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Article
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Abstract: The frequent occurrence of space debris collision incidents has made research on autonomous
satellite avoidance necessary. Against this backdrop, the paper presents a short-term autonomous
space debris avoidance algorithm based on the Equivalent Linear Velocity Obstacle (ELVO) paradigm,
which addresses the challenges of multiple debris scenarios and real-time decision-making. Error
analysis and compensating terms are provided to enhance the algorithm’s accuracy. Simulations are
proposed to validate the algorithm, and the simplified design reduces the online computational load,
demonstrating its feasibility for future on-orbit usage.

Keywords: multiple space debris; autonomous avoidance; short-term avoidance; fuel efficiency;
continuous thrust; adaptive control

1. Introduction
In the last few decades, the amount of space debris has dramatically increased [1–3], and this

trend is expected to continue in the near future. According to estimations by the European Space
Agency, as of December 2023, the amount of space debris pieces exceeding 10 centimeters stands at
approximately 36,500, with a staggering one million pieces ranging from 1 to 10 centimeters. With
the continuous increase in satellites and space debris, the risk of collision has proliferated. When the
density of objects in low Earth orbit (LEO) becomes too high, collisions between objects could trigger a
cascade of further collisions, a phenomenon known as Kessler syndrome. The collision of Kosmos
2251 with Iridium 33 in 2009 serves as a prime example.

Traditional collision avoidance maneuvers rely on ground station and manual operation, requiring
extra time and computational resources. Decisions often have to be made days in advance, imposing
substantial operational control burdens and increasing the likelihood of a high false alarm rate. Given
the continuous deterioration of the LEO environment, autonomous satellite avoidance is imperative.

Autonomous avoidance brings noteworthy merits. For instance, satellite-based sensors exhibit su-
perior accuracy in close-range detection, thereby reducing observational uncertainties. High-precision
measurements can substantially mitigate false alarms, minimize unnecessary orbital maneuvers, and
enable precise estimation of smaller safety margins. Furthermore, satellite-based sensors are capable
of detecting uncatalogued space debris in close proximity that ground-based sensing systems cannot
observe. By implementing emergency autonomous avoidance maneuvers, satellites are equipped with
the capability to effectively respond to unexpected contingencies.

However, current autonomous avoidance systems face critical challenges, with the core contradic-
tion lying in the mismatch between limited onboard resources and the dynamic demands of complex
space environments. Specifically:

• Severely constrained computational resources conflict sharply with high real-time responsiveness
requirements for collision avoidance algorithms.
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• Precious propellant reserves necessitate that frequent maneuvers be minimized, as they signifi-
cantly shorten operational lifespans. Optimal orbital maneuvers must balance safety avoidance
with propellant conservation, as well as mission interruption minimization.

• Cascading collision risks emerge in constellation satellite clusters or densely populated orbital
regions. Single collision avoidance maneuver may trigger domino-like collision chains, making it
exceptionally difficult to resolve. Indeed, mitigating global collision risks should be a priority
and requires a systematic approach.

Scholars have recognized the aforementioned issues and devoted efforts to related research. A
genetic algorithm based multiple debris avoidance method was proposed by [8], focusing on finding
a safe orbit. Recently, [9] proposed an autonomous collision-avoidance strategy based on adaptive
potential fields and [10] attempted to address the autonomous collision avoidance problem using
a reinforcement learning approach. Regarding the mission level, [11] developed an autonomous
spacecraft avoidance framework that dynamically coordinates routine operations and collision evasion
through closed-loop planning. Nevertheless, real-time decision-making in multi-debris environments
remains insufficiently resolved, particularly due to the computational complexity and dynamic un-
certainties involved. Furthermore, existing approaches typically focus on avoidance at a single point
in time, neglecting the spacecraft’s entire trajectory. This oversight may compromise the satellite’s
long-term safety.

In this paper, we propose an algorithm for short-term autonomous avoidance of multiple debris,
leveraging the Equivalent Linear Velocity Obstacle (ELVO) method, which is inspired by the Velocity
Obstacle concept introduced by [12]. VO paradigm is one effective method for addressing the challenge
of autonomous navigation for robots and vehicles , which was later improved into multi-agent cases
by [14,15]. While original VO paradigm focused on uniform linear motion with impulse control,
several variations have been proposed to extend its application scenarios. [16] proposed ELVO,
extending VO to arbitrary trajectories by considering equivalent linear trajectories of objects, while [15]
studied robots with finite acceleration, and [17,18] applied the method into 3D scenarios.

By dynamically computing the Velocity Obstacle Domain (VOD) between debris and the space-
craft, we can generate avoidance paths in real time, making the approach suitable for multi-debris
scenarios. It should be noted that this method is valid only under the assumptions of linear uniform
motion, impulsive control, and accurate measurement. So, it leads to certain safety risks for satel-
lites during actual close-range space avoidance maneuvers. We overcome the aforementioned issues
through safety distance compensation and adaptive online adjustment. It demonstrates that, as long
as the maneuverability can satisfy the velocity increment required by the ELVO method, the algorithm
guarantees collision-free operation for the satellite in short-term scenarios. Detailed error analysis is
provided. We finally integrat the proposed autonomous algorithm into traditional long-term avoidance
system, and discuss under what circumstances it is appropriate to activate this algorithm for short-term
autonomous avoidance.

The rest of this paper is organized as follows. Section 2 outlines the problem formulation and
Section 3 develops an ELVO-based collision avoidance algorithm supported by error analysis. This
algorithm is integrated into long-term avoidance strategies and discussed in Section 4. Section 5 evalu-
ates the method through numerical simulations of two scenarios, while Section 6 concludes the work.

2. Problem Formulation
This paper studies autonomous collision avoidance of the satellite against multiple proximate

space debris objects. Assume that multiple pieces of space debris are distributed near the satellite’s
mission orbit, and all of them are within the observable range of the satellite’s onboard sensors. At time
t = t0, the satellite has received warnings indicating that some of them are predicted to collide with
it at specific future moments. More precisely, let the Time of Closest Approach (TCA) between the
satellite and the space debris be denoted as t̄i

C, i = 1, · · · nd, where nd is the number of the proximate
debris. We say that debris i collides with the satellite, if their distance at time t̄i

C is less than or equal
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to the preset safety distance Ri. To avoid collisions, the satellite will execute an autonomous orbital
maneuver, which needs to meet the following engineering constraints:

• control saturation;
• fuel efficiency;
• mission continuity.

2.1. Coordinate System

In this work, the Local Vertical Local Horizontal (LVLH) coordinate system is employed to
analyze the satellite and debris dynamics.

• Introduce a reference orbit, whose orbital elements are consistent with those of the satellite at
time t = 0 before any maneuver is performed. The semi-major axis, eccentricity, inclination, right
ascension of the ascending node, argument of periapsis and true anomaly of the reference orbit
are denoted by

are f , ere f , ire f , Ωre f , ωre f , ϕre f .

• The origin of the LVLH coordinate system is located at the center of mass of the reference satellite.
The x-axis points from the center of the Earth to the satellite’s center of mass (local vertical), the
z-axis points in the direction of the orbital angular momentum vector (perpendicular to the orbital
plane), and the y-axis completes the right-handed coordinate system by pointing in the direction
of the satellite’s velocity vector (local horizontal).

2.2. Dynamics Models

This paper employs a time-variant linear model from [19] to describe the relative motions regard-
ing the elliptical reference orbit. In the LVLH coordinate system, the relative motion of the space debris
can be written as a series of time-varying linear equations:

ẋi(t) = A(t)xi(t), i = 1, · · · nd, (1)

where xi = (ri⊤, vi⊤)⊤ denotes the state of the i-th debris, which consists of both position and velocity
components. Moreover, matrix A(t) is defined by (2), where µ is the Earth gravity constant, and

A(t) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

n2
re f + 2 µ

r3
re f

−ϵre f 0 0 2nre f 0

ϵre f n2
re f −

µ

r3
re f

0 −2nre f 0 0

0 0 − µ

r3
re f

0 0 0


. (2)



rre f =
are f (1− e2

re f )

1 + ere f cos ϕre f

nre f =

√√√√µ(1 + ere f cos ϕre f )

r3
re f

ϵre f = −
2µere f sin ϕre f

r3
re f
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are the time-varying terms depending on the orbital elements of the reference satellite. Clearly, if
ere f ≡ 0, equations (1) – (2) become time-invariant, which are the well known Clohessy-Wiltshire (C-W)
equations.

Similarly, in the LVLH coordinate system, the dynamics for the satellite are

ẋ0(t) = A(t)x0(t) + Bu(t), (3)

where x0 = (r0⊤, v0⊤)⊤ denotes the state of the satellite and B = (O3×3, I3×3)
⊤is the control matrix,

with O and I being the zero and identity matrices of corresponding shapes. The control input u, which
represents the satellite’s orbital thrust acceleration, is bounded by its maximum value umax.

3. ELVO-Based Space Debris Avoidance
Write the relative state between the satellite and the i-th debris by

x0i(t) = x0(t)− xi(t), i = 1, · · · nd.

Accordingly, the position and velocity components of x0i(t) are denoted by r0i(t) and v0i(t), respec-
tively. In this section, we will design a fast online algorithm to ensure that the satellite maintains a
sufficient safety distance from any space debris, i.e.,∥∥∥r0i(t)

∥∥∥ ≥ Ri, ∀i = 1, · · · , nd, ∀t ≥ t0. (4)

3.1. Velocity Obstacle

The Velocity Obstacle (VO) method is a geometric approach that defines the set of all velocities
leading to collisions with other objects, under the assumption that these objects maintain their current
velocities. In this work, the idea of VO is employed for space debris avoidance, and the errors
introduced by the uniform linear motion assumption will be systematically analyzed and compensated.

We first elaborate on the fundamental principle of the VO method. To this end, we make an ideal
assumption here, which will be relaxed in subsequent sections. Suppose the satellite with state x0

performs an orbital maneuver control at time t0 to avoid the debris with state xi, where both objects
are assumed to be in uniform linear motion (It holds when [t0, t̄i

C] is an extremely short time interval).
Therefore, the relative position r0i(t) as a function of time and constant relative velocity v0i is given by:

r0i(t) = r0i(t0) + tv0i. (5)

According to (5), the Relative Collision Cone for the satellite and the i-th debris is defined as the
set of all relative velocities that lead to collision:

CC0i :=
{

v0i
∣∣∣∣min

t≥t0
r0i(t) ≤ Ri

}
, (6)

where r0i(t) is the magnitude of vector r0i(t). In the following text, we denote the magnitude of vector
a by a without further explicit mention. Given the geometric relationship, it follows that CC0i forms
a cone in the space of relative velocity, with apex, axis and vertex angle defined by 0, −r0i(t0) and
2 arcsin(Ri/r0i(t0)), respectively. Defining

α := arcsin(Ri/r0i(t0))

as the half-vertex angle of the cone, one has

CC0i =
{

v0i
∣∣∣∠⟨v0i,−r0i(t0)⟩ < α

}
. (7)
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The corresponding Velocity Obstacle is then the collection of all the velocities of the satellite that
would result in a collision with the i-th debris:

VO0i := CC0i + vi

=
{

v0
∣∣∣∠⟨v0i,−r0i(t0)⟩ < α

}
.

(8)

Figure 1 illustrates the VO for the satellite and debris.

x

y

O

vi

r0i(t0)

R i

Figure 1. Illustration of Velocity Obstacle, projected into 2D space.

A velocity v0 is collision-free for the satellite with respect to the i-th debris, if and only if

v0 /∈ VO0i.

Alternatively, this constraint can be expressed in terms of cosine as

cos∠⟨v0i,−r0i(t0)⟩ ≤ cos α,

or, equivalently,

−v0i · r0i(t0)

v0i · r0i(t0)
≤

√√√√1−
(

Ri
)2(

r0i(t0)
)2 .

Considering all the space debris, we say a velocity v0 is collision-free for the satellite if and only if

v0 /∈
⋃

i
VO0i.

3.2. Equivalent Linear Velocity Obstacle

In view of (1) and (3), the satellite and debris typically undergo nonlinear motion in the LVLH
coordinate system. So, these space objects with time-varying velocities vj(t), j = 0, 1, . . . , nd actually
correspond to the positions

r j(t) = r j(t0) +
∫ t

t0

vi(s)ds.

In this sense, we apply the Equivalent Linear Velocity Obstacle (ELVO) method proposed by [16],
defined below, which is a variation of VO developed to account for arbitrary trajectories.

Definition 1. The Equivalent Linear Velocity Obstacle (ELVO) between the satellite and the i-th debris at
time t1, denoted ELVO0i(t1, t0), is defined as the VO between the satellite and a virtual object which reaches
ri(t1) by moving at a constant velocity vj(t1) over the interval [t0, t1].
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x
y

r0(t0)

v0

ri(t0)vi(t0)

vi(t1) ri(t1)

vi(t1)

ri(t0)

Figure 2. Illustration of Equivalent Linear Velocity Obstacle. The debris moves with a varying velocity vi(t). At
time t1, the debris reaches position ri(t1) with velocity vi(t1), as indicated by the dashed circle ri(t1). The dashed
circle r̂i(t0) represents a virtual object that will reach ri(t1) at time t1 with a constant velocity of vi(t1). The ELVO
of the satellite with respect to the i-th debris at time t1 is defined by the VO of the satellite with respect to this
virtual object.

Evidently, the virtual object in Definition 1 has a constant velocity vi(t1), and at any time t, its
position satisfies

r̂i(t) = ri(t1) + (t− t1)vi(t1),

as illustrated in Figure 2. So, ELVO0i(t1, t0) is defined as the VO between the satellite and this virtual
object. That is,

ELVO0i(t1, t0) =
{

v̂0
∣∣∣∠⟨v̂0i,−r̂0i(t0)⟩ < α̂

}
,

where r̂0i(t0) := r0(t0)− r̂i(t0), v̂0i := v̂0 − vi(t1) and α̂ := arcsin(Ri/∥r̂0i(t0)∥). Note that both v̂0

and v̂0i are constant vectors, where v̂0 represents a target velocity of the satellite.
It can be seen from Figure 2 that a portion of collisions resulting from a curved trajectory can be

captured by the ELVO. The effectiveness of the method increases as the actual trajectory approaches
a straight line. In fact, a velocity increment δv provided above guarantees safety only under the
assumptions of linear uniform motion, impulsive control, and accurate measurement. But in real
close-proximity scenarios, these assumptions is not strictly valid, leading to potential safety risks. To
ensure the effectiveness of the method, we need a larger safety distance R̂i to replace Ri in (6). The
specific value of R̂i will be calculated in the following section.

3.3. Compensated safe distance R̂i

Determining R̂i in the ELVO method is crucial for satellite safety during the avoidance maneuvers.
To compensate for the mentioned errors and maintain the required safety margins, additional terms
must be added to the original safe distance Ri. Now, we will propose a compensated safe distance R̂i

to substitute Ri in (6) to guarantee a successful evasion.
Let ti

C := t̄i
C + δti

C be the new TCA after the maneuver being applied after time t0, where δti
C is

the deviation of the TCA. The real relative trajectory under the dynamics model (3) is

x0i(ti
C) = Φ(ti

C, t0)x0i(t0) +
∫ ti

C

t0

Φ(ti
C, s)Bu(s)ds

= Φ(ti
C, t0)x0i(t0) +

∫ tA

t0

Φ(ti
C, s)B

δv
tA

ds

= Φ(ti
C, t0)x0i(t0) +

∫ tA

t0

Φ(ti
C, s)

δx
tA

ds,
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where

Φ(t, t0) = exp(
∫ t

t0

A(s)ds)

is the corresponding state transition matrix, and u(s) = δv/tA is a constant thrust control completing
the velocity increment δv over a time period tA. Moreover, δx := Bδv defines the corresponding
increment in the state.

On the other hand, the relative trajectory used for the ELVO is given by

x̂0i(ti
C) = Φ̂(ti

C − t0)
(

Φ̂(−t̄i
C + t0)x̂0i

C + δx
)

= Φ̂(δti
C)x̂0i

C + Φ̂(ti
C − t0)δx,

(9)

where Φ̂ is the transfer matrix of uniform linear motion defined as

Φ̂(t) =



1 0 0 t 0 0
0 1 0 0 t 0
0 0 1 0 0 t

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

and x̂0i
C is the forecast relative state at time t̄i

C. This forecast inherently contains randomness due to the
measurement inaccuracy, and we can write

x̂0i
C = x0i

C + η0i, η0i ∼ N (0, Σ0i),

where x0i
C is the real relative state at the TCA t̄i

C, and N , Σ0i refer to the Gaussian distribution and its
covariance matrix, respectively. Consequently, (9) can be rewritten as

x̂0i(ti
C) = Φ̂(δti

C)
(

x0i
C + η0i

)
+ Φ̂(ti

C − t0)δx. (10)

The difference between the above two trajectories therefore becomes

x0i(ti
C)− x̂0i(ti

C) = ∆Φ(ti
C, t̄i

C)x0i
C − Φ̂(δti

C)η
0i

+
1
tA

∫ tA

t0

(
Φ(ti

C, s)− Φ̂(ti
C − t0)

)
ds · δx,

(11)

where ∆Φ(t′, t) := Φ(t′, t)− Φ̂(t′ − t). So, the trajectory difference in the ELVO method given by (11)
comprises three error terms, given by

∆1ri
C =

∥∥∥η0i
r

∥∥∥,

∆2ri
C =

∥∥∥∆Φrr(ti
C, t̄i

C)r
0i
C + ∆Φrv(ti

C, t̄i
C)v

0i
C + δti

Cη0i
v

∥∥∥,

∆3ri
C =

∥∥∥∥ 1
tA

∫ tA

t0

(
Φrv(ti

C, s)− Φ̂rv(ti
C − t0)

)
ds · δv

∥∥∥∥.

Here, η0i
r and η0i

v denote the position and velocity components of η0i, respectively. Moreover, Φrv, Φ̂rv,
∆Φrr and ∆Φrv represent the corresponding 3× 3 sub-blocks of matrices

Φ =

(
Φrr Φrv

Φvr Φvv

)
, Φ̂ =

(
Φ̂rr Φ̂rv

Φ̂vr Φ̂vv

)
, ∆Φ =

(
∆Φrr ∆Φrv

∆Φvr ∆Φvv

)
.
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I. Estimation of ∆1ri
C

This term is the observation error. Suppose the position and the velocity components of η0i are
independent. Then, one has

η0i
r ∼ N (0, Σ0i

rr),

where Σ0i
rr represents the corresponding sub-block of matrix Σ0i.

Recall the Mahalanobis distance, defined for a zero-mean distribution, as presented in [20]:

dM(r, Σ) =
√

r⊤Σ−1r.

The squared Mahalanobis distance d2
M(r, Σ) follows a chi-squared distribution whose degree of free-

dom, k, equals the dimension of the original distribution, e.g., k = 3.
Given a sufficiently small ϵ, one can get a safe Mahalanobis distance D such that

P(dM ≤ D) ≥ 1− ϵ,

by the cumulative distribution function of the chi-squared distribution. Then, the compensating term
∆1ri

C can be selected as
∆1ri

C = max
r
∥r∥,

s.t. dM(r, Σ0i
rr) ≤ D,

which is identical to
∆1r̂i

C = Dσ0i
max, (12)

with σ0i
max denoting the square root of the maximal eigenvalue of Σ0i

rr.
II. Estimation of ∆2ri

C
The second error term, ∆2ri

C, describes the position deviation introduced by the TCA deviation δti
C.

Determining the exact value of δti
C poses significant challenges. Fortunately, in most flyby scenarios,

δti
C ≪ 1, considering the notably high relative velocity during the encounter compared to the satellite’s

short-term maneuvering capabilities.
The total effect consists of two components: one arising from the uniform linear motion approxi-

mation, and the other resulting from the inaccuracy in velocity measurement. The first part is bounded
by ∥∥∥∆Φrr(ti

C, t̄i
C)
∥∥∥r0i

C +
∥∥∥∆Φrv(ti

C, t̄i
C)
∥∥∥v0i

C .

Figure 3 shows the norms of the above matrices with respect to δti
C, determined by the six orbital

elements of the reference orbit. Together with r0i
C and v0i

C , they give a bound of ∆2ri
C.

−20 −15 −10 −5 0 5 10 15 20

TCA deviation, δtC (s)

0

1

2

3

4

5

6

‖∆
Φ
r
r
(t̄
C

+
δt
C
,t̄
C

)‖

×10−4

(a) Values of ∥∆Φrr(t̄C + δtC, t̄C)∥.

−20 −15 −10 −5 0 5 10 15 20

TCA deviation, δtC (s)

0.0

0.1

0.2

0.3

0.4

‖∆
Φ
r
v
(t̄
C

+
δt
C
,t̄
C

)‖

(b) Values of ∥∆Φrv(t̄C + δtC, t̄C)∥.

Figure 3. Values of ∥∆Φrr∥ and ∥∆Φrv∥ with respect to δtC.
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For the second part, let η0i
v ∼ N (0, Σ0i

vv), where Σ0i
vv represents the corresponding sub-block of

matrix Σ0i and λ0i
max is the square root of its maximal eigenvalue. Similar to (12), Dλ0i

max serves as a
bound of ∥η0i

v ∥. Hence, ∆2ri
C is less than

∆2r̂i
C =

∥∥∥∆Φrr(ti
C, t̄i

C)
∥∥∥r0i

C +
∥∥∥∆Φrv(ti

C, t̄i
C)
∥∥∥v0i

C

+ |δti
C|Dλ0i

max.

III. Estimation of ∆3ri
C

This term is the error from approximating continuous thrust as impulse. Suppose the time period
required for completing the velocity increment δv satisfies tA ≤ T, where T > 0 is a preset constant.
Then,

∆3ri
C ≤

1
tA

∫ tA

t0

∥∥∥Φrv(ti
C, s)− Φ̂rv(ti

C − t0)
∥∥∥ds · ∥δv∥

≤ max
0≤s≤T

∥∥∥Φrv(ti
C, s + t0)− Φ̂rv(ti

C − t0)
∥∥∥umaxT

≤ max
0≤s≤T

∥∥∥Φrv(ti
C, s + t0)−Φrv(ti

C, t0)
∥∥∥umaxT

+
∥∥∥∆Φrv(ti

C, t0)
∥∥∥umaxT := ∆3r̂i

C.

Clearly, ∆3r̂i
C can be computed by umax, T and the the reference orbital elements. Figure 4 show the

numerical values of ∥Φrv(t, s + t0)−Φrv(t, t0)∥ and ∥∆Φrv(tC, t0)∥.
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Figure 4. Values of ∥Φrv(t, s + t0)−Φrv(t, t0)∥ and ∥∆Φrv(tC, t0)∥.

IV. Computation of R̂i

Now, a compensated safe distance R̂i is defined as

R̂i :=Ri +
3

∑
k=1

∆k r̂i
C. (13)

The compensating terms effectively capture the difference between the real trajectories and the
virtual trajectories employed in the ELVO approach. At the same time, the ELVO, by design, guarantees
that the virtual trajectories of the satellite and debris remain separated by at least the safe distance Ri.
In fact, ∥∥∥r0i(t)

∥∥∥ ≥ ∥∥∥r0i(ti
C)
∥∥∥

≥
∥∥∥r̂0i(ti

C)
∥∥∥− 3

∑
k=1

∆k r̂i
C

≥ Ri,
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where r̂0i(ti
C) is the position component of x̂0i(ti

C). Therefore, solving the ELVO problem with the
compensated safe distances R̂i, i = 1, . . . , nd can ensure the satellite’s safety.

Proposition 1. If δti
C ≪ 1, i = 1, . . . , nd, then the satellite can avoid collisions by applying the ELVO approach

with the compensated safe distances R̂i.

Remark 1. Assume that the onboard sensors of the satellite have high observation accuracy, say, σ0i
max = 10 m.

Take ϵ = 10−5, then D ≈ 25.9 and hence ∆1r̂i
C ≈ 260 m. The reference orbit is further set as nearly circular

at an altitude of approximately 500 km. Additionally, suppose ri
C = 1 km, vi

C = 1 km/s, λ0i
max = 1 m/s and

δti
C = 5 s, then ∆2r̂i

C ≈ 160 m. Take t̄i
C = 400 s, umax = 0.03 m/s2, T = 20 s, which lead to ∆3r̂i

C ≈ 150 m.
So, it is reasonable to take a safe distance within 1 kilometer. This example illustrates that, unlike long-term
avoidance [10,21], a much smaller safe distance can be set due to the higher prediction accuracy in short-term
avoidance.

Remark 2. The computation for the compensated safe distance R̂i is applicable to all underlying systems with
linear forms, including time-invariant ones like C-W equations and time-variant ones, such as those described
in [22].

3.4. ELVO-Based Avoidance Algorithm

Considering fuel efficiency and mission continuity, the orbital elements of the satellite after maneu-
vering should be as close as possible to those of the reference orbit. In other words, the instantaneous
orbital velocity and position of the satellite after the maneuver should not differ significantly from
those of the virtual satellite. More simply, we aim to minimize the velocity increment required for the
satellite to avoid space debris. That is, for any orbital control implementation time t0 ≥ 0, we aim to
solve

min
v
∥v− vre f (t0)∥

s.t. v /∈
⋃

i
ELVO0i(t̄i

C, t0),
(14)

where t̄i
C is the TCA of the satellite and the i-th debris reported at time t0 and vre f is the reference

satellite velocity. Selecting velocity increment δv as the programming variable, then (14) becomes

min
δv
∥δv∥

s.t. (δv + v0(t0)) /∈
⋃

i
ELVO0i(t̄i

C, t0).
(15)

Remark 3. Additional constraints can be incorporated into the optimization problem (15) to enforce mission-
specific requirements. For instance, in most cases, in-plane adjustments are prioritized over out-of-plane
corrections due to their significantly lower propellant consumption. So, a linear equality constraint

(0, 0, 1) · δv = 0

can be imposed to restrict the velocity increment vector δv to the orbital plane.

The pseudo-code for the ELVO-based short-term avoidance is presented in Algorithms 1 and 2.

Algorithm 1 Closest Approach ELVO

1: Input: space objects’ states (xi)
nd
i=0; safe distances (R̂i)

nd
i=1

2: calculate t̄i
C and xi(t̄i

C) for i = 1, · · · , nd
3: δv← solution of (15)
4: Output: target velocity increment δv
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Algorithm 2 Adaptive ELVO-Bases Avoidance

1: Input: Epoch time horizon T
2: for epoch E in 0, 1, · · · do
3: get space debris’ states (xi)

nd
i=0

4: get safe distances (R̂i)
nd
i=1

5: get velocity increment δv by Algorithm 1 with (xi)
nd
i=0, (R̂i)

nd
i=1

6: u← umax · δv/∥δv∥ is the thrust control to be applied
7: tA ← ∥δv∥/umax is the time needed to complete the control
8: if tA ≤ T then
9: Apply control u during the time period t ∈ [ET, ET + tA]

10: Avoidance complete
11: else
12: Apply control u during the time period t ∈ [ET, (E + 1)T]
13: Start next epoch
14: end if
15: end for

Remark 4. When solving the constraint optimization problem (15), Algorithm 2 generates maneuver increments
scheduled for completion within the current programming horizon T. Any unfinished increments are preserved
as initial guesses for the subsequent iterations. This approach not only maintains maneuver sequence consistency
but also optimizes computational efficiency through solution inheritance between consecutive horizons. Notably,
the error in the compensated safe distance estimate R̂i can be corrected via information updates (Evidently, ∆2ri

C
and ∆3ri

C will tend to zero as the i-th debris nears its TCA).

4. ELVO-Based Algorithm into Avoidance Framework
Autonomous perception-based adaptive short-term avoidance algorithm offers advantages such

as a low false alarm rate and the ability to handle emergency events. However, it also suffers from
larger fuel consumption and the inability to avoid high-speed approaching debris. To address these
issues, we integrate this short-term avoidance algorithm with long-term avoidance strategies.

Suppose at time t = 0, the ground stations or space-based sensing systems detect that one
or a group of space debris may collide with the satellite in the future and forecasts their TCAs t̄i

C,
i = 1, · · · , nd. The satellite then faces a choice: either to perform an avoidance maneuver immediately
or to wait for the debris to enter the field of view of the onboard sensors to further confirm whether
it is a false alarm. Clearly, close-range observation will yield more accurate information. Some false
alarms can be eliminated, and more accurate TCAs can be acquired. In fact, the judgment depends on
the following two points:

1. After the pieces of space debris enter the field of view of the satellite’s sensing system, does the
satellite have the capability to successfully avoid them autonomously?

2. Early avoidance is more fuel-efficient, but it risks unnecessary fuel expenditure due to false
alarms. Waiting for the debris to approach to obtain high-precision information by satellite-borne
sensors requires more fuel consumption for shor-term maneuvers. How to balance the two?

For the first question, we presume that the ground-based observations predict that the i-th space
debris will enter the satellite’s field of view at time ti

F and introduce the following concept.

Definition 2. The collision against the i-th debris is said Inevitable for the ELVO, if

min
δv/∈ELVO0i(t̄i

C ,ti
F)
∥δv∥ > umax

(
t̄i
C − ti

F

)
.

Clearly, any space debris meeting the criteria of Definition 2 cannot be addressed using the
short-term ELVO-based method. Instead, early avoidance based on impulsive maneuvers for such
debris is more preferable.
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Notice that before time ti
F, observation and prediction data from ground/space-based perception

systems possess stochastic properties. So, we model the inevitability of collisions as random events.
Denote the probability of the collisions for some debris being inevitable as PInev. If PInev exceeds a
given threshold ϵInev, an immediate avoidance maneuver should be performed for safety.

To address the second question, we introduce the Expected Fuel Consumption (EFC) of an
autonomous perception-based short-term avoidance maneuver based on the prediction data acquired
at time t = 0.

Definition 3. Let PC be the collision probability of a group of debris based on the prediction data at time
t = 0, which exceeds the threshold ϵC requiring maneuver avoidance. If the velocity increment magnitude for
an autonomous perception-based short-term avoidance maneuver (for example, the ELVO) calculated by the
prediction data is δv, then its EFC is Pcδv.

Let PC > ϵC and PInev < ϵInev. Then, the fuel consumption for the long-term and short-term
avoidance strategies should be compared for a satellite with autonomous perception capabilities. Let
the magnitude of the optimal impulsive maneuver velocity increment for early avoidance be δV. If

δV ≥ Pcδv,

then we prefer to execute the autonomous perception-based short-term avoidance maneuver. Other-
wise, an early maneuver is suggested to be taken.

Figure 5. Space debris collision avoidance procedure.

The long-term avoidance incorporating the proposed short-term avoidance algorithms is shown
in Figure 5. It is noteworthy that this avoidance framework differs from previous ones [7,23,24], where
only the collision probabilities without any maneuvers are calculated. However, in this framework,
the probability of inevitability with a short-term maneuver is considered.

5. Simulation and Analysis
In this section, simulations will be conducted to verify the performance of the proposed algorithms

in short-term avoidance scenarios.
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5.1. Simulation Set-Up

The initial orbital elements of the reference satellite used for simulation, along with the satellite
and algorithm parameters, are listed in Table 1 and Table 2, respectively.

Table 1. Initial orbital elements of reference satellite.

Symbol Description Value

are f Semi-Major Axis 7155.459 km
ere f Eccentricity 1.174 ×10−3

ire f Inclination 1.292 rad
Ωre f RAAN 0.301 rad
ωre f Argument of Periapsis 1.468 rad
ϕre f True Anomaly 0.234 rad

Table 2. Satellite and algorithm parameters.

Symbol Description Value

umax Maximal acceleration 0.03 m/s2

σ0i
max

max standard deviation of
on-board position observation 10 m

λ0i
max

max standard deviation of
on-board velocity observation 1 m/s

T Programming horizon 20 s

This section addresses two distinct space debris threat scenarios. Scenario 1: The relative states
between the satellite and the space debris are randomly generated using the parameters provided
in Table 3. Here, all the space debris are located within the satellite’s field of view and approach it
at relatively low velocities. The avoidance is deemed successful if all the satellite-debris separations
maintain their safe distances Ri throughout the operation window.

Table 3. Parameters of debris in the satellite’s field of view, with relative positions and velocities in LVLH
coordinate system. Simulations are generated by using data sampled from uniform distributions based on these
parameters.

Symbol Description Value

nd Number of debris pieces 2 ∼ 10
Ri safe distance 100 m
t̄i
C TCA 400 ∼ 600 s
|r̄i

Cx| TCA distance in x 0 ∼ 500 m
|r̄i

Cy| TCA distance in y 0 ∼ 500 m
|r̄i

Cz| TCA distance in z 0 ∼ 500 m
|v̄i

Cx| TCA velocity in x 0 ∼ 50 m/s
|v̄i

Cy| TCA velocity in y 0 ∼ 100 m/s
|v̄i

Cz| TCA velocity in z 0 ∼ 100 m/s

Scenario 2: The satellite receives a warning that it will encounter a high-speed debris object. The state
at the TCA and the orbital elements at the initial time are detailed in Table 4 and Table 5, respectively.
From the tables, the debris is far from the satellite at the initial time, outside its field of view, and
will collide with the satellite at a high speed at the TCA. Clearly, the collision against this debris is
inevitable for the ELVO by Definition 2 and an impulse maneuver, aligned with the satellite’s velocity
based on the early prediction data, is implemented at the warning time. The velocity increment for the
maneuver and the resulting orbit after the maneuver, referred to as the avoidance orbit, are provided
in Table 6. However, when the satellite is on the avoidance orbit, it detects several low-relative-
speed uncatalogued debris nearby, whose parameters are randomly generated by Table 3. Therefore,
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the satellite needs to handle this unexpected situation while ensuring it avoids the aforementioned
high-speed collision debris.

Table 4. State of high-speed collision debris at TCA, with relative positions and velocities in LVLH coordinate
system. The debris is far from the satellite at the initial time, outside its field of view.

Symbol Description Value

-
safe distance given by

ground-based prediction 8 km

t̄i
C TCA 3600 s

r̄i
Cx TCA distance in x 0 m

r̄i
Cy TCA distance in y 0 m

r̄i
Cz TCA distance in z 0 m

v̄i
Cx TCA velocity in x 0 km/s

v̄i
Cy TCA velocity in y -7.440 km/s

v̄i
Cz TCA velocity in z -7.440 km/s

Table 5. Initial orbital elements of high-speed collision debris.

Symbol Description Value

adeb Initial Semi-Major Axis 7168.867 km
edeb Initial Eccentricity 2.990 ×10−3

ideb Initial Inclination 0.874 rad
Ωdeb Initial RAAN 2.115 rad
ωdeb Initial Argument of Periapsis 0.833 rad
ϕdeb Initial True Anomaly -0.235 rad

Table 6. Parameters of planned avoidance orbit for impulse maneuver.

Symbol Description Value

δv Maneuver increment 0.82 m/s

atar Target Semi-Major Axis 7157.034 km
etar Target Eccentricity 1.39 ×10−3

itar Target Inclination 1.292 rad
Ωtar Target RAAN 0.301 rad
ωtar Target Argument of Periapsis 1.504 rad
ϕtar Target True Anomaly 0.197 rad

5.2. Simulation Results

A total of 100 test cases were generated for each debris configuration (2-10 pieces) under Scenario
1. In addition, one test case under Scenario 2 is examined. The algorithm demonstrated 100% collision
avoidance success rates across all test scenarios.
Result of Scenario 1: In Scenario 1, Figures 6 depict the minimum distance between the satellite and
the debris for different nd. Figures 7 illustrate the maneuver increments required for avoidance. The
algorithm operates within a significantly shorter collision time, which also allows it to adopt a smaller
safe distance due to high-precision autonomous observation. On the other hand, velocity increment
peaks in Figure 7 (b) are observed primarily at the integer multiples of umaxT = 0.6 (e.g., 0.6, 1.2 in
the horizontal axis), suggesting that the algorithm terminates maneuvers once the scenario is deemed
non-dangerous. These two factors ensure that the fuel consumption remains acceptable even in the
short-term avoidance.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2025 doi:10.20944/preprints202504.0134.v1

https://doi.org/10.20944/preprints202504.0134.v1


15 of 19

2 4 6 8 10
nd

0

50

100

150

200

D
is

ta
n

ce
(m

)

Safe distance

Minimal distance before maneuvers

Minimal distance after maneuvers

(a) Average minimal distances to closest debris by nd.

100 150 200 250 300 350 400

Distance (m)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

F
re

q
u

en
cy

co
u

n
t

nd = 2

nd = 3

nd = 4

nd = 5

nd = 6

nd = 7

nd = 8

nd = 9

nd = 10

Safe distance

(b) Frequency distributions of minimal distances.

Figure 6. Minimal distances between satellite and closest debris after maneuvers for Scenario 1.
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Figure 7. Maneuver increments for Scenario 1.

Result of Scenario 2: In Scenario 2, the algorithm successfully guided the satellite to separate from
the high-speed collision debris, maintaining a minimum distance above 8 km, while simultaneously
avoiding three additional low-speed debris pieces, each kept at a minimum distance larger than 100
m. Here, the impulse maneuver listed in Table 6 is used as the initial guess for solving the ELVO-
based algorithm, when responding to the unexpected debris threat. Orbital elements for three cases
– the unperturbed reference orbit, the avoidance orbit, and the actual orbit after maneuvers – are
summarized in Table 7, following a 600-second simulation. The total velocity change required for all
avoidance maneuvers was 1.53 m/s. The resulting trajectory remained within acceptable tolerances of
the avoidance orbit, validating the efficacy of the constrained optimization approach.

Besides, Figure 8 presents the algorithm’s average running time. The results show that the average
running time for subsequent iterations is significantly shorter than that of the first iteration and the
time required for J2 orbit propagation (used for the realistic orbit simulation). The overall performance
highlights the algorithm’s potential for on-orbit usage and handling emergent events.
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Table 7. Orbital elements comparison for Scenario 2.

Elements
Avoidance orbit

(impulse)
Reference orbit
(no maneuver)

Actual orbit
(ELVO-based)

a (km) 7164.859 7163.280 7165.757
e 2.733 ×10−3 2.524 ×10−3 2.850 ×10−3

i (rad) 1.292 1.292 1.292
Ω (rad) 0.301 0.301 0.301
ω (rad) 1.399 1.373 1.414
ϕ (rad) 0.931 0.956 0.914

2 4 6 8 10
nd

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
im

e
(s

)

Propagation of orbit

Solving ELVO for the first iteration

Solving ELVO for subsequent iterations

Figure 8. Average running time of the algorithm. The time required for subsequent iterations is nearly zero. Both
the propagation of the orbit and the solving of the ELVO problem are invoked once per programming iteration,
i.e., for each T = 20 s.

6. Conclusions
This study presents an ELVO-based algorithm that enables satellites to avoid multiple space debris

in short-term scenarios, achieving a 100% success rate in avoiding up to 10 debris in the simulations.
The algorithm’s error is analyzed under a time-variant linear dynamics model, which is the extension of
C-W equations. A compensated safe distance is proposed to ensure the algorithm’s performance. Due
to its simple design, it achieves fast online computation speeds, demonstrating its potential for on-orbit
autonomous avoidance in future applications. The paper also discusses under what circumstances it is
appropriate to activate the algorithm for short-term autonomous avoidance, though more detailed
determination of discrimination thresholds requires further research.
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Abbreviations
The following abbreviations are used in this manuscript:

EFC Expected Fuel Consumption
ELVO Equivalent Linear Velocity Obstacle
LEO Low Earth Orbit
LVLH Local Vertical Local Horizontal
TCA Time of Closest Approach
VO Velocity Obstacle
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