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Abstract

Rhodoliths are calcareous red algae considered indicators of ocean acidification and key biodiversity
hotspots due to their ability to host a variety of species within their three-dimensional structures.
This work aims to review the available scientific on rhodolith-forming species: reports from literature,
the Symbiota digital taxonomic inventory, field observations, and nucleotide databases. A total of 21
species is reported, predominantly from the Corallinaceae family and the Lithophylloideae
subfamily. Rhodoliths have been reported in Bocas del Toro, the Gulf of Chiriqui, Coiba National
Park (PNC), the Gulf of Panama, and at Las Perlas Archipelago. This review represents the first step
in raising awareness about the presence of these organisms along Panama’s coast and advocating for
their inclusion in the management plans of protected areas, such as PNC, a UNESCO World Heritage
Site, where rhodoliths are not yet part of the recorded algae species list or the park’s conservation
targets despite its ecological relevance. Knowledge remains limited, and their conservation status is
uncertain, but the increasing sampling efforts, and integration of morphological and molecular
studies will open new opportunities to improve the estimation of rhodolith diversity in Panama.

Keywords: Coiba; coralline algae; rhodoliths beds; checklist; conservation

1. Introduction

Rhodoliths are free-living calcareous red algae primarily composed of calcium carbonate. These
algae are considered habitat modifiers or oceanic bioengineers as they provide a stable habitat for
communities of other marine species within their three-dimensional branched and interlaced thalli
[1]. As such, their ecological importance has drawn increasing attention to the need for their
conservation.

Accoding to Tuya et al. 2023 [36], thodolith beds are globally distributed, occurring from tropical
to polar regions, and they cover an estimated area of 4.12 million km? worldwide —approximately
20% larger than the estimated global area of tropical coral reefs, and between 2.5 to 30 times greater
than other well-studied coastal habitats such as kelp forests, seagrass meadows, and mangroves.
Despite these figures, rhodolith-bed science still lags behind other coastal ecosystems in terms of
research efforts and ecological understanding

Interest in the conservation of rhodoliths in other countries has increased due to their role as
indicators of ocean acidification [1-7]. Rhodolith beds are considered threatened and protected in
coastal habitats of New Zealand, Europe, Australia, Brazil and Mexico. However, in Central America,
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only Costa Rica has initiated research efforts on them. Notably, studies conducted around Isla del
Coco have revealed the presence of extensive rhodolith beds, as documented by Diaz-Licona [8].
These beds not only provide structural habitat and support high biodiversity but also play a crucial
role in calcium carbonate production and the delivery of essential ecosystem services such as
sediment generation, carbon cycling, and benthic habitat stabilization. These findings highlight the
ecological importance of rhodolith beds in the Eastern Tropical Pacific and the urgent need for
expanded conservation and research across Central America.

In contrast, Panama remains largely unexplored regarding rhodolith presence and diversity.
This gap is particularly evident in the Coiba National Park (PNC), a UNESCO World Heritage Site
and a critical protected area that harbors a significant role in the conservation of marine biodiversity
in the region. Located off the southwest coast of Panama, in the Gulf of Chiriqui, the PNC harbors
significant marine habitats, including coral/algal beds, yet thodoliths remain underexplored.

This lack of recognition is further evidenced by the most recent management plan for the PNC,
which does not include rhodoliths in any of its prioritized conservation categories, such as species or
ecosystems [9]. Although the plan acknowledges the significant extent of coral/algal coverage in its
shallow bottoms, the absence of rhodoliths as a conservation object highlights a gap in the area’s
conservation efforts, despite their ecological importance.

Although the Isthmus of Panama provides suitable substrates for rhodoliths development,
research and documentation on these ecosystems remain scarce. In this review, we provide a
comprehensive overview of the calcareous red algal species that form rhodoliths in Panama,
including georeferenced field observations, herbarium records, available DNA sequences, and other
ecological data on rhodoliths worldwide. This information is essential for advancing future
taxonomy, biogeography, conservation, phylogeography, genetics, and ecology of rhodoliths in the
region. Our study contributes to the expanding body of literature on Central America, helping to
reduce knowledge gaps and encourage further scientific attention to these overlooed habitats.

2. Materials and Methods

2.1. Literature Review

A review of the literature from 1910 to 2024 was conducted, including reports of rhodolith
species for Panama, the digital taxonomic inventory Symbiota from the Smithsonian Tropical
Research Institute (https://panamabiota.org/stri/projects/index.php?pid=18), the macroalgal
herbarium consortium website of the U.S. National Science Foundation and several field
observations. For molecular data, the NCBI website (https://www.ncbinlm.nih.gov/) and BOLD
Systems (http://www.barcodinglife.org/) were consulted. Georeferencing maps were created using
ArcGIS® software, and updates to scientific name updates were cross-referenced with the AlgaeBase
database (https://www.algaebase.org).

2.2. General Settings of Rodolith Beds at Coiba National Park

A random sampling was conducted through underwater survey using standard SCUBA
techniques in an area approximately 250-500 m? at sites ranging from 8 to 17 meters in depth. To
measure the percentage of coverage of the rhodolith beds, three photographs were taken per site
using a Canon EOS R6 camera with an 85 mm macro lens. The images were processed using the
Image] software, where the “particle analysis” tool was applied to quantify the coverage. The
percentage of coverage was determined by comparing the area of the rhodolith beds to the total area
of each image, and an average coverage was determined for each site. Additionally, observations on
the associated marine fauna and flora, as well as depth were documented.

3. Results and Discussion

3.1. Historical Review
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The history of rhodoliths research in Panama dates back more than a century ago (Figure 1a),
when in 1910, Marshall Howe ventured into the Isthmus and first documented Corallinaceae species
in the Bay of Panama. Although the known marine flora was limited at that time, Howe found
rhodoliths in sites such as Isla Taboga, Urava, and Taboguilla, as well as in the Canal Zone [10]. Eight
years later, in 1918, Howe returned to the region and reported four species of Lithothamiaceae in the
Panama Canal, highlighting the geological significance of his findings, as well as their relevance to
fossil species [11].
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Figure 1. Timeline about rodoliths research in Panama.

Interest in these algae continued to grow over the following decates. In 1929, the naturalist
Lemoine, as part of a British expedition on the Saint George cruiser, documented several species of
Corallinaceae on the Pacific coast of Panama, specifically in Taboga, Perlas, Coiba, and Jicaron. It was
during this expedition that Lithophyllum coibense, a new species, was described [12]. Later, in 1945,
Taylor conducted a detailed study on Isla Secas and other areas of the Panamanian Pacific, reporting
rodoliths-forming species, such as Lithothamnion, which was found covering corals subtrates in Bahia
Honda, Veraguas [13].

In the following decades, other researchers, incuding Dawson in the 1960s [14] and Sylvia Earle
in 1972, futher expanded the records on calcareous algae capable of forming rhodoliths. Earle, for
example, reported a total of 17 rhodolith species for the Pacific coast and six for the Caribbean coast
[15].Itis important to note that all taxonomic classifications during this period were based exclusively
on morphological characteristics, as molecular methods were not yet available.

Thirty-two years later, in 2004, a bathymetric survey revealed extensive rhodoliths beds in the
shallow waters of Coiba National Park [16], although the specific species remained unidentified.
Later, in 2008, Littler and Littler expanded the knowledge of biodiversity in the Gulf of Chiriqui, by
documenting large rhodolith beds dominated by species such as Lithophyllum divaricatum and
Lithothamnion indicum [17]. More recently, research has taken a more technical and integrative
approach. Since 2013, anatomical and molecular studies have started to shape a new perspective on
rhodoliths in Panama. Martinez [18], reported three species of Lithophyllum in the Caribbean coast,
based on morphometric data, thereby expanding knowledge on their distribution. Other molecular
studies, such as those by Richards and collaborators, have included samples from Panama, proving
new insights in understanding genetic diversity of these calcareous marine algae [19-22].

Over the decades, research on rhodoliths in Panama has progressed gradually, with most reports
resulting from expeditions and literature reviews (Figure 2a). Each new discovery has shed light on
the ecological importance of these calcareous algae, which continue to attract a growing interest in
marine science community. In recent years, the number of publications providing molecular
information on Panama’s rhodoliths has been steadily increasing (Figure 2b), further enhancing our
understanding of their biological relevance.
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Figure 2. (a) number of reported species in both stages of panamenian rhodolith research; and (b) number of

different publised literature with panamenian rhodoliths reports.

3.2. Checklist of Rhodoliths Species in Panama

A total of 21 rhodoliths-forming species has been reported for Panama, including 11 from the
family Corallinaceae, five from Hapalidiaceae, and two from Sporolithaceae. Table 1 shows the list
of rodoliths species based on published literature and student theses. The taxa are organized

alphabetically by family and subfamily.

Table 1. List of rhodolith-forming species reported for Panama.

Family/Sub-family/Species Locyallt
Corallinaceae

Sub-family Chamberlainoideae

Chamberlainium decipiens (Foslie) Caragnano, Foetisch, Maneveldt & Payri (as Spongites Pacific

decipiens) [23,24]
Pneophyllum confervicola (Kiitzing) YMChamberlain: (as Heteroderma minutulum) [23,24]  Pacific

Sub-family Lithophylloideae
Lithophyllum coibense Me. Lemoine [12,24] Pacific
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Lithophyllum brachiatum (Heydrich) Me.Lemoine [12,24,25] Pacific
Lithophyllum alternans Me.Lemoine [17,24] Pacific
Lithophyllum okamurae Foslie [20] Pacific
Lithophyllum prototypum (Foslie) Foslie (as Goniolithon tessellatum) [15,23,24] Pacific
Lithophyllum pallescens (Foslie) Foslie [23,24] Pacific
Lithophyllum divaricatum M. Lemoine [13,24] Pacific
Lithophyllum neocongestum JJHernandez-Kantun, WHAdey & PWGabrielson [26] Ca::be

Caribb

Titanoderma pustulatum (JVLamouroux) Nageli [15,27,28] a:n ¢
Sub-family Mastophoroideae
Goniolithon decutescens (Heydrich) Foslie ex M.Howe [20,25] Caribbe

an

Sub-family Metagoniolithoideae
Harveylithon munitum (Foslie & M.Howe) A.Rosler, Perfectti, V.Pena & JCBraga [21,29]  Caribbe

an
Sub-family Neogoniolithoideae
Neogoniolithon trichotomum (Heydrich)Setchell et L.R. Mason [23,24] Pacific
Hapalidiaceae
Sub-family Melobesioideae
Lithothamnion australe Foslie [23,24] Pacific
Lithothamnion australe f.americanum Foslie [13,24] Pacific
Lithothamnion crispatum Hauck (as L. indicum) [12,17,24] Pacific
Lithothamnion australe f. minutulum Foslie (as Mesophyllum australe var. minutula ) [12] Pacific
Mesophyllum australe var. tualense (Foslie) Mc. Lemoine [12,24] Pacific
Sporolithaceae

) . Caribbe
Sporolithon episporum (M.Howe) EYDawson [12,15,17,27] an
Sporolithon ~ howei  (Lemoine) N.Y. Yamaguishi-Tomita ex M-J. Wynne:
(asArchaeolithothamnion howei) [12,14,24] Pacific

3.3. Reports to Be Confirmed

Field observation and morphological studies are considered as records requiring confirmation
(Table 2), due to the limitation such as detalied taxonomic identification, the absence of molecular
evidence to support the morphological observations, or the need for additional studies to verify the
presence of these species in the reported locations. Additionally, some of these records are based on
non-systematic observations, which hinders the ability to validate them conclusively without more
comprehensive and rigorous analyses

Table 2. List of rhodolith-forming species reports from Panama to be confirmed.

Locality/Species

CARIBBEAN

T Clathromorphum Foslie

Hydrolithon farinosum (J.V.Lamouroux) Penrose & Y.M.Chamberlain (as Fosliella farinosa) [15,25,27]
Lithophyllum corallinae (P.Crouan y H.Crouan) Heydrich [18]
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T Lithophyllum kaiseri (Heydrich) Heydrich

Lithophyllum stictaeforme (Areschoug) Hauck [19]

T Mesophyllum mesomorphum (Foslie) WHAdey
Neogoniolithon spectabile (Foslie) Setchell & LRMason [30]
T Neogoniolithon strictum (Foslie) Setchell y LRMason
Porolithon sp. Foslie [15]

PACIFIC
Fosliella fertilis (M. Lemoine) Segonzac [17,24]
Fosliella minuta W.R. Taylor [13,15,24]
T Hydrolithon boergesenii (Foslie) Foslie
T Hydrolithon breviclavium (Foslie) Foslie
T Hydrolithon boergesenii (Foslie) Foslie
T Lithophyllum imitans Foslie
T Lithophyllum kotschyanum Foslie
T Phymatolithon lenormandii (Areschoug) WHAdey
T Mesophyllum engelhartii (Foslie) WHAdey
Phymatolithon masonianum Wilks & Woelkerling [31]
T Porolithon onkodes (Heydrich) Foslie [24,32]
T Porolithon sonorense EY Dawson

T Spongites fruticulosus Kiitzing [33]

T Field observations or herbarium specimens reviewed in the Symbiota database, without related publications.

Several studies have documented various species of calcareous algae that form rhodoliths in
Panama; however, some of these species still require confirmation. For example, the genera Fosliella
has been recorded as a rhodolith-forming species, yet studies from the South Pacific do not include
this genus among rhodolith-associated taxa. Similarly, Phymatholiton masonianum exhibits anatomical
characteristics consistent with specimens from Australia, but genetic information from the type
species is crucial to validate this identification.

Other species, such as Hydrolithon breviclavium and Lithophyllum corallinge, have not been
previously reported for Central America, making their presence in Panama uncertain until verified
through detailed molecular and anatomical studies. Although these species are not officially
registered for Panama, recent field observations suggest L. corallinae may be present along the Pacific
coast [33].

3.4. Misreportings

Some reports have been considered invalid, due to incorrect distribution data. For instance,
species such as Lithophyllum fetum, Lithophyllum lividum, and Lithophyllum propinquum var. cocosicum
were listed for the Pacific of Panama in the review lists of Fernandez Garcia et al. [24] and Earle [15].
However, these species were initially reported from Isla del Coco, Costa Rica [12].

Similarly, Dermatolithon saxicola, also listed by Earle [15] for the Pacific of Panama, was recorded
by Lemoine’s [12] at Isla del Coco, Costa Rica. Likewise, Lithothamnion indicum var. subtilis and
Lithothamnion mesomorphum, mistakenly reported by Earle [15] to Panama, were first recorded from
Isla Gorgona, Colombia [12], not Panama.

These misreportings highlight the need of verifying species records, especially for taxes with
overlapping geographical distributions. Comprehensive molecular and anatomical studies are
essential to clarify the true occurrence of these species in Panama and ensure accurate
biogeographical mapping.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.5. Localization and Diversity

Georeferencing data provided by the Symbiota digital database of the Smithsonian Tropical
Research Institute, along with records from other international collections, are important to
identifying the distribution and extent of rhodolith beds in Panama (Supplementary data, S1).

Based on these records, four major regions within the Isthmus of Panama have been identified
as important areas for rhodolith occurrence: the Bocas del Toro Archipelago in the Caribbean, and
the Gulf of Chiriqui, Coiba National Park and the Pearl Islands Archipelago in the Pacific. Additional
records from Colon, Taboga, the Canal Zone and San Blas, each with at least four georeferenced point
suggest that these locations warrant to further sampling efforts to enhance the current understanding
of rhodolith distribution in the region (Figure 3).

Figure 3. Key areas with important extensions of rhodoliths in Panama; a) Coiba, b) Bocas del Toro, c) Gulf of
Chiriqui and d) Las Perlas Archipelago. Squares with dotted lines in white represent sites with one or two

reports.

The greatest diversity is found in Panama’s Pacific (Figure 3), with the Coiba National Park
standing out as the area with the highest species richness (Figure 4). The vast sandy and rocky, soft-
bottom substrates predominant in PNC provide ideal conditions for the establishment of rhodolith
communities, forming extensive beds [9,16].
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Ten genera of rhodoliths-forming species are reported in Panama. Similar to observations by
Robinson et al. [34] for the Tropical Eastern Pacific, the order Corallinales dominates the assemblage,
accounting for 66.7% of the species (Figure 5a), with the subfamily Lithophylloideae representing

44% (Figure 5b). Within this group, the genus Lithophyllum emerges as the most frequently recorded
along Panama’s coasts.

B66.7%
10

"

£

o

o

o

s

5

£

5

2 5

9.5%
0 -
Corallinaceae Hapalidiaceae Sporolithaceae
Order
@) )
44%

40
=
(L]
£
230
-
E
=
o
8 20%
£20
k]
@
o
8
c
3
510 8% 8%
o

49 4% 49%
0
L ME CH SPO MA MET NE
Subfamily
(b)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202508.1249.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2025 d0i:10.20944/preprints202508.1249.v1

9 of 17

Figure 5. Diversity of rhodoliths reported for Panama (a) by order and (b) by sub-family. LI= Lithophylloideae,
ME= Melobesioideae, CH= Chamberlainoideae, SPO= Sporolithaceae, MA= Mastophoroideae, MET=
Metagoniolithoideae, NE= Neogoniolithoideae.

In contrast, in Panama’s Caribbean side of Panama shows a notably lower number of reported
species, likely due to limited sampling efforts in the region However, favorable conditions in the
region, such as depth, temperature, site accessibility and high diversity of other marine algae species
[30,35,36], suggest that species richness may be underestimated. Recent studies have documented
rhodolith specimens from the Bocas del Toro Archipelago [20,21,26] and areas near Colén [18],
indicating that further exploration could reveal greater diversity in the Caribbean sector.

3.6. Molecular Studies Data

Twenty-eight genetic sequences of calcareous rhodolith-forming algae species from Panama
have been recorded, corresponding to the genes col, cox2, Isu, upa, rbcl, and psba, and retrieved from
the NCBI and BOLD Systems database. The psba gene has been the most used for species
characterization s in the country (Appendix Al).

Recent studies have incorporated Panamanian species into their molecular analyses. Richards et
al. [22] included Panama’s sequences in a phylogenetic analysis of rhodolith diversity in the
northwest Gulf of Mexico. In 2021, they confirmed the presence of Harveylithon munitum in Panama
and suggested a potential phylogenetic relationship with Harveylithon maris-bahiensis from Brazil [21].

In addition, Richards et al. [20], confirmed the occurrence of Sporolithon episporum in the
Caribbean coast of Panama and proposed that Sporolithon samples from the Gulf of Chiriqui may
correspond to either S. howei or S. pacificum.

Richards et al. [19] provided both molecularly and morphologically characterization of two
Lithothamnion specimens from Panama’s Pacific, though their precise identification requires further
analysis using additional molecular markers. Robinson [31] was the to report Lithophyllum okamurae
in the Las Perlas Archipelago, based on combined morphological and molecular evidence.

These studies have expended the of molecular dataset available for rhodolith-forming species in
Panama. Further research using other molecular markers is needed to resolve incomplete
phylogenetic relationships and understand the genetic diversity of these organisms. The inclusion of
bioinformatics tools will be key for advancing the interpretation of rhodolith diversity patterns in the
region.

3.7. Rhodolith Beds at Coiba National Park (PNC)

According to the updated 2024 management plan for PNC, coral/algal assemblages dominate
the marine benthos, covering 35.17% of the total protected area (equivalent to 2,877.84 hectares) [9].
This extensive coverage plays a critical role in the structure and function of reef ecosystems, offering
essential habitats for a wide range of marine species [9,16].

Substrate distribution analyses from the PNC management plan show that these benthic
habitats, found at depths of up to 10 meters around the Coiba island, are key in maintaining ecological
structure of the protected marine area [9]. The benthic structure of the area reflects a combination of
corals and algae assemblages that promote marine biodiversity and the ecological dynamics of the
region.

Notably, the benthic structures currently referred to as “coral/algal” in the 2024 plan were
previously described as “rhodolith beds” in the 2014 management plan, a classification supported by
our field observations.

Our surveys confirm the presence of rhodolith beds at the NE of the PNC (Table 3, Figure 6),
with coverage ranging between 46% and 69%, depending on the location. The Canales de Afuera
exhibited a rhodolith coverage of 46%, while in Buffet the coverage was 49% and in Don Juan reached
65%. The highest coverage to date was found at Iglesias, with 69% of rhodoliths coverage.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 3. Sites performed at NE of Coiba National Park with the indication of the coordinates, coverage of

rhodoliths and depth.
SITE Latitude °N Longitude°W Coverage (%) Depth (ft)
Canales de Afuera 7.68888 -81.63419 46 45
Buffet 7.68537 -81.61061 49 55
Don Juan 7.39809 -81.63869 65 42
Iglesias 7.64542 -81.69166 69 32

A) Canales de Afuera
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Figure 6. Rhodolith bed at four sites of northeast of Coiba National Park.

The sediments associated with the beds in the study sites are mainly composed of gravelly,
muddy sand and basaltic rocks. The rhodolith beds to the NE of the PNC host an associated diversity
of fauna and other macroalgae (Figure 6 and Supplementary data, video, S2).

3.8. Ecological Role, Threats and Conservation

Rodoliths beds are recognized as both Ecologically or Biologically significant Marine Areas
(EBSA) and Small Natural Features (SNF) due to their exceptional role in marine ecosystems. EBSAs
are considered areas of significant ecological value because they contribute to biodiversity
conservation and play a vital role in maintaining the health and function of marine ecosystems [37].
As SNFs, they are classified as small but ecologically crucial units that have a significant impact on
their surrounding environments [38].

In addition to their role in seabed stabilization and habitat, rhodoliths provide a wide range of
ecosystem services [39,40]. They act as biodiversity hotspots [1,17,31,40-42], support the growth and
development of other species (i.e,, commercial species) [31,40,41,43,45] and contribute to coastal
sediment production [1,44].

Also offer valuable insights into paleoclimatic predictions [31,47], ocean acidification [2,46,48]
and serve as important areas for recreation and tourism [39]. Furthermore, they help prevent and
moderate disturbances [1,40], playing a critical role in maintaining ecosystem resilience.

Despite their ecological importance, rthodoliths face various threats. Anthropogenic impacts
such as coastal pollution, urban development in coastal areas, and trawling fishing practices alter
water quality, increase sedimentation, and damage the physical structures of rhodoliths beds
[2,40,49-51]. Climate change, in turn, causes ocean acidification and rising sea temperatures, affecting
the availability of calcium carbonate essential for their growth which can compromise their survival
[2,52]. Additionally, the lack of research and monitoring in areas such as Panama hampers a full
understanding of their ecology, delaying the implementation of adaptive conservation measures.

To address these threats, we propose the following conservation strategies based on Coiba
National Park management plan [8] and other documents whose refers frameworks for the study and
conservation of rhodoliths in other latitudes [34,39,40,53-55] (Figure 7):

Integration into Management Plans

Research and monitoring

—

Conservation strategies Education
for rhodoliths in Panama

Collaboration and funding

Regulation and fisheries
management

Figure 7. Conservation strategies for rhodoliths in Panama. Created with MindMeister web tool.
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e Integration into management plans: Incorporate rhodoliths as objectives of conservation into
the management plans of marine protected areas where their presence is known, as well as other
marine areas.

* Research and Monitoring: Promote research to understand the diversity of rhodoliths and to
explore the ecology, distribution, and genetics of rhodoliths beds in Panama. Establish long-term
monitoring programs to assess the condition of these algae and their response to threats, as well as
evaluate the conservation status of their populations.

® Education: Raise awareness about the ecological importance of rhodoliths among decision-
makers, local communities, and the public.

e Collaboration and funding: Encourage collaboration between researchers, conservation
organizations, and government agencies to address the conservation challenges of rhodoliths beds.
Seek funding to support research, monitoring, and conservation initiatives.

* Regulation and fisheries management: Implement fisheries regulations to protect rhodoliths
beds from trawling in marine that are not protected. In protected areas, strengthen and enforce
regulations to maintain ecosystem sustainability.

4. Conclusions

A total of 21 species of calcareous algae that form rhodoliths have been reported for Panama.
Coiba National Park is the site with the highest occurrence of reports and extensive rhodoliths bed
areas. Despite their importance and predominant abundance along Panama’s Pacific coast, rhodoliths
beds remain an underexplored ecosystem. As such, significant research efforts are needed to better
understand the diversity of these calcareous algae. The various species reports must be studied not
only to clarify the correct application of scientific names but also to ensure that these names are
properly applied to Panama’s material through morphological, anatomical, and molecular studies.
This will provide a more definitive and reliable species list. Including Panama’s rhodolith beds in the
list of threatened habitats and developing appropriate conservation strategies for these species
should be the goal of future research.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Table S1: Georeferencing available data of rhodoliths reports for Panama; Video
S2: Rhodoliths, ocean bioengineers from Coiba.
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PNC Coiba National Park
CMAR Eastern Tropical Pacific Marine Corridor
EBSA Ecologically or Biologically significant Marine Areas
SNF Small Natural Features
NE North East
Appendix A
Table Al. Localities and GenBank access numbers for available sequences of rhodolith-forming species for
Panama.
GenBank Accesion
# Specie Locality ID
COXx2 LSU CoI1 rbeL UPA psbA
Harveylithon PHYKOS MW4528
1 sp. Wild Cay, BT 7053 —-- - - - —-- 86
PHYKOS_3
Escudo de MW45763 MF97996
593
2 H. munitum Veraguas, BT - 6.1 - 2 - -
Lithophyllum KJ418417 KJ418411
LAF7219
3 sp. Cebaco Island, VE ———- KJ412333.1 1 ———- ———- 1
Lithophyllum KJ80135
FBCS12912
4 sp.3 Swan Cay, BT 6.1 - - - - -
Lithophyllum KJ80135
FBCS12913
5 sp3 Sand Fly Bay, BT 7.1 -— — -— - -
Lithothamnion KJ80136
FBCS12920
6 sp.4 Swan Cay, BT 41 - - ---- --e- --e-
Lithothamnion KU5197 KU55750
7 sp.D Gulf of Chiriqui LAF6631 - -— -— -— 40 0
Lithothmanion KJ80136
FBCS12917
8 1 Swan Cay, BT 51 - - ---- --e- --e-
Lithothmnion Tintorera Island, PHYKOS72 KR075891. KU50427 KU5042 KP84486
9 sp.] VE 49 - 1 7 - 75 5
1 L. NCU
0 neocongestum Bocas del Toro 598862 - -— -—- KX020485 - -
1 L. KX020484 KX02046
US223011
1 neocongestum Bocas del Toro - -— -— 1 - 6
1 L. KX02048
2 neocongestum Bocas del Toro US169412 --- e - - - 6
1 L. , Flat Rock Beach, KX02044
3 neocongestum BT US170968 - -e- --e- - - 0
1 L. KX02044
4 neocongestum Sand Fly Bay, BT =~ US170967 - -— -—- -— - 1
1 Neogoniolithon KM39237
VPF00177
5 sp Panama - - 0.1 -—- - —-
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1 NY_900041 KY994125
6 S. episporum Punta Toro, Colén - -— -— 1 - -—-
1 NCU_5988 KY99411 KY994124 MF03454
7 S. episporum Bocas del Toro 43 . - 3.1 1 e 7.1
1 PHYKOS_4 MEF03454
Sporolithon sp. Mono Feliz, GC
623 - - -—- - - 8.1
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