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Abstract: In Data Science applications, Machine Learning (ML) and Neural Networks (NNs) are
widely used in a plethora of fields spanning from engineering to biology, from finance to medicine.
Meanwhile, the pure analytical analysis of the related models often lacks detailed description. Trying
to close this gap, during recent years the theory of Optimal Transport has become a popular tool within
the ML community, since it allows the development of efficient algorithms via a linear programming
approach to provide scalable solutions. Furthermore, many ML and statistics tasks require optimizing
an objective function over the space of probability measures. Along this line, the training of a Neural
Network through Stochastic Gradient Descent has been shown to be equivalent to a gradient flow
in Wasserstein space. Starting from these considerations, we review the theoretical aspects of some
essential references trying to highlight potential symmetries between game theory, applied probability
and ML. Moreover, in view of providing a possibly unifying and efficient approach to insert the
temporal structure of the data into the training process, we focus on the Adapted Optimal Transport
(AOT) method. AOT encodes an adapted (non-anticipative) constraint into the allocation of mass
of the classical OT problem while being particularly useful to define laws of stochastic processes.
Accordingly, we provide an in-depth exploration of AOT, providing theoretical insights into the
benefits of including causality constraints for the development of robust and scalable algorithms.

Keywords: neural network; machine learning; adapted optimal transport; mean field function

1. Introduction

The present paper aims at presenting a baseline for the problem of including causality constraint
into Machine Learning (ML) tasks as to increase algorithms robustness, scalability and accuracy,
particularly when dealing with structured time series-based applications. The analysis starts from
a preliminary study of a Supervised Learning problem in terms of a Mean Field Optimal Control
Problem (MFOCP), hence providing an overview about the most relevant theoretical aspects that
can be useful for a generalization of MFOCP to include the temporal structure of the training data.
Accordingly, we provide a complete review about Adapted Optimal Transport (AOT), that is a version
of Optimal Transport (OT) enforcing an adapted (with respect to a filtration) constraint. Furthermore,
we summarizes state-of-the-art works at the crossroad of probability theory, ML and OT methods. We
deepen the introduction of probability measures into ML tasks specifically for Neural Networks (NNs)
applications in the context for explainable Al On the other hand, the use of probability measures
can also help to analyze the behavior of specific algorithm, while NNs can be used to approximate
functions depending on unknown distributions. Trying to clarify the interplay between probability
measures and Neural Networks, we recall possible cross-related cases:

1. Measure approach for NN training: Probability measures can be used to analyze the behavior of
neural networks, both during training and inference. For example, the loss function used to train
a neural network can be seen as a divergence between the model distribution and the target
distribution, which can be expressed in terms of probability measures, [17]. Similarly, the output
of a neural network can be interpreted as a probability distribution over the output space, which
can be analyzed using probability theory. This can be useful for understanding the uncertainty
of the predictions made by the neural network, such as the Stochastic Deep Networks (SDN)
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introduced in [25]. The design of a SDN involves a deep architecture that can handle probability
distribution inputs and outputs and uses the classical Wasserstein distance as the loss function.
Moreover, layers correspond to a sequence of elementary blocks that maps random vectors to

random vectors to capture multiple interactions between samples from the distributions.
2. Probability measures as a tool to regularize neural networks: Probability measures can be used

as a tool to regularize neural networks, by adding a regularization term to the loss function
that encourages the output of the neural network to match a prior distribution by the so called
entropic measure, such as in Eq. (26). Within this case, we mention the entropic version of
Sinkhorn algorithm where an entropic regularization is added, developed, e.g., in [40]. This
algorithm can be useful for scaling OT problem in high dimensional setting or for generative

modeling tasks, where the goal is to learn a distribution that can generate new data samples.
3. Neural networks to approximate empirical measures: Neural networks can be used to approximate

probability measures, such as empirical distributions over a state space for mean field function.
We specifically consider this feature in Section 3. Analogously, one can consider NN architecture
for learning population dynamics. For example, in [33], the authors focus on a recurrent
architecture to model the diffusion of a population by means of a NN by injecting random
noise.

4. Neural Network to learn unknown probability measure for unsupervised learning tasks such as

density estimation, where the goal is to learn the underlying distribution of the data. For example,
in [21], the authors try to build an algorithm to directly learn a probability measure via an optimal
transport metric, also providing some convergence results for the learning algorithm.

The paper is organized in the following paragraphs. In Section 2, we review some basic works
dealing with the mathematical formalism and definitions needed to precisely address supervised
learning problems within the context of NNs. In Section 3, we review some developed methods to
learn, i.e. approximate, mean field functions that depend on probability distribution obtained as limit
object of empirical measures. In 4, we deal with the problem of optimizing over the set of probability
measures with finite 2-moment focusing on JKO-net, an efficient and scalable method to optimize
gradient flow in Wasserstein space. In Section 5, we conclude studying variants of the classical Optimal
Transport problem, specifically focusing on AOT by also considering the class of equivalence of filtered
processes and associated adapted empirical measures.

2. A continuous idealization of NN for a Mean Field Optimal Control Problem

In this section, we present the basic workflow to treat a feed-forward NN as a dynamical system
in order to derive the associated population risk minimization problem.

Indeed, in [35], a continuous idealization of Deep Learning (DL) is introduced, to study the
Supervised Learning (SL) problem as am Optimal Control Problem, see, e.g. [27] and [36] for more
details.

Following [26], SL aims at estimating the function 7 : X — ), commonly known as the Oracle,
where X is a subset of R that contains input arrays such as images, texts, and time series, and
is the corresponding target set. To achieve this, training begins with a set of K input-target pairs
{xi, vl = F(x)}X | where

® xg € R? denotes the input of the NN;

* x7 € R? denotes the output of the NN:
* yr € R! the corresponding target.

For a T-layers network, the Feed-Forward propagation is given by
Xt41 = xt+f(xt,9t) t=0,..,T—1 (1)

6t being the trainable parameters (e.g. bias, weights) in layer ¢ that belong in to a measurable set
U with values in subset of the euclidean space R™.
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We aim at minimizing over the set of measurable parameters If a terminal loss function ® : X x Y —
R plus a regularization term L over a set of measurable parameters I/ to control the size of parameters.
In this way, we can state a Supervised Learning problem as an Empirical Risk Minimization problem,

namely
min *1 E b Loyl +TE 1L 0 2
9611/{ Ki « (xT/y) = ( t) ( )

2.1. Mean Field Optimal Control Problem

The next steps involve moving from the discrete setting to the corresponding continuous
idealization by:

* going from layer index T to continuous parameter ¢;

* passing from discrete set of inputs/output to distribution p that represents the joint distribution
in P,(R? x R') modelling the input-label distribution;

¢ identifying targets y as random variables sampled from the projection over Y of the distribution
Hos

* passing from empirical risk minimization to population risk (i.e. minimization over expectation
E).

Specifically, we pass to the limit both in the layer discretization to obtain a dynamic described by
an Ordinary Differential Equation (ODE) instead of finite difference equation (1). Also we identify
the input-target pairs as samples from a given distribution g allowing to write a SL problem as a
population risk minimization problem.

In summary, the problem aims approximating the Oracle function F using a provided set of
training data sampled by a (known) distribution y by optimizing weights 6; to achieve maximal
proximity between x7 (output) and yr (target).

More specifically, we consider a probability space (), F,P) and we assume inputs xo in R? being
sampled from a distribution P(R%) and the corresponding target yr in R belongs to P(R!). These
variables are considered to be random variables that are jointly distributed according to j9, which
is a distribution in the Wasserstein space W, (R(@+!)). Given a metric space (X, d), the p-Wasserstein
space W (X) is defined as the set of all Borel probability measures on X with finite p-moments, i.e.,
measures i such that

/Xd(x,y)”dy(x) < o 3)

for some y € X. Here, d(x,y) is the metric between x and y, and p is a positive real number. The
Wasserstein space can be endowed with the Wasserstein distance, also known as the p-th Wasserstein
distance, which is a metric that measures the distance between two probability measures ¢ and v in
W, (X) as the infimum of the expected cost of transporting the mass from y to v:

1/p
W = inf d Pd 4
o) = nf [ dtoyrintey)) @

where I'(j1, v) is the set of all probability measures on X x X with marginals y and v.

In our setting, the joint measure yg that models the distribution of the input-target pairs and is
defined by g := P(xp, y7) is studied as an element of W).

Moreover, we assume the controls 6; depend on the whole distribution of input-target pairs
capturing the mean-field aspect. We consider a measurable set of admissible controls (i.e. training
weights) @ C R" and we state the following Mean Field Optimal Control Problem (MFOCP):

T
gl J(0) = By [cp (x1,y7) + /0 L(xt,Gt)dt} ®)
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Xt :f(xt,Gt) 0<t<LT (xO/]/T) ~ Ho

We briefly report basic assumptions we need to have a solution for (5):

e fIRIXO® >R, L:R'x0® — R, ®: R x Rl — R are bounded;

e f, L, ® are Lipschitz continuous with respect to x with the Lipschitz constants of f and L being
independent from parameters 6;

* 4p has finite support in Wy (R@+)

Problem (5) can be approached through two different methods: the first one is based on the
Hamilton-Jacobi-Bellman (HJB) equation in the Wasserstein space, while the second one is based on a
Mean Field Pontryagin Principle. We refer to [30] and [32] for a viscosity solutions to the HJB equation
in the Wasserstein space of probability measures and to [19] for a Pontryagin Maximum Principle for
constrained optimal control problems in the Wasserstein space of probability measures.

About some generalizations of the presented result, we cite the article [16] where the authors
introduce a BSDE technique to solve the Stochastic Maximum Principle to examine the uncertainty
associated with DL. The authors employ an Stochastic Differential Equation (SDE) in place of the ODE
appearing in (5) to continuously approximate a Stochastic Neural Network (SNN).

2.2. Empirical measures over controls

For the sake of completeness, we mention also a completely different perspective to describe
the learning process in a NN, that deals with the introduction of the empirical distribution of the
parameters of neurons (instead of the input-target pairs). Indeed, as illustrated, e.g., by Sirignano
and Spilipupouls in [43], it is possible to associate to each layer the corresponding empirical measure
and build a measure to describe the whole network that takes values in the space of the called nested
measure (also known as adapted Wasserstein distance), that we deepen in Section 5. Following this
perspective, the method of Stochastic Gradient Descent (SGD) can be formalized as minimization
over probability distribution. Moreover, the training of NN is based on the correspondence between
empirical measure of neurons yy and the approximated function fy. Specifically, the training via
gradient descent of a limit of an over-parameterized 1-hidden layer Neural Network with infinite
width is equivalent to gradient flow in Wasserstein space [23,26,27,29]. Similarly, the convergence to
solutions to SDEs have been obtained as universal continuum objects in the small learning rate regime
as proved in, e.g., [22].

3. Learning Mean Field Function

In this section, we study some tools in order to learn functions showing a dependency on a mean
field term, such as an empirical distribution over a given state space. We start with a brief description
of a dynamica of McKean-Vlasov type.

3.1. The McKean-Vliasov SDE

The McKean-Vlasov dynamic involves a SDE that models the behavior of a large population of
interacting particles. In this context, the optimal control problem for this system involves finding a
control strategy that minimizes a certain cost function while satisfying the dynamics of the system. In
particular, the McKean-Vlasov dynamics can be written as:

N
4%, = b(Xp)dt -+ VeaW; + 5 Y [ K(Xe = Xi(0))d (1), (6)
i=1

where X; is the state of the system at time f, b(X;) is the drift term, € is the diffusion coefficient,
W; is a standard Brownian motion, N is the number of particles in the population, y;(t) is the empirical
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measure of the particles at time ¢, and K is a kernel function. Accordingly, the optimal control problem
for the McKean-Vlasov dynamics can be written as:

J(u) =E [/OTL(Xt,ut)dt+¢(XT)], @)

subject to the dynamics of the system:
1 N
AX; = b(Xi)dt + Ved Wy + - ) / K(X; — Xi(£))dps (£)dt + updt, (8)
i=1

where u; is the control input, L(Xj, u;) is the instantaneous cost, and ¢(Xr) is the terminal cost.
A possible approach to the optimal control problem consists in using the Pontryagin Maximum
Principle, which gives necessary conditions for optimality. The Hamiltonian of the system is defined

as:
N

b4 + 3 LK = X(0)| + Sl ©

H(X:, up, pr) = L(X¢, up) + pr -

where p; is the adjoint variable. The optimal control is given by:
uj = arg rrbin H(X,u, pt). (10)
The adjoint variable satisfies the following (backward) differential equation:

oH . 0
dps = —ﬁ(xt,“tzpt)dtr Pr = £(XT)' ()

3.2. Mean Field Optimal Transport

In the recent work [12], the authors introduce the Mean Field Optimal Transport (MFOT) problem
in the field of Mean Field Control, namely optimal control for McKean-Vlasov dynamics. Differently
from classical Mean Field Game (MFG) theory, the final distribution is prescribed while all the agents
cooperate in order to minimize a total cost without terminal cost. Indeed we follow the numerical
scheme introduced in section 3.1 in [12] to approximate feedback controls.

Let R, describe the state space and denote by P,(R¢) the set of square-integrable probability
measures on RY. Let f : RY x P,(RY) x R¥ — R be the running cost, g : R? x P,(R?) — R be the
terminal cost, b : R? x P,(R?) x R¥ — R4 the drift function and ¢ € R the non-negative diffusion.
Given two distributions pg and pr € P,(R?) the aim of MFOT is to compute the optimal feedback
control along all the trajectories v* : [0, T] x R? minimizing

T
JMFOT . 4 s B [ | Fox e @), o0, X))t (12)
0
being u°(t) the distribution of X! under the constraint X solves the SDE

{ X3 ~po X~ prdXp = b(X{, puo(),0(t, XP)dt + odW;, £ €[0,T] (13)
Always in [12], the authors present different numerical methods to solve MFOT:

1. Optimal control via direct approximation of controls v;

2. Deep Galerkin Method for solving a forward-backward systems of PDEs;

3. Augmented Lagrangian Method with Deep Learning exploiting the variational formulation of
MFOT and the primal/dual approach.

doi:10.20944/preprints202305.0252.v2


https://doi.org/10.20944/preprints202305.0252.v2
https://doi.org/https://doi.org/10.3390/sym15091724

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2023 doi:10.20944/preprints202305.0252.v2

6 of 14

In this section, we focus on the direct method (1) to approximate controls of feedback type by an
optimal control formulation. The controls are assumed of feedback form and they are approximated by

g(x, 1) =GMWa(u,pr)),  p € Pa(RY) (14)

being G : R4 — Ry is an increasing function.

The idea is to use the function in Eq. (14) as a penalty for being far from the target distribution pr
instead of the classical terminal cost typical of the MFG/MEC literature. Moreover, discretizing the
SDE (13) by an Euler-Maruyama scheme as well as restricting the set of controls v to ones approximated
via NNS vy with parameters 6 helps the development of numerical algorithms. See Section 3.1 in [12]
for further details.

3.3. Alternative methods

Another proposed data-driven approach, presented in [8], has been considered to solve a stochastic
optimal control problem, where the unknown model parameters were estimated in real-time using
a direct filter method. This method involves transitioning from the stochastic maximum principle to
approximate the conditional probability density functions of the parameters given an observation,
which is a set of random samples.

In [37], the authors report a map that by operating over an appropriate classes of neural networks,
specifically the Bin density-based approximation and Cylindrical approximation, is able to reconstruct a
mapping between the Wasserstein space of probability measures and an infinite dimensional function
space on a similar setting to MFG.

4. Learning Gradient Flow

Numerous problems in ML and statistics deal with minimizing some objective function over
probability distributions. A powerful tool for optimizing functionals relies on gradient flow in the
Wasserstein space.

4.1. Gradient Flow in Wasserstein space

Beyond OT problems, a popular use of Wasserstein distances is to study gradient flows, following
the formalism of minimizing movements studied in [3]. This corresponds to discrete implicit stepping
(i.e. proximal maps) for the Wasserstein distance (instead of more common Euclidean or Hilbertian
metrics) functionals, for instance to model crowd motions.

In the discrete-time setting, gradient flow in Wasserstein space can be used to study the evolution
of probability measures over a sequence of discrete time steps. Consider a probability measure p
over a finite Euclidean space. The gradient flow of the Wasserstein distance can then be used to find a
sequence of probability measures p!, representing, e.g., the evolution of a distribution of a cloud of
points over a finite set X € R". The Wasserstein distance between two consecutive measure p’ and
p'! is minimized along this sequence of measures, which can be seen as a discrete-time analogue of
the continuous-time gradient flow.

The dynamic formulation of OT can be solved by means of the so-called Jordan-Kinderlehrer-Otto
(JKO) scheme, which consists in an implicit Euler discretization of a Wasserstein gradient flow

. 1 _
ok = argminpep, wry | F(0) + EW%(pk Lol, (15)

with F being an energy functional and 7 the time-discretization update. The solution of this
consecutive minimization problems result in a sequence of probability measures in P, (R").
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pi—1(§)

Figure 1. Proximal OT for a population dynamics (from [18]).

The idea is to move from optimization over probability measure of Eq. (15) to an optimization
over convex function, which is still challenging, especially in high dimensions. From Brenier’s theorem,
for any p € P 4, there exists a unique p*~'-measurable gradient Vi : RP — RP of a convex function

P st p= Vo=

4.2. Stochastic Optimization with ICNN and JKOnet

A large variety of dedicated numerical schemes has been proposed for spatial discretization and
solving of these time-discrete flows, such as for instance finite differences and Lagrangian schemes. A
bottleneck of these schemes is the high computational complexity due to the resolution of an OT-like
problem at each time step.

In [7], the authors propose an approach that relies on Input-Convex Neural Networks (ICNN),
a class of deep models with a convex output with respect to their inputs introduced in [13], to
parameterize the space of convex functions { ¢y }in order to approximate the JKO scheme (15) through

) . _ 1 -
0" = argming | F(yotp® V) 5 [ = Vol o )

The authors in [18] investigate the dynamics of a diverse set of points within the framework of
Proximal OT using a Jordan-Kinderlehrer-Otto (JKO) flow of measures. These points are observed
periodically at different timestamps. The authors propose a 2-level algorithm to capture the trajectories
of this population. Specifically, at time ¢ + 1, a new configuration is generated that reduces the energy
while remaining close to the previous configuration observed at time ¢, as measured by the Wasserstein
distance.

To learn an energy function only through snapshots, the [KOnet algorithm is proposed to compute
the JKO flow by a 2-time scale learning algorithm:

- an upper level optimization aiming at minimizing the Wasserstein distance w.r.t. to an energy
functional Jy.

- a lower level optimization of the constrained parameters 6 of a ICNN, [13].

In Figure 2, we can see an observed trajectory (uo, ..., ) of point clouds, we seek parameters
for the energy ]y such that the predictions py, ..., o following a JKO flow from po = p are close the
observed trajectory, by minimizing (as a function of ¢) the sum of Wasserstein distances between p; 1,
the JKO step from p; 1 using Jy, and data ;1.
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Figure 2. JKOnet 2-level optimization process (from [18]).

In [31], the authors deal with deep network generative models focusing on the problem of
comparing two probability distributions that are degenerate, i.e. distribution in higher-dimensional
spaces supported on low-dimensional manifolds, while estimating the parameters of a chosen model
that fits observed data.

5. From OT to AOT

After reviewing some variants of the classical OT problem, we present some definitions concerning
AOT, i.e. an adapted version of OT.

5.1. OT variants

We start with a brief review of classical OT. Given two marginal distribution y € P(R%) and
v € P(RY), the classical OT problem reads

inf / c(x.y)m(dx,dy) (16)
mell(pv)
where c is a cost function and I1(y, v) the set of couplings between y and v.

We focus on the setting where p and v are distributions computed, e.g., from time series on R, j.e.
u~ (Xlr -“er) and v ~ (Yl, ...,Yd)

The Monge formulation reads

pinf [ e TE)p(ax) (17)

where the infimum is computed over all measurable maps T : RY — RY with the pushforward
constraint T#u = v.
Some generalizations of the classical 2-marginal OT problem concern:

e Martingale Optimal Transport. A first model to encode a temporal adapted structure into OT
problems moves within the theory Martingale Optimal Transport (MOT) dealing with transport
plans 7t with martingale couplings. The stability of a sequence of transport plans {7}, ..., 7}
with martingales marginals has been proved to hold in [10], also for the Weak Optimal Transport.

* Multi marginal optimal transport problem. Multi-marginal optimal transport problems introduced
in [4] are formulated as follows. Consider M € N probability measures y, ..., #p on R? and
consider the optimization problem

inf / ) ey d ) ey 18
neH(:,rll,m,yM) (Rd)MC(xl xpm) A (xq xum) (18)
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M
with ¢ being a lower semi-continuous cost function defined on (Rd) with marginal laws

H1, o iy and I (pq, oo up) = {m € Rl x ... x RH V1<i<M, fRd dm = p;}

Trying to approximate this problem by discretizing the state space through N points, x!, ..., xN €
R¥ chosen and a priori fixed, lead to a linear programming problem of size N™.

* From Martingale-constrained to Moment Constrained Optimal Transport . In [5,6], the authors develop
algorithms to sample from probability distribution while preserving the convex order enabling

to use linear programming solver.

The same authors study the same problem also in [4] following another perspective by relaxing
the martingale constraint into a finite number of moment constraints by means of N real-valued
bounded (test) function ¢, ..., ¢ defined on RY.

This method is called Moment Constrained Optimal Transport (MCOT). Differently from multi
marginal setting, it is not the state space to be discretized but the marginal laws constrained
of Eq. (18) are relaxed into a finite number of moment constraints via some given {¢n}1, N It
solves the following:

inf/RdXRdc(x,y) dm (x,y) (19)

where the infimum is computed over the set of probability measures 7t with values in R? x R?
satisfying forall 1 <i,j < N

/Rded ¢i(x)dr(x,y) = /Rd ¢i (x)dp(x) (20)

and

/Rded ¢j(x)dn(x,y) = /Rd ¢i(y)dv(y) (1)

Always in [4], they prove that MCOT is a generalization of Martingale constrained OT when
by means of L!-valued test functions and characteristic functions to enforce the martingale
constraint ( see Equation (3.3.11) from [4]).

5.2. Adapted Optimal Transport

Adapted Optimal Transport (AOT) is the natural problem to deal with laws of stochastic processes,
as shown in e.g. [1,14,15,34,38]. Intuitively, causality encodes an adapted (nonanticipative) constraint
into the allocation of mass of the classical optimal transport problem. The relationship between causal
plans and adapted processes is the adapted analogous of the one between transport plans (Kantorovich)
and classical transport maps (Monge).

The basic idea of COT relies on the assumption that the transport maps T introduced in (17)have
to be adapted.

If, in the classical setting one can split T component-wise by T(x) = (Ty, (x), ..., Ty(x), in the
COT setting the adapted maps are defined in the form T(x) = (T3, (x1), Ta(x1, x2) ..., T(x) where Ty
depends only on the past component of x, namely x1, ..., x;. Thus, the adapted analogous of (17) is
defined as

T’T#V:g}g“ adapted / C(x’ T(x))y(dx) 22)

Concerning coupling, the adaptness of T means that under 7, the first component of Y until
component ¢ should be independent of the component of X after t. This construction allows to include
the conditional independence of Y into the set Il; of arbitrary causal couplings that is defined by

doi:10.20944/preprints202305.0252.v2
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He(pv) = {m e Upv)  if (X,Y) ~ 7,
then (Yl, ey Yt) gin (Xt—i-l/ ey Xd) | (Xl, ey Xt)}
Optimizing over the set of causal coupling let us formulate the first AOT problem
inf / c(x.y)m(dx,dy) (23)
nelle(pv)

that is called Causal OT.

In order to provide a symmetrical property that is desirable to give a more robust structure to the
problem and also necessary to introduce a proper notion of adapted Wasserstein distance, one may
introduce the set of bicausal couplings 11,

Mye(p,v) = {m € M) < (X, Y) ~ 7,
then (Yl, ...,Yt) gin (Xt—i-l/ ...,Xd) | (Xl, ,Xt)} (24)
and (Xl, ...,Xt) gin (Yt+1/ ...,Yd) | (Yl, ,Yt)}

and the equivalent Bicausal-OT formulation

inf / c(x.y)m(dx,dy) (25)
el (1)

To fix nomenclature, we call Causal OT (23) and Bicausal OT (25), AOT problems. As recently
proved in [10], it is possible to write a Linear Program formulation for AOT problems (23) and (25) by
discretizing the marginal distributions, see Lemma 3.11 in [10] for further details.

As shown in several works, e.g. [20,24,40], to compute efficiently a solution of OT problems, it
is convenient to work with a regularized version of (16) by introducing an entropic regularization in
order to apply Sinkhorn’s algorithm [41]. We refer to the landmark book [40] for a complete overview
with a detailed treatment of Sinkhorn application in Section 4, [40].

In the same fashion, we provide to Eq. (25) an entropic regularization term to study the following
Entropic-AOT

inf / c(x.y)r(dx, dy) + eDg(m, u®@v), (26)
€y ()

being € a positive positive constant, Dg;, the Kullback-Leibler divergence and y ® v the product
measures between marginals.

In [10] the authors construct an adapted version of Sinkhorn algorithm allowing to handle
computations by constructing a sequence of transport plans 77* that converges (lineraly) to the optimal
value of Eq. (26).

In next paragraphs, we review some of the basic tools of the causal framework: the Adapted
Wasserstein distance inherited from AOT, the class of equivalence of filtered processes and the Adapted
empirical measure.

5.3. Adapted Wasserstein Distance

The starting point is to consider stochastic processes on the canonical space in finite discrete time
with values in RY. We can represent the law of a stochastic process as a probability measure on P (R%).
Even at this very early stage, it is clear that the usual weak topology on P(R¢) is not enough for
encoding the temporal structure of the process that is crucial for stochastic optimization problem.

Thus, different researchers have introduced topological structure on the set of stochastic processes
in order to capture the temporal structure. Among different approaches on defining a distance for
multistage stochastic optimization, we focus on nested distance also known as adapted Wasserstein
distance.
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The notion has been independently defined by Pflug and Pichler [38] in a pure distribution setting,
i.e. without reference to probability spaces, by means of particular stochastic processes, called tree
processes, and by Lassalle [34] that introduces the so-called causal transport plans in Polish spaces.

Following a dynamical setting, adapted Wasserstein distance can model a distance between laws
of stochastic processes integrating also the temporal structure of the data.

Recalling notation and definition from Eq. (25), we define the adapted Wasserstein distance as

AWh(pv) = inf  ET[|IX=Y|[}],  peE[l,+o] 27)
melly(u,v)
with Iy being the set of bicausal couplings defined in Eq. (24).

The nested distance represents a compatible metric for the weak adapted topology. More precisely,
as proven in [9], the convergence AWV, is equivalent to the convergence in the weak topology plus
convergence of the p' moment. On the other hand, a possible limitation is due to the fact that
(Pp(Rd), AWP> is not complete since Pp(Rd). According to [11], a possible method to store the extra

information needed for achieving the completion of (Pp (R%), AWp> is by introducing the following
space of filtered stochastic processes.

5.3.1. The class of filtered processes

We recall Definition 1.1 from [11]: a five-tuple

N N
X = (Qr F B (Fi)iza s (Xt)izl) ’
is called a filtered stochastic processes if (ft)fil is adapted to (Xt)il\il.
It is straightforward to extend the notion of adapted Wasserstein distance defined in (27) to filtered
processes by the following

PIXY) = inf  E7[||X - Y]], 1, ; 28
AVHEY) = inf ETIX-YIEL, p e (Lo 8)

We report some properties about the Wasserstein space of stochastic processes:

* (FPp, AW,) is a geodesic space (assuming p > 1) and it is the completion of (PP(Rd ) AW,,).
The first property suggests the possibility an interpolation, in the sense of McCann, also of
stochastic processes that is not possible if one considers the usual Wasserstein space Py (R);

¢ two filtered processes X and Y are identified if .AWP(X,Y) = 0. Moreover, this equivalence
relation encodes also information about their filtration.

e the space of filtered stochastic processes is defined as a set of equivalence classes as in the case of
LP spaces. An equivalence class of P, collects all representatives processes that are identical
from a probabilistic perspective.

5.3.2. Adapted Empirical Measure

Another key concept in AOT theory concerns constructing empirical measures of stochastic
processes also including a dependence on the flow of time.
We report three possible methods to construct adapted empirical measures:

e in [38], adapted empirical distribution is constructed via convolution of a smooth kernel with the
empirical measure on paths;

¢ in [14,15] the authors project paths on a grid by means of a disjoint union of small cubes projecting
the stochastic process into the center of these small cubes;

e in [1] the authors show the convergence of adapted empirical measure in RY, removing the
assumption of compact support for the underlying distribution. Moreover, the authors introduce
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the non-uniform adapted empirical measures by defining a non-uniform grid on R?T, dealing
with cubes of different sizes, i.e. of lower dimension near the origin, bigger far in the margins.

In all works, they establish convergence of the empirical measure to the true distribution.

6. Conclusions

The present review article provides an all-around and diversified overlook of methods at the
overlapping of ML, game theory and probability theory. In doing this, we tried to provide a concrete
outlook to possible developments of a challenging research path focused on developing robust
algorithms for Adapted optimal transport. Indeed, employing the Sinkhorn algorithm with the
addition of the entropic regularization potentially allows to derive a method that can handle the
curse of dimensionality. On the other hand, OT problems are sensitive to small perturbations in the
input data, which can make the solutions unstable. The application of their convergence results in a
causal setting could lead to improved training algorithms and more stable models in the field of causal
inference for times series.
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Abbreviations

The following abbreviations are used in this manuscript:

oT Optimal Transport

coT Causal Optimal Transport

AOT Adapted Optimal Transport

NN Neural Network

MFOCP  Mean Field Optimal Control Problem
MFG Mean Field Games

MEFC Mean Field Control

ML Machine Learning

DL Deep Learning

MFOT Mean Field Optimal Transport
SDE Stochastic Differential Equation
ICNN Input-Convex Neural Networks
JKO Jordan-Kinderlehrer-Otto

SNN Stochastic Neural Network
SGD Stochastic Gradient Descent
HJB Hamilton-Jacobi-Bellman

ODE Ordinary Differential Equation

MCOT  Moment Constrained Optimal Transport
MOT Martingal Optimal Transport
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