically, the SHAP analysis 

revealed that when certain variables increase or decrease, the calcine temperature (℃) 

correspondingly rises or falls. Variables X10, X9, and X22 were among the highest contributors to the 

model's predictions, indicating their substantial impact on the calcine temperature. The SHAP 

analysis not only identified the most influential variables but also elucidated their directional impact 

on the calcine temperature, enhancing the interpretability and transparency of the prediction model. 

The primary factors that influenced the comprehensive predictive model were prioritized as 

follows: X10, X9, X15 and X8, as shown in Figure 2. The thermocouples which measures inner 

temperature of rotary kiln positioned nearest to the calcine outlet exhibit the strongest correlation 

with the calcine temperature. This relationship can be attributed to the impact of calcine temperature, 

supplied by the burner, on the NOX, O2 components of offgas. Additionally, the rotation speed of the 

rotary kiln RPM, influences the duration that the ore remains in the kiln after being fed through the 

inlet. 

Moreover, we compared the variability in calcine temperature changes under this preemptive 

control with the variability observed in conventional operations. A direct correlation between the 

increase in calcine temperature and the rise in factors such as X10, X9 and X8 were observed. 

Furthermore, there is an inverse relationship noted where the calcine temperature decreases with the 

elevation of variables like X14, X7 and X12, as shown in Figure 3. 

In conclusion, the SHAP method identified the key factors impacting calcine temperature, and 

preemptive control of these factors demonstrated a reduction in temperature variability compared to 

standard operational practices, confirming the model's efficacy. 

 

Figure 2. Mean of SHAP values 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 October 2024 doi:10.20944/preprints202410.0970.v1

https://doi.org/10.20944/preprints202410.0970.v1


 11 

 

 

Figure 3. SHAP values with different variables 

5. Conclusions 

This paper studies aimed to predict calcine temperature and identify influencing factors using 

XAI's SAHP to address rising power costs linked to renewable energy and fossil fuels. Temperature 

predictions were executed utilizing XGBoost, LightGBM, CatBoost, and GRU algorithms. The 

prediction accuracy was highest with CatBoost, achieving a MAPE of 0.036, followed by XGBoost at 

0.045, LightGBM at 0.040, and GRU at 0.079. Using XAI's SAHP with CatBoost, we derived influential 

factors impacting calcine temperature based on its superior predictive performance. Typically, rotary 

kiln operations sustain optimal conditions by adjusting parameters informed by expert experience; 

however, variability in nickel laterite composition necessitates precise identification of factors to 

maintain calcine temperature stability. By implementing SHAP-derived variables X10, X9, X15, X8, 

X14, X7, and X16 from April 2024, the average calcine temperature rose from 843℃ in 2023 to 907℃, 

enabling a 7.8% reduction in electric furnace power units and lowering manufacturing costs. 

Despite successful predictions with the CATBoost algorithm and factor derivation through 

SAHP, further enhancements in accuracy and adherence to model guidance are essential for practical 

application. Future research should focus on improving the model’s predictive capabilities for 

autonomous control of rotary kiln operational variables. 
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