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Abstract: The global smelting business of nickel using rotary kilns and electric furnaces is expanding due to
the growth of the secondary battery market. Efficient operation of electric furnaces requires consistent calcine
temperature in rotary kilns, which involves shearing processes. Direct measurement of calcine temperature in
rotary kilns presents challenges due to inaccuracies and operational limitations, and while Al predictions are
feasible, reliance on them without understanding influencing factors is risky. To address this challenge, various
algorithms including XGBoost, LightGBM, CatBoost, and GRU were employed for calcine temperature
prediction, with CatBoost achieving the best performance, followed by XGBoost, LightGBM, and GRU in terms
of MAPE. The influential factors on calcine temperature were identified using SHAP from XAI in the context
of the CatBoost model. By incorporating seven out of twenty operational factors, the calcine temperature
increased from 840°C in 2023 to 907°C by April 2024, concurrently reducing the power ratio of the electric
furnace by 7.8%.
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1. Introduction

The objective of this study is to identify the deviation between the actual calcine temperature of
rotary kilns involved in ferronickel production and the predicted values generated by machine
learning and deep learning models. Additionally, the study aims to identify key variables influencing
the predictions using XAI's Shapley Value Explanations. Subsequently, the goal is to reduce the
calcine temperature deviation by utilizing these key variables. A rotary kiln, utilized as a rotating
furnace, utilizes a burner to provide a heat source for heating and processing raw materials while
rotating a structure made of refractory material that can endure high temperatures within a lengthy
steel cylinder [1]. In recent times, investments in rotary kilns using the rotary kiln and electric
furnace(RK-EF) method for producing nickel, a primary material for secondary batteries, have been
actively progressing in nations like Indonesia [2]. In the RK-EF process, a rotary kiln serves as a
preliminary reduction process to create calcine which is sintered nickel ore for feeding to an electric
furnace. The raw materials include nickel ore and a reductant, with a fuel like pulverized coal or LNG
being injected into a burner to act as a heat source for burning the reducing agent. Nickel ore is
initially supplied with around 30% moisture content, and as the adhering moisture is dried, the
crystalized moisture is eliminated, following which it is discharged from the rotary kiln, reaching
temperatures of approximately 700~1,000°C. Raw materials such as ore are natural resources,
exhibiting significant variations in composition and particle size [3]. For instance, smelters producing
ferronickel utilize a blend of ore with nickel content ranging from 1.4 to 2.6% and iron content
between 9 to 25%. The reaction occurring in the rotary kiln alters with changes in the iron content of
the ore, necessitating adjustments to the operational settings of the rotary kiln depending on the dust
production rate [4]. Calcine is produced roughly ninety minutes after the ore is introduced into the
rotary kiln and then discharged from the kiln. To ensure the effective and economical functioning of
the electric furnace process downstream of the rotary kiln, enhancing the calcine temperature is
imperative, along with minimizing temperature deviations[5]. Various factors can influence the
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calcine temperature of a kiln, such as the quantity of ore, pellet, coal for reduction, coal through the
scoop feeder, and amounts of pulverized coal to the burner, pressure in the rotary kiln, concentrations
of CO(g), O2(g), SOx, NOx in the flue gas, and the temperature of the kiln body. Therefore, identifying
the key variables that influence the calcine temperature and analyzing operational factors, such as
coal input and air ratio, which can determine operational adjustments in response to changes, are
essential for precise control of the calcine temperature in the rotary kiln [6].

A common method to measure calcine temperature involves utilizing a thermocouple [7]. Given
that only around 6 to 8% of the internal volume of a rotary kiln comprises calcine, continuous
temperature monitoring is challenging even with two thermocouples positioned at 180-degree
intervals. The temperature of the calcine under measurement is directly influenced by the burner
flame temperature, as well as the flow rate and pressure of primary and secondary combustion air
supplied to the kiln burner [8]. Moreover, thermocouples placed in high-temperature zones have a
relatively short lifespan of a few months due to oxidation in high-temperature environments and
abrasion from ore, even when shielded in a protective tube [9]. Alternatively, non-contact
temperature measurement devices like pyrometers that detect infrared radiation energy emitted by
calcines can be employed, yet they face limitations in addressing issues related to significant errors
in measured values linked to the extent of dust generation [10].

Numerous scholars have analyzed sintering conditions by examining flame images [11]. Raw
materials within rotary kilns undergo sintering when they surpass a specific temperature, and the
calcine temperature serves as an indicator for identifying sintering conditions [12]. However, flame
images are subject to various influencing factors, including dust generation due to raw material
characteristics, burner primary and secondary combustion air flow rates and pressures, as well as the
quantity and quality of fuel supplied to the burner [13]. The utilization of flame images for measuring
sintering conditions is constrained due to alterations in flame brightness and shape resulting from
the mentioned factors [14]. Furthermore, research based on flame images is limited in deducing the
factors influencing the control of calcine temperature to a predicted level by distinguishing and
anticipating sintering conditions, such as overheating, normal sintering, and undercooling [15].

When it comes to the design of a rotary kiln, the initial step involves conducting mass balance
and heat balance calculations. The heat produced by the burner through the combustion of coal
injected with the raw material is used to generate heat, which is then discharged as sensible heat of
calcine, shell heat loss of rotary kiln body, and exhaust gas. This heat is utilized to dry the moisture
present in the raw material and alter the phase of the raw material. An assessment based on heat
balance can be carried out to estimate the temperature of calcine using available data. However, such
an evaluation necessitates the expertise of an individual with practical knowledge of the rotary kiln
process [16]. The raw materials fed into the rotary kiln are transformed into calcine after a few hours.
Since the heat supplied by the burner is released as exhaust gas after interacting with the raw material
within a few seconds, it is essential to consider time delays [17]. Consequently, forecasting the
temperature of calcine through induction modeling and simulation, as well as predicting calcine
temperature based on mass and heat balance, is limited due to low accuracy levels because the
internal condition of rotary kiln is varied in time not in equilibrium all the time [18].

To address these limitations, numerous researchers have predicted calcine temperature by
modeling based on the analysis of extensive operational data. Firstly, fuzzy rules serve as an efficient
method for managing uncertain and ambiguous information by simulating human reasoning
processes. Nevertheless, interpreting the outcomes requires the expertise of individuals experienced
in establishing numerous rules [19]. Secondly, Support Vector Machine (SVM) can optimize margins
even with limited data, ensuring a well-suited model and reducing overfitting [20]. However, the
process of converting time series data into a format for SVM modeling and feature extraction is
complex. Since SVM is a black box model, it may pose challenges in identifying factors influencing
model predictions and explaining results [21]. Moreover, SVM heavily relies on hyperparameters,
leading to additional computational costs to determine optimal settings [22]. Thirdly, Recurrent
Neural Networks (RNN) like Long Short-Term Memory (LSTM) necessitate substantial data and are
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prone to overfitting [23]. Although they excel in nonlinear and time-delay studies, predictive
calculations are time-consuming, especially during remodeling [24].

The raw materials utilized in rotary kilns, such as ore and coal, are sourced from nature, and
variations in composition and particle size can impact rotary kiln operations [25]. Additionally, issues
like malfunctions in front and rear end equipment which is from overheating(clinker formation, dust
generation rate increasing) can alter the calcine quality and productivity of the rotary kiln.

The primary objective of forecasting calcine temperature in rotary kilns is to sustain the target
temperature with lowest variations, considering factors influencing its temperature. Despite the
possibility of predicting calcine temperature using operational data through techniques like Fuzzy
rules, SVM, and LSTM, limitations exist in identifying and modifying factors affecting calcine
temperature in multivariate and time-series prediction models [26].

Explainable Artificial Intelligence (XAI) emerges as a solution to this challenge [27]. This study
aims to elucidate the factors influencing calcine temperature by quantitatively predicting their
contribution to model predictions using SHAP (SHapley Additive exPlanation) techniques of XAI
SHAP boasts game theory attributes that ensure a fair distribution of Shapley values, enabling
intuitive and equitable calculation of predictive contributions. Being model-agnostic, SHAP can be
applied across various machine learning models, ranging from simple linear models to intricate deep
learning models. Furthermore, SHAP offers diverse visualization tools like summary plot,
dependence plot, and force plot to facilitate a comprehensive understanding of prediction
explanations [28].

The main contents of the paper are as follows.

1) The primary focus of this research paper pertains to the intentional delineation of its contents,
centering on the utilization of modeling techniques aimed at forecasting the temperature of calcine
within the operational framework of a rotary kiln. Specifically, the data employed in this study
emanates from the RK-EF process that facilitates the production of ferronickel. Through a meticulous
analysis, the model that demonstrates the highest level of accuracy in predicting the calcine
temperature is identified, followed by a comprehensive elucidation of the underlying reasons for its
efficacy.

2) In the pursuit of enhancing the precision of calcine temperature prognostication, a meticulous
examination of the various factors influencing this predictive process is conducted for each model
under consideration. This analytical endeavor is facilitated by the application of SHAP techniques
within the realm of XAlI, leading to the derivation of pivotal insights into the dynamics governing the
forecasted calcine temperature.

3) To validate the reliability and robustness of the model exhibiting the most superior predictive
capability in terms of calcine temperature, a meticulous verification process ensues. This verification
methodology entails a comparative analysis of the deviations observed in the predicted changes in
calcine temperature with the actual operational fluctuations recorded in the existing system.
Furthermore, the objective is to achieve improvements over the existing operational standards by
applying the optimal values of the key factors identified through SHAP analysis to the operations.

The main contributions in this paper are as follows.

1) A model that best predicts the calcine temperature using operational data from a rotary kiln
producing ferronickel with actual nickel laterite was developed, and the rationale for its superior
performance was provided. This model could be utilized in future research related to predictive
models using operational data in the field of pyrometallurgy.

2) Using XAl-based SHAP analysis on the best model, the key factors contributing most
significantly to the prediction of calcine temperature were identified. These insights could be applied
in future operations to maintain calcine temperature and reduce variations.

The rest of this article is organized as follows. In Section 2 describes the rotary kiln process and
XAl, Section 3 contains about materials and methods. Section 4 presents the details experimental
results. And section 5 concludes the study.

2. Rotary Kiln Process and XAI
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2.1. Rotary Kiln Process

The RK-EF process, used to produce ferronickel from laterite ore, involves a process in which a
rotary kiln is utilized to elevate the temperature of calcine, eliminating nickel ore adhesion and
crystalized moisture. This results in a reduction of the energy needed in the subsequent electric
furnace process. The primary components of a rotary kiln include a burner system, kiln body, and
exhaust gas treatment system. The burner system is responsible for providing heat for the combustion
of a reducing agent mixed with the nickel ore inside the kiln body. Various heat sources such as LNG,
oil, and pulverized coal are utilized for this purpose. The kiln body is lined with refractory material
to ensure longevity at high temperatures. In inclined rotary kilns, nickel ore is transformed into
calcine after rotation and is discharged after undergoing drying and preliminary reduction processes
within. Some rotary kilns feature a scoop feeder, a device used to separately introduce a reducing
agent into the kiln body. This agent extends the high-temperature zone of the kiln, enhancing the
degree and temperature of the preliminary reduction process. Additionally, an environmental
treatment facility is necessary to address air pollutants like NOx, SOx, and dust emitted during the
combustion and processing phases in the rotary kiln. Efforts are required to minimize NOx emissions
by reducing the amount produced by the burner within the kiln. If NOx levels surpass environmental
standards, removal through facilities like SCR becomes essential. Roughly 30% of the sulfur content
in the fuel and raw materials employed in the rotary kiln is released as SOx and can be eliminated
through environmental treatment systems like SDR and Scrubber. Dust removal is commonly carried
out using cyclone and bag filters.

2.2. XAI

XAl, also known as eXplainable Artificial Intelligence, proves to be a valuable approach in
elucidating the rationale behind decision-making processes that stem from the outcomes generated
by artificial intelligence models [29]. XAI is a technique that adds explainability to artificial
intelligence models, allowing us to understand the rationale behind the decisions made by the model
when reaching a specific conclusion. The term "explanatory power" refers to how well people can
comprehend the basis of the decisions made by the Al model. As the amount of data (number of
features) increases, the issue of complexity becomes more pronounced. XAl can help mitigate these
complexity issues, enabling us to trust the system's output and confidently use Al for future decision-
making. For this reason, XAl is also referred to as "Interpretable Al" or "Transparent AL."

We aim to utilize the SHAP method, one of the XAI techniques, to extract key variables that
influence the preliminary reduction process in the rotary kiln and aid in process management and
calcine temperature prediction.

2.3. SHAP

SHAP (SHapley Additive Explanations) is a technique based on game theory that expands its
applicability by allowing additive usage grounded on the independence of variables. Shapley values
quantify how much each variable contributes to the overall prediction. According to Shapley values,
the contribution of each variable can be represented by the extent of change in the overall prediction
when the contribution of the variable is excluded [30].

Shapley values can be negative, in which case it can be interpreted that a particular feature has
a negative impact on the prediction. If the value is positive, it indicates that the feature is positively
influencing the prediction. SHAP has characteristics that can overcome the drawbacks of other XAI
techniques such as Feature Importance and Partial Dependence Plots (PDP). Feature Importance is a
technique that identifies the variable that has the greatest impact on the prediction by permuting it.
Permutation involves randomly changing the value of each feature in turn and measuring the effect
of that change on the prediction. While this method is powerful, the importance can vary with each
execution of the algorithm due to the limitations of the permutation process and error-based
estimation. Additionally, Feature Importance overlooks feature dependencies, so it should be
avoided in models where there is a correlation between features.
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Partial Dependence Plots (PDP) work by adjusting the value of the feature of interest, inputting
itinto the model, and then averaging the prediction. However, PDPs have the limitation of only being
able to display relationships up to three dimensions, meaning they cannot represent higher
dimensions, which can lead to distorted results.

SHAP, on the other hand, calculates the impact on the model while considering feature
dependencies and has the advantage of being able to visualize even when there are many features.
Given that the independent variables used to accurately predict calcine temperature have high inter-
variable correlation and high dimensionality, SHAP was deemed more suitable than Feature
Importance or PDP, and the analysis was conducted based on this methodology.

The SHAP methodology serves as an instrumental framework for the examination of operational
datasets by augmenting the transparency of predictive models and facilitating the selection of
pertinent features. Consequently, the implementation of SHAP to bolster the interpretive clarity and
transparency of predictive maintenance models utilized within data centers has evidenced that
quantifying the contribution of each variable permits data center managers to comprehend the
model's outputs and promote anticipatory decision-making, thus enhancing both model
transparency and operational efficacy [31]. SHAP has elucidated the influence of diverse variables on
the incidence of expressway collisions, demonstrating its utility for the analysis of operational data
through the lens of highway traffic safety management [32]. Furthermore, the analytical capabilities
of the model were refined by evaluating the interpretability of the predictive model concerning arch
dam stress, employing LightGBM in conjunction with SHAP to identify salient features impacting
arch dam stress [33]. In this manner, SHAP is adeptly employed across various domains to fortify
explanatory power and enhance model performance by shedding light on the determinants that affect
predictive models.

3. Materials and Methods

The research methodology outlined in this paper consists of five main stages: the first stage is
data collection, the second stage is data preprocessing, the third stage is model training, the fourth
stage is model performance evaluation, and the fifth stage is key variable extraction and analysis of
variable importance. Data collection utilized datasets from SNNC Co., Ltd., a subsidiary of POSCO.
Data preprocessing considered techniques such as missing data imputation, outlier detection, and
feature engineering. In the third stage, model training and forecasting were performed using
Boosting-based algorithms and the GRU (Gated Recurrent Unit) method for time series modeling.
The fourth stage involved evaluating the model performance using metrics such as Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE) to compare
the models and select the optimal one. Finally, in the fifth stage, SHAP (SHapley Additive
exPlanations) was applied to extract the key variables influencing the preliminary reduction process
and to assess their importance, with the aim of adjusting variables to increase the calcine temperature.

3.1. Data Collection

The data used in this study were collected from the rotary kiln at SNNC Co., Ltd. The data
collection period spans six months, from April 1, 2023, to September 30, 2023, with minute-by-minute
data. The independent variables used can be found in Table 1; however, due to corporate security
concerns, only about 6 variables will be disclosed, with the dependent variable being the calcine
temperature. In this paper, we aim to propose a methodology to improve the calcine temperature in
the rotary kiln preliminary reduction process by training models on the rotary kiln data, identifying
key variables influencing the process using the SHAP technique, and evaluating the impact of these
variables to implement improvements in operations.


https://doi.org/10.20944/preprints202410.0970.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 October 2024 d0i:10.20944/preprints202410.0970.v1

Table 1. Independent variables of rotary kiln process data.

Independent variable Unit Independent variable Unit
Dri feedi
Moisture o ried ore feeding Ton
amount
Inner temperature of Reductant coal unit
. °C j kg/dmt
rotary kiln A consumption

Coal feeding ration
& O:2 content in the

through a scoop feeder %o offgas Yo
facility

3.2. Data Processing

The most critical step in data analysis is data preprocessing. In particular, handling missing
values due to equipment malfunctions or human errors, and addressing outliers caused by scheduled
maintenance, clinker discharge, and other factors are essential preprocessing tasks. Preprocessing can
also involve removing or replacing highly correlated variables, eliminating variables with similar
meanings, and generating derived variables.

3.3. Model Training

To predict calcine temperature, four algorithms were employed: XGBoost, LightGBM, CatBoost,
and GRU.

3.3.1. XGBoost

XGBoost is designed to enhance the speed and accuracy of Gradient Boosting Machines (GBM).
It features rapid training through parallel processing, a flexible learning system, overfitting
prevention, and scalability for various scenarios. XGBoost adds a regularization term to the objective
function to prevent overfitting and optimizes it quickly using second-order Taylor approximation.
The algorithm uses an approximate method for finding the best split based on the percentile of feature
distributions, which is more efficient than the exact greedy algorithm (EGA). It also addresses data
sparsity with a sparsity-aware split and reduces the cost of sorting data for tree learning through a
block structure in the in-memory unit, enabling parallel processing and supporting column
subsampling. XGBoost has three main features.

3.3.2. LightGBM

LightGBM was developed to address the efficiency issues of XGBoost. It maintains the accuracy
of previous algorithms while offering improved efficiency, being notably lightweight. LightGBM,
based on Gradient Boosting Decision Tree (GBDT), is a powerful algorithm in terms of computational
complexity. Unlike traditional GBDT, which requires accessing all features and data, LightGBM
employs Gradient-based One-side Sampling (GOSS) and Exclusive Feature Bundling (EFB) to reduce
computational complexity. GOSS balances the reduction of data instances with maintaining accuracy,
and EFB groups mutually exclusive features to increase training speed without sacrificing accuracy.

3.3.3. CatBoost

CatBoost is an algorithm effective for handling categorical variables. To prevent data leakage, it
uses Ordered Target Encoding and Ordered Boosting, which helps prevent overfitting due to the
Random Permutation that shuffles the order of the data in the training set. In addition to these
features, CatBoost efficiently encodes categorical features using multiple characteristics and
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integrates them into the boosting process, reducing predictive shift and improving model
performance.

3.3.4. GRU

GRU (Gated Recurrent Unit) is a type of Recurrent Neural Network (RNN) designed to solve
the vanishing gradient problem and is a simplified version of Long Short-Term Memory (LSTM) with
fewer parameters, often resulting in faster training times while maintaining performance. The GRU
model is a type of RNN designed to address the long-term dependency problem associated with
gradient vanishing. GRU enhances RNN by adding a cell state to the hidden state, allowing it to
consider more past data and make more accurate future predictions.

3.4. Model Evaluation

To evaluate whether a model can effectively extract variables that explain key factors influencing
calcine temperature prediction, the model's performance is compared using three primary evaluation
metrics: MAE, MSE, and MAPE. MAE, which is the mean absolute error, is calculated by taking the
absolute difference between the actual and predicted values, summing them up, and then averaging
them. This metric is particularly useful when dealing with a high number of outliers. MSE, or mean
squared error, is obtained by squaring the difference between the actual and predicted values and
then averaging the results. MAPE, the mean absolute percentage error, expresses MAE as a
percentage, addressing the issue of scale dependency in error measurement.

N
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3.5. Extraction of Key Variables

The Shapley Value has the advantage of revealing the importance of each variable based on
combinations of multiple independent variables, and it also allows us to understand the positive or
negative impact of each variable. For example, if the Shapley Value of a certain independent variable
is negative, it indicates that the variable lowers the calcine temperature, while a positive value
suggests that it increases the calcine temperature. In this study, we aim to identify the key variables
influencing the calcine temperature using the SHAP technique, focusing on the variables collected
from the preliminary reduction process in the rotary kiln.

4. Research Experiment and Results

4.1. Data Collection

This study utilized minute-by-minute operational data spanning six months, from April 1, 2023,
to September 30, 2023, from SNNC Co., Ltd., a subsidiary of POSCO. A total of 115,619 data points
were used. After data preprocessing, the training data consisted of approximately 94,019 data points
from April 1 to August 31, while the test data consisted of approximately 21,600 data points from
September 1 to September 30. Due to corporate security concerns, the exact number and nature of the
30 explanatory variables cannot be disclosed. However, key variables such as temperatures at various
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positions of the rotary kiln, reductant coal feeding rate, and NOx concentration in the offgas were
employed, based on the expertise of operational specialists, to predict the dependent variable, calcine
temperature (°C). A summary of the rotary kiln dataset is presented in Table 2, and an example of the
rotary kiln data is provided in Table 3.

Table 2. A summary of rotary kiln dataset.

Description Variable name
. 27m(°C), Reductant,
Explanatory variables Feeding rate, NOx X01, ..., X30
Response variables Calcine temperature(°C) Calcine temperature(°C)
Table 3. Examples of variables.
Calcine
Date X1 X2 e temperature(°C
)
2023.04.01
00:01:00 36.22 -1.45 925
2023.04.01
00:02:00 36.23 -1.39 930
943
2023.09.30
23:57:00 46.13 -0.96 722
2023.09.30
93:58:00 47.86 -0.69 714
2023.09.30
93:59:00 47.86 -1.15 691

4.2. Data Processing

Due to the nature of the smelting industry, which utilizes naturally sourced raw ore, there is
significant variability in the operational data which is shown in Figure 1.
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Figure 1. Raw operation data with variabilities and noises.
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The primary objective of this study is to accurately predict the minute-by-minute calcine
temperature (°C). Given the inherent variability and noise in the raw operational data, immediate
analysis is not feasible. Therefore, we performed three types of data preprocessing before proceeding
with the analysis.

First, we addressed missing values. Each variable had missing values, and we employed
different imputation methods based on the characteristics of each variable. Specifically, missing
values caused by equipment anomalies or unclear reasons were replaced with the preceding values.
For the rotary kiln internal temperatures, which exhibited high inter-variable correlations, we used
regression imputation.

Second, we handled outliers. There were two types of outliers: those with identifiable causes
and those without. We employed rule-based outlier detection, replacing outliers with the 10-minute
average or median values preceding the outlier. Notably, for the dependent variable calcine
temperature (°C), outliers often occurred due to clumping of calcine inside the kiln, clinker discharge,
scheduled maintenance, or other operational patterns causing sudden temperature drops.
Consequently, we removed instances where values continuously fell below a specific threshold.

Third, we generated derived variables and identified relationships between variables to reduce
dimensionality. New variables were generated by combining existing variables with new derived
variables that were not originally present in the data. Additionally, variables with comparable
meanings were eliminated if they exhibited lower correlation coefficient values in relation to the
dependent variables.

4.3. Model Training

The purpose of this study is to accurately predict the calcine temperature, extract and identify
key variables influencing calcine temperature predictions. The dependent variable is calcine
temperature, and the independent variables consist of 30 variables collected from the rotary kiln. In
this study, the training data covers the period from April 1 to August 31, 2023, while the test data
spans the month of September 2023. The goal is to predict approximately 21,600 data points.
Modeling was performed using boosting models such as XGBoost, LightGBM, and CatBoost, and
predictions were made using the deep learning time series model GRU. To prevent overfitting, 5-fold
cross-validation was employed, and Bayesian optimization was used to optimize the
hyperparameters.

4.4. Model Evaluation

The performance results of the XGBoost, LightGBM, CatBoost, and GRU models are shown in
Table 4. CatBoost outperformed all other models across all evaluation metrics (MAE, MSE, MAPE).
Based on these comparison results, CatBoost was selected as the model to be used for the SHAP
technique to extract and identify key variables.

Table 4. Model evaluation metrics results.

Model MAE MSE MAPE
XGBoost 41.73 2,539.72 0.045
LightGBM 39.24 2,575.97 0.040
CatBoost 38.22 2,500.36 0.036
GRU 48.13 3,200.14 0.079

4.5. Extraction of Key Variables

The SHAP method, a technique in XAl was employed to analyze the variables used in the
prediction model. The primary variable identified was X10, and the top 10 variables collectively
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explained a significant percentage of the model's predictive power. Specifically, the SHAP analysis
revealed that when certain variables increase or decrease, the calcine temperature (°C)
correspondingly rises or falls. Variables X10, X9, and X22 were among the highest contributors to the
model's predictions, indicating their substantial impact on the calcine temperature. The SHAP
analysis not only identified the most influential variables but also elucidated their directional impact
on the calcine temperature, enhancing the interpretability and transparency of the prediction model.

The primary factors that influenced the comprehensive predictive model were prioritized as
follows: X10, X9, X15 and X8, as shown in Figure 2. The thermocouples which measures inner
temperature of rotary kiln positioned nearest to the calcine outlet exhibit the strongest correlation
with the calcine temperature. This relationship can be attributed to the impact of calcine temperature,
supplied by the burner, on the NOx, Oz components of offgas. Additionally, the rotation speed of the
rotary kiln RPM, influences the duration that the ore remains in the kiln after being fed through the
inlet.

Moreover, we compared the variability in calcine temperature changes under this preemptive
control with the variability observed in conventional operations. A direct correlation between the
increase in calcine temperature and the rise in factors such as X10, X9 and X8 were observed.
Furthermore, there is an inverse relationship noted where the calcine temperature decreases with the
elevation of variables like X14, X7 and X12, as shown in Figure 3.

In conclusion, the SHAP method identified the key factors impacting calcine temperature, and
preemptive control of these factors demonstrated a reduction in temperature variability compared to
standard operational practices, confirming the model's efficacy.
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5. Conclusions

This paper studies aimed to predict calcine temperature and identify influencing factors using
XAI's SAHP to address rising power costs linked to renewable energy and fossil fuels. Temperature
predictions were executed utilizing XGBoost, LightGBM, CatBoost, and GRU algorithms. The
prediction accuracy was highest with CatBoost, achieving a MAPE of 0.036, followed by XGBoost at
0.045, LightGBM at 0.040, and GRU at 0.079. Using XAI's SAHP with CatBoost, we derived influential
factors impacting calcine temperature based on its superior predictive performance. Typically, rotary
kiln operations sustain optimal conditions by adjusting parameters informed by expert experience;
however, variability in nickel laterite composition necessitates precise identification of factors to
maintain calcine temperature stability. By implementing SHAP-derived variables X10, X9, X15, X8,
X14, X7, and X16 from April 2024, the average calcine temperature rose from 843°C in 2023 to 907°C,
enabling a 7.8% reduction in electric furnace power units and lowering manufacturing costs.

Despite successful predictions with the CATBoost algorithm and factor derivation through
SAHP, further enhancements in accuracy and adherence to model guidance are essential for practical
application. Future research should focus on improving the model’s predictive capabilities for
autonomous control of rotary kiln operational variables.
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