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Abstract: Worker safety is notably improved through the application of personal protective equipment
(PPE), which effectively reduces the severity of injuries or fatal incidents in environments like
construction sites, chemical facilities and hazardous areas. PPE is extensively mandated to ensure an
acceptable level of safety, addressing not just accidents at the mentioned sites but also the risks posed
by chemical hazards. Due to various factors or oversights, workers may intermittently fail to adhere
to safety regulations regarding wearing protective equipment. Traditional manual monitoring is both
labor-intensive and prone to errors. Thus, there is a pressing need for the advancement of intelligent
monitoring systems capable of providing automated and precise detection of such safety equipment.
As a solution, we present a deep learning approach for the real-time detection of PPE components,
including helmets, safety boots, vests and gloves. The proposed deep learning model exhibited a
remarkable mean average precision of 97.1%, indicating the model’s proficiency in object localization
and recognition. These results not only underline the effectiveness of the deep learning -based PPE
detection system but also emphasize its practicality in diverse industrial and occupational settings.
By surpassing established benchmarks attained in literature, this research contributes significantly to
enhancing safety standards and reducing the risk of workplace accidents.

Keywords: deep learning; personal protective equipment; object localization; workplace safety

1. Introduction

The construction industry serves as a vital driver of economic growth and development, fostering
infrastructural expansion and employment opportunities. However, amidst its exponential growth,
the sector grapples with inherent challenges that impact the safety and well-being of its workforce.
According to a comprehensive study conducted by the National Institute for Occupational Safety
and Health (NIOSH) in collaboration with local authorities, this industry experiences a concerning
rise in accidents, with an average of 6,000 reported incidents annually over the past five years [14].
These alarming statistics highlight the urgent need for innovative safety measures to safeguard the
lives of construction workers and mitigate potential risks on construction sites. Safety in workplaces
is of paramount importance, especially in industries that involve high-risk activities and potential
hazards [21]. The construction industry is one such sector where ensuring the well-being of workers is
crucial due to the inherent risks associated with the nature of work [24]. In many developing countries,
construction sites have been witnessing a rising number of accidents and injuries, highlighting the
need for robust safety measures [11]. Personal Protective Equipment (PPE) serves as a primary line of
defense against workplace hazards. PPE includes equipment like hard hats, safety vests, goggles, and
gloves, which protect workers from potential injuries and health risks [18]. However, the effectiveness
of PPE relies on its proper usage and compliance with safety regulations. Traditional methods of
inspecting and enforcing PPE compliance often suffer from subjectivity and human errors, leading
to lapses in safety standards [15]. In recent years, advancements in deep learning and computer
vision technologies have opened up new possibilities for automating safety inspections and ensuring
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real-time compliance monitoring [19]. This study aims to leverage the power of deep learning based
systems to develop an intelligent Personal Protective Equipment Detection System tailored for the
construction industry. By addressing the challenges of manual inspection methods and improving
PPE compliance, this system seeks to significantly enhance workplace safety, reduce accidents, and
foster a culture of proactive safety practices in the construction sector. As a case study, Craneburg
Construction, a leading construction company with diverse projects, will be utilized to implement
and evaluate the efficacy of the developed PPE detection system. The outcomes of this research have
the potential to revolutionize safety management in the construction industry, benefiting not only
Craneburg Construction but also serving as a model for broader industry-wide safety improvement.
This article’s remaining sections are organized as follows: In Section 2, existing studies on Personal
Protective Equipment detection are examined. Section 3 presents the study’s materials and methods.
Section 4 presents the results and findings. Conclusions are provided in Section 5.

2. Materials and Methods

The central objective of this research revolves around the identification of personal protective
equipment (PPE) usage within a given environment. This was accomplished through a structured
process involving dataset acquisition, model training, algorithm development for detection, and a
comprehensive assessment that encompassed precision, recall, average precision, and mean average
precision metrics shown in Figure 1. Additionally, an assessment of the system’s real-time performance,
measured in frames per second, was conducted.
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Figure 1. The study’s research method
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2.1. Environmental Setup

The hardware was a laptop running Windows 11 and powered by an Intel(R) Core(TM) i7-10750H
processor clocked at 2.60 GHz together with 16GB of RAM and an NVIDIA GeForce GTX graphics
card. These extra libraries CVZone, and OpenCV were combined with Python3. Due to its user
friendly interface and expanded tools for programming in Python, PyCharm was used to train the
dataset. The training process has been accelerated by using the system GPUs and the system’s
FPS can also be increased by a strong GPU. The model was trained using the Darknet framework
(https:/ / github.com/Alexey AB/darknet). The decision was made based on yolo compatibility. Part
of the dataset was gathered using a 16-megapixel smartphone.

2.2. Dataset Preparation

A model that has been trained using a dataset is used by a detection and recognition system to
anticipate the input to the system. A data set of photos containing objects such as hard hats, safety vests,
safety boots, and gloves was used to train the model. The objects have labels that indicate to which
class they belong. A picture of a hardhat would be labeled "Hardhat" in this instance. Models can be
trained to recognize specific types of things. A large data set can enhance the algorithm by increasing
the amount of variation. More precise object detection has been made possible by photos taken at
various angles and in variable lighting. Deep convolutional processing makes little things disappear,
making it more challenging to detect objects, such as safety goggles. Hardhats come in different
colors, but they all have around the same proportions, thus they probably do not need a big dataset.
Roboflow is an online platform that offers a diverse range of machine learning datasets. In one specific
dataset, which includes images featuring hardhats, gloves, safety boots and safety vests, there were
3,958 images (https:/ /universe.roboflow.com/faisal-lazuardy-fc9nq/deteksi-apd-ppfux/dataset/4)
. Given the specific nature of these classes, it was challenging to locate pre-existing datasets that
adequately covered them all. As a solution, 800 more images were collected manually using a mobile
phone in various construction sites and were annotated using an open-source tool named Labellmg
which can be found on GitHub (www.github.com/tzutalin/labellmg). Additionally, frames were
extracted from Personal Protective Equipment (PPE) recordings to provide supplementary context
regarding the equipment and the surrounding environment. These recordings and the captured
images underwent augmentation, which involved adjusting parameters like saturation, brightness,
and contrast. This process effectively resulted in the creation of additional images. Augmenting
images offers the benefit of preserving the object coordinates from the original images. This enables
a straightforward duplication of bounding box coordinates, resulting in a time-efficient method for
expanding the dataset. Additionally, manual checks were performed on all images to ensure there
were no inconsistencies. The distribution of the training dataset for the testing phase is detailed in the
results section.

2.3. Model Training

In the process of object detection, a crucial step involves training a model because without training,
the model would generate random predictions. To achieve this, the dataset is typically split into two
parts: a training set (70%) and a testing set (30%). It’s worth noting that an 80% training to 20%
testing split is not ideal when dealing with a limited amount of data. For smaller datasets, a more
suitable division typically falls within the range of 50% training to 50% testing and 70% training to
30% testing. This approach helps ensure a good balance between having a diverse set of data for
training and a sufficient amount for testing, ultimately leading to better model performance. It’s also
important to emphasize that achieving highly accurate predictions hinges on having high-quality
labeled data. The dataset was trained using Darknet, and to expedite the process, Google Colab was
employed, making use of high-performance GPUs. When training a model, hyperparameters can be
configured, and these values are determined through practical experimentation. Finding the perfect
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settings for these hyperparameters beforehand is an exceedingly challenging task. The input image
will be 640 pixels in both width and height. Increasing image resolution offers the benefit of better
accuracy, but it comes at the cost of reduced frame rate and greater demands on hardware resources.
The MaxBatches parameter, determining the maximum number of processed images before updating
network weights, is calculated using equation 3.1. The learning rate is adjusted at specific intervals
after processing several batches, with values set at 8,000 and 9,000, following the formula in equation
3.2. The filter value in convolutional layers ranges from 64 to 512, so the number of filters in each layer
is variable. These calculations are based on a project titled "Automatic Road Traffic Signs Detection
and Recognition using "You Only Look Once’ version 4 (YOLOv4)" (Srivastava et al.) in 2022, and
these formula values are recommended.

MaxBatches = number of classes x 2000 (1)
Steps = (MaxBatches x 0.8, MaxBatches x 0.9) )
Filters = (number of classes + 5) x 3 3)

The number of classes used in the training process is represented by the variable called number
of classes.

2.4. Conducting Tests and Experiments

The process involved two testing phases, which were conducted iteratively to improve the results,
culminating in the final results. Within each testing phase, various conditions were assessed:

Images taken in various settings

Photographs taken at various distances

Pictures featuring various individuals

Pictures containing a variety of items

Images in which the protective gear is present in the picture but not worn
Images captured of individuals in various positions and perspectives

-0 Q0 T

The list provided outlines the conditions assigned to each test phase, and each condition is
clarified by the preceding list.

1. Phase 1 of testing covers items a, b, ¢, d, and f
2. Phase 2 of testing also encompasses items a, b, ¢, d, e, and f

The evaluations were conducted under various conditions, with each class being assessed for
precision and recall in all tests. Nevertheless, the initial test only involved assessing precision and
recall to gauge the model’s performance. In contrast, the second test additionally measured the frames
per second to enable a comparison with other models designed for PPE detection. The test phase
employed models that underwent 50 training iterations, with each model taking approximately 2.9
hours for training. The duration of training varied according to factors such as the size of the dataset
and the GPU resources accessible on Google Colab. Numerous examinations were conducted to assess
the system’s performance. Each test underwent analysis, and modifications were implemented to meet
the necessary standards stated in Section 3.5. These tests encompassed diverse environments, varying
distances, and different lighting conditions to enhance the system’s robustness. In addition, a variety
of individuals in various postures were examined to create a comprehensive solution. The evaluation
of the detection model was designed to verify its ability to exclusively identify personal protective
equipment worn by humans.
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2.5. Requirement Standards

Attain a precision and recall rate of at least 95% for detecting hardhats and safety vests.
Achieve a minimum of 90% average precision for each individual object.

Attain a mean average precision (MAP) of at least 70% when considering all objects collectively.
Immediate identification with a requirement of at least 5 video frames per second.

Attain a minimum precision rate of 95% and a recall rate of 85% when it comes to identifying
safety gloves and safety boots.

SA I

Performance testing of the system within an environment similar to the training data was
anticipated to yield good results. However, factors such as lighting conditions and variable object
distances were expected to have varying impacts on each object, with safety glasses being particularly
challenging to detect. Detecting objects like hardhats and safety vests, characterized by distinct colors
and shapes, was not expected to pose significant difficulties. However, the system was not initially
designed to detect cases where personal protective equipment (PPE) was not worn. Refer to Figure 2
for a visualization of the system workflow.
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Figure 2. Schematic representation of the system pipeline

2.6. Model Pipeline

The system depicted in Figure 2 represents the outcome of multiple testing phases. The main
objective was to establish a reliable mechanism for identifying personal protective equipment (PPE)
and enhancing safety by minimizing accidents. The PPE detection model served as a prerequisite
for gaining access to the construction site. It's important to note that this system evolved gradually
during the course of the research and was not preconceived. Figure 3 illustrates the system’s state
after undergoing two testing phases. The system relies on a camera to capture an image of a person,
presumably within a construction site or similar environment. This image serves as the input for
the subsequent object detection process. The captured image is then resized to a fixed dimension
of 640x640 pixels. This resizing is typically performed to ensure consistency and efficiency in the
subsequent object detection process. Resizing the image to a predefined dimension can also be a
requirement of the specific object detection model used. The resized image is fed into the object
detection model. This model is responsible for identifying and locating personal protective equipment
(PPE) within the image. The model has been trained to recognize specific PPE items, such as helmets,
vests, goggles, or gloves. It analyzes the image and provides information on the presence and locations
of these PPE items within the frame. Overall, the pipeline involves capturing an image, resizing it to
a standardized dimension, and then using an object detection model to identify personal protective
equipment within that image. This process is crucial for ensuring safety and compliance with PPE
requirements in the construction site, as it allows for the automatic monitoring of whether workers are
wearing the necessary safety gear.
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Figure 3. Schematic representation of the system pipeline

3. Results

Several evaluations were carried out to assess the system’s capability to identify objects. These
assessments involved the use of a dataset comprising individuals wearing full personal protective
equipment (PPE) to gauge the system’s object detection accuracy across a range of factors like distance,
angles, and lighting conditions. The performance of the system was analyzed, and a series of testing
phases were conducted iteratively to enhance the results. The initial test phases employed precision
and recall as metrics to evaluate the outcomes, with the second phase also considering the system’s
processing speed, measured in frames per second. A confusion matrix is a tool used to evaluate the
precision and recall of a model. It involves four key variables: True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). TP corresponds to objects correctly predicted by the
model, TN represents accurately predicted negative objects, FP is when the model wrongly predicts a
positive object, and FN signifies incorrect predictions of negative objects. These values are obtained
from the results of the object detector. Precision gauges the proportion of positive predictions that
were accurate, while Recall measures the proportion of actual positives that were correctly predicted.
Precision and recall rates are computed using equations 1 and 2 as mentioned in reference.

TP

P=Tp1Fp @)
TP
R=—"
TP+ FN ®)

The Average Precision (AP) is a metric that assesses how well a model performs in a dataset
by considering both precision and recall rates. Precision evaluates the model’s accuracy in making
correct predictions, while average precision also considers the Intersection over Union. This means
that average precision measures the model’s capability to locate objects. AP calculates the average
recall rates at different precision levels between 0 and 1, and its calculation is defined by equation 3.

AP = 2 P(k) - AR(k) (©6)
k=1

where:
1. P(k) is the precision at the k-th threshold

2. AR(k) is the change in recall at the k-th threshold
3. n is the total number of thresholds

In the context of this calculation, "N’ represents the total number of images in the dataset. The
variable "P(k)’ corresponds to the precision rate associated with the k image, and Ar(k) stands for the
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change in recall rate when moving from (K-1) to K image in the sequence. The average precision was
computed separately for each class, and then these individual averages were combined to calculate the
mean average precision (mAP) across all classes. This value represents the overall average precision
for the entire set of classes.

n
mAP = % y_ AP, 7)
i=1

The variable 'n’ refers to the total number of classes, and "AP(k)” denotes the average precision for
a specific class. The measurement of frames per second (FPS) involved recording the time difference
during system operation within a specific interval. Equation 4.8 can be used to calculate and determine
the average FPS.

FPS— "

(8)

tr—t
The variable 'n’ represents the count of intervals, while the variables 't2 - t1” indicate the time gap
between two measurement points.

3.1. Test Phases

The first and second testing phases have served as benchmarks to determine what is effective and
what is not. Basic analytical calculations were employed during these phases. The test images featured
various individuals wearing personal protective equipment (PPE) at various distances from the camera.
Lighting conditions varied, resulting in a more comprehensive testing scenario. Anticipated limitations
in the initial tests, specifically with regard to safety boots and gloves due to factors like size, shape, and
transparency, resulted in expectedly subpar results. Subsequently, the training dataset was modified in
response to the outcomes of the first and second tests. The testing dataset featured different individuals
in a less distracting setting, with higher-resolution images captured from distances of 3 and 5 meters.

3.1.1. First Test Phase

The outcomes of the initial data set can be found in Table 1. This test involved individuals
wearing complete personal protective equipment (PPE) and was conducted under varying conditions,
including different camera angles, lighting settings, and distances. The table presents the frequency
of each class within the training data set and provides precision, recall, and mean average precision
metrics for the test set.

Table 1. Result of the first test phase. The training set instances represents the number of occurrences
of each object in the dataset to train the model.

Class Training set instance Precision %
Gloves 387 924
Helmet 500 96.7

Non-Helmet 587 92.3
Person 1698 95

Safety boots 200 94.7

Safety vest 845 98.8

Class Recall % Average Precison %
Gloves 73.2 89.7
Helmet 97.2 98.7

Non-Helmet 93.5 93.7
Person 93.2 97.6
Safety boots 82.5 95.3

Safety vest 97.2 97.9
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The findings indicate that the precision and recall metrics for safety gloves and boots fall short
of the standard specified in Section 3.5. The training dataset exhibits skewness, indicating that the
occurrences are unevenly distributed among the objects within the dataset. The dataset had a noticeable
impact on the outcomes and necessitated modifications to enhance the performance of the detection
model.

3.1.2. Second Test Phase

The dataset underwent modifications subsequent to the results presented in Table 1. Specifically,
images predominantly featuring safety boots and gloves were subjected to augmentation techniques,
including adjustments to sharpness, blurriness, and contrast, in order to expand the dataset and
increase the diversity of the data. The specific augmentation settings applied to each object were as
follows:

1.  Safety boots (170 images): +40% brightness, +20% contrast, sharpened
2. Gloves (200 images): +35% brightness, -40% contrast.
3. Helmet (117 images): +10% brightness, +15% contrast, sharpened.

The test employed during the first testing phase was also utilized in the computation of the
results presented in Table 2. Additional data was incorporated for all categories, resulting in slight
enhancements in precision and recall metrics. However, despite these improvements, the precision
and recall of safety boots and gloves failed to meet the necessary standards. The extreme variation in
lighting made detection difficult. Variations in lighting conditions can create reflections on surfaces,
leading to interference with object detection.

Table 2. Result of the second test phase.

Class Training set instance Precision %
Gloves 1112 924
Helmet 1202 97.6

Non-Helmet 1023 94.3
Person 1698 95.8
Safety boots 1458 95.2
Safety vest 1232 98.7

Class Recall % Average Precison %
Gloves 75.2 90.2
Helmet 98.2 95.4

Non-Helmet 97.5 93.7
Person 91.2 97.6
Safety boots 81.7 96.5
Safety vest 96.2 98.8

3.1.3. Final Test Phase

The lighting conditions were optimized to ensure the accurate detection of safety gloves and
boots. Additionally, an environment was established to replicate a real-world scenario in the final test
case. Different augmentation setting was applied to the same number of images for each object.

1.  Safety boots (170 images): +40% brightness, +20% contrast, sharpened
2. Gloves (200 images): +20% brightness, gaussian blur (sigma=2)
3. Helmet (117 images): +5% brightness, 10% contrast

The process for obtaining these results is depicted in Figure 3, encompassing both the image
resizing and object detection phases. The training dataset employed in generating these results
was obtained from the final test phase. Furthermore, additional augmented data was incorporated
in accordance with the guidelines outlined in the final test phase. The outcomes were obtained
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by assessing the precision, recall, and average precision of individual objects in an airlock room,
with testing conducted under various conditions involving different angles and individuals, and
observations were recorded. Every image included the PPE items mentioned such as gloves, helmet,
safety vest and safety boots and the assessment process followed the sequence depicted in Figure 2.
Precision, recall, and mean average precision were computed using the formulas in Equations (4), (5),
and (7).

Each class had a precision score above the requirement standards in Section 3.7 While most classes
had recall rates nearing 100%, there was a notable improvement in the recall rates for safety boots and
gloves, primarily attributed to the implementation of data augmentation techniques. Table 3 displays
results that surpass the current state-of-the-art, and it elaborates on how the system is employed. The
papers referenced in Section 2 treat PPE detection as a form of surveillance. In surveillance systems,
object detection can typically span a range of 10 to 100 meters. Detecting small items like safety glasses
at these extended distances is a challenging task (even identifying a hardhat at 100 meters can be
challenging). This research, however, conducted experiments at limited distances of 3 and 5 meters,
which considerably facilitates the accurate detection of objects. The average precision is presented
in Figure 4. It has been calculated according to Equation (4.7) and compares the average precision
between various personal protective equipment.

Table 3. Result of the Final test phase.

Class Training set instance Precision %
Gloves 1112 98.3
Helmet 1202 97.7

Non-Helmet 1023 93.6
Person 1698 96

Safety boots 1458 96.5
Safety vest 1232 99.1

Class Recall % Average Precison %
Gloves 92.6 96.7
Helmet 98.5 99.2

Non-Helmet 94.7 98.2
Person 97.7 99.3
Safety boots 98.3 99.2
Safety vest 98.7 99.5

Precision-Recall Curve

— Gloves 0 867
Helmet 0,952

— Non-Halmet 0,982
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Figure 4. precision-recall curve comparing the average precision scores between various PPE
components
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In the previous test, the hardhat and safety vest consistently achieved good precision and recall
rates at various distances. For safety gloves, the recall rates improved from 75.2% to 92.6%. In
comparison, Zhafran et al achieved 100% accuracy in detecting hardhats, 73% accuracy in identifying
safety vests, and 68% accuracy in recognizing gloves when observing them from a close distance.
The training dataset for the final model, which generated the outcomes presented in Table 3, had an
equivalent quantity of instances as seen in Table 2 for different personal protective gear. The sole
contrast lies in the adjustments made to their augmentation settings. All objects met their specified
precision and recall requirements, and the mean Average Precision (mAP) also met its specified
requirements. (Delhi et al., 2020) created a system that bears resemblance to the one described in this
thesis. Table 4 illustrates the interconnections among the results, enabling a comparison of different
types of personal protective equipment.

Table 4. Result of the Final test phase.

Class Precision %

Gloves 98.3

Gloves (Delhi et al., 2020) 68
Helmet 97.7

Helmet (Delhi et al., 2020) 100
Safety boots 96.5

Safety boots (Delhi et al., 2020) Nil
Safety vest 99.1

Safety vest (Delhi et al., 2020) 73

4. Discussion and Conclusions

The ultimate outcome shows that the system performs effectively, achieving a mean average
precision of 97.1% across different distances. It excels when used at close distances and in settings with
a neutral background. However, its performance diminishes slightly when used at greater distances in
more distracting environments due to the reduced size and increased difficulty in detecting objects.
This conclusion is substantiated by the tests conducted in the first and second test phase. Items like
hardhats and safety vests are consistently identifiable in various settings and at varying distances,
whereas safety boots and safety gloves pose a detection challenge due to their smaller size and intricate
contours. Distinguishing objects that share a similar size and appearance becomes more difficult
when their midpoints coincide within the same grid. Ideally, improving detection results could be
achieved by training the model using the user’s specific PPE. The desired image processing speed
was not attainable when using a CPU, but it can be reached if the task is performed on a GPU. To
put it succinctly, this system functions effectively within its intended environment. The outcomes
demonstrate seamless object detection within an enclosed room setting.
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The following abbreviations are used in this manuscript:

PPE Personal Protective Equipment
NIOSH National Institute for Occupational Safety and Health
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