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Article

Gravitational Waves and Higgs Field from Alena
Tensor
Piotr Ogonowski

Kozminski University, Jagiellonska 57/59, 03-301 Warsaw, Poland; piotrogonowski@kozminski.edu.pl

Abstract: Alena Tensor is a recently discovered class of energy-momentum tensors that proposes
a general equivalence of the curved path and geodesic for analyzed spacetimes which allows the
analysis of physical systems in curvilinear, classical and quantum descriptions. In this paper it is
shown that Alena Tensor is related to the Killing tensor Kαβ and describes the class of GR solutions
Gαβ + Λ gαβ = 2ΛKαβ. In this picture, it is not matter that imposes curvature, but rather the geometric
symmetries, encoded in the Killing tensor, determine the way spacetime curves and how matter can be
distributed in it. It was also shown, that Alena Tensor gives decomposition of energy-momentum tensor
of the electromagnetic field using two null-vectors and in natural way forces the Higgs field to appear,
indicating the reason for the symmetry breaking. The obtained generalized metrics (covariant and
contravariant) allows for further analysis of metrics for curved spacetimes with effective cosmological
constant. The obtained solution can be also analyzed using conformal geometry tools. The calculated
Riemann and Weyl tensors allows the analysis of purely geometric aspects of curvature, Petrov-type
classification, and tracking of gravitational waves independently of the matter sources. A certain
simplification of the analysis of gravitational waves has also been proposed, which may help both in
their analysis and in the proof of the validity of the Alena Tensor. The article has been supplemented
with the Alena Tensor equations with a positive value of the electromagnetic field tensor invariant
(related to cosmological constant) and supplementary file containing a computational notebook used
for symbolic derivations which may help in further analysis of this approach.

Keywords: Alena Tensor; gravitational waves; general relativity; electromagnetism

1. Introduction
Gravitational waves are a well-understood and researched issue [1], and it seems that the area of

this research will develop dynamically both in theoretical understanding [2] and methods of waves
detection [3,4]. The existence of gravitational waves is the key argument for the correctness of the
General Relativity, and for this reason it is also a good tool for verifying the correctness of alternative
to GR theories [5–7] and the theories of quantum gravity [8].

Alena Tensor is at the beginning of its research journey. It is a recently discovered class of energy-
momentum tensors that allows for equivalent description and analysis of physical systems in flat
spacetime (with fields and forces) and in curved spacetime (using Einstein Field Equations) proposing
the overall equivalence of the curved path and the geodesic. In this method it is assumed that the
metric tensor is not a feature of spacetime, but only a method of its mathematical description. In
previous publications [9–11] it was already shown that this approach allows for a unified description
of a physical system (curvilinear, classical and quantum) ensuring compliance with GR and QM results.
Due to this property, the Alena Tensor seems to be a useful tool for studying unification problems,
quantum gravity and many other applications in physics.

Many researchers try to reproduce the GR equations in flat spacetime or vice versa [12,13] or
include electromagnetism in GR, connecting the spacetime geometry with electromagnetism [14–21].
There are known such approaches on the basis of differential geometry [22,22,23], based on field
equations [24,25] as well as promising analyses of spinor fields [26] or helpful approximations for
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a weak field [27]. For this reason, the Alena Tensor should be viewed as another theory requiring
theoretical and experimental verification, and it seems worth checking whether the this approach
ensures the existence of gravitational waves and what their interpretation is.

In this paper it will be analyzed the possibility of describing gravitational waves using the Alena
Tensor. Due to the fact that research on this approach is a relatively young field, to facilitate the
analysis of the article, the next section summarizes the results obtained so far and introduces the
necessary notation. Although at the first moment the paradigm shift proposed by this approach may
seem incomprehensible, the author hopes that the reader will resist the temptation to burn this article
and trust the scientific method, which encourages us to calculate and check everything based on the
correctness of the results obtained.

2. Short Introduction to Alena Tensor
The following chapter briefly explains the conclusions from the previous publications on Alena

Tensor. The author uses the metric signature (+,-,-,-) which provides a positive value of the electromag-
netic field tensor invariant. In previous publications it was treated as negative (reversal of the order of
terms in the energy-momentum tensor of the electromagnetic field). The following equations remove
this inconvenience while maintaining the correctness of the obtained results.

2.1. Transforming a Curved Path into a Geodesic

To understand the Alena Tensor, it is easiest to recreate the reasoning that led to its creation [10]
using the example of the electromagnetic field. One may consider the energy-momentum tensor in flat
spacetime for a physical system with an electromagnetic field in the following form

Tαβ = ϱ UαUβ − 1
µr

Υαβ (1)

where Tαβ is energy-momentum tensor for a physical system, ϱ is density of matter, Uα is four-velocity,
µr is relative permeability, Υαβ is energy-momentum tensor for the electromagnetic field.

The density of four-forces acting in a physical system can be considered as a four-divergence. One
may therefore denote the four-force densities occurring in the system:

• f β ≡ ∂αϱ UαUβ is the density of the total four-force acting on matter

• 1
µr

f β
em + f β

gr ≡ ∂α
1
µr

Υαβ are forces due to the field, where

• f β
em is the density of the electromagnetic four-force

• f β
gr = Υαβ∂α

1
µr

was shown in [9] as related to the presence of gravity in the system.

One may assume that the forces balance, which will provide a vanishing four-divergence of the
energy-momentum tensor for the entire system

0 = ∂αTαβ = f β − 1
µr

f β
em − f β

gr (2)

It may be noticed, that if one wanted to use Tαβ for a curvilinear description, which would describe
the same physical system but curvilinearly, then in curved spacetime the forces due to the field can be
replaced with help of Christoffel symbols of the second kind. This means, that the entire field term
can simply disappear from the equation in curved spacetime, because instead of a field and the forces
associated with it, there will be corresponding curvature.

This would mean, that in curved spacetime 1
µr

Υαβ = 0 → Tαβ = ϱ UαUβ. As shown in [10], a
minor amendment to continuum mechanics provides this property. Assuming ϱo as rest mass density
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and ϱUα ≡ ϱoγUα one gets mass density taking into account motion and Lorentz contraction of the
volume and provides

∂αϱUα = 0 → Uα
,α = −dγ

dt
→ Uα

;α = 0 ; UαUβ
;α = 0 ;

D Uβ

D τ
= 0 ;

Ä
ϱ UαUβ

ä
;α
= 0 (3)

One may thus generalize Υαβ making the following substitution

Υαβ ≡ Λρ

Å
4
k kαβ − gαβ

ã
=

1
µo

Fαδ gδγ Fβγ − Λρgαβ (4)

where Fαδ is electromagnetic field strength tensor, µo is vacuum magnetic permeability, gαβ is metric
tensor with the help of which the spacetime is considered, and

• Λρ = 1
4µo

Fαµ gµγ Fβγgαβ is invariant of the electromagnetic field tensor,

• k = gµν kµν is trace of kαβ,
• kαβ is a metric tensor of a spacetime for which Υαβ vanishes.

Tensor kαβ may be calculated in flat spacetime and may be treated as fixed, since the value of kαβ

is independent of the gαβ adopted for analysis. In this way one obtains a generalized description of the
tensor Υαβ, which has the following properties:

• in flat spacetime Υαβ is the usual, classical energy-momentum tensor of the electromagnetic field
• its trace vanishes in any spacetime, regardless of the considered metric tensor gαβ

• in spacetime for which gαβ = kαβ the entire tensor Υαβ vanishes
• kαβkαβ = 4 which is expected property of the metric tensor (it was already shown in [10] that kαβ

indeed may be considered as metric tensor for curved spacetime)

In the above manner one obtains the Alena Tensor Tαβ in form of

Tαβ = ϱ UαUβ − 1
µr

Λρ

Å
4
k kαβ − gαβ

ã
(5)

with the yet unknown 1
µr

for which in curved spacetime (gαβ = kαβ) the energy-momentum tensor of

the field Υαβ vanishes.
The reasoning carried out above for electromagnetism is universal and allows to consider the

Alena Tensor also for energy-momentum tensors associated with other fields. This leads to obtaining
an energy-momentum tensor Tαβ for the system that can be considered both in flat spacetime and in
curved spacetime.

2.2. Connection with Continuum Mechanics, GR and QFT/QM

To make the Alena Tensor consistent with Continuum Mechanics in flat spacetime, it is enough
to adopt the substitution 1

µr
≡ −p

Λρ
where p is the negative pressure in the system and it is equal to

p ≡ ϱc2 − Λρ where c is the speed of light in a vacuum. Such substitution yields

ϱ UαUβ − Tαβ = p ηαβ − c2ϱ
4
k kαβ + Λρ

4
k kαβ (6)

where ηαβ is the metric tensor of flat Minkowski spacetime. Introducing deviatoric stress tensor
Παβ ≡ −c2ϱ 4

k k
αβ one obtains relativistic equivalence of Cauchy momentum equation (convective

form) in which only fem appears as a body force

f α = ∂α p + ∂β Παβ + f α
em (7)
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The above substitution also provides a connection to General Relativity in curved spacetime. For this
purpose, one may introduce the following tensors, which can be analyzed in both flat and curved
spacetime

Rαβ ≡ 2ϱ UαUβ − p gαβ ; R ≡ Rαβ gαβ = 2Λρ − 2p ; Gαβ ≡ Rαβ − 1
2

R
4
k kαβ (8)

Above allows to rewrite Alena Tensor as

Gαβ + Λρ gαβ = 2 Tαβ + ϱc2
Å

gαβ − 4
k kαβ

ã
(9)

Analyzing the above equation in curved spacetime (gαβ = kαβ), one obtains simplifications

Gαβ + Λρ gαβ = 2 Tαβ ; Gαβ = Rαβ − 1
2

R gαβ (10)

thus above can be interpreted as the main equation of General Relativity up to the constant 4πG
c4 where

Gαβ and Rαβ can be interpreted in curved spacetime, respectively, as Einstein curvature tensor and
Ricci tensor both with an accuracy of 4πG

c4 constant.
Analyzing the Gαβ tensor in flat spacetime (gαβ = ηαβ) one can also see that it is related to the

non-body forces seen in the description of the Cauchy momentum equation

∂βGαβ = ∂α p + ∂β Παβ = f α
gr + f α

rr (11)

which means that in the Alena Tensor analysis method gravity is not a body force, and as shown in [9]
in above

• f α
rr =

Ä
1
µr

− 1
ä

f α
em is the density of the radiation reaction four-force

• f α
gr = ϱ

Ä dϕ
dτ Uα − c2∂αϕ

ä
is density of the four-force related to gravity, where

• ϕ = −ln(µr) is related to the effective potential in the system with gravity.

It can be calculated that f α
gr vanishes in two cases:

• u⃗ = u⃗ f f ≡ −c ∇ϕ

∂0ϕ
- which turns out to be the case of free fall

• ∂αϕ = 0 which occurs in the case of circular orbits

Neglecting the electromagnetic force and the radiation reaction force, using the above equation one
can reproduce the motion of bodies in the effective potential obtained from the solutions of General
Relativity. Such a description has already been done for the Schwarzschild metric [9] for

ϕ + co ≡

√
E2

m2c4 −
Å

1
c

dr
dτ

ã2
=

 (
1 − rs

r

)Å
1 +

L2

r2

ã
(12)

where co is a certain constant. The solutions obtained in this way enforce the existence of gravitational
waves due to time-varying ϕ (except for free fall and circular orbits).

In the above description, gravity itself is not a force, because the above description is based on an
effective potential. However, one can see a similarity to Newton’s classical equations for the stationary
case with a stationary observer, for which f α

gr can be approximated by Newton’s gravitational force
with the opposite sign. Thus for stationary observer f α

gr represents a force that must exist to keep a
stationary observer suspended above the source of gravity in fixed place.

The description of gravity obtained in this way is surprisingly consistent with current knowledge,
despite the fact that gravity itself in this description is not a force, and the force f α

gr is not a body force.
The Alena Tensor constructed in presented way according to [9,11] may be simplified in flat

spacetime to

Tαβ = Λρηαβ − 1
µo

Fαγ∂β Aγ ; L = T00 = −Λρ = − 1
4µo

Fαβ Fαβ (13)
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which allows its analysis in classical field theory and quantum theories. Obtained canonical four-
momentum Hα ≡ − 1

c
∫

Tα0 d3x provides 0 = Hα
,α = HαHα and

∂α HµXµ = Hα = µrPα + qEα ; −L =
mc2

γ
− Wpv (14)

where Pα is four-momentum, Wpv = −
∫

p d3x is pressure-volume work, and where qEα and −µrPα

are in fact two gauges of electromagnetic four-potential. In above
(
µr − 1

)
Pα is responsible for the force

associated with gravity and radiation reaction force. It was also shown that canonical four-momentum
Hµ may be expressed as

Hµ = Pµ + Wµ = −γL
c2 Uµ + Sµ (15)

where Sµ due to its property SµUµ = 0, seems to be some description of rotation or spin, and where
Wµ describes the transport of energy due to the field.

The quantum picture obtained from the Alena Tensor [9,11] for the system with electromagnetic
field leads to the conclusion that gravity and the radiation reaction force have always been present
in Quantum Mechanics and Quantum Field Theory. This conclusion follows from the fact that the
quantum equations obtained from the Alena Tensor for the system with electromagnetic field [9] are
actually the three main quantum equations currently used:

• simplified Dirac equation for QED:
LQED = 1

4µo
Fαβ Fαβ = 1

2µo
F0γ∂0 Aγ = 1

2 Ψ̄
(
iℏc ̸ D − mc2)Ψ

• Klein-Gordon equation,

• equivalent of the Schrödinger equation: ich̄ ∂0 ψ = − h̄2

m
Ä

γ+ 1
γ

ä∇2 ψ + cqÂ0 ψ

where Aα and Âα are two gauges of electromagnetic four-potential, and where the last equation in the
limit of small energies (Lorentz factor γ ≈ 1) turns into the classical Schrödinger equation considered
for charged particles.

The above results make the Alena Tensor a useful tool for the analysis of physical systems with
fields, allowing modeling phenomena in flat spacetime, curved spacetime, and in the quantum image.

3. Results
Considering a flat spacetime with an electromagnetic field, described in a way provided by Alena

Tensor using notation introduced in section 2, one may reverse the reasoning presented in introduction
and consider the field as a manifestation of a propagating perturbation of the curvature of spacetime
(which in flat spacetime is just interpreted as a field). For this purpose, one may define a certain
perturbation hαβ of the metric tensor kαβ that describes the deviation from flat spacetime, and also
define its trace h as

hαβ ≡ kαβ − ηαβ ; h = hαβηαβ = k− 4 (16)

The stress-energy tensor of the electromagnetic field in flat spacetime can be thus represented as
follows

k
4Λρ

Υαβ = hαβ − h
4

ηαβ (17)

As one can see in the above, considering gravitational waves in the Alena Tensor is natural and does
not require classical linearization. This would mean that gravitational waves in Alena Tensor approach
are de facto a propagating disturbance of the energy-momentum tensor for the field (in the case
analyzed, the electromagnetic field energy-momentum tensor).

Denoting the pressure amplitude Po and h̄αβ one obtains

Po ≡
4Λρ

k ; h̄αβ ≡ hαβ − h
4

ηαβ → Υαβ = Po h̄αβ (18)
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which shows that the energy-momentum tensor of the field may be also interpreted as propagating
vacuum pressure waves with tensor amplitude.

To provide an analysis of the above equation for gravitational waves and the analysis of the
resulting classes of metrics, a representation using null-vectors will be useful. Therefore, in the next
few steps it will be shown that Alena Tensor allows representing the energy-momentum tensor of the
electromagnetic field with the use of two null-vectors.

3.1. Decomposition of the Electromagnetic Field Using Null Vectors

At first step one may recall equation (15) and define new four-vector Bµ obtaining

Bµ ≡ −γL
c2 Uµ − Sµ ; Hµ = −γL

c2 Uµ + Sµ (19)

Since it is know from previous publications, that HµHµ = 0 and UµSµ = 0, therefore above definition
also yields BµBµ = 0. This property allows to represent Uµ and Sµ using two null-vectors Hµ and Bµ

as follows

Hα − Bα = 2Sµ ; Hα + Bα = −2γL
c2 Uα → HαBα =

2γ2L2

c2 (20)

thus

HαBβ + BαHβ =
2HµBµ

c2 UαUβ −
Ä

Hα Hβ + BαBβ
ä

(21)

Next, one may define auxiliary parameter α as

α ≡ B0

H0 +
2HµBµ

H0mcγ
(22)

and subtract the linear combination of Hα and Bα from both sides

HαBβ + BαHβ − αHα Hβ − H0

B0 BαBβ =

=
2HµBµ

c2 UαUβ −
Ç

[1 + α]HαHβ +

ñ
1 +

H0

B0

ô
BαBβ

å
(23)

Next, one may recall from [9] coefficients related to the electromagnetic field

• relative permeability µr =
Λρ

−p = cH0

Wpv
= e−ϕ

• volume magnetic susceptibility χ = µr − 1 = ϱc2

−p = mc2γ
Wpv

• relative permittivity εr =
1
µr

= −p
Λρ

=
Wpv
cH0

• electric susceptibility χe = εr − 1 = − ϱc2

Λρ
= −mcγ

H0 = −χεr

and notice, that one obtains Alena Tensor Tαβ as

µr

Λρ
Tαβ =

χ

2HµBµ

Ç
HαBβ + BαHβ − αHα Hβ − H0

B0 BαBβ

å
=

=
χ

c2 UαUβ − χ

2HµBµ

Ç
[1 + α]HαHβ +

ñ
1 +

H0

B0

ô
BαBβ

å
(24)

where electromagnetic stress-energy tensor is equal to

1
Λρ

Υαβ =
χ

2HµBµ

Ç
[1 + α]Hα Hβ +

ñ
1 +

H0

B0

ô
BαBβ

å
(25)
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and where T0β actually simplifies, as shown in introduction, to

µr

Λρ
T0β = − µr

H0 Hβ (26)

Completing the definition of the first invariant of the electromagnetic field tensor Λρ, one may define
the second invariant I⊥ by electric E⃗ and magnetic B⃗ fields as

I⊥ ≡ 1
cµo

E⃗B⃗ (27)

where it is known [28], that
ΥαβΥαβ = 4

Ä
Λ2

ρ + I2
⊥
ä
= 4
Ä

Υ0βΥ0β

ä
(28)

Therefore from (25) one obtains simplifications

B0 =
HµBµ

4H0 =
γ2L2

2c2H0 → α =
B0

H0

Å
1 − 8

χe

ã
→ −L

cH0 +
−L
cB0 = 4 (29)

and by defining a useful auxiliary variable φ one gets

eφ ≡ −γL√
2 cH0

→ γ =
1√
2

cosh (φ) → e2φ =
B0

H0 (30)

Finally, defining for simplicity as below

eθ sinh (θ) ≡ −L
mc2γ

; I2
o ≡ 1 +

I2
⊥

Λ2
ρ

(31)

then calculating with the use of Wpv from (14)

I2
o = χ2γ2

Å
1 − 2L

mc2γ

ã
= χ2γ2e2θ → −γL

Wpv
= Io sinh (θ) (32)

and expressing µr =
cH0

Wpv
= e−ϕ as before in introduction, one gets further useful expressions

Io√
2
=

eφ−ϕ

sinh (θ)
; χγ = Io e−θ (33)

To simplify further analysis, one may also normalize four-vectors Hµ and Bµ using (29) as follows

aµ ≡ 1
H0 Hµ ; bµ ≡ 1

B0 Bµ → aµbµ = 4 (34)

where aµ was introduced to avoid confusion related to the previously defined perturbation hαβ. After
few calculations using previously derived relationships in (25)

χ

8H0B0 [1 + α](H0)2 =
χ

8

Ç
−4cH0

L
− 8

χe

å
= µr

Ç
1 − mc2γ

2L

å
(35)

χ

8H0B0

ñ
1 +

H0

B0

ô
(B0)2 = −χcB0

2L
= χγ2 − µr

mc2γ

2L
(36)

one may now rewrite the electromagnetic field tensor Υαβ as

Υαβ = µrΛρ

Å
1 +

1
2eθ sinh (θ)

ã
aαaβ + Λρ

Å
χγ2 − µr

2eθ sinh (θ)

ã
bαbβ (37)
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As shown in [9] element µrΛρ is responsible for electric field energy density carried by light, where
Λρχγ2 was shown as describing energy density of magnetic moment and was linked to charged matter
in motion. The element µr

2eθ sinh (θ) is a new term and part of equations related to this term may be

expressed as Sαβ with help of (33) as

Sαβ ≡ µr

2eθ sinh (θ)

Ä
aαaβ − bαbβ

ä
=

Io

2
√

2
e−(θ+φ)

Ä
aαaβ − bαbβ

ä
(38)

Since Sαβ does not actually carry energy but only momentum, it can be associated with some description
of spin field effects by analogy to (20). Using (29), (30) (33) and (36), electromagnetic field tensor Υαβ

may be, however, expressed in more useful form. Since

µr

Å
1 +

1
2eθ sinh (θ)

ã
=

Io

2
√

2
eθ−φ ; −χcB0

2L
=

Io

2
√

2
eφ−θ (39)

thus
1

Λρ
Υαβ =

Io

2
√

2
eθ−φ aαaβ +

Io

2
√

2
eφ−θ bαbβ (40)

Since the variables θ and ϕ are merely auxiliary variables (used only to highlight certain relationships)
and can be expressed in terms of φ

2
√

2Heφ = mc2eθ sinh (θ) cosh2 (φ) → − 8
χe

=
Ä

e2θ − 1
äÄ

e−2φ + 1
ä

(41)

one may further simplify the description of the system. As one may notice, (34) also allows to simplify
(19) by introducing −eφsµ ≡ 1

H0 Sµ

aµ = eφ

Ç√
2

c
Uµ − sµ

å
; bµ = e−φ

Ç√
2

c
Uµ + sµ

å
; sµsµ = −2e2φ (42)

what using (30) yields
s0 = sinh φ ; s⃗⃗s = 1 + cosh2 φ (43)

and therefore allows to analyze the system using hyperbolic (and trigonometric) functions

aµ + bµ

2
=

√
2

c
cosh φ Uµ − sinh φ sµ ;

aµ − bµ

2
=

√
2

c
sinh φ Uµ − cosh φ sµ (44)

aαaβ = e2φ

Ç
2
c2 UαUβ + sαsβ −

√
2

c

î
Uαsβ + sαUβ

óå
;

√
2

c
Uµ =

e−φ

2
aµ +

eφ

2
bµ (45)

One may thus denote normalized Alena Tensor in flat spacetime as Kαβ with help of (24)

Kµν ≡ Tµν

Λρ
=

−χe

8

Å
aµbν + bµaν −

ï
1 − 8

χe

ò
aµaν − bµbν

ã
(46)

and notice, that it may be presented after simple calculations using (42) - (45) as

Kµν =
−χe

c2 UαUβ −
([

1 − χe

8
(1 + e−2φ)

]
aµaν +

[
−χe

8
(1 + e2φ)

]
bµbν

)
(47)

Since the expression in the brackets must be equal to 1
µr

1
Λρ

Υαβ, therefore

1
Λρ

Υαβ =
[
µr +

χ

8
(1 + e−2φ)

]
aµaν +

[χ

8
(1 + e2φ)

]
bµbν (48)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 April 2025 doi:10.20944/preprints202502.0263.v4

https://doi.org/10.20944/preprints202502.0263.v4


9 of 17

Therefore, according to (37), (43) there must occur Io
2
√

2
e−(θ+φ) = χ

8 (1 + e−2φ). Indeed, with help of (30)
and (33) one obtains

Io

2
√

2
e−θ =

χ

8
(eφ + e−φ) =

χ

4
cosh φ =

χ

2
√

2
· cosh φ√

2
=

1
2
√

2
· χγ =

Io

2
√

2
e−θ (49)

and the same equality may be calculated for χ
8 (1 + e2φ) = Io

2
√

2
eφ−θ what confirms compliance with

(40). This shows that further, in-depth analysis of the system is also possible, however, modeling
and simplifying the description of the electromagnetic field or searching for elementary particles that
provide stable solutions requires a separate article (probably several articles). From the perspective of
describing gravitational waves, other elements of the description are crucial, which will be discussed
next.

Finally, one may notice, that property aµbµ = 4 in (34) requires analysis in a complex basis. An
example of such a basis are four-vectors

aµ(σ) ≡

á
1

i sinh(iσ)
cosh(iσ)

0

ë
, bµ(σ) ≡

á
1

i
Ä

2
√

2 cosh(iσ) − 3 sinh(iσ)
ä

−3 cosh(iσ) + 2
√

2 sinh(iσ)
0

ë
(50)

where the angle σ was introduced to facilitate further analysis. A cursory examination shows that
this basis describes the electromagnetic field very well indeed. It has a good representation in con-
formal geometry (null vectors correspond to points on the equator of the Penrose sphere), where
the propagation directions are perpendicular to the time axis (purely spatial), ideal for describing
a circularly or elliptically polarized wave in the direction of Poyting vector z⃗ ≡ (0, 0, 2i

√
2), where

aµbµ = 4 represents the constant phase relation between the electric and magnetic fields. The proposed
basis naturally enters the Newman–Penrose formalism, allows for a full spinor representation of the
electromagnetic field, where σ is a typical massless wave, satisfies the wave equation □σ = 0, and
since it provides a spin-helicity of +/- 1, it is well suited for further analysis in the QFT framework as a
photon wave representation, describing a single-particle state. However, detailed analysis of these
issues is beyond the scope of this article.

The null basis product is a simple consequence of equation (28), i.e., taking only the electromag-
netic field into account in the analysis. Since reality requires other fields (e.g. electroweak), it can

be assumed that changing Υαβ → Υαβ into the field tensor corresponding to reality will probably

provide ΥαβΥαβ = 2
(

Υ0βΥ0β

)
→ aµbµ = 2, which makes it possible to assume a basis in real numbers.

However, since in this paper it is considered the Alena Tensor with the electromagnetic field only,
the basis (50) will be retained for further analysis as an example, especially since the transition to the
generalized field in the discussed approach is a fairly simple procedure.

3.2. Covariant Metric, Higgs Field, Riemann Tensor, Weyl Tensor and Gravitational Waves

Substituting (37) into (17) using (33) and using Alena Tensor properties one gets expression for
metric kαβ describing the system in curved spacetime

kαβ =
k
4

Å
Io

2
√

2
eθ−φ aαaβ +

Io

2
√

2
eφ−θ bαbβ + ηαβ

ã
(51)

It turns out that using properties of metrics, one may find a general solution for the inverted metric
kαβ. Summarizing the key properties one obtains

kαβηαβ = kαβηαβ = k ; kαβkαβ = 4 ; det(kαβ) det(kαβ) = 1 ; kαµkµβ = δ
β
α (52)
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where in the last condition it is enough to check the index (0,0), because the null vectors are normalized
(a0 = 1 ; b0 = 1). To simplify the calculations, it is easiest to define auxiliary variable q and start from
anstaz with unknown A, B, C, D in

e−q ≡ k
4

; kµν ≡ A
Io

eθ−φ

√
2

aµaν +
B
Io

eφ−θ

√
2

bµbν − C
(
aµbν + bµaν

)
+ D ηµν (53)

By eliminating the subsequent variables to provide equations (52), one obtains covariant metric in the
form

kµν ≡ sinh (q)
Io

eθ−φ

√
2

aµaν +
sinh (q)

Io

eφ−θ

√
2

bµbν − sinh (q)
(
aµbν + bµaν

)
+ eq ηµν (54)

where invariants of electromagnetic field turns out to be related to the trace

I2
⊥

Λ2
ρ
=

1
e2q − 2

→ Io =

 
e2q − 1
e2q − 2

; det(kαβ) = e2q
Ä

e2q − 2
ä

(55)

which means that the trace k is also invariant. Since considered in curved spacetime trace k(curved) = 4
yields q(curved) = 0, therefore the transition to curved spacetime can be understood as solutions with
imaginary magnetic field B⃗ → iB⃗, what yields, that I⊥(curved) = iΛρ → Io(curved) = 0 ; Υ00(curved) =

0. But at the same time one obtains curvilinear description with Λρ(curved) ≡ 1
2µo

Ä
E2

c2 − (iB)2
ä

.
However, Λρ(curved) is then in curved spacetime equal to electromagnetic energy density calculated
in flat spacetime Λρ(curved) = Υ00(flat). Therefore in curvilinear description the cosmological constant
Λ, according to (10) would actually represent the field energy density multiplied by the constant 4πG

c4 .
Its value may change, but all observers in curved spacetime agree on its value, so it acts as an invariant
in curvilinear description. This would de facto solve the Hubble tension problem and may be verified
in future observations to confirm this preliminary conclusion.

It is also worth notice, that for the null basis example (50), the above metric seems to describe a
gravitational wave in conformal geometry, where k

4 = e−α plays the role of a conformal factor Ω−2.
Further analysis in this direction should allow to isolate both the polarization and the relation of k to
the Ricci scalar by classical relation R = Ω−2(R̃ − 6□̃ log Ω

)
.

Expressing Uµ by null-vectors as in (45) and requesting UαUβkαβ = c2 one obtains ugly expression
linking cosh (φ + θ) and q. However, substituting q as the Io function according to (55), it appears that
this ugly expression actually expresses following dependence

1 + 2I4
o − 3I2

o = 1 + 2I2
o cosh2(θ + φ) − 2

√
2Io cosh(θ + φ) (56)

As one may notice V(Io) = 1 + 2I4
o − 3I2

o is the classical Higgs potential and the broken symmetry
in the system can be interpreted as an apparent mismatch of coefficients related to cosh (φ + θ). The
Figure 1 shows the classic "Mexican sombrero" potential V(Io). Since cosh (φ + θ) is related in equation
(43) to the angle describing the spin, this means that in this solution the spin effect of the field is
described by invariant angle (depends only on Io) and, according to (55) it is closely related to the trace
of the metric and, consequently, to the Ricci scalar in the curvilinear description and thus to spacetime
curvature. This also at least means that to obtain correct results in curved spacetime in the Alena
Tensor model, the Higgs-like field is needed. Perhaps the above result will help explain the existence
of the Higgs field and its relationship to curvature and spin.
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Higgs potential V[Io]
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Figure 1. The existence of the Higgs field potential as a consequence of UαUβkαβ = c2.

One may now consider what value the Alena Tensor takes in curved spacetime. To do this, it
is easiest to analyze the behavior of Kµν. As one may calculate, the determinant of this tensor is 0
and the matrix rank is 2, but, as described in the introduction, it degenerates to ÛKµν = −ıχe

c2 UαUβ in
curved spacetime (where arc is used for simplicity, to emphasize the change to curvilinear description,
since values in curvilinear description may be diffrent). It can be seen that in the Alena Tensor
approach the metric follows from propagation. However, in curved spacetime the electromagnetic
field according to this approach should vanish, remaining present only in the metric. This can be
achieved by degenerating vectors aµ and bµ to a single vector in curved spacetime Ûaµ = Ûbµ. However,
in such situation the equation (45) forces this vector to be the four-velocity, divided by the Lorenz
factor Ûaµ = Ûbµ → Uµ =

c√
2

Å
e−φ

2
Ûaµ +

eφ

2
Ûaµ
ã
= cγ Ûaµ → Ûaµ =

1
cγ

Uµ (57)

which degenerates ÛKµν from (46) to the formÛaµ = Ûbµ =
1

cγ
Uµ → ÛKµν = −ÛaµÛaµ =

1
c2γ2 UµUν → Ùχe =

1
γ2 (58)

Since the metric is known and Uµ may be expressed by values of aµ, bµ in flat spacetime thanks to (45)
this allows to easy obtain the Einstein tensor and Ricci tensor using the equation (10).

The described system seems to be Petrov type D [29], although to be sure, the Weyl tensor should
be calculated. This does not seem possible for the general case (without auxiliary assumptions about
symmetries), but one could simplify the obtained description considerably, based on the following
observation. One may notice, that the vanishing Lorentz factor γ in Kαβ can be interpreted as an im-
portant suggestion for the description of motion in curved spacetime. Such motion would correspond
to a stream of particles moving without dilation, a strictly ordered flow without local perturbations,
resembling a perfect, infinitely stiff fluid. This means that Kαβ should be the Killing tensor and the
system schould have hidden symmetry (similar to the Carter constant in Kerr solutions).

As shown previously, product of the basis is in considered case aµbµ = 4, which means that null
vectors have global significance for spacetime geometry, thus Killing tensor should have a strong
connection with propagation along null vectors (it is not a random symmetry, but a deep feature of
spacetime) and this would mean the existence of special wave surfaces, e.g. electromagnetic waves

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 April 2025 doi:10.20944/preprints202502.0263.v4

https://doi.org/10.20944/preprints202502.0263.v4


12 of 17

and/or gravitational radiation. This would be a also clear indication that spacetime belongs to the
Petrov D class and is associated with wave propagation solutions.

Also, the analysis of obtained equations drive to conclusion, that energy (energy density) is not
something external to geometry in Alena Tensor approach, but energy is defined by the geometry of
spacetime itself. This is a result in the spirit of General Relativity, but it goes even deeper: metric kµν

depends on eφ, but at the same time 1
γ(φ) depends on the metric because it is trace of Kαβ in this metric.

The system itself defines its own energy through the structure of the field, which is similar to the idea
of self-consistent field [30] - where the field and the source are inseparable, or emergent gravity [31] -
where energy, gravity and geometry arise from a common structure, or induced geometry [32] - where
energy comes from deformation of spacetime itself, as e.g. in Sakharov’s theory [33]. It is impossible
to “decree” energy in Alena Tensor, it must be calculated from geometry and the system works as a
closed causal cycle.

The dependence for Kαβ of its norm and trace in curved spacetime (the norm is the square of the
trace) is a key property for null space and suggests that Kαβ describes isometries related to null wave
propagation, similar to pp-wave [34] and Robinson-Trautman solutions [35], what is actually expected
in considered approach based on electromagnetic stress-energy tensor and result (51). This would also
mean that the Killing tensor is directly related to the energy distribution in spacetime as expected,
similar to other GR solutions (eg. Kerr solution), and lead to a rather groundbreaking but also expected
result in the context of the discussed approach, that the Killing tensor directly determines the Einstein
tensor in main GR equation.

Since Kαβ is simply the Alena Tensor (stress-energy tensor for the system) divided by Λρ, it gives
correct conserved values in the Noether formalism (conserved density of energy and momentum).
From the definition of the Alena Tensor as the energy-momentum tensor for a system it also follows
that Kµν is symmetric and ∇µKµν vanishes.

Since KαβUαUβ = c2

γ2 this implies that along a geodesic parametrized by proper time τ, its total
derivative vanishes.

d
dτ

(KαβUαUβ) = 0 = Uλ∇λKαβUαUβ (59)

Using the symmetry of Kµν one may note that

UαUµUν∇αKµν = UαUµUν∇(αKµν) (60)

Therefore, the condition
(∇(αKµν))UαUµUν = 0 → ∇(αKµν) = 0 (61)

holds for arbitrary tangent vectors Uµ, and it follows that ∇(αKµν) = 0. Therefore normalized Alena
Tensor is Killing tensor for considered system.

In this way Alena Tensor theory becomes equivalent to some specific case of General Relativity
equation expressed in the following form

∇(µKαβ) = 0 → Gαβ + Λ kαβ = 2ΛKαβ (62)

Thanks to the above, since the Weyl tensor is defined as the part of the Riemann tensor that does
not depend on the Ricci tensor, this implies that since Killing tensor determines the Einstein tensor,
and the Einstein tensor determines the Ricci tensor, then one could calculate the Weyl tensor by
extracting the part of the curvature that does not contain the Ricci tensor. One may expect that the
Weyl tensor calculated in this way should depend on the energy density, the cosmological constant
and the null vectors, which would mean that the spacetime geometry is strongly related to the energy
of the electromagnetic field, exactly as seen in the obtained equations. This would also mean that the
Christoffel symbols can be expressed as a function of the Killing and Einstein tensors, and the Riemann
tensor can be written directly as a function of the Ricci and Killing tensors.
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For the system under consideration, one may therefore construct a general Weyl tensor ansatz,
which must contain only components that do not become zero when the trace part is subtracted from
the Riemann tensor. It should be of the form

Cµναβ = c1 Σµναβ + c2 Pµναβ + c3 Qµναβ, (63)

where

Σµναβ = aµbνaαbβ − aµbνbαaβ − bµaνaαbβ + bµaνbαaβ, (64)

Pµναβ = aµaνbαbβ − bµbνaαaβ, (65)

Qµναβ = aµbν ηαβ − aαbβ ηµν. (66)

It is easy to check that the above tensors are linearly independent and form the basis for the repre-
sentation of any Weyl tensor in the system under consideration. Analysis of their behavior indicates
that

• Σµναβ is responsible for "pure" directional propagation - e.g. a gravitational wave propagating
along null directions (purely conformal part of the Weyl tensor — described solely by null
geometry),

• Pµναβ describes non-radiating, "axial" deformation of space - e.g. tidal sequences, consistent with
mass motion without undulations,

• Qµναβ describes conformal distortion of the background metric itself.

The coefficients c1, c2, c3 are not known a priori, but one may determine them with help of Riemann
tensor. To calculate the Riemann tensor Rµναβ in the system under consideration, it is enough to assume
the following ansatz

Rµναβ = A1
Ä

gµαgνβ − gµβgνα
ä
+ A2

Ä
Kµαgνβ − Kµβgνα − Kναgµβ + Kνβgµα

ä
(67)

It has the following justification

• The Riemann tensor satisfies the known algebraic symmetries: Rµναβ = −Rνµαβ = −Rµνβα, Rµναβ =

Rαβµν, Rµ[ναβ] = 0 The above ansatz satisfies them automatically.
• There are only two tensor objects available in the system: the metric gµν and the Killing tensor

Kµν = − 1
γ2 UµUν. The Riemann tensor must be constructed exclusively from them.

• The first term with A1 corresponds to the geometry of a space with constant curvature, as in de

Sitter space: Rµναβ
(constant curvature) ∼ gµαgνβ − gµβgνα

• The second term with A2 is the minimal geometrically correct extension that takes into account the
presence of non-null energy (represented by Kµν). Its construction provides correct symmetries
and enables the reproduction of a non-null Ricci tensor Rµν = Rρµρν

• Other possible combinations (e.g. K ⊗ K) are linearly dependent or asymmetric with respect to
the required properties of the Riemann tensor — they do not provide new information in the case
under consideration.

• The whole creates the most general fourth-order tensor with Riemann symmetries, which can be
constructed from available geometric objects.

Comparing the Ricci scalar and R00 obtained from anstaz and the one obtained from GR equation with
Alena Tensor, one obtains coefficients A1, A2. Their complex structure does not allow for inclusion in
this article, but they can be read in the supplementary files, which allows for further analysis. Given
the Riemann tensor and computing the trace part of the Riemann tensor, one obtains the Weyl tensor
in generalized form for the system under consideration - in the supplementary files the normalized
(divided by the cosmological constant) Riemann and Weyl tensors, were computed.
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Since, according to results obtained (33, 41), the components of the metric can be expressed in
terms of the constants H, mc2, and the variable angle φ(Io) thus one may use example basis (50) to
analyze the system. Due to the complex relationships between variables, this analysis was performed
numerically. The Figure 2 below clearly shows the wave nature of the C0212 component of the Weyl
tensor, presenting the result of the numerical calculations performed. It seems, therefore, that the Weyl
tensor component C0

212 encodes the variation of the curvature field along the propagating direction σ.
Most likely, it is a curvature wave, corresponding to a classical gravitational wave, in the assumed null
basis.
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Figure 2. Weyl tensor C0212 component as a wave.

It is also worth noting that the obtained metric term e−qηαβ = k
4 ηαβ can in principle be interpreted

as a vacuum energy contribution (effective cosmological constant) as in [36,37] playing the role of a
metric scaling factor, as e.g. described in [38] which allows to conclude about the value of the second
invariant of the electromagnetic field.

Additionally, one may invoke the scalar field ϕ associated with the presence of matter, where
eϕ = 1

µr
. It is known from 2.2 that eϕ is responsible for the presence of sources and in their absence

µr = 1. Therefore, interpreting whole Υαβ as the wave amplitude tensor one would get representation
1
µr

Υαβ = Po h̄αβeϕ which would also allow to search for eϕ as a certain wave function.
This approach allows for two simplifications related to the analysis of gravitational waves.

Considering the force f α
gr responsible for effects related to gravity as shown in (12) and extracting the

acceleration Aα from it, one gets

ϱAα ≡ f α
gr = ϱ

Å
dϕ

dτ
Uα − c2∂αϕ

ã
→ c2□ϕ = γ2 d2ϕ

dt2 − ∂αAα (68)

since according amendment from [10] ∂αγUα = 0.
As shown in [9], ϕ is directly related to the effective potential in gravitational systems which

can be calculated from the GR equations. This would allow searching for propagating changes of the
effective potential itself (□ϕ = 0) similarly as was postulated in [39]. It would significantly simplify
both the calculations and perhaps the methods of detecting gravitational waves.

The second potential simplification results from the possibility of analyzing only the Poynting
four-vector Υα0 as 1

µr
Υα0 = Po h̄α0eϕ which might also help simplify the calculations and look for

experimental proof of correctness for the Alena Tensor approach.
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4. Conclusion and Discussion
As shown in the above article, the Alena Tensor ensures the existence of gravitational waves and

allows their physical interpretation, providing key tools for their further analysis including the ability
to calculate and visualize Weyl tensor components. The obtained decomposition of the electromagnetic
field stress-energy tensor (51) allows for further analysis of metrics for curved spacetime and also to
use the proposed null basis for further development in the framework of conformal geometry, the NP
formalism and the description of photons in QFT. It also seems reasonable to search for a description
of elementary particles that will provide relatively stable solutions to the obtained equations, perhaps
also taking into account new approaches, such as those proposed in [40].

It remains an open question whether the Alena Tensor is a correct way to describe physical
systems, but this paper shows that it exhibits many properties that are expected from such a description,
including the existence of gravitational waves and the Higgs field. The connection between Alena
Tensor and the Killing tensor obtained in this paper reveals a deep, nonlinear connection between
the matter distribution and the geometry and symmetries of spacetime. These results show that the
matter distribution is not arbitrary, but precisely tuned to the geometry and hidden symmetries of
spacetime, which allows for their further analysis in the language of Killing tensors and conformal
Weyl curvature.
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