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Article

The Universe Is a Black Hole Hubble Sphere Carnot
Engine Operating at the CMB Temperature Off:
Tcmb =

√
TmaxTmin ≈ 2.725K

Espen Gaarder Haug *

Norwegian University of Life Sciences, Christian Magnus Falsensvei 18, 1430 Ås and Tempus Gravitational Laboratory,
1433 Ås Norway; espenhaug@mac.com

Abstract: Haug has recently suggested that the extremal solution to the Reissner-Nordström metric
can be used for black hole cosmology. While the Bekenstein-Hawking entropy is related to the surface
area in a Schwarzschild black hole, an extremal black hole has zero net entropy. We will demonstrate
how the extremal universe Hubble sphere is likely a Carnot engine and how this helps us derive a
formula for the CMB temperature now Tcmb =

√
TmaxTmin ≈ 2.725K. This unlike the Λ-CDM model,

which cannot predict the CMB value at present.

Keywords: CMB temperature; Carnot engine; black holes; geometric mean temperature; minimum
temperature; maximum temperature; Hubble sphere

1. Introduction
Sadi Carnot [2], in 1824, derived the correct formula for the maximum possible efficiency of a

heat during the engine’s cycle. The idea of using heat engines or Carnot theory in relation to black
holes is far from new and is an actively discussed topic (see [3–7]). For example, [8] interestingly
suggests that some of the Hawking radiation could possibly be used for work, something we soon
will come back to. Even in cosmology, the heat engine analogy has been used, for example, in the
Friedmann-Robertson-Walker (FRW) Universe [9,10],.

Still, these interesting works relating Carnot engines to black holes and the universe do not seem
to have predicted measurable effects of great significance. In this work, we will demonstrate that
an extremal black hole universe has many similarities with a Carnot engine and that, remarkably,
from such an analogy, we can predict the CMB temperature now. We must keep in mind that the
Λ-CDM model cannot predict the CMB temperature now, as pointed out by, for example Narlikar and
Padmanabhan [11]:

“The present theory is, however, unable to predict the value of T at t = t0. It is therefore a free
parameter in SC (Standard Cosmology).” .

First, we will briefly discuss Carnot engines. Then, in Section 2, we will describe, in general, how
the Carnot engine analogy leads to the CMB temperature of Tcmb =

√
TmaxTmin for black hole universe

models. Then, in Sections 3 and 4, we will describe how the extremal solution of Resinsser-Nordström
metric likely is needed to get a fully consistent model in relation to a Carnot engine black hole universe.

1.1. Short background on Carnot engines

In a Carnot engine, one takes heat (energy) from a hot reservoir and dumps it into a cold reservoir
and, in the process, performs some work. In an ideal Carnot engine, the maximum efficiency is
given by

eh,c =
Thot − Tcold

Thot
= 1 − Tcold

Thot
(1)
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where Thot is the temperature in the hot reservoir and Tcold is the temperature in the cold reservoir.
Alternatively, one can take heat from a cold reservoir, perform some work, and dump the heat into a
hot reservoir, a so-called inverse Carnot engine. Modern household heat pumps are built around such
principles; they can work as both a heater and a cooling system. Naturally they are not ideal Carnot
engines so they are considerably less effective than the Carnot efficiency for a ideal Carnot engine.

Assume next we have a hot reservoir Thot with a known temperature, another reservoir with an
unknown temperature Ti, and a third cold reservoir with temperature Tcold, where Thot > Ti > Tcold.
We can now have a Carnot engine taking heat (energy) from Thot and putting it into Ti, and another
Carnot engine taking the heat from Ti to Tcold.

This means we have one heat engine with efficiency:

eh,i =
Thot − Ti

Thot
= 1 − Ti

Thot
(2)

and another heat engine with efficiency:

ei,c =
Ti − Tcold

Ti
= 1 − Tcold

Ti
(3)

Next, we can ask what temperature Ti makes the two heat engines equally effective. To do this,
we simply set eh,i = ei,h and solve for Ti, which gives

emax,i = ei,min

Tmax − Ti
Tmax

=
Ti − Tmin

Ti

Ti =
√

TmaxTmin (4)

This is a well-known result in Carnot cycle theory; see, for example, [12,13]. In a perfect Carnot
engine, there is no change in entropy, ∆S = 0, so due to the second law of thermodynamics, it is
assumed that a perfect Carnot engine is not possible. However, the Carnot efficiency still serves as
an upper limit. We will soon see that the universe itself is, remarkably, possibly a perfect Carnot
engine, but only under a few special exact solutions to Einstein’s field equations. Despite considerable
research, these solutions have not been extensively studied in relation to cosmological models.

2. Carnot Engine Black Hole Hubble Spheres Leads to the CMB temperature
Black hole cosmology goes back at least to 1972, when Pathria [14] pointed out multiple similarities

between the Hubble sphere and black holes. Black hole cosmology, although much less known than
the Λ-CDM model, is still an actively discussed topic among various researchers; see, for example,
[15–24].

However, there are multiple solutions to Einstein’s field equations that lead to black holes. The
Schwarzschild [25,26] metric is the best known, but we also have, for example, the Kerr [27] solution
for rotating black holes, the Reissner-Nordström solution for charged black holes, the Kerr-Newman
[28,29] metric for rotating charged black holes, anti-de Sitter (AdS) black holes, and Haug-Spavieri [30]
black holes. We will return to discussing specific metrics first in the following sections. In this section,
we will highlight some very general principles in a black hole universe that can be linked to Carnot
engine principles, which, in turn, lead to the correct prediction of the CMB temperature.

Haug and Tatum [31] are likely the first to link the minimum and maximum energy in black hole
cosmology to the CMB temperature. Their idea is simply that the shortest possible wavelength is

linked to the Planck scale and the Planck length, lp =
√

Gh̄
c3 [32,33]. This is in line with what most
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researchers working on quantum gravity assume; see, for example, [34–38]. This means the maximum
energy for a photon or an elementary particle is given by approximately:

Emax = h̄
c
lp

= Ep (5)

where Ep is the Planck energy. This means that the maximum temperature in the Hubble sphere then
is the Planck temperature:

Tmax = Tp =
Ep

kb
=

1
kb

√
h̄c5

G
(6)

Haug [39] later argued that since wavelengths spread out in any direction, the maximum energy
was likely linked to a Planck mass black hole. Thus, the minimum wavelength was 4πRs,p = 4π2lp =

8πlp, as the Schwarzschild radius of a Planck mass black hole is Rs,p =
2Gmp

c2 = 2lp. This leads to a
maximum energy and temperature of:

Emax = h̄
c

8πlp
, Tmax = h̄

c
kb8πlp

(7)

Interestingly, this also corresponds exactly to the Hawking [40] temperature of a Planck mass
black hole.

In addition, the minimum energy for a photon or elementary particle must be linked to the
maximum possible physical wavelength inside the black hole Hubble sphere. Haug and Tatum
suggested that this was likely the radius, diameter, or ultimately the circumference of the Hubble
sphere, which gives:

Emin = h̄
c

4πRH
(8)

and the corresponding minimum temperature of

Tmin = h̄
c

4πRH
(9)

Haug and Tatum concluded that the CMB temperature is likely the geometric mean of the
temperatures linked to the minimum and maximum temperature. They suggested the formula:

Tcmb = h̄
c√

λ̄maxλ̄min

1
4πkb

≈ 2.725K (10)

where they define the minimum wavelength as λ̄max = 2RH and the maximum wavelength as
λ̄min = lp. Haug [41] demonstrates that if the maximum wavelength is linked to the Hubble sphere
circumference and the minimum wavelength is the circumference of a Planck mass black hole, then
this can simply be rewritten as:

Tcmb =
√

TminTmax (11)

Still, none of these papers provide a good explanation for the physical reason why the CMB
temperature should be the geometric mean of the minimum and maximum possible temperature in
the black hole Hubble sphere. We now believe we have the answer, and it is related to the idea that
black holes could operate as Carnot engines.

We know that the maximum temperature in the Hubble sphere is likely linked to the circumference
of the Planck mass black hole, which is identical to the Hawking temperature of the Planck mass
black hole. We also know that the minimum temperature is linked to the longest possible physical
wavelength in the Hubble sphere, namely the circumference of the Hubble sphere. If we now think of
the Hubble sphere as two Carnot engines rooted in three temperatures—the maximum temperature
Tmax, which is related to Planck mass black holes inside the Hubble sphere that are pumping heat
(energy) into the Hubble sphere into an unknown temperature reservoir Ti—and a second Carnot heat
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engine transferring energy from the reservoir Ti into the cold reservoir Tmin, then, to keep these two
Carnot engines in equilibrium (i.e., to make them equally effective), we need to satisfy the following
equation:

emax,i = ei,min

Tmax − Ti
Tmax

=
Ti − Tmin

Ti

Ti =
√

TmaxTmin ≈ 2.725K (12)

where now Tmax = h̄ c
8πlp

1
kb

and Tmin = h̄ c
4πRH

1
kb

, this again correspond to the Hawking temperature
of the Planck mass black hole and the Hubble sphere black hole.

Thus, this provides a compelling explanation for why the geometric mean of the minimum and
maximum temperatures in the Hubble sphere leads to the CMB temperature. The CMB temperature
is the equilibrium temperature that balances the two heat pumps in the Hubble sphere. Multiple
configurations are possible here, as reverse Carnot engines are also feasible. It is also possible that heat
is pumped from the cold reservoir to the CMB and that heat is subsequently pumped from the CMB
into Planck mass black holes, which then return their energy back into the CMB as Hawking radiation.
The lifetime of a Planck mass black hole is extremely short according to Hawking evaporation time:

t =
5120πG2m3

p
hbarc4 ≈ 8.68 × 10−40 s .

The CMB temperature formula above can easily be proven to be consistent with the CMB formula
recently derived from the Stefan-Boltzmann law by Haug and Wojnow [42,43]. The Stefan-Boltzmann
law is valid for black bodies. It is important to note that the cosmic microwave background is indeed a
nearly perfect black body, as pointed out by Müller et al. [44]:

“Observations with the COBE satellite have demonstrated that the CMB corresponds to a nearly
perfect black body characterized by a temperature T0 at z = 0, which is measured with very high
accuracy, T0 = 2.72548 ± 0.00057k."

Both the geometric mean approach first suggested by Haug and Tatum, which we now see
emerging from a universe functioning as an ideal Carnot engine, and the Stefan-Boltzmann approach
are consistent with the formula for the CMB temperature initially more heuristically suggested by
Tatum et al. [45]. However, after years of research, it now seems that the deeper explanation of the
formula could be that the Hubble sphere operates as a perfect Carnot heat engine.

Nevertheless, further investigation is needed to understand how such a Carnot engine functions
within the Hubble sphere. This requires examining specific metrics to determine whether everything
aligns correctly something we aim to investigate in the next sections.

3. The Extremal Black Hole Has Zero Net Entropy Change and Do Not Follow the
Second Law of Thermodynamics

The change in entropy in an ideal Carnot engine is zero, and we based our calculations of
Tcmb =

√
TmaxTmin on the assumptions of an ideal Carnot engine. So, can this aspect also align with

black hole theory?
When one talks about black hole entropy, most think of the Bekenstein-Hawking [46–48] entropy,

which is S = A
4l2

p
, where A is the surface area of a black hole. In a growing Schwarzschild black hole,

entropy also keeps increasing. It follows the second law of thermodynamics. However a perfect Carnot
engine seems to not obey the second law of thermodynamics and we found out formula for the CMB
temperature based on that the universe is a black hole Hubble sphere working as a ideal Carnot engine,
so then we cannot have the entropy increasing, or alternatively our finding is only an approximation.
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In this paper, however, we will focus on extremal black holes from the Reissner-Nordström (RN)
[49,50] solution. The extremal RN solution is given by:

ds2 = −
(

1 − 2GM
Rc2 +

G2M2

c4R2

)
c2t2 +

(
1 − 2GM

Rc2 +
G2M2

c4R2

)−1

c2R2 + R2Ω2 (13)

In addition, it is worth mentioning that the minimal solution of the Haug-Savieri [30] metric gives
the same mathematical metric as above, but with somewhat different interpretation as the charge is set
to zero in the Haug and Spavieri minimal solution. This is important because the term G2 M2

c4R2 dose not
necessarely comes from charge except naturally if derived from the RN metric.

Already in 1995, Hawking et al. [51] demonstrated that the entropy in an extremal Reissner-
Nordström black hole is zero, or in their own words:

We first show that the entropy of an extreme Reissner-Nordstr"om black hole is zero, despite the
fact that its horizon has nonzero area.

This has been confirmed by the complementary work of Edery and Constantineau [52], which
indicates that extremal black holes surprisingly have zero entropy. Carroll et al. [53] also conclude that
extremal black holes likely have zero entropy, but at the same time, they point out:

“the theory of black hole entropy is still incomplete."

Similarly, Stotyn [54] states:

..not all of these methods calculate the same quantity, so how extremal black hole entropy is
defined is still up for debate. The implications of this for extremal black hole entropy are far-reaching.

Here, we suggest a slightly new interpretation of the zero entropy of extremal black holes that
seems to make them compatible with ideal Carnot engines. In short, we will simply claim that it is the
net change in entropy that is zero in an extremal black hole, not the entropy itself. Naturally, we must
explain why we make this claim.

First of all, we can make the extremal black hole metric time-dependent in the form:

ds2 = −
(

1 − 2GMt

Rtc2 +
G2M2

t
c4R2

t

)
c2t2 +

(
1 − 2GMt

Rtc2 +
G2M2

t
c4R2

t

)−1

c2R2
t + R2

t Ω2 (14)

where we simply assume Rt = ct. This means that if we move in and out of the radius of the extremal
black hole at the speed of light, the mass inside Rt will also change. The event horizon for an extremal
black hole is given by:

Rh =
GM
c2 (15)

Thus, the mass of the extremal black hole must be M = c2Rh
G , and when we move inside the radius

of the black hole, we have Mt =
c2Rt

G . This implies a constraint on the density of the mass inside the
extremal black hole:

Mt
4
3 πR3

t
(16)

This is unlike in a Schwarzschild black hole, where the mass density must increase as we move
along Rt because, in a Schwarzschild black hole, the mass and energy are sucked into the central
singularity. This is not the case in an extremal black hole, as the electrostatic force exactly offsets the
gravitational force.

For example, an extremal black hole has no external Hawking radiation, as pointed out by Sorkin
and Piran [55], who, based on their analysis of black holes, find:

“We find that the evaporation proceeds to a stable end-point corresponding to the extremal,
M = Q, charged black hole."
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That is, extremal black holes are stable and do not have external radiation. In our view, the reason
for their zero entropy is that there are two counteracting forces exactly offsetting each other in the
extremal black hole. However, entropy still exists when considering each individual force. It is in our
view the net entropy that is zero.

The extremal black hole has exactly twice the mass of a Schwarzschild black hole when they have

the same radius: MRN = c2Rh
G versus Ms =

c2Rs
2G when Rh = Rs. This means that half of the equivalent

mass in the extremal black hole gives rise to gravity, while the other half gives rise to the electrostatic
force. We propose that gravity acts as a kind of "anti-entropy," as it “pulls matter together (from a GR
perspective we are naturally talking about space-time curvature rather than a pulling force), whereas
radiation pressure pushes things apart, increasing distinguishable states and therefore gives raise to
entropy.

In an extremal black hole, the entropy from the electrostatic force, which is a type of radiation
pressure, is perfectly stable and offset by the gravitational force. It is offset in the sense that entropy
does not increase. We will return to how to quantify this in the next section.

Already in 2014, [56], we purely philosophically suggested that there could exist a counter "force"
to entropy, which we called "antropy." We will soon link the extremal black hole to black hole cosmology.
In such a black hole, half of the mass equivalent is responsible for the gravitational force, which we
propose is the counter-force to entropy, while the opposing force is radiation pressure. This radiation
pressure could mostly come from extremely light or short-lived particles, potentially even being related
to dark energy.

4. The Extremal Black Hole Cosmology
Haug [1] and also Haug and Spavieri [57] have recently suggested a cosmology model based

on the extremal solution of the Reissner-Nordström solution, as well as the minimal solution of the
Haug-Spavieri metric. This leads to a metric that is mathematically indistinguishable from previous
models.

The black hole event radius in the extremal solution is Rh = GM
c2 . This means the equivalent mass

in an extremal black hole: M = c2Rh
G is twice that of the Schwarschild black hole. Further if we assume

the Hubble sphere is a black hole universe and Rh = RH , where RH = c
H0

is the Hubble radius then
the mass of the universe is:

M =
c2RH

G
(17)

which is exactly twice the critical Friedmann mass Mcr =
c2RH

2G . Furthermore, we are interested in the
point where the time component is zero. This has been discussed in the papers above but is repeated
here due to its great importance. We get:(

1 − 2GMt

RH,tc2 +
G2M2

t
c4R2

H,t

)
= 0

2GMt

RH,tc2 − G2M2
t

c4
(

GMt
c2

)2 = 1

2GMt

RH,tc2 − G2M2
t

c4
(

c2

Ht

)2 = 1

8πGMt

3 4
3 R3

H,t
−

3 H2
t

c2 c2

3
=

c2

R2
Ht

8πGρ

3
−

3 H2
t

c2 c2

3
= H2

t (18)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2025 doi:10.20944/preprints202502.1827.v1

https://doi.org/10.20944/preprints202502.1827.v1


7 of 10

Next we define Λt = 3 H2
t

c2 as the Cosmological constant and simply re-write the equation above to

8πGρt − Λtc2

3
= H2

t (19)

This looks similar to the Friedmann eqation but is still rather different both mathematically and
interpretation wise. First of all we have used the Einstein [58] original field equation: Rµν − 1

2 Rgµν =
8πG

c4 Tµν to get to this result. That is we do not need to relay on Einsteins [59] 1917 extended field
equation as he called it himself, where he despite solid reasoning somewhat ad hoc where inserting a
cosmological constant to get: Rµν − 1

2 Rgµν + Λgµν = 8πG
c4 Tµν. The Friedmann model and the Λ-CDM

model heavily relay on Einstein’s extended 1917 Field equation.
Furthermore our new cosmological equation can be further be re-written as:

8πGρ − 3 H2
t

c2 c2

3
= H2

t

ρT,t =
3H2

t
8πG

+
Λtc2

8πG
= ρt + ρΛ,t =

3H2
t

4πG
(20)

where ρT is the total density and ρ is the density coming from gravity, so mass and normal energy, and
ρΛ is the mass equivalent density due to electrostatic force if we relay on the RN metric, or on some
relativistic gravitational effect if interpreted from the Haug-Spavieri metric, not taken into account in
the Schwarzschild metric, that even could be termed dark energy.

What is important to understand here in relation to Carnot engines is that two opposite forces are
at work in the extremal black hole universe. If we take half the energy in the extremal black hole and
divide it by the minimal energy that can exist in a black hole with Hubble radius we get:

E
Emin

=
c4RH

G
h̄ c

4πRH

=
c3R2

H
h̄G

≈ 7.29 × 10121 (21)

This concerns the number of entropic states estimated from other methods in the universe (see Lloyd
[60]). In our view, entropy also exists in the extremal black hole universe; however, it is likely
unchanged after a Carnot cycle in the Hubble sphere due to the gravitational force counteracting
the electrostatic force. Note that the electrostatic force does not necessarily have to be a traditional
electrostatic force; rather, it could be something quite unconventional in light of the Haug-Spavieri
metric interpretation.

For the gravitational part or the electrostatic force, many of the formulas from the Schwarzschild
metric will still apply, as we, when looking at either only gravity or only the electrostatic force, must

consider only half the mass equivalent. So then the mass is suddenly c2RH
2G , meaning we still get the

Hawking radiation. However, unlike in the Schwarzschild black hole, in the Hubble sphere extremal
RN black hole, the Hawking radiation is not escaping but rather reflected—or we can even say pumped
back—by the heat engine.

Thus, the vacuum energy is likely composed of micro black holes popping in and out of existence.
They are releasing Hawking energy into the CMB, or they may even constitute the CMB itself, after
which they are pumped back again into micro black holes. These micro black holes are extremely hard
to detect since their lifetime is much shorter than what any instrument today is capable of measuring.
This provides a possible explanation for dark energy and, most importantly, suggests that the Hubble
sphere is likely a Carnot engine. Consequently, we can not only measure the CMB temperature but also
predict it as simply the geometric mean of the minimum and maximum temperatures in the Hubble
sphere.

This has also dramatic practical consequences for cosmology, as it establishes a connection
between the CMB temperature and the Hubble parameter. Since the CMB temperature is measured
much more precisely than the Hubble parameter, this relationship allows for a much more precise
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estimate of the Hubble parameter, as recently demonstrated by Tatum et al. [61] and Haug and Tatum
[62] that gives H0 = 66.8943 ± 0.0287 km/s/Mpc based on a full almost perfect match to all SN Ia in
the PhantonPlusSH0ES database.

5. Conclusion
We have demonstrated that if we look at the universe as a black hole Carnot heat engine, the CMB

temperature must be given by: Tcmb =
√

TmaxTmin ≈ 2.725K. This means that in black hole cosmology,
we can predict the CMB temperature—something the Λ-CDM model cannot do. This result seems to
be in line with research done on the extremal solution of Reissner-Nordström and the Haug-Spavieri
metric.

An ideal Carnot engine leads to zero change in entropy after each cycle, ∆S = 0. As early as 1995,
Hawking et al. predicted that extremal black holes have zero entropy, something that has led to active
discussions on the entropy of extremal black holes. We have suggested that it is actually just the net
entropy that is zero and that there seem to be two counteracting forces in an extremal black hole that
simply prevent entropy from increasing over time. The extremal black hole universe, first suggested
by Haug, leads to a cosmological constant derived directly from Einstein’s original 1916 field equation.
In contrast, the Λ-CDM model and other cosmological models with a cosmological constant rely on
Einstein’s extended 1917 field equation, where Einstein somewhat ad hoc inserted the cosmological
constant.
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