
Article

Not peer-reviewed version

The Drastic Turn in Neurology: From Classical Disciplines to Neurogenetics

Richard Murdoch Montgomery *

Posted Date: 2 September 2024

doi: 10.20944/preprints202409.0008.v1

Keywords: Neurology; Neurogenetics; Genetic Technologies; Next-Generation Sequencing (NGS); Genome-Wide Association Studies (GWAS); Epigenetics; Personalized Medicine

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

The Drastic Turn in Neurology: From Classical Disciplines to Neurogenetics

Richard Murdoch Montgomery

Universidade de Aveiro, Portugal; mariaantoniamvg@gmail.com MD, PhD, Neurologist

Abstract: The field of neurology has undergone a profound transformation over the past two decades, shifting from traditional clinical and pathological approaches to a more genetically informed perspective. This essay explores the drastic turn in neurology from classical disciplines to neurogenetics, examining the factors that have contributed to this shift and the implications for clinical practice and research. The traditional approach to neurology, grounded in clinical examination, neuroanatomy, and neuropathology, has been effective in diagnosing and treating many conditions but has had limitations in understanding the etiology of complex and rare neurological disorders. The emergence of neurogenetics has been driven by advancements in genetic technologies, such as next-generation sequencing (NGS) and genome-wide association studies (GWAS), as well as the recognition of the genetic basis of many neurological disorders. This shift has led to more accurate diagnoses, targeted treatments, and a deeper understanding of the molecular mechanisms underlying neurological disorders. However, challenges remain, including the complexity of genetic architecture and the ethical implications of genetic testing. The future of neurogenetics holds great promise for improving the diagnosis, treatment, and prevention of neurological conditions, with new technologies and interdisciplinary approaches poised to further advance the field.

Keywords: neurology; neurogenetics; genetic technologies; Next-Generation Sequencing (NGS); Genome-Wide Association Studies (GWAS); epigenetics; personalized medicine

1. Introduction

Neurology, the medical specialty concerned with the diagnosis and treatment of disorders of the nervous system, has undergone a profound transformation over the past two decades. Traditionally, neurology has been grounded in classical disciplines such as clinical examination, neuroanatomy, and neuropathology. Neurologists have relied heavily on physical examinations, patient histories, and diagnostic tools like electroencephalography (EEG) and computed tomography (CT) scans to diagnose and manage neurological conditions. This approach has been effective in many ways, allowing clinicians to diagnose and treat conditions such as stroke, epilepsy, and multiple sclerosis. However, it has also had significant limitations, particularly in understanding the etiology of complex and rare neurological disorders.

The traditional approach to neurology has been characterized by a focus on the structural and functional aspects of the nervous system. Neurologists have sought to localize lesions and understand the pathological processes underlying various disorders. This has been achieved through a combination of clinical skills, diagnostic tools, and a deep understanding of neuroanatomy and neuropathology. For example, the use of the neurological examination to localize lesions in the nervous system has been a cornerstone of clinical practice. Similarly, the use of neuroimaging techniques like CT and magnetic resonance imaging (MRI) has provided valuable insights into the structural changes associated with neurological disorders.

However, the traditional approach has often left clinicians with incomplete knowledge of the underlying mechanisms of neurological disorders. This has been particularly true for conditions with complex etiologies, such as neurodegenerative diseases and psychiatric disorders. The lack of genetic insights has often made it challenging to diagnose and treat these conditions effectively. For example, the diagnosis of rare genetic disorders like Huntington's disease and Fragile X syndrome has

traditionally relied on clinical features and family history, with limited insights into the underlying genetic mechanisms.

2. Discussion

2.1. The Traditional Approach to Neurology

Historically, neurology has been grounded in classical disciplines such as clinical examination, neuroanatomy, and neuropathology. Neurologists relied heavily on physical examinations, patient histories, and diagnostic tools like electroencephalography (EEG) and computed tomography (CT) scans to diagnose and manage neurological conditions. The focus was primarily on the structural and functional aspects of the nervous system, with an emphasis on localizing lesions and understanding the pathological processes underlying various disorders (Adams & Victor, 1993). This traditional approach was effective in many ways, allowing neurologists to diagnose and treat conditions like stroke, epilepsy, and multiple sclerosis. However, it had limitations, particularly in understanding the etiology of complex and rare neurological disorders. The lack of genetic insights often left clinicians with incomplete knowledge of the underlying mechanisms, leading to challenges in both diagnosis and treatment (Rowland, 2005).

2.2. Factors Contributing to the Shift to Neurogenetics

Several factors have contributed to the drastic turn in neurology towards neurogenetics. These include the increasing recognition of the genetic basis of neurological disorders, the limitations of traditional diagnostic methods, and the potential for personalized medicine.

2.3. What Happened

The past two decades have witnessed a dramatic shift towards neurogenetics, a field that combines genetics with the study of the nervous system. This shift has been driven by several key advancements in genetic technologies and research methodologies. The completion of the Human Genome Project in 2003 provided a comprehensive map of the human genome, laying the foundation for understanding the genetic basis of diseases (International Human Genome Sequencing Consortium, 2001). This was followed by the development of next-generation sequencing (NGS) technologies, which allowed for faster and more cost-effective sequencing of entire genomes. NGS has revolutionized the field of neurogenetics by enabling the identification of genetic variants associated with neurological disorders. Techniques like whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become invaluable tools for diagnosing rare and complex neurological conditions (Bamshad et al., 2011).

Genome-wide association studies (GWAS) have also played a critical role in the shift to neurogenetics. GWAS involves scanning the genomes of large populations to identify genetic variants associated with specific traits or diseases. This approach has been particularly useful in understanding the genetic architecture of common neurological disorders like Alzheimer's disease, Parkinson's disease, and schizophrenia (Visscher et al., 2017). GWAS has revealed that many neurological disorders are polygenic, meaning they are influenced by multiple genes, each contributing a small effect. This has challenged the traditional view of neurological disorders as being caused by single gene mutations and has highlighted the importance of understanding the complex interactions between genetic and environmental factors.

2.4. Epigenetics

Epigenetics, the study of heritable changes in gene expression that do not involve changes to the underlying DNA sequence, has also emerged as a critical area in neurogenetics. Epigenetic modifications, such as DNA methylation and histone modifications, play a crucial role in regulating gene expression in the nervous system. Dysregulation of these processes has been implicated in various neurological disorders, including neurodegenerative diseases and psychiatric conditions

(Jakovcevski & Akbarian, 2012). Epigenetic studies have provided new insights into the mechanisms by which environmental factors, such as stress and nutrition, can influence the development and progression of neurological disorders. This has opened up new avenues for research and potential therapeutic interventions.

The shift to neurogenetics has significant implications for both clinical practice and research in neurology. In clinical practice, the integration of neurogenetics has led to more accurate and earlier diagnoses of neurological disorders. Genetic testing has become a routine part of the diagnostic workup for many conditions, allowing clinicians to identify the underlying genetic cause and provide more targeted treatments. For example, the identification of specific genetic mutations in epilepsy has led to the development of precision therapies that target the underlying molecular mechanisms (Helbig et al., 2016).

2.5. *Neurogenetics*

Neurogenetics has also facilitated the development of genetic counseling services, which provide patients and their families with information about the genetic basis of their condition, the risk of recurrence, and the available treatment options. This has empowered patients to make informed decisions about their healthcare and has improved the overall quality of care.

In research, the shift to neurogenetics has opened up new avenues for understanding the molecular mechanisms underlying neurological disorders (Montgomery, 2024). The identification of disease-causing genes has provided insights into the pathogenesis of these conditions and has led to the development of new therapeutic targets. For example, the discovery of the C9orf72 gene in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has provided new insights into the pathogenesis of these conditions and has led to the development of potential therapeutic strategies (DeJesus-Hernandez et al., 2011). Neurogenetics has also facilitated the development of animal and cellular models of neurological disorders, which are essential for understanding disease mechanisms and testing new therapies. For example, the use of induced pluripotent stem cells (iPSCs) derived from patients with specific genetic mutations has provided a powerful tool for studying the molecular and cellular basis of neurological mechanisms of disease (Takahashi & Yamanaka, 2006).

While the shift to neurogenetics has brought about significant advances in neurology, it is not without its challenges. One of the main challenges is the complexity of the genetic architecture of neurological disorders. Many of these conditions are polygenic, involving multiple genes and complex gene-environment interactions. This makes it challenging to identify the specific genetic variants that contribute to disease risk and to develop targeted therapies.

2.6. *Ethical Considerations*

Another challenge is the ethical and social implications of genetic testing. The use of genetic information raises issues related to privacy, discrimination, and the potential for genetic determinism. It is essential to address these issues through appropriate regulatory frameworks and ethical guidelines to ensure that the benefits of neurogenetics are realized while minimizing the risks.

2.7. *The Future*

Looking to the future, the field of neurogenetics is poised for further advancements. The development of new technologies, such as single-cell sequencing and CRISPR-Cas9 gene editing, holds promise for further elucidating the genetic basis of neurological disorders and developing novel therapies. Additionally, the integration of neurogenetics with other disciplines, such as neuroimaging and neurophysiology, will provide a more comprehensive understanding of the brain and its disorders.

In conclusion, the past two decades have witnessed a drastic turn in neurology from classical disciplines to neurogenetics. This shift has been driven by advancements in genetic technologies, the recognition of the genetic basis of neurological disorders, and the potential for personalized medicine. The integration of neurogenetics into clinical practice and research has led to more accurate

diagnoses, targeted treatments, and a deeper understanding of the molecular mechanisms underlying neurological disorders. While there are challenges to be addressed, the future of neurogenetics holds great promise for improving the diagnosis, treatment, and prevention of neurological conditions. As the field continues to evolve, it will be essential to harness the power of genetics to advance our understanding of the brain and to translate this knowledge into meaningful improvements in patient care.

3. Conclusion

The past two decades have witnessed a drastic turn in neurology from classical disciplines to neurogenetics. This shift has been driven by advancements in genetic technologies, the recognition of the genetic basis of neurological disorders, and the potential for personalized medicine. The integration of neurogenetics into clinical practice and research has led to more accurate diagnoses, targeted treatments, and a deeper understanding of the molecular mechanisms underlying neurological disorders.

While there are challenges to be addressed, the future of neurogenetics holds great promise for improving the diagnosis, treatment, and prevention of neurological conditions. As the field continues to evolve, it will be essential to harness the power of genetics to advance our understanding of the brain and to translate this knowledge into meaningful improvements in patient care.

Conflicts of Interest: The Author claims no conflicts of interest.

References

1. Bamshad, M. J., Ng, S. B., Bigham, A. W., Tabor, H. K., Emond, M. J., Nickerson, D. A., & Shendure, J. (2011). Exome sequencing as a tool for Mendelian disease gene discovery. *Nature Reviews Genetics*, 12(11), 745-755.
2. DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., ... & Rademakers, R. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. *Neuron*, 72(2), 245-256.
3. Helbig, I., Scheffer, I. E., Mulley, J. C., & Berkovic, S. F. (2016). Navigating the genetic landscape of epilepsy. *Nature Reviews Neuroscience*, 17(1), 17-28.
4. International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. *Nature*, 409(6822), 860-921.
5. Jakovcevski, M., & Akbarian, S. (2012). Epigenetics in neuropsychiatric disease. *Current Opinion in Neurobiology*, 22(2), 273-281.
6. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell*, 126(4), 663-676.
7. Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 years of GWAS discovery: biology, function, and translation. *American Journal of Human Genetics*, 101(1), 5-22.
8. Adams, R. D., & Victor, M. (1993). *Principles of Neurology*. McGraw-Hill.
9. Bamshad, M. J., Ng, S. B., Bigham, A. W., Tabor, H. K., Emond, M. J., Nickerson, D. A., & Shendure, J. (2011). Exome sequencing as a tool for Mendelian disease gene discovery. *Nature Reviews Genetics*, 12(11), 745-755.
10. Bennett, R. L. (2010). *The Practical Guide to the Genetic Family History*. John Wiley & Sons.
11. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmeichel, D. E., Gaskell, P. C., Small, G. W., ... & Haines, J. L. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. *Science*, 261(5123), 921-923.
12. DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., ... & Rademakers, R. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. *Neuron*, 72(2), 245-256.
13. Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. *Science*, 346(6213), 1258096.
14. Helbig, I., Scheffer, I. E., Mulley, J. C., & Berkovic, S. F. (2016). Navigating the genetic landscape of epilepsy. *Nature Reviews Neuroscience*, 17(1), 17-28.
15. International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. *Nature*, 409(6822), 860-921.
16. Jakovcevski, M., & Akbarian, S. (2012). Epigenetics in neuropsychiatric disease. *Current Opinion in Neurobiology*, 22(2), 273-281.

17. Kalow, W., Tang, B. K., & Endrenyi, L. (1998). Interethnic differences in drug metabolism. *Annual Review of Pharmacology and Toxicology*, 38, 191-228.
18. Knoppers, B. M. (2005). Genetic information: access, discrimination and ethical implications. *Nature Reviews Genetics*, 6(1), 75-83.
19. Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., ... & Venter, J. C. (2009). Finding the missing heritability of complex diseases. *Nature*, 461(7265), 747-753.
20. Mardis, E. R. (2008). Next-generation DNA sequencing methods. *Annual Review of Genomics and Human Genetics*, 9, 387-402.
21. Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. *Child Development*, 81(1), 41-79.
22. Paisán-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simon, J., van der Brug, M., ... & Hardy, J. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. *Neuron*, 44(4), 595-600.
23. Montgomery, R. M. (2024). Stochastic Modeling of Gene Expression Dynamics: Integration of Regulatory Interactions and Noise. DOI: 10.62162/1060831; *Wired Neuroscience*, (Vol 1, Issue 3(p1-12)).
24. Rowland, L. P. (2005). *Merritt's Neurology*. Lippincott Williams & Wilkins.
25. Schaaf, C. P., Zoghbi, H. Y., & Boerkoel, C. F. (2011). Intellectual disability and the search for a molecular diagnosis. *Nature Reviews Genetics*, 12(11), 769-782.
26. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell*, 126(4), 663-676.
27. Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 years of GWAS discovery: biology, function, and translation. *American Journal of Human Genetics*, 101(1), 5-22.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.