Pre prints.org

Article Not peer-reviewed version

Securely Scaling Autonomy: The Role of
Cryptography in Future Unmanned
Aircraft Systems (UAS)

Paul Rochford , William J Buchanan i , Richard Macfarlane , Madjid Golparvaran Tehrani

Posted Date: 9 December 2025
doi: 10.20944/preprints202512.0827v1

Keywords: unmanned aircraft systems; MLS framework; distributed key generation

Ot |0] Preprints.org is a free multidisciplinary platform providing preprint service
il that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
=]z Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4902027
https://sciprofiles.com/profile/114320
https://sciprofiles.com/profile/2450860
https://sciprofiles.com/profile/4902134
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Securely Scaling Autonomy: The Role of Cryptography
in Future Unmanned Aircraft Systems (UAS)

Paul Rochford, William J Buchanan *, Rich Macfarlane and Madjid Golparvaran Tehrani

Blockpass ID Lab, Edinburgh Napier University, Edinburgh
* Correspondence: b.buchanan@apier.ac.uk

Abstract

The decentralisation of autonomous Unmanned Aircraft Systems (UAS) introduces significant chal-
lenges for establishing secure communication and consensus in contested, resource-constrained envi-
ronments. This dissertation addresses these challenges by conducting a comprehensive performance
evaluation of two cryptographic technologies: Messaging Layer Security (MLS) for group key ex-
change, and threshold signatures (FROST and BLS) for decentralised consensus. Seven leading
open-source libraries were methodically assessed through a series of static, network-simulated, and
novel bulk-signing benchmarks to measure their computational efficiency and practical r esilience. This
paper confirms that MLS is a viable solution, capable of supporting the group sizes and throughput
requirements of a UAS swarm. It corroborates prior work by identifying the Cisco MLSpp library
as unsuitable for dynamic environments due to poorly scaling group management functions, while
demonstrating that OpenMLS is a highly performant and scalable alternative. Furthermore, the find-
ings show that operating MLS in a 'Key Management’ mode offers a dramatic increase in performance
and resilience, a critical trade-off for UAS operations. For consensus, the benchmarks reveal a range of
compromises for developers to consider, while identifying the Zcash FROST implementation as the
most effective all-around performer for sustained, high-volume use cases due to its balance of security
features and efficient verification.

Keywords: unmanned aircraft systems; MLS framework; distributed key generation

1. Introduction

Modern distributed systems, for example, Internet of Things and autonomous vehicle networks,
have requirements for decentralisation, security, trust and consensus that often conflict with each other.
Traditional approaches to security often rely on centralised authorities for key management and identity
verification, which are ill-suited to environments consisting of power-limited and intermittently
connected devices. The use of centralised authorities introduces single points of failure, bottlenecks
and high-value targets for attack - undermining the resilience that distributed systems can offer [1-3].

Unmanned Aircraft Systems (UAS) are aircraft that operate without a pilot or crew on board. They
are frequently referred to as Remotely Piloted Aircraft Systems (RPAS), Unmanned Aircraft Vehicles
(UAV) or Drones, with the preferred nomenclature being dependent on the organisation operating or
developing the system. These devices were initially piloted aircraft retrofitted for remote control and
used for high-risk or one-way operations [4]. As technology improved, their use for reconnaissance
and electronic warfare became more widespread, with armed platforms becoming prevalent during
the Global War on Terror and the invasions of Iraq and Afghanistan. These operations highlighted the
security challenges involved in deploying relatively simple systems to an operational environment [5].

With improvements in battery, electric motor and radio-frequency (RF) connectivity technologies,
UAS have become accessible to consumers and non-military users. UAS now range from small devices
that can be held in the palm of your hand, with a range measured in metres, to traditional aircraft-sized
platforms with a range measured in 1000 km. Regardless of the scale, the key components of a UAS are

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

2 of 46

an aircraft vehicle and a ground control station. These are linked with an RF connection that provides
control and data link capabilities [6]. Extensive research shows the vulnerability of these connections
either to direct attack or as an attack vector to access the aircraft vehicle or control station [6,7]. The
use of fibre-optic data links to remove this attack vector is a recent and well-documented operational
example from the Russia-Ukraine war, which further highlights the importance of cybersecurity to
UAS operations and the vulnerability created through the use of COTS products in a military capability

[8].

1.1. Regulatory Framework

In the UK, the Civil Aviation Authority (CAA) and Military Aviation Authority (MAA) are
responsible for the regulatory oversight of civilian and military Unmanned Aircraft Systems, respec-
tively [9,10]. Both agencies adopt the European Union Aviation Safety Agency’s (EASA) three-tiered
structure for categorising UAS (Open, Specific, Certified). These frameworks ensure that regulatory
requirements are proportional to the level of risk associated with the type of UAS being considered. A
key principle in the framework’s approach is to remain technology agnostic, specifying what level of
security /performance is required, without defining how to achieve it. This gives UAS developers the
freedom to innovate and create new ways of securely deploying these technologies[11].

The maturation of Al and Machine Learning technologies means that autonomous UAS are
now feasible. The emphasis of CAA and MAA regulations differs. The CAA focus is on ensuring
deterministic behaviour by autonomous platforms in order to maintain an equivalent level of safety to
crewed platforms[9]. In addition to flight safety, the MAA and wider Ministry of Defence emphasis is
on compliance with international laws relating to armed conflict and ensuring a human remains "in
the loop” and responsible for the use of lethal weapons [10,12].

Recognising the potential risks resulting from autonomous UAS operations, the CAA encourages
a Secure by Design methodology. This requires cybersecurity to be considered from the start of the
design process and addresses both the network security of the system and the specific risk of Al
and machine learning systems being manipulated in ways that could compromise their operational
safety[11]. As such, there is a clear requirement for nodes within an autonomous UAS network to be
able to communicate securely and for an architecture which can robustly handle compromised nodes
attempting to maliciously undermine UAS operations.

One potential solution to these issues combines applied cryptography and distributed computing,
focusing on methods to achieve Byzantine Fault Tolerance (BFT) and decentralised security. The
Byzantine Generals” Problem [13] highlights the fundamental difficulty of achieving unanimous
agreement among distributed entities when some participants may behave maliciously. Overcoming
this requires cryptographic primitives that can ensure authenticity, integrity, and verifiability without
relying on a central authority.

Fundamental to these solutions is the concept of secret sharing, which was independently defined
in the works of Shamir [14] and Blakley [15]. Shamir’s scheme, based on polynomial interpolation,
offers a relatively simple method to divide a secret into multiple shares such that only a predefined
threshold of shares can reconstruct the original secret, while fewer shares reveal no information.
However, these initial secret sharing schemes required a "trusted dealer” to generate and distribute
the shares, creating a single point of trust. This limitation led to the development of Verifiable Secret
Sharing (VSS), pioneered by Feldman [16] and Pedersen [17]. Feldman'’s VSS introduced mechanisms
for participants to verify the validity of their shares against public commitments, ensuring the honest
behaviour of the dealer. Pedersen advanced VSS further and proposed DKG, where multiple parties
collaboratively generate a shared secret key without any single party ever knowing the complete key
[18]. This eliminates the trusted dealer entirely, achieving true decentralisation in key creation, but at
the expense of increased communication overheads.

These advancements enable the construction of cryptographic schemes, such as threshold signa-
tures, where a group can collectively perform a cryptographic operation (e.g., sign a message) only
when a threshold of members contributes their secret shares. This collective signing capability provides

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

3 of 46

a useful tool for decentralised authentication and verifiable group decision-making, offering a viable
alternative to centralised models in the context of highly distributed and autonomous device networks,
with clear relevance to contemporary problems faced by UK Defence as they increase the proportion
of combat mass provided by unmanned vehicles [19].

This paper seeks to assess the performance of cryptographic libraries that could enable a decen-
tralised key management and consensus mechanism for autonomous devices and reduce reliance on
centralised control architectures. The main contributions of the paper are:

1. Provide a comprehensive comparison of current solutions for distributed key management and
consensus.

2. Benchmark the performance of open source solutions, to demonstrate the selected technolo-
gies and analyse their performance. Identifying strengths, weaknesses, and areas for further
improvement.

3. Assessing the viability of adopting existing solutions versus building a custom solution based on
theoretical principles.

2. Related Work

This section will define the core cryptographic protocols that enable the project’s key functions:
secure, scalable group communication and decentralised consensus. All of these protocols are built
on the fundamental concept of a cryptographic key. Much like a physical key secures a lock, a
cryptographic key is a string of digital data (1’s and 0’s) that secures a message by applying an
algorithm to it to make it readable only to those with the corresponding key. These keys can be public
or private, and symmetric or asymmetric, but they all serve the same core function.

We will begin by exploring secret sharing, a technique for securely distributing a secret across
multiple participants. Next, we will see how these secrets can be used to create digital signatures that
verify a message’s authenticity and integrity. Finally, we will define the methods used for secure group
communication over otherwise insecure channels.

2.1. Secret Sharing

The three schemes outlined enable the division of a secret, for instance, a password, between mul-
tiple parties and then at a later time, a minimum threshold of those parties can reconvene and recreate
the secret. Once implemented into usable libraries, these schemes require varying communication
channels between the parties; the impact of those channels is not discussed here. Instead, the focus is
on the mathematical principles that enable the schemes.

2.1.1. Shamir’s Secret Sharing

Shamir’s Secret Sharing is a threshold scheme where a secret is split into n shares such that any
t shares can reconstruct the secret, but fewer than ¢ reveal nothing. It has two phases: sharing and
reconstruction. It relies on a trusted dealer to take the original secret and honestly follow the protocols
to divide the secret into shares and likewise to reconstruct the secret.

2.1.2. Sharing Phase
Let s € Z; be the secret. The secret is shared as follows [14]:
1. Choose a random polynomial f(x) of degree t — 1 over Z;:

1

f(x) =s+ax+ax®+---+a_1x"1 (mod q)

2. Generate and privately distribute 1 shares y; = f(j) to each participant j € {1,...,n}.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

4 of 46

Reconstruction Phase

Given any f shares from a set of participants J, the secret s = f(0) can be reconstructed using
Lagrange Interpolation:

s = Zyjl_[kij (mod q)

j€] keJ
k#j

Shamir’s scheme is information-theoretically secure, meaning that with fewer than t shares, the
secret remains completely unknown, regardless of an adversary’s computing power or time [14,20]. It
is dependent on the honesty of the dealer and assumes that an adversary can eavesdrop on the various
messages required to communicate the sharing, but not to modify them or the dealer’s actions.

2.2. Verifiable Secret Sharing

Verifiable Secret Sharing (VSS) schemes enhance secret sharing by allowing participants to verify
that a dealer has behaved honestly. This protects against a malicious dealer who might distribute
invalid shares and ensures that a valid secret can be reconstructed when required.

2.2.1. Feldman'’s Verifiable Secret Sharing

Feldman’s VSS is an extension of Shamir’s scheme, which allows participants to verify that
their shares originate from a single polynomial. The scheme’s verifiability is based on homomorphic
commitments and the computational difficulty of the discrete logarithm problem [16,20].

Let G be a cyclic group of large prime order g with a publicly known generator g. The secret s
and the polynomial coefficients are elements of Z,.

Sharing Phase
The dealer performs the following steps to share the secret s € Zg:

1. Choose a random polynomial f(x) of degree f — 1:
f(x)=s+ax+--+a;_1x"1 (mod q)

2. Compute and broadcast public commitments to the coefficients:

aj

Ci=g" (modp) fori=0,...,t—1 (whereay=>s)

3. Generate and privately distribute shares s; = f(j) to each participant j € {1,...,n}.

Verification Phase

Each participant j verifies their private share s; against the public commitments by checking:

» t—1

g = 1j0<ci>f (mod p)

If the equality holds, the share is valid. This works because the right side expands to a commitment to

fG):

=1 P i S t=1 i ;
[Ty =TT =gt =g/} (mod p)
i=0 i=0

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

5 of 46

Reconstruction Phase

Given any ¢ valid shares from a set of participants J, the secret s is recovered using Lagrange
Interpolation:

k

s=).5 17— (modg)

jel kel
K

Unlike Shamir’s scheme, Feldman'’s VSS is not information-theoretically secure but is computa-
tionally secure. Its security relies on the assumption that the discrete logarithm problem is hard in
the group G. The validity of that assumption in the face of Quantum Computing will be considered
during the design section of this paper.

2.2.2. Pedersen’s Verifiable Secret Sharing

Pedersen’s VSS enhances Feldman’s scheme to provide perfect hiding of the secret. While
Feldman'’s scheme is computationally hiding, Pedersen’s scheme is information-theoretically hiding.
This is achieved by using a second random polynomial to blind the secret-carrying polynomial [18]
[20].

The scheme operates in a group G of large prime order g. It requires two different generators,
g and h, where the discrete logarithm of & with respect to g is unknown to all parties, including the
dealer.

Sharing Phase
The dealer executes the following steps to share the secret s € Zg:

1. Choose two random polynomials, f(x) and r(x), both of degree t — 1:

f(x) =s+ax+---+a 11

(mod q)
r(x) =by+bix+---+b_1x'1 (mod q)
2. Compute and broadcast public commitments using both polynomials:

Ci = g”fhbi (mod p) fori=0,...,t—1 (whereay=s)

3. Generate and privately distribute a pair of shares (s;,t;) = (f(j),7(j)) to each participant j €

{1,...,n}.

Verification Phase

Each participant j verifies their pair of shares (s, t;) against the public commitments with the

check:)
t— ;
g ZTT(C)" (mod p)
i=0
The verification works because the right-hand side is a commitment to the evaluation of both polyno-
mials:
=1 - t=1 i i i . .
[Ty = H(gaihbi)] = grail gLt — of D) (mod p)
i=0 i=0

Reconstruction Phase

Any group of t or more participants can reconstruct the secret. They pool their verified shares.
The reconstruction only requires the primary shares, s;. The blinding shares, t;, are discarded after

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

6 of 46

verification. Given t valid shares from a set of participants J, the secret s is recovered using Lagrange
Interpolation on the s; values:
k
s=Ysil1i—; (modq)

j€l ke
k#j

Pedersen’s VSS is information-theoretically hiding because the commitment Cy = g°h!0 perfectly
hides s thanks to the random by. The scheme remains computationally binding, as the dealer cannot
find an alternative set of values to open the commitment without solving the discrete logarithm
problem.

2.3. Distributed Key Generation

While Verifiable Secret Sharing (VSS) protects against a dishonest dealer, DKG removes the need
for a dealer entirely. In a DKG protocol, a group of participants jointly generate a public key and a
corresponding set of private key shares, without any single party ever knowing the full private key.

2.3.1. Pedersen’s Distributed Key Generation

This protocol is a method for jointly creating a key pair by having all participants run Feldman'’s
VSS in parallel. Each participant acts as a dealer for their own randomly chosen secret, and the final
group secret is the sum of all secrets that were shared correctly [17,21].

The protocol operates in a group of prime order g with a public generator g.

Sharing Phase

1. Each participant P; chooses a random polynomial f;(z) of degree t over Z;:
fi(z) = aig +anz + - +ayz' (mod q)

The value ajy is participant P;’s individual secret contribution, which we can denote as x;.
2. P;broadcasts public commitments to the coefficients of their polynomial:

Xy =g" (mod p) fork=0,...,¢t

The commitment to the secret contribution is Xjy = g%.
3. P; computes and privately sends the share %;; = f;(j) (mod g) to each other participant P;.

Verification and Complaint Phase

1. Each participant P; verifies the shares they received from every other participant P; by checking
if the share is consistent with the public commitments:

t

o, .
g =T](Xx)" (mod p)
k=0

2. If the check fails for a share from P;, participant P; broadcasts a complaint against .

3. If a participant P; receives more than t complaints, they are disqualified. Otherwise, for each
complaint from a participant P;, P; must broadcast the correct share ¥;;. If any revealed share is
still invalid, P; is disqualified.

Key Computation Phase
1. The set of all non-disqualified participants is established, often called the qualifying set.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

7 of 46

2. The final group public key, y, is computed by multiplying the initial commitments of all qualified
participants:

y= JI Xio (modp)
i€QUAL

3. The final group secret key, x, is the sum of the individual secret contributions. This key is never

computed in a single location.

x= Y x (modyg)
i€QUAL
Each participant P; holds a private share of this final key, which is the sum of all the valid shares
they received: } ;cquar ¥ij-

2.4. Digital Signatures

Digital signatures are another fundamental cryptographic function that allows the authenticity
and integrity of a message to be verified. Proving that a message has not been altered and has been
sent by the claimed originator. This section will provide an introduction to signatures and a more
detailed explanation of Schnorr, BLS and FROST signatures.

Digital signature schemes have three phases:

1. Key Generation. An algorithm that creates a public/private key pair (Px). The private key is
used for signing, and the public key is used for verification.

2. Signing. A process that uses the private key to produce a unique signature for a given message.

3. Verification. A process that takes a message, the signature and a public key as its input and will
output "true" if the signature is valid for that message and public key (or "false" if verification
fails).

The signing and verification phases are shown in Figure 1.

BS

Private
Data Key Digitally
Signed
/.f"" ™ - Data
- \\‘
{__‘ﬁ_ﬂ_)
Verification o
+ 4 Integrity
. I M Authenticity
o Public
Digitally Key
Signed
Data

Figure 1. Signing and verification with digital signatures [22]

The security of the signature stems from the fact that it is impossible for an attacker to forge
without knowing the private key. The signature schemes considered in this research all derive their
security from the difficulty of the Discrete Logarithm Problem (DLP). Although this currently remains
a difficult problem, the forecast imminent arrival of stable quantum computers threatens this difficulty

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

8 of 46

[23]. The suitability of these signature schemes in the face of a quantum threat will be considered
throughout this work.

2.4.1. Schnorr’s Signature Scheme

Clauss Schnorr’s signature scheme is a widely used protocol that was developed for use with
resource-constrained devices and now forms the foundation for numerous signature protocols. It
implements pre-processing, independent of the message being signed, to exploit idle processor time
and reduce active signing time [24].

These signatures operate within a finite cyclic group where arithmetic is performed modulo a
large prime number p. The group has a prime order g and is generated by a publicly known element g.
Private keys and nonces are selected from the set Z;, and public keys are derived using exponentiation
of ¢ modulo p [25].

Key Generation

The signer selects a private key x € Z; and computes the corresponding public key P = g*
(mod p).

Message Signing

To sign a message M, the signer performs the following steps:
Select a random nonce k € Z;.

Compute the commitment R = ¢¥ (mod p).

Compute the challenge value e = H(R, P, M), where H is a cryptographic hash function.
Computes = (k+e-x) (mod q).

Ll O

The signature is the pair (R, s).

Verification
To verify a signature (R, s) on a message M using the public key P, the verifier:

1. Computese = H(R, P, M).
2. Accepts the signature if and only if:

¢®=R-P° (mod p) (1)

2.4.2. BLS Signatures

The BLS signature scheme is a short, aggregate signature protocol based on bilinear pairings[26,27].
It is particularly useful in environments where signatures need to be short, such as low-bandwidth
systems. The scheme’s security relies on the difficulty of the Computational Diffie-Hellman (CDH)
problem in certain groups, even when the Decision Diffie-Hellman (DDH) problem is easy.

The protocol operates within a pair of groups, G; and Gy, of prime order p, with a bilinear map
e: Gy x Gy = Gr.

Key Generation

To create a key pair, a signer selects a private key, x € Z,, at random. The corresponding public
key is then computed as v = g*, where g is a publicly known generator of the group. In the case of
BLS signatures built on elliptic curves, this results in a public key v that is a point in the group G;.

Message Signing
To sign a message, M, the signer performs the following steps:

1. Compute the hash of the message, i = h(M), where h is a full-domain hash function that maps
the message to a point in the group G,.
2. The signature, 0, is then computed as o = h*, where x is the signer’s private key.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

9 of 46
The resulting signature, o, is a single element in Gy.
Verification
To verify a signature, o, on a message M using the public key, v, the verifier:
1. Computes the hash of the message, i = h(M), mapping it to a point in G,.
2. Accepts the signature if and only if the following equation holds:
e(g,0) =e(v,h) 2)

where g is the generator of the group, e is the bilinear map, and v is the public key. This equation is a
pairing-based check that verifies the signature without revealing the private key.

2.5. Secure Group Communications

One of the key challenges to enabling communication within a dynamic group is the secure
distribution of a shared encryption key amongst its members. Traditional key exchange protocols such
as Diffie-Hellman and Module Lattice-based Key Encapsulation Mechanism (ML-KEM) enable key
exchange between a pair of clients. These pairwise connections can be utilised to implement a naive
group solution, where a single client establishes a connection to every proposed member of a group
and acts as a trusted dealer to share a group key.

However, this approach is time-consuming and resource-intensive, especially for large groups and
those with a regularly changing membership. This approach is also dependent on the trustworthiness
of the dealer. To address the limitations of this approach, a range of group key agreement protocols have
been proposed. In this paper, we will show the progression from Group Diffie-Hellman Key Exchange
to more scalable and secure methods such as Asynchronous Ratcheting Trees (ART) and Tree-based
Key Encapsulation Mechanism (TreeKEM), which underpin modern protocols like Messaging Layer
Security (MLS).

2.5.1. Diffie-Hellman Key Exchange

In 1976, Diffie and Hellman’s key-exchange protocol showed how two parties (Alice and Bob)
could derive a shared secret over insecure channels using collaborative exponentiation [28]. In their
protocol, the parties publicly agree on a generator value g and a large prime number N.

They each choose their own private secret value, y for Alice and x for Bob. Alice calculates her
public value 4 and Bob calculates his public value b:

a=¢Y (mod N) and b=g* (mod N)

They exchange the public values a and b with each other and can both then independently calculate
the same shared secret key, K, as follows:

Alice’s Calculation:

K=b (modN)=(g*)Y (mod N)=g¢"¥ (mod N)

Bob’s Calculation:

K=4a* (mod N) = (¢Y)* (mod N)=g¢¥* (mod N)
Since g*¥ = g¥*, both parties arrive at the identical shared secret key K.

2.5.2. Group Diffie-Hellman

To extend this protocol to a group setting, Steiner et al developed Group Diffie-Hellman (GDH)
key exchange, which allowed additional parties to pass their shared values sequentially in a ring

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

10 of 46

around the group [29]. Each member adds their own secret exponent to the value passed from the
previous member, effectively chaining the above calculations and allowing everyone on the ring to
derive a shared key.

2.5.3. Tree Diffie-Hellman

While GDH allowed the sharing of a group key, it is a sequential protocol that scales linearly
(O(n)), requiring significant computational and communication resources as a group expands. Tree-
based Group Diffie-Hellman protocols were developed to improve efficiency. In this protocol, group
members are organised in a binary tree structure, rather than in a ring. Here, the tree is structured into
leaf, intermediate and root nodes as shown in Figure 2 (where nodes are identified by two digits that
indicate their vertical and horizontal position in the tree).

(<20>| [<21>] [<22>| [<23>]
My M, M, M,y

Figure 2. Tree-Based Group Diffie-Hellman key tree.

Each member is assigned a leaf node, every leaf and intermediate node above them has an
associated secret key (K) and a public “blinded” key. These secret keys provide the entropy for the
final group key, which each member derives independently using their secret key and the blinded
keys. The blinded key (BK) is derived in the same way as the public share of a leaf’s Diffie-Hellman
exchange, i.e.,

BK = GX (mod N)

To derive the group key, a node must know its own secret key and the blinded keys of its co-path
nodes along the path to the root, as shown in Figure 3. Blind keys need to be broadcast to other
members of the tree to allow them to derive the group key. When a new member is added (or departs)
from the group, they are allocated as a new leaf node, updating the blind keys on their path to the root,
requiring all members to recalculate the Group Key.

Co-Path Blinded Key
BK (1,0)

M3's Secret Key Sibling’s Blinded Key
Keaz) BR(23)

BK Ko
\ v (<2,3>) (BK<1,0>)K(l,l)

Parent’s Secret Key
Ky

Y

Group Secret Key
Kooy

Figure 3. Example Key Derivation - M3 derives the group key using (K, 5)) and the public blinded keys
{(2,3),(1,0)}.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

11 of 46

The use of a tree structure brings a significant increase in efficiency, from linear scaling with
GroupDH to logarithmic scaling (O(log n)) with TGDH. However, the ability of the protocol to
handle changes to a group membership and the impact of a compromised member on confidentiality
remained sub-optimal. Requiring multiple rounds of communication for updates and without the Post
Compromise Security provided by other protocols.

2.5.4. Asynchronous Ratcheting Trees

Cohn-Gordon et al. [30] highlighted the challenge of securely sharing a key for group messaging
that can be scaled for large groups and can easily handle changes to group membership. Their
Asynchronous Ratcheting Tree (ART) protocol was proposed as a fully asynchronous tree-based group
key exchange protocol that allows clients to derive a group key without members needing to be online,
that scales sub-linearly with the group size and provides robust security features, such as forward
secrecy and post-compromise security.

ART defines three group operations: Join, Leave, and Update. The group is formed and ex-
panded through a series of Join operations. No single member establishes the group key; rather,
key derivation is collaborative. During an Update, a member changes their secret, allowing others
to derive a fresh group key—enabling forward secrecy. Asynchronous operation is supported by an
untrusted centralised server that hosts public keys and allows offline members to query updates upon
reconnection. The system must maintain a strong ordering constraint to ensure consistent group key
derivation.

The scheme operates in a cryptographic group G of large prime order q with a generator g, and
uses a key derivation function H. The core cryptographic primitive is the Diffie-Hellman function:
DH(pk, sk) = pk**.

Tree Structure and Key Derivation

Group key material is structured as a binary tree:

1. Nodes and Members: Each member u is assigned a leaf node. Each node v in the tree has a key
pair (sky, pky), where pk, = g%v.
2. Key Derivation Path: For an intermediate node v, the secret key is derived via the DH exchange

between its children L and R:

sk, = H(DH(pkyr,skgr)) = H(DH(pkg,skr))

This recursion continues up to the root node.
3. Group Key: The group key K is the secret key of the root node:

K = skroot

Update Operation (Ratcheting)
Let member u be the updater:

1. Leaf Update: Member u generates a new ephemeral key pair: (sk), pk),).
Path Update: Member u updates the secret keys along their direct path to the root. For each node
v on this path, where vp,y, lies on u’s path and vgjping does not:

ski, = H(DH(pk skl,)

Usibling 4 vpath
3. Broadcast and Key Recalculation: Member u broadcasts the new public leaf key pk, and the
updated public keys for sibling nodes along their path. Other members recompute the new root
key:
K' = sk,

root

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

12 of 46

2.6. Tree-Based Key Encapsulation Method

The ART protocol was a major step towards scalable, secure group messaging and underpins
the Tree-based Key Encapsulation Method (TreeKEM). Developed by Bhargavan et al., this method
uses the tree structure outlined above, but replaces Diffie-Hellman with an alternative key exchange
method to reduce the computational complexity of the system and improve handling of concurrent
update requests by group members [31].

TreeKEM uses a collision-resistant hash function, a public-key encryption mechanism, a pseudo-
random key derivation function, and an authenticated encryption scheme. These primitives form
the foundation of the protocol’s functionality and through their elegant and sparing use, the creators
achieved significant improvements over ART, particularly on recipient-side efficiency and more robust
handling of concurrent updates.

The protocol defines four primary group operations: CREATE, ADD, REMOVE, and UPDATE. While
the tree structure is nearly identical to that of ART, the method for deriving keys is fundamentally
different.

Tree Structure and Key Derivation

TreeKEM uses a binary tree structure where members are assigned to leaf nodes. However, its
key derivation method is non-contributive, which simplifies state updates.

1. Nodes and Members: Each member is a leaf on the tree. Each node in the tree has a secret key
and a corresponding public key.

2. Key Derivation Path: Unlike ART, where an intermediate node’s key is derived from a Diffie-
Hellman exchange between both its children, a TreeKEM node’s key is derived from a hash of the
secret key of just one child, specifically the last child in that subtree to have performed an update.

sk, = H (Skchild_updater)

This non-contributive approach is what allows TreeKEM to more easily merge concurrent updates,
as conflicting operations do not require complex resolution at the cryptographic level.

3. Group Key: The final group encryption key is derived from a chain of keys at the root of the tree,
incorporating contributions from all updates over time to ensure security.

Update Operation

The update process in TreeKEM shifts the computational model from collaborative derivation (as
in ART) to direct distribution via KEM. As an example, if member u is the updater:

1. Leaf Update: Member u generates a new key pair for their leaf node, (sk},, pk,).

2. Path Update: Member u calculates the new secret keys for all nodes on its direct path to the root
by successively hashing its new leaf key: H(sk),), H(H(sk},)),....

3. Key Distribution via KEM: Instead of broadcasting public values for others to re-calculate the
path, member u encrypts the newly computed secret keys for the other members. For each node
on its direct path, it encrypts the new secret key for the corresponding sibling node. This is done
using the sibling node’s public key.

ciphertext = KEM.Encrypt(pksipling, Skparent)

This message is then sent to the members of that sibling group.

This change significantly reduces the work for receiving members. To receive an update, a
member only needs to perform one KEM decryption and a series of fast hash operations, versus the
multiple, more computationally intensive Diffie-Hellman operations required in ART. This makes
TreeKEM more efficient, particularly for recipients.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

13 of 46

2.7. Byzantine Fault Tolerance

Modern autonomous systems are made up of numerous components. To be resilient, they must
cope not only with the complete failure of a component, but also with faulty or unreliable components
that provide erroneous signals, or components that have been compromised by an adversary and are
being directed to provide deliberately harmful signals[32].

A useful metaphor for this situation is the Byzantine Generals Problem. Here, we imagine several
divisions of the Byzantine Army surrounding a city. Each division is commanded by a general, and the
generals are connected to each other by messenger. The generals may be loyal or they may be traitors,
with the traitors seeking to prevent the loyal generals from agreeing on a successful plan of attack.

Lamport et al. [13] proved that in such a situation, a simple majority vote would be insufficient
to ensure that an honest majority could reach consensus in the presence of Byzantine faults. With
oral messages—where a general can send conflicting messages to different recipients—a system with
m traitors requires at least 3/m 4 1 total participants to achieve consensus. When signed messages are
used—ensuring authenticity and integrity—a system can tolerate up to VTAJ traitors, provided that
honest nodes can communicate either directly or indirectly with one another.

These theoretical limitations directly impact the ability of Verifiable Secret Sharing (VSS) and
(DKG) schemes to tolerate Byzantine faults. Asynchronous systems, where paths between nodes are
not guaranteed, can behave like systems with oral messages and are typically limited to fault tolerance
of m < 7, where m is the number of traitors and 7 is the total group size. For systems with public
commitments or signed messages, that tolerance increases to m < 7.

3. Related Work

The development of these cryptographic primitives into mature libraries and algorithms has
taken many years and seen numerous weaknesses identified and mitigated. This section will chart
some of these developments and provide a clear understanding of the current state of the art within
the fields of group key distribution and threshold cryptosystems, with a focus on their applications
within distributed systems, such as UAS.

3.1. Key Distribution in UAS

As research into Internet of Things (IoT), Internet of Vehicles (IoV), multi-vehicle UAS swarms
and systems that combine all three has developed. The challenge of providing secure communications
between devices to enable autonomy has been approached in multiple different ways, largely driven by
the underpinning architecture and its constraints. These approaches have adopted both purpose-built
designs as well as adapted pre-existing protocols; the efficacy of these approaches and lessons for the
development of our implementation are outlined next.

Although the Russian invasion of Ukraine has led to both sides using commercial cellular technol-
ogy to provide C2 links for their UAS, [33,34], Abdalla et al. [7] highlight the difficulty of securing
cellular networks to enable civilian UAS operations. However, their work focuses on UAV to Ground
Control Station (GC) connections, and suggests authentication and latency times that would be unsuit-
able for drone-to-drone communication. What is more, for UAS intended to operate in a degraded
or denied EM environment, reliance on an adversary’s cellular network would be a serious tactical
weakness.

3.1.1. A Centralised Approach

Noguchi [35] devised a key-sharing system that utilised Shamir Secret Sharing to achieve an order
of magnitude improvement in encoding times compared to RSA for resource-constrained devices
(Raspberry Pi 3s). The approach relied on a trusted central architecture and pre-shared secrets to
authenticate devices, with no authentication by the management nodes to verify user devices. This
shows that the very lightweight approach to authentication and the use of Message Queuing Telemetry
Transport MQTT, which is common for constrained devices, would not be suitable for our use case.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

14 of 46

Their methodology identified key performance metrics that were visible in multiple papers, namely
encoding delay, reconstruction delay and total key-sharing delay.

Building on a more robust architectural model, Tan [36] approached the challenge of group
key distribution in an innovative way, with a trusted dealer using certificateless authentication,
disseminated during a configuration phase by a central Trust Authority pre-flight, to verify nodes.
Similar to Shamir’s sharing scheme, their proposal utilises the mathematical properties of polynomials,
but this time employing the Chinese Remainder Theorem CRT to enable individual reconstruction
of the group secret key. Their approach depends on a powerful tethered UAV as the trusted dealer,
removing the power limitation inherent to most UAS swarms. While this is feasible for enabling
devices in an Internet of Vehicles IoV architecture, it is absolutely unsuited to our use case.

3.1.2. Shifting to Decentralisation

Mitigating the reliance on a single management node, Wang et al [37] expanded the CRT polyno-
mial technique with the addition of a token system. This reduces the computational overhead of the
system and gives it greater utility across a wider range of UAV use cases; however, for larger swarms
(100+), the token size would remain very large in order for the CRT to function correctly. A multi-stage,
threshold approach to authentication included Shamir Secret Sharing to provide added resilience, but
requires a threshold of management nodes to be operational during authentication. The batch injection
of certificateless identities expedites configuration times and has merit, but constrains the ability for
nodes to be added on an ad-hoc basis if a mission unexpectedly needed a capability that had not been
included during the configuration phase.

Moving away from purely cryptographic solutions, Jangsher et al’s [1] approach was to introduce
dedicated hardware to their system (Physically Unclonable Functions (PUFs) and emulators (PUFe’s).
During a configuration phase, devices are provided with the digital fingerprint for a cohort of devices.
Multiple overlapping cohorts will form a swarm. During key sharing, a pair of devices initiates a
connection, using the PUF and PUFe to verify each other. The devices then create a pairwise key to
secure their connection using a physical measurement of their link (i.e signal strength or similar). One
device at a time, UAVs are added to the swarm, and gradually, the group’s shared key is formed. The
use of PUFs and physical measurements removes the requirement for Public Key Cryptography (PKC),
reducing the cryptographic computation required by the devices. However, the time to form a swarm
increases linearly with its size and can stall with mid-sized groups (those over 10).

In contrast to hardware-dependent models, Yang [38] proposes a Group Authenticated Key
Exchange protocol based on Elliptic Curve Diffie-Hellman ECDH and authenticated using Boneh-
Lynn-Shacham BLS short signatures. The protocol utilises authentication to mitigate Man In The
Middle MITM attacks and the authors highlight its relevance to UAS Swarms, where devices may
be captured by an adversary or temporarily lost. However, it uses a member of the group to act
as the Group Controller (GC), which then coordinates the key generation and update process. The
cryptologic burden of creating keys and then distributing them securely is placed on the GC, and this
becomes a significant challenge for larger swarms that have a dynamic composition with significant
churn.

3.1.3. A Modern Group Authenticated Key Exchange Protocol

Taking a broader perspective, Leon and Britt reviewed eight open and proprietary protocols to
assess their suitability for use in military Unmanned Systems [39]. Due to its provision of FS, PCS,
support for asynchronicity and logarithmic scaling efficiency, MLS was assessed to be the most suitable.
MLS was successfully tested with a small three-member group of UAS and USV (Unmanned Surface
Vessel), proving the utility of the protocol in this environment. The study identified a number of areas
for future work that limited the resilience of their implementation, specifically with their manual
approach to Authentication and Delivery Services.

During the development of MLS, Wallez et al. proved the ability of MLS to robustly maintain
group authentication and integrity, making it highly suitable for use by UAS operating in a contested

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

15 of 46

environment [40]. Specifically, the ability of the protocol to ensure all legitimate members have a consis-
tent and authenticated view of the group’s membership is resilient to an attacker attempting to insert
an illegitimate member and is capable of securely handling a high rate of member turnover/churn.

Finally, offering the most comprehensive solution for dynamic groups, Marstrander’s [41] re-
search took a different approach, exploiting the IETF ratified Message Layer Security (MLS) Protocol
and existing libraries and applications to develop the Flamingo MLS system for key management
within meshed UAS networks. MLS utilises the TreeKEM scheme for securely generating encryption
keys across large groups. While still requiring centralised nodes for a coordinating function, the
cryptographic load is distributed across the nodes, minimising the computational load on a single
device. It is commonly used within secure messaging apps to protect group chats, and is optimised
for the rapid distribution of keys across large group sizes and can robustly handle both frequent
addition and revocation of group members. Marstrander’s work, grounded in the reality of military
UAS operations, recognised the challenges of identifying a compromised node, the requirement for
a decentralised consensus mechanism to respond coherently to compromised nodes and proved a
decentralised DS using the Totem protocol. This novel study proved the utility of MLS on a small
network of resource-limited devices, while identifying a number of limitations within their experiment
that warrant further investigation.

3.2. Threshold Cryptosystems

Among many possible applications, threshold cryptosystems can form the foundation for secure
consensus or voting, as they allow a threshold t out of n members to jointly complete a cryptographic
operation — for example, applying a digital signature to a proposal. A common way to realise such
systems is through polynomial-based Distributed Key Generation (DKG), which ensures that no
single party ever learns the full private key. On top of this shared foundation, different signature
constructions can be used to enforce the threshold property. This research focuses on two specific
approaches: bilinear-pairing-based signatures, represented by BLS, and Schnorr-based protocols,
represented by FROST.

NASA’s Ames Research Centre’s SAFE50 Autonomy Reference Architecture defines the extensive
range of hazards, environmental effects, and operational considerations that necessitate a consensus
approach [42]. Overall, the UAS must navigate an environment filled with static and dynamic objects in
three dimensions, all while contending with environmental challenges and potential system failures. In
our conceptual architecture, multiple devices will provide different sensor capabilities and perspectives.
While SAFE50 does not propose specific cryptographic mechanisms, this work highlights threshold
signatures as one potential means of increasing confidence in the decisions being made by autonomous
UAS.

3.3. Distributed Key Generation

The starting point for these systems is DKG. Section 2.3 showed that Pedersen’s development of
DKG enables a group to jointly create a key pair without relying on a centralised trusted dealer. The
core of the protocol is that each participant generates a random polynomial of degree t — 1, where t is
a predefined threshold (equal to 7 in the original theorem). By reducing t, any quorum of at least ¢
participants can work together to perform cryptographic operations—without ever reconstructing the
private key in full. This scheme can tolerate up to m < n/2 malicious parties, where m is the number of
malicious parties. As with all DKG protocols, multiple rounds of communication are required to ensure
honest behaviour. While this decentralised approach aligns with our design objectives by removing
any single point of trust, it is more costly in terms of communication and setup time compared to the
trusted dealer model. This trade-off will be highlighted during the benchmarking process, where both
decentralised DKG and trusted dealer configurations are evaluated, with libraries supporting them.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

16 of 46

3.4. BLS Signing

While Pedersen’s DKG relies on polynomial secret sharing for key generation, in 2003, Boldyreva
extended the BLS signature scheme to apply a similar threshold principle using bilinear pairings. In
this pairing-based approach, each participant P; chooses a random secret value x; € Z, and computes
a public commitment X; = ¢*. The group public key Vgroup is the product of all individual public
commitments. As with the polynomial-based scheme, the full private key is never reconstructed.

To sign a message M, each of the t participants computes a partial signature using their private

share:
o, = H(M)%

The final signature is aggregated by multiplying the partial signatures:

t
Ufinal = H‘Ti
i=1

To verify, a verifier checks:
e(g, Ofinal) = E(Vgroup/H(M))

This BLS threshold scheme tolerates up to m < n/2 malicious parties, which is the theoretical
optimum and functions with a single round signing phase, an improvement over the multiple rounds
needed by other schemes. However, the pairing function required for verification and aggregation is
computationally intensive[43].

3.5. FROST Signing

BLS offers a single-round signing phase (albeit with computationally expensive pairing operations
for verification and aggregation), whereas earlier robust threshold Schnorr protocols, such as those
described by Gennaro et al., required three signing rounds [44].

These signing rounds are a significant cost for resource-constrained networks. Komlo and
Goldberg sought to design a threshold signature scheme that maintained security while improving
performance [45]. Their Flexible Round-Optimised Schnorr Threshold (FROST) signatures improved
the state of the art and showed it possible to have either a two-round signing protocol, or a single-round
signing protocol with pre-processing and a centralised, semi-trusted signature-aggregator (due to
better alignment with our design objectives, we will focus on the decentralised version).

The FROST protocol consists of three main stages: Key Generation, Signing and Verification.
FROST typically employs Pedersen’s DKG with an added Zero Knowledge Proof (ZKP) to protect
against rogue-key attacks, to provide participants with a long-lived secret key share and produce a
public key that is known to all participants.

In the first round of signing, each participant generates two single-use nonces and their corre-
sponding public commitments. The commitments are broadcast to all participants. In the second
round, the broadcast commitments are used to calculate a group commitment and a binding value
that ties the message, participants and commitments together. They then use their secret share, nonces
and the binding value to compute their signature share. The signature shares can then be broadcast
and aggregated into a final group signature. Verification is identical to the single-party Schnorr sig-
nature verification method. In summary, BLS minimises interactive latency at the cost of expensive
pairing-based verification, while FROST reduces computational load but requires an additional round
of communication. Both schemes were therefore selected for benchmarking to evaluate how these
trade-offs manifest in practice.

4. Methodology

This section applies concepts from the literature review to the performance benchmarking of MLS
and threshold signature libraries. These protocols may address two challenges relating to security
within autonomous UAS — encryption key generation/distribution and consensus-based decision

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

17 of 46

making. The benchmarking aims to identify suitable libraries for use in a related project and evaluate
their performance under conditions relevant to a UAS network. A high-level outline is shown in
Figure 4 .

/ \ Full MLS MLS Key

Implementation Management
Securing Benchmarking Benchmarking
Autonomy: L
Key Exchange
Consensus Building FROST/BLS FROST/BLS
Static NetSim
K / Benchmarking Benchmarking

Figure 4. Research Scope

This paper will focus on the computational efficiency of the libraries under test, the impact
of network performance on their operation and the optimum way to utilise them. It will use a
range of benchmarks that sequentially run through the operations of a protocol, allowing their
performance to be accurately measured. As the communication pattern for FROST and BLS varies, a
dual approach of static and network-simulated benchmarks is used. In this way, the "computation
time" and "communication time" can be separated and analysed [46—48].

4.0.1. UAS Concept of Employment

The wider project is developing a UAS cloud architecture that will create a meshed network
with utility across a range of applications. The intention is for swarms ranging in size from 5-100
to be able to operate with significant autonomy, either through choice or as a result of lost C2 links.
It is anticipated that individual UAVs will join or leave the swarm during a mission if a particular
capability is required, and the network will be able to adapt gracefully to these changes.

4.0.2. Design Requirements

Although the project considers two different technologies/protocols, there are common design
principles for both:

1. Decentralisation is a priority, but an initial centralised configuration phase is acceptable.
A majority of nodes will be available during the configuration phase.

Security must be maintained if a UAV is permanently lost

A UAV can be temporarily out of communication and seamlessly rejoin the network.

AR N N

The UAS network must function without a connection to the C2 or configuration node during
normal operation.

4.0.3. Test Environment

The specification of the hardware solution for the wider project was not available prior to testing.
Therefore, all the benchmark tests were run on a virtualised Linux system - Windows Subsystem for
Linux (WSL) with a 12th Gen Intel(R) Core(TM) i5-12450H processor. The instance was allocated 12
logical processors (6 cores with 2 threads per core) and 7.6Gi of RAM. This configuration provided
ample computational resources and memory for the test suites and ensuring the performance results
were a valid measure of the libraries’ efficiency.

4.1. MLS Benchmark Design

The requirement was for a protocol that could support group key distribution over 100 + clients
in order to enable secure broadcast messaging required for threshold signature schemes (and other

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

18 of 46

applications requiring encrypted messaging between nodes). The selected protocol needed to be well-
proven from a security perspective, future-proof, and be able to support the addition and subtraction
of clients during a mission. It should be capable of running with as much decentralisation as possible.
The IETF MLS protocol has been shown to meet all these requirements.

4.1.1. High Level Operation

Users of MLS are referred to as clients and are organised into Groups and Epochs. A group
consists of two or more clients and the epoch defines the current chronological state of the group.
The clients within a group agree on a common secret epoch key, using a tree-based sharing structure
(Tree-based Key Encapsulation Method).

TreeKEM shares the epoch key, which is then used by each client to individually derive a ‘Secret
Tree’. This structure allows a client to locally derive a unique, symmetric key for each message they
send, using a Key Derivation Function (KDF) with their branch of the Secret Tree and a message
sequence number. Message encryption can either be done using the MLS framing layer or by exporting
a key for use within another application. Messages sent through the framing layer are protected with a
per-message encryption key and are also signed by the sender, assuring the confidentiality, integrity
and authenticity of the message. Use of the key export function loses the additional assurance of
per-message signatures, but allows applications that MLS does not support, such as streaming Full
Motion Video (FMYV), to still utilise the Group AKE functionality.

TreeKEM solves the scalability problem faced by the trusted dealer model. It allows clients to
hold keys for the nodes on its path to the root. When an update occurs, only a portion of the tree needs
to be re-encrypted and re-distributed, not the entire key. This reduces the complexity of operations
from linear to logarithmic with group size, making it far more efficient for large groups than a trusted
dealer. The ability of an MLS library to realise these benefits and the comparative performance of
different libraries is the focus of this research.

4.1.2. MLS Architecture

A simple MLS architecture is shown in Figure 5. The protocol relies on the availability of an
Authentication Service (AS) and a Delivery Service (DS). The AS allows a client to authenticate
credentials presented by another group member, or a proposed group member and the AS is assumed
to be a trusted entity.

Authentication Delivery
Service (AS) Service (D5)
Group
Client 1 . Client 2 Client 3
Member 1 Member 2

Figure 5. Example MLS Architecture [49]

The MLS RFC supports the use of PKC as an acceptable means of implementing a DS, and this
approach is compatible with our pre-mission configuration phase concept. The DS is responsible
for managing group membership, the scheduling of key updates (epoch changes) and for routing
messages amongst the group for messages sent within the MLS framing layer. Within the MLS protocol
message, ordering is critical for success, and the DS is the key component to enable that. When

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

19 of 46

employed in a mobile messaging app, this would be a fixed server. This centralised approach could
be replicated within our UAS architecture, with replication providing resilience to a DS becoming
unavailable. However, the RFC supports the concept of a decentralised peer-to-peer DS, and previous
work by Marstrander [41] has shown this to be feasible. His implementation is publicly available as a
proof of concept and would provide a starting point to develop a DS for a specific architecture and
hardware configuration.

4.1.3. MLS Operations

This extensive capability, defined in IETF RFC 9420, is provided by a complex arrangement
of binary tree structures and multiple encryption keys. The foundational theoretical concepts are
discussed in the preliminary chapters, and a full explanation can be found in the RFC [49]. However,
to understand the research undertaken within this project, a deeper understanding of the following
operations will be beneficial:

1. Group Formation This is a computation and communication-intensive process for large groups
and should be completed during the pre-mission configuration phase. This operation establishes
the binary tree structures, populating the leaf nodes with identity information and initial key
material that produce the epoch and synchronous keys.

2. Add Member This operation tests the cost of integrating a new client into an existing group’s
tree structure. It generates an Add proposal for the new client, creates a Commit message for
the proposal, then re-computes the groups tree to accommodate the new leaf node. Finally, it
generates a Welcome message for the new client. This contains all the cryptographic material they
would need to join the group and be part of the current epoch.

3. Remove Member This operation tests the costs of removing a client from a group and updating
the remaining members. It generates a Remove proposal for the target client. Then creates a Commit
message that includes this proposal and then recomputes the cryptographic tree to remove the
target client’s leaf node.

4. Update Member This operation tests the cost for a single client to initiate an update. This has the
effect of shifting to the next epoch and rekeying the system. It generates a new private-public key
pair for the client. Recomputes the member’s cryptographic data and updates its leaf node in the
tree structure. Constructs a Commit message to update the group.

5. Process Update This operation tests the costs for a client to receive and apply an update message.
When the client receives a Commit message, it must process it to synchronise its group state. The
client must authenticate the Commit message by verifying the signatures within the message,
then recompute and update its local copy of the group’s cryptographic tree to reflect the change.
Derive the new group keys for the next epoch.

6. Protect Message This operation tests the cost for a client to encrypt a message for the group. This
requires the client to generate an encryption key using the Secret Tree, encrypt the message and
then sign the message.

7. Unprotect Message This operation tests the cost for a client to decrypt a message sent by another
member of the group. This requires the client to generate an encryption key (as per Protect
Message) and then use it to decrypt and authenticate the message.

8. Key Export This operation tests the costs for a client to generate a symmetric encryption key and
present it via an API call for use by another application. It generates this key from the Secret Tree.
This is computed ‘locally” by the client, requires no inputs from other clients and is a relatively
efficient operation.

4.1.4. Library Selection

The MLS Working Group maintain a list of active MLS libraries [50]. The Cisco MLSpp library
has been proven to work on a UAS network in previous work [41], so a second library was selected for
comparison. The aim is to identify a library less susceptible to the performance issues Marstrander

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

20 of 46

had identified. At the time of selection, OpenMLS was the most recently updated and provided a
professional level of documentation and example code. This would provide a reliable way of creating
two high-quality benchmark test harnesses to measure the library’s cryptographic performance.

4.1.5. Benchmark Variables

Following an initial familiarisation period to ensure the libraries performed as expected and
functionality was fully understood, a test plan was developed. For each implementation, this would
test a range of cipher suites across multiple group sizes and measure the time taken to complete four
group management operations and three messaging operations. Figure 6 shows the test variables.

Library |Ciphersuite MLS Operations Messaging
P256_AES128GCM_SHA256_P256.

OpenMLS |X25519_AES128GCM_SHA256_Ed25519
X25519_CHACHA20_SHA256_Ed25519 | Add Update |Remove |Process 182?8
P256_AES128GCM_SHA256_P256 Member |Member |Members|Update 2048B
MLSpp |X25519_AES128GCM_SHA256_Ed25519

P384_AES256GCM_SHA384_P384

Figure 6. MLS Benchmark Variables

4.1.6. Benchmark Tests

The benchmarks were designed to assess the performance of each library in two modes. Full MLS
functionality - where MLS is used for key management and message encryption. Key management
mode - where the MLS key export function is used to produce symmetric encryption keys.

The full MLS functionality benchmarks completed the following;:

Configure a group (sized 10,20,50,100)
Complete an add member operation
Complete a remove member operation
Complete a update member operation
Complete a process update operation

AR

Complete a protect message and unprotect message operation for a message (sizes 100B,
1024B, 2048B).

The key management mode benchmarks completed the following:

1. Process an export key request
2. Use the symmetric key to encrypt a message (sizes 100B, 1024B, 2048B)
3. Use the symmetric key to decrypt a message (sizes 100B, 1024B, 2048B)

The unit of cost for these operations is the time taken to complete them. Care was taken for only the
time required for the actual operation to be measured. As both libraries implement the same protocol,
the benchmarks test how efficiently they implement the protocol. There is no transport layer activity
or difference in messaging complexity, so no attempt was made to simulate network activity.

4.1.7. Benchmark Development

All the benchmark tests were run in the previously defined WSL environment and code was
written within nano via the WSL command line. Al assistance in the form of Google Gemini was
used to iteratively develop the benchmarks and troubleshoot errors. Functional design, validation and
analysis were carried out by the researcher. The developed code provided a test harness to manage
the input/output of variables into MLS library functions and manage the benchmarking process. A
working benchmark was created for the first library and it was used as a template for the second. The
benchmark code used during this research and example prompts are published on GitHub [51].

The Rust-based, OpenMLS library is supplied with 'Large_groups.rs’ example code. This was
used as the foundation of our benchmarks and provided a sound understanding of how the OpenMLS

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

21 of 46

library should be used. The code was then modified to utilise Rust’s Criterion crate to apply a more
rigorous timing and sample management framework and the send message functionality was created.
This was then used as a template for the creation of the MLSpp benchmarks in C++.

In total, four benchmark codes were developed that tested the cryptographic efficiency of two
MLS implementations with six cypher suites and groups sized from ten to one hundred. The results
showed the impressive scalability and flexibility of the MLS protocol and provided a clear performance
comparison between the two libraries. The second half of this research builds on the secure channels
established by MLS, considering a different cryptographic problem: proving consensus on a decision
within the group.

4.2. Threshold Signature Benchmark Design

In order to verifiably make consensus-based decisions across an autonomous UAS swarm, a
method is required to obtain the consent/approval of a threshold number of participating UAS
nodes. Threshold signatures provide a mechanism for a node to "vote for’ or securely approve a
decision and then for the wider network to only implement that decision if a pre-defined quorum
of nodes concur. From the literature review, FROST and BLS signatures appeared best suited to our
application:decentralised networks, high group turnover rate, unreliable communications. Elliptic
Curve Digital Signature Algorithm ECDSA was ruled out due to the complexity of implementing
threshold signatures with this algorithm.

Signature performance is driven by curve, protocol and library language. Of these, the chosen protocol
drives the message complexity - how many messages the system must send to generate a distributed key or
sign a proposal. Figure 7 compares each protocol’s computation and communication processes.

Round BLS FROST
Computation Communication Computation Communication

DKG1 Modes generate a Each node sends a Each node generates a |Each node privately
random polynomial share to every other |random polynomial distributes shares to
and public node (Private). and commitments to |all other nodes and
commitments its coefficients broadcasts

commitments.

DKG 2 Modes verify their Modes broadcast Modes verify their Complaints are
received shares complaints against any |received shares broadcast if shares
against the public dishonest parties. against commitments. |don't match
commitments. commitments.

DKG 3 Modes compute the Disqualified nodes are |Each participant Misbehaving nodes are
group publickey and |removed from the computes their secret |excluded; the group
their final secret key |group, and remaining |key share (sum of valid |agrees on the final
share from all valid nodes establish the received shares). group public key.
shares and final group key. Group public key is
commitments. derived from

commitments.

Sign1 Each member Partial signatures are |Each signer generates |Monces and
computes a partial sentto a collectoror [nonces and their commitments are
signature using their |all nodes. corresponding public |broadcast to all other
private key share and a commitments. nodes.
hash of the message.

Sign 2 N/A MN/A Each node creates Signature shares are
their partial signature |sentto a collector or
share based on the broadcast to the
message and the network.

commitments from all
Verify 1 |The collector or any The final signature is |A single party checks |The final signature is

node computes the broadcast to the the validity of the final |broadcast to the
final signature by network. aggregated signature. |network.
aggregating the partial The verification is

signatures. A pairing- identical to a standard

based equation is single-party Schnorr

checked. signature verification.

*FROST protocols may use a 2 round DKG with a reduced level of security.

Figure 7. Threshold Signature Rounds

© 2025 by the). Distributed under a Creative Commons CC BY licen

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

22 of 46

4.2.1. Library Selection

Figure 8 shows the initial candidate libraries and the incremental approach taken to developing
these benchmarks to ensure reliable data across all aspects of performance were obtained.

Candidates
Herumi BLS Static Testing Netsim Testing Trusted Dealer
BLSTRS BLS BLSTRS BLS
Protocol e —» BLSTRSBLS ~» BLSTRSBLS
/ BLSTTCBLS BLSTTCBLS
BLS
Celo BLS
ECDSA
FROST Coinbase
Kryptology
Coinbase
Zcash FROST Kryptology
Zcash FROST Zcash FROST
Bankltalia | zcash FROST []
Bankltalia Bankltalia
Dedis-Kyber Bankltalia
Charm Crypto

Figure 8. Threshold Signature Benchmark Development

Starting with static benchmarks that isolated the library’s cryptographic functions and ran tests
that would allow a comparison to be made of both the library and the protocol’s computational
efficiency. Network simulations (netsims) shift from a sequential to a concurrent approach and
introduce network latency and loss, providing a realistic simulation of real-world performance. Only
the three best-performing libraries were progressed to this stage. This reduced the development burden
while maintaining coverage of protocols and cryptographic curves. The benchmarking process was
iterative. After conducting the initial single-cycle netsims, the results indicated that the high, one-time
cost of DKG was a significant performance bottleneck. To better reflect a realistic use case, where a
single key is reused for many signatures, an additional bulk signing benchmark was designed and
implemented. Finally, where trusted dealer functionality also existed in the library, the benchmarks
were re-run. Allowing the performance cost of the decentralised key generation to be quantified.

4.2.2. Benchmark Variables

The variables tested during the static benchmarking process were group size and threshold num-
ber. With groups of 5, 10, 20, 40, 60 and 100 all tested with a threshold size of 33 % and 66 %. The group
sizes are relevant for a range of tactical and operational use cases and within the scope of the parent
project. The thresholds model two scenarios. The first is a highly contested operating environment,
where a large number of UAS may be unavailable (due to attrition or signal jamming/obstructions),
leading to a requirement for a lower threshold to ensure a quorum. Alternatively, the lower thresh-
old may be deemed sulfficient for the type of proposals being approved, in which case the reduced
threshold would be expected to improve performance. In the second scenario, a higher threshold is
applied, and this could reasonably be expected for decisions that create a risk to the mission (loss of a
key capability) or risk to life, trading performance for additional confidence in a proposal’s approval.
A summary of the tested libraries is in Table 1.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

23 of 46
Table 1. Benchmark Summary
. Key Genera-| .. . Comm
Source Li- | Language Curve tion Timing Method
brary
Kryptol G Ed25519 DKG /TD | testing.B Buffered
yptology 0 esting. Channels
. Buffered
Kryptology Go Secp256k1 DKG testing.B Channels
Zcash Founda- | Rust Ed25519 DKG Criterion BTreeMap
tion
Bank Italia C++ secp256k1 DKG / TD S:;iﬁle Bench- Arrays
Filecoin - | Rust BLS12-381 DKG Criterion BTreeMap
BLSTRS
Google Bench-
BLSTTC -bls Rust BLS12-381 DKG mark BTreeMap

4.2.3. Benchmark Tests

For each library benchmarked, the following operations would be tested:

1. DKG Measuring time to generate a group key and provide each participant with their share of
the secret key. Expected to be the most resource-intensive operation and required during swarm
configuration or when adding a new node.

2. Signing Measuring time to generate a threshold signature. Expected to be the second most
demanding operation, keys can be reused to sign multiple proposals, so this is expected to be the
dominant operation.

3. Signature verification Measuring time to verify a signature. Frequency will match signing, with
FROST and BLS having different verification processes and resource demands.

4. End-to-end operation Complete protocol timing for all phases, providing a comprehensive metric
for comparison.

4.3. Network Simulations

To capture the effect of communication overheads, benchmarks incorporating simulated network
conditions were developed. Artificial delays were introduced to emulate message latency, and ran-
domised message drops were used to represent packet loss. The implementation of this simulation
was language-specific: in Rust, delays and drops were introduced directly at the benchmark harness
level; in C++ and Go, equivalent logic was implemented using the respective concurrency and timing
libraries. This ensured consistency in the simulated conditions across all tested libraries, while allowing
each benchmark to be executed natively within its language environment. The network scenarios vary
the latency and packet loss with a normal distribution as shown in Table 2.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

24 of 46

Table 2. Network Performance Tests

Source Li- | Language Curve Ifey Genera-| Network Pa- Group Sizes
tion rameters
brary
50+10ms /
120430ms, 5, 10, 20, 30,
Zcash FROST | Rust Ed25519 DKG / TD 2% /5% | 40
packet loss
50+10ms /
Filecoin- Rust BLS12-381 DKG éf/OﬂBmS'SO/ Zb 10, 20, 30,
BLSTRS BLS ’ ’
packet loss
50+10ms /
Bankltalia C++ secp256k1 DKG 1§O:I:30ms, o 510, 20, 30,
2% / 5% | 40
FROST
packet loss

4.4. Trusted Dealer

For comparison against decentralised Distributed Key Generation (DKG), benchmarks were
also conducted using a trusted dealer (TD) model. In these tests, a single client acted as the dealer,
distributing secret key shares to each participant. This simplified protocol incurs only one round
of communication latency and packet loss (dealer-to-participant), avoiding the multiple broadcast
and verification stages of DKG. Including TD benchmarks provides an equivalent reference point for
computation and communication costs, allowing the overhead of decentralisation to be quantified.

4.4.1. Benchmark Environment

Microsoft Visual Studio Code with integrated GitHub Al Copilot was used for code development.
This allowed rapid prototyping of 11 benchmarks in three different programming languages. The code
provided a test harness to manage the input/output of variables into the FROST/BLS library functions,
group participant data and orchestrate the signing operations and generate statistical data. A working
benchmark was created for the first library and it was then used as a template for subsequent prompts,
all code and prompts are published on GitHub [51].

When developing and testing the code, care was taken to ensure consistent performance mea-
surements were being taken, with the Coefficient of Variation data used to measure stability of the
benchmarking process. Time measurements for individual phases of the signing process were recorded
in order to allow identification of bottlenecks in the signing process, which may be incompatible with
the real-world concept of employment for the UAS network. To ensure similar levels of precision
timing, Criterion (Rust), Google Benchmark (C++) and testing.B (Go) frameworks were used to manage
iteration/sample sizes, timing and collation of results for each operation. The exception to this was the
netsim benchmarks, where these formal benchmarking frameworks proved too time-consuming (in
excess of 24hrs) for the largest groups/worst network conditions. As an alternative, a fixed number of
10-20 iterations was performed for each data point. This pragmatic trade-off allowed for the collection
of essential performance data in realistic scenarios, while acknowledging a reduced level of statistical
precision compared to the static benchmarks.

A language-appropriate method of passing messages between the simulated group participants
was used (Channels, Maps and Arrays). For the static benchmarks, this did not attempt to introduce
variations in network performance as a variable, but provided a method for simulated clients to pass
messages in an ordered manner. Supporting DKG for both protocols and signing for the FROST bench-
marks (with BLS only having a single signing round, this was not required). Network performance
was isolated and tested separately.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

25 of 46

5. Results and Discussion

This project aimed to comprehensively assess the performance of MLS and Threshold Signature
libraries and, in doing so, identify suitable implementations for use within a decentralised network of
UAS. Table 3 summarises the benchmarks that were completed. Combined, these provide an extensive
dataset from which to produce insights on the performance impacts of cryptographic curve, protocol
and language implementation.

Table 3. Completed Benchmark Summary

Protocol Library Description
MLS OpenMLS Key Distribution & Msg Encryption modes
MLS MLSpp Key Distribution & Msg Encryption modes

FROST Kryptology Ed25519 DKG static
FROST Kryptology Secp256k1, DKG static

FROST Zcash Ed25519 DKG static & bulk sign & TD

FROST BankItalia Secp256k1 DKG static & netsim & bulk sign & TD
BLS BLSTTC BLS12-381 DKG static

BLS BLSTRS BLS12-381 DKG static & netsim & bulk sign & TD

5.1. MLLS Results

The benchmark results showed a clear performance advantage for the OpenMLS library compared
to the MLSpp library. Full results, for all the cipher suites tested can be found in Appendix A. The
following sections will consider the performance of each library in turn, highlighting key results and
providing supporting data and analysis of their implications.

5.2. OpenMLS Results
5.2.1. Full MLS Mode Benchmark

OpenMLS showed consistently high levels of performance across all cipher suites. Increasing
client number from 10 to 100 had a relatively small impact on performance, with the Add Member
operations increasing by a factor of 1.5x to 2.4x as the group size increased from 10 to 100. Send
Message performance showed no measurable difference as group size increased and only a slight
increase as message size increased.

OpenMLS
Group Add Update [Remove |Process |Msg Msg Msg
Ciphersuite Size Member |Member |Member |Update |{100B) (1024B) |(2048B)
(ms) {ms) (ms) {ms) (ms) {ms) (ms)
10 5.14 3.16 2,11 2.17 0.630 0.675 0.732
P256 AES128GCM 20 5.32 3.40 3.37 3.21 0.712 0.690 0.704
SHAZ256 P256 50 6.06 5.60 5.13 3.77 0.667 0.682 0.645
100 8.11 6.58 6.75 4.66 0.700 0.757 0.756
10 2.01 0.96 0.77 0.84 0.117 0.122 0.136
#25519 AES128GCM 20 2.15 1.66 1.19 1.32 0.122 0.142 0.136
SHAZ256 Ed25519 50 3.07 2.50 2.43 2.09 0.163 0.164 0.152
100 4.44 3.81 3.66 291 0.178 0.175 0.193
10 1.81 1.2§ 0.95 0.80 0.126 0.133 0.146
¥25519 CHACHAZ20 20 2.47 1.82 1.18 1.11 0.131 0.159 0.150
SHAZ256 Ed25519 50 3.17 2.49 2.12 2.01 0.143 0.173 0.163
100 4.41 3.69 3.52 3.02 0.172 0.194 0.209

Figure 9. OpenMLS Full Results

5.2.2. MLS Key Management Mode Benchmark

The combined results for a single Key Export, Encrypt, Decrypt cycle, using the X25519 AES 128
SHA256 Ed25519 cipher suite (also used for equivalent MLSpp benchmark) are shown in Figure 10.
This shows performance reducing as both message size and group size increase. Key export times

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

26 of 46

dominate these results, for 100 client groups a performance reduction between 2.3x and 3.5x was
observed relative to the 10 client group. A smaller reduction in performance was seen as message size
increased from 100B to 2048B, between 1.2x and 1.8x.

100B 1024B 2048B
Group
Si Median Median Median

ize

(ms) (ms) (ms)
10 0.0041 0.0060 0.0073
20 0.0057 0.0070 0.0086
50 0.0089 0.0108 0.0121
100 0.0144 0.0155 0.0170

Figure 10. OpenMLS Key Management Mode Results

5.3. MLSpp Results
5.3.1. Full MLS Mode Benchmark Results

MLSpp showed lower levels of performance, with far more variation across all operations. Add
Member operations scaled from 1to 3x as group sized increased from 10 to 100. Update Member/Remove
Member/Process Update showed even larger increases, up to 8.3x in the worst case (X25519 - Remove
Member -10 to 100 clients). This is a particularly significant finding, as it shows that a core group
management function scales linearly, failing to achieve the theoretical logarithmic scaling of the MLS
protocol. Send message performance remained consistent as group size increased, but showed an
average increase of 1.6x as message size increased from 100B to 2048B (and 2.2x in the worst case.).
These results are shown in Figure 11

MLSpp
G Add Update |Update |Remove |Msg Msg Msg
Ciphersuite S_m“p Member |(Create) |(Process) |Member |(100B) [(1024B) [(2048B)
e (ms) |(ms) |(ms) |(ms) |(ms) |(ms) _ |(ms)
10 472 8.19 3.86 8.13] 0.830] 1.267] 1463
20 561 15.00 530 14.06] 0.818| 1085 1507
P256_AES128GCM_SHA256_P256 50 8.10] 33.23 8.26] 35.01] 0802] 1261] 1534
100 1431 56.12] 1138 58.71] 0.777] 1.108] 1.314
10 3.6 3.75 2.35 322] 0614] 0989 1192
20 3.61 5.61 2.9 509 0.560] 0.949] 1205
K25519_AES128GCM SHAZ36_Ed25519 50 635 12.13 5.18] 2123 0.777] 0.864] 1.229
100 9.82| 23.58 9.14] 2692 0582 0939 1309
10] 37.05] 57.00] 1829] 6299 5.982] 5.881 5.944
20 3559 95.87] 20.35] 105.04] 5.400] 18.079] 6.127
P384_AES256GCM_SHA3B4_P34 50| 33.32| 213.44] 2574] 212.01] 5637| 5.924] 6.405
100 3741 43162] 3204 40090] 4855 5.040] 5703

Figure 11. MLSpp Full Mode Benchmark Results

5.3.2. Key Management Mode Benchmark Results

In this mode, MLSpp showed far less variation across all operations and end-to-end performance.
The key export performance showed no measurable difference as the group size increased. Encryption
and decryption performance showed a 2.1x and 1.9x increase in time as message size increased from
100B to 2048B. Again key export times dominated the end to end results. With OpenMLS performing
twice as well as MLSpp for the 100B message across a 10 person group, and the results reversed for the
largest group size, where a 1.65x advantage was observed for MLSpp. Figure 12 shows the end to end
results for MLSpp.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

27 of 46

100B 1024B 2048B
Group
Si Median Median Median

ize

(ms) (ms) (ms)
10 0.0083 0.0094 0.0104
20 0.0077 0.0093 0.0106
50 0.0079 0.0093 0.0103
100 0.0077 0.0089 0.0103

Figure 12. MLSpp Key Management Mode Benchmark Results

5.3.3. Open MLS vs MLSpp

OpenMLS comprehensively outperforms MLSpp for all aspects of the MLS Full Mode benchmark.
Figure 13 visualises this result. It is noteworthy that MLSpp’s update and remove member performance
scale so poorly. While these operations involve modifying data stored within the secret tree, they are
less cryptographically demanding than the add member operation. This suggests that the library is
less well optimised for this data management task, particularly for larger group sizes. In comparison,
OpenMLS achieved close to the theoretical O(log n) performance limit for all operations. This result
corroborates the findings of Marstrander [41], that MLSpp suffered data marshalling issues and was a
sub-optimal choice for this type of application.

Add Member Performance Update Member Performance
100 — 100 —
o0 r 2 50 —
[} ol
& o
H i
§ » I § 2 [gge—
0.00 200 400 £00 200 10.00 1200 0.00 5.00 10.00 15.00 2000 25.00
Time {ms) Time {ms)
wMLSFP-C++ mOpenMLS - RUST BMLSFP-C++ W OpanMLS - RUST
Remove Member Performance Messagding Performance
140
100 —
120
& 50 — 100
W
g enMLS - 10
2 > 080 M Cpend
G 20 F W MLSpp 10
080 W OpenMLS 20
10 F .
040 u MLSpp 20
000 5.00 10.00 1500 20,00 25.00 000 o
Time {ms)
w» HEEE EEEN HEEN
EMLSpp W OpenMLS Msg (1008} (ms) Msg [1024B) [ms) Msg | 2048E] {ms)

Figure 13. OpenMLS vs MLSpp Performance

5.3.4. Full vs Key Management Mode

The key export function allows the production of a symmetric session key that can be used
by a separate application for encryption. This results in far higher throughput rates than using the
Message Protect and Message Unprotect operations in "Full MLS Mode’. Messages are no longer
signed, so there is a reduction in assurance, there is also a corresponding reduction in demand on the
system. So it is unsurprising that performance is significantly greater in Key Management mode, this
difference is shown in Figure 14, where the time taken for OpenMLS to complete one encryption cycle
is 20x greater for a 1024B message and a group size of 10. Both libraries showed similar stand alone
encryption/decryption performance (within one microsecond of each other), although MLSpp showed

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

28 of 46

a 7.5 microsecond advantage over OpenMLS when exporting a key. However, this small advantage
becomes irrelevant if a key is used more than eight times (in the worse case scenario) due to OpenMLS’
superior encryption/decryption performance.

Full Mode vs KM Mode
0.200

0.150 /

0.100

Time (ms)

0.050

0.000
10 20 50 100
Group Size

—#—FullMode =tKMMode
Figure 14. Full mode vs Key Management Mode

There are benefits beyond just increased throughput. Messages sent using the Message Protect
and Message Unprotect operation are dependent on the Delivery Service (DS) to correctly order
messages as they are distributed to the group, if the DS is temporarily unavailable messages cannot
be sent. The DS also has to be available for handshake messages to be sent, however the frequency
with which these occur is controlled by the system integrating MLS and a DS outage is tolerable. The
existing key will still work and when the DS is restored, the system will rekey, with any compromises
that have occurred being healed. The practical limit of this tolerance would be an appropriate area for
further study. A second additional benefit is that removing encryption/decryption duties reduces the
processing load on the system. For UAS systems with limited processing and battery power, this is
an important consideration. No attempt was made to resource constrain these benchmarks to model
representative hardware, but it is likely that MLS as a Key Management plane has greater utility on
these kinds of systems and this should also be a focus of further study.

The trade-off for increased performance in this case is a loss of assurance from the application
of digital signatures to every message. It can be argued that this is useful in a messaging application
(Wickr /Signal), where attribution of who sent a message is vital to the integrity of the group conver-
sation. However that has less utility in a machine to machine exchange where 1000’s of messages
are being sent and the cost overhead quickly becomes unsustainable. The use of MLS in this way is
recognised in the RFC and is not a subversion of the protocol.

5.3.5. Impact of Cipher Suite

While library selection has a much greater impact on performance, the choice of cipher suite
also has an effect. In Figure 15, the top 3 graphs show that the time taken to complete an Add Member
increased with group size. The slowest suite (top line) utilised the NIST P256 signature algorithm,
which is used multiple times during this operation, with a similar impact on the send message
performance. In comparison, the two curves that utilise the faster Ed25519 signature scheme have
near identical performance, despite their use of different symmetric encryption keys. Previous work
[39,41] utilised the suites containing P256 due to that algorithm being certified by NIST for use with
Government contracts. This is an understandable approach, and customer requirements may dictate
future specifications. However, the forecast arrival of quantum computers will undermine these
classical algorithms security. Neither library fully supports a post-quantum secure cipher suite but
integration of ML-KEM into OpenMLS is imminent [52]. However, no digital signature solution is yet
available. In the meantime, focussing customer requirements on selecting enduring key exchange and
encryption algorithms in order to maintain confidentiality is likely to be a higher priority than the use
of a NIST approved digital signature. The likely increase in size and processing requirements for PQC

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

29 of 46

secure signatures, will further reduce the performance of the "Full MLS Mode’ within our use case and
strengthens the argument in for adopting it as a Key Management plane.

Cipher Suite Impact

9.00

8.00
7.00
6.00 -—_—//
5.00
4.00
3.00
2.00

1.00 e
0.00 G > ® ®
10 20 50 100
@ P256_Add === X25519_Add =@ 25519 CHACHA
X 25519 Send ==@==P256_Send ==@=X25519_ChaCha_Send

Figure 15. OpenMLS Cipher Suite Performance

5.3.6. MLS Results Conclusion

The chosen metrics and specific MLS operations benchmarked provided sufficient insight into
the protocols operation and the libraries performance for an in depth assessment of their suitability
to be made. With OpenMLS shown to be the highest performing library across all benchmarks and
the performance issues identified with MLSpp corroborated by our test. The use of MLS in Key
Management mode was shown to be significantly higher performing at encryption/decryption than
in full mode, and this mode is likely to have benefits for low power/compute networks like our
UAS concept beyond just speed, although these remain unproven and would be a key test for future
extensions of this work.

While the primary MLS group managmenet operations were tested, the group setup phase
was not. Having been deliberately excluded from the benchmark, following the OpenMLS example
benchmark. This configures the group states as a separate operation outside of the benchmarking
process. It would also be completed during the configuration phase within our proposed concept of
operation, so timeliness is important but not critical. However, its inclusion within the benchmark
would have further informed the development of that concept and is a small missed opportunity.

5.4. Threshold Signature Benchmarks

Full, raw results for each of the benchmarks discussed can be found in Appendix B. More focussed
snapshots are provided within this chapter where it is appropriate.

5.4.1. Static Results

The FROST implementations utilising the Ed25519 curve were expected to provide the highest
performance, assuming similar levels of optimisation were achieved within the developer” imple-
mentation. Figure 16 shows the aggregated end to end results for all benchmarks, with ‘end to end”
measuring a single DKG, Sign and Verify cycle. This shows a worse drop in performance than the
theoretical forecast of O(n2) growth as the number of nodes expands. With the best performing library
experiencing a 3000x reduction in performance (Bank of Italia) as the number of nodes increased from
5 to 100 and the worst suffering a 5000x reduction (BLSTRS). This significant drop in performance
confirms that the DKG process is the primary bottleneck in the system. However, a key finding from
these results is that the fastest implementation used a Secp256k1 curve, challenging the hypothesis
that curve selection would be a key factor in performance. The Kryptology library was tested with two
curves, Ed25519 being the default and Secp256k1 as an alternative. The results show a 600% difference
in performance for a given group size/threshold. Suggesting that library-specific optimisation for a

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025

doi:10.20944/preprints202512.0827.v1

30 of 46

curves and the quality of the overall implementation have a bigger impact on performance than using

a fast or slow curve.

End to End Median Time (ms)
FROST - DKG BL5-DKG
Threshold |Nodes g rvntology- |Kryptology- |Zcash- Bankltalia - BLSTRS - BN12
Ed25519 Secp256kl Ed25519 Secp256kl
5 7.87 50.63 6.65 4.37 8.47
10 54.34 263.06 39.09 23.80 48.34
339 20 283.42 1436.12 236.09 134.00 303.97
40 1947.57 11697.41 1708.33 922.00 2370.42
60 5852.95 41344.78 5446.51 2834.00 7646.57
100| 26535.31 173948.96| 24865.36| 12815.00 35705.35
FROST - DKG BL5-DKG
Threshold |Nodes|Kryptology- |Kryptology - Zcash- Bankltalia -
Ed25519 Secp256kl Ed25519 Secp256kl BLSTRS -BN12
5 11.56 79.17 10.51 7.38 14.99
10 68.72 427.51 60.46 36.20 82.58
20 392.35 2724.29 433.71 239.00 604.81
66% 40 276.89 19326.77 3205.45 1761.00 4522.32
60| 12114.81 80340.13| 10477.19 5472.00 15297.59
100| 54228.44 347080.33| 47916.47| 27871.00 70334.35

Figure 16. Results - Static End to End

When the performance of individual operations is examined, the impact of the protocols messag-
ing complexity becomes more pronounced. When run statically, without any network impact, BLS
single-round signing protocol results in a faster signing time than FROST’s multi-round process, which
is a key trade off between the protocols. This is shown by the results in Figure 17.

Signing Performance - 33% Threshold

600
500
__ 400
w
£ === ryptology-Ed25519
o 300
= =@=7cash-Ed25519
= 200 .
—@=Bankltalia-Secp256k1
100 =@=BLSTRS-BLS12-381

o

5 10 20 40

Particpants

60 100

Figure 17. Results - Signing Performance

The results also highlight the highly optimised nature of the different library implementations.
For instance, the Zcash library demonstrates exceptionally fast signing performance (28.91 ms for
100 nodes), outperforming the "end to end" fastest library, Bank Italia (291.07 ms), by an order of
magnitude in this specific phase. However, its DKG performance (24,357 ms) is more in line with
other the Kryptology-Ed25519 library (22,342 ms). This suggests a specialised optimisation for signing

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

31 of 46

operations within the Zcash library, making it a strong candidate for use cases where signing frequency
is high. Verification is shown to be constant regardless of group size, which is as expected as it only
involves the group public key and the signature. With the more computationally demanding bilinear
pairing operation of BLS requiring more resource than FROST, shown in Figure 18.

Verification Performance- 33% Threshold

1800
1600
T e
§ 1200
& 1000 =—@=— Kryptology-Ed25519
g 800 —e— Zcash-Ed25519
‘g 600 —=@== Bankitalia_Secp256k1
e 400 —8— BLSTRS-BLS12-381

200 =

5 10 20 40 60 100
Particpants

Figure 18. Results - Verification Performance

Finally, while the benchmarks measure a single DKG, sign, verify cycle. The most likely use case
is for a key to be reused to sign multiple proposals - keys only need to change when a new member is
added to the group or a key compromise is suspected. To highlight the impact this has on comparative
performance, Figure 19 shows the static cost of 1 DKG cycle with 20000 sign/verify cycles (calculated
rather than simulated). In this situation, the advantage of faster sign/verify times from the Zcash
and BLSTRS implementations becomes clear. Showing that while DKG time is a critical configuration
bottleneck, the efficiency of the signing and verification phases is the primary factor for enduring

operation.

Key Reuse Impact

100,000,000
10,000,000

1,000,000

100,000

Time (ms)
|

10,000

1,000
5 10 20 40 60 100

Group Size

e [(ryptology-Ed === [ryptology-Sec ==MmmZcash-Ed —— =—S==Bankltalia-Secp === BLSTRS

Figure 19. Results - Key Reuse Impact

5.4.2. Network Simulation Results

While the static benchmarks measure the computational efficiency of the library by sequentially
measuring every operation. They do not provide a real-world estimation of performance. To fill this
gap we developed netsims that fixed the group threshold and then varied network performance for a
given group size. Example results for the BLSTRS BLS implementation are in Figure 20. Development
of the netsims proved challenging, insufficient detail was provided in the code development prompts

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

32 of 46

on retry logic and and a range of approaches were implemented by the Al copilot. This was only
identified at the end of the project, with insufficient time to redevelop the benchmarks, with two of
four benchmarks excluded from this assessment. Despite this, the impact of both network performance
and protocol design become apparent. With more communication rounds comes more opportunity for
delays and reduced end to end performance. With the FROST netsim degrading by 76% for a 40 node
group in the worst case network scenario, in comparison the BLS netsim only degraded by 10% for
the same group size. However, this is over a single DKG, Sign Verify cycle. As such a decision was
made to focus remaining time on developing an bulk signing netsim.

BLSTRS- BLS-Netsim

50ms +/-10ms + 2% packet loss
40% Threshold DKG Signing Verification End to End
Threshold Medi Medi Medi Median Ti
Nodes (n) resho . edian oV (%) . edian oV (%) . edian oV (%) edian Time| (%)
(t) Time (ms) Time (ms) Time (ms) (ms)
5 2 231.28 29.6 75.35 40.7 3.38 28.1 310.23 16.7
10 4 322.57 113.2 68.15 416 3.05 455 398.73 16.6
20 8 931.26 218 79.59 376 2.12 64.6 1050 46.5
40 16 5150 5 156.92 283 3.14 324 5290 4.3
120ms +/-30ms + 5% packet loss
40% Threshold DKG Signing Verification End to End
Threshold Medi Medi Medi Median Ti
Nodes (n) resho . edian oV (%) . edian oV (%) . edian oV (%) edian Time | (%)
(t) Time (ms) Time (ms) Time (ms) (ms)
5 2 381.53 115 157.11 447 138.5 479 534.21 16.9
10 4 552.88 14.7 177.25 40.1 125 36.1 755.79 13.2
20 8 1200 9.7 177.36 16.7 108.5 271 1400 8.5
40 16 5580 8.3 225.01 13.7 137 28.1 5810 7.4

Figure 20. Results - BLSTRS BLS Netsim

5.5. Trusted Dealer Comparison

Figure 21 highlights the stark performance gap between DKG and Trusted Dealer (TD) setups in
Zcash. While TD setup times remain almost flat across all group sizes, DKG scales relatively poorly,
reaching over 31 seconds at 100 nodes — nearly 200x slower. This highlights the significant cost of
decentralisation, similar results were observed for all libraries, full results are in Appendix B.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

33 of 46

Trusted Dealer Comparison

100000

10000

g 1000
I

E 100 —M

i=

10

1

5 10 20 40 60 100
Group Size

e=@==DKG -=@==TrustedDealer

Figure 21. Results - Zcash Trusted Dealer Comparison

5.5.1. Bulk Signing Netsim

We have shown that DKG is the primary bottleneck in both BLS and FROST signing processes. We
have highlighted the difference in sign/verify performance between libraries and protocols, and we
have shown that the FROST netsim was less resilient to degraded network performance (over a single
signing cycle. In real life, a DKG round would generate a key used for 100s or 1000s of signatures,
during these 1000s of signatures, multiple packets will be dropped and have to be retried. To assess
the impact of spreading the DKG ’cost” over multiple signatures bulk signing netsims were created.
These would test a key being used for a range of signature cycles (10,100,200,400), for a fixed threshold
(40%) and network performance (50ms+/-10ms +2% packet loss), retry logic was fixed at 3 attempts
with linear back off to ensure a consistent methodology across the languages and libraries.

These netisms show that the Zcash implementation, which was seen to be highly efficient for
sign and verification operations during static testing, was the best performing library during the bulk
signing tests, consistently 20ms faster than the second placed library (BLSTRS). The results also show
that spreading the DKG costs has rapidly diminishing returns, with the cost effectively paid off after
the first 100 signatures.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

34 of 46

Per Signature Performance

350
300 \
250 - - =
£ 200
- =@=7cash-Ed25519
E 150 — —o
= — ==l Bankltalia-Secp
100 a=@=BLSTRS
50
0
10 100 200 400

Signing Cycles

Figure 22. Results-Per Signature Performance

Figure 23 shows the impact increasing group size has on performance, for the Zcash library’s 400
cycle test, doubling the group size from 20 to 40 only increased the per-signature costs by 15% with
a similar result observed for the BLSTRS library (20%). This is a critical result, it shows that with a
reasonable volume of key reuse, even large groups can maintain an acceptable throughput. The tests
were only for a single network performance scenario and were only scaled up to a group size of 40.
Future work should further investigate both of these variable’s impacts.

Bulk Sign Group Size

60000

50000

—_

40000

30000
=)0 _nodes

Total Time (ms

20000 ====40 nodes

10000

10 100 200 400
Signing Cycles

Figure 23. Results-Impact of Group Size

5.5.2. Threshold Signature Results Conclusion

These benchmarks have shown the validity of our methodology, the static benchmarks allowed
the raw efficiency of each library to be assessed. While the netsims placed them in a realistic simulation,
that allowed both protocol design and library efficiency to be evaluated. DKG was a clear constraint on
performance for al libraries. However the Zcash FROST library’s faster DKG and verification causing
it to outperform BLSTRS. The variation in performance stems not just from library optimisation, but
also from the differences in BLS and FROST communication and computation protocols shown in
Chapter 4. FROST uses an interactive, multi-round signing process to provide stronger real-time
security guarantees. This prevents a malicious actor from manipulating their signature share partway
through the signing process and allows the group to exclude the actor from future rounds, at the cost
of an extra round of communication. In the single-cycle netsim, performance was degraded 76% in the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

35 of 46

worst case scenario. In comparison, BLS’s non interactive signing phase is faster and more resilient
to network degradation, as shown in the netsim. However it places a heavier responsibility on the
initial DKG phase to establish a secure group. It also requires a much more costly verification step,
which combined with the network time required to collect partial signature becomes a significant
factor in high throughput scenarios. Arguably there is no ‘best’ signing algorithm, however in these
benchmarks the Zcash implementation was shown to be the best performing for our use case. It is also
from a credible developer and appears well maintained, an important consideration for its integration
into our wider project.

6. Conclusions

The challenge of securing decentralised autonomous systems, such as swarms of UAS, is a critical
barrier to their widespread adoption. To be effective, these systems must operate without access to
centralised trust authorities and in contested environments, requiring cryptographic solutions that are
not only secure but also high-performing. This paper seeks to address this challenge by conducting
a comprehensive performance evaluation of modern cryptographic libraries for two key functions:
secure group communication using Messaging Layer Security (MLS) and decentralised consensus
using threshold signatures (FROST and BLS).

The extensive benchmarking conducted in this research provided a clear, evidence-based assess-
ment of the available technologies. For secure group communication, the research demonstrated that
the OpenMLS library is a high-performing and scalable solution, far exceeding the capabilities of
MLSpp, particularly in the group management operations critical for dynamic UAS swarms. Further-
more, the findings showed that using MLS in a Key Management mode offers a dramatic increase in
performance and resilience, making it a highly suitable choice for resource-constrained UAS networks.

For decentralised consensus, the benchmarks revealed a range of compromises to consider. The
Zcash FROST implementation emerged as the most suitable all-round performer for high-volume,
realistic use cases, balancing performance with strong security guarantees. A key finding was that
while DKG is the primary setup bottleneck, the recurring cost of signing, verification and network
communication in sustained operations is a more critical factor in overall throughput. Finally, the
results consistently showed that practical performance is dictated not just by the theoretical protocol,
but by the quality of the library implementation.

Author Contributions: “Conceptualization, P.R. and W.J.B; methodology, PR. and W.J.B; software, PR. and W.J.B;
validation, P.R., WJ.B. and R.J.M; formal analysis, PR. and W.J.B; investigation, P.R. and W.].B; writing—original
draft preparation, PR. and W.J.B; writing—review and editing, PR., W.J.B.. RJ.M and M.T.; supervision, W.J.B and
R.J.M; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: We have made the code and data available on the related GitHub.

Acknowledgments: The authors acknowledge the support of the Blockpass ID Lab in the development of this
work.

Conflicts of Interest: The authors declare no conflicts of interest.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

36 of 46
Appendix A. MLS Results
MLSpp - Full MLS Mode
G Add Update |Update |Remove [Msg Msg Msg
Ciphersuite S_m“p Member |(Create) |(Process) [Member |(100B) |(1024B) |(2048B)
€ |ims) (ms) (ms) (ms) (ms) (ms) (ms)
10 4.72 8.19 3.86 8.13] 0.830 1.267 1.463
20 5,61 15.00 5.30 14.06] 0.818 1.085 1.507
P256_AES128GCM _SHA256_P256 50 8.10] 33.23 826 35.01] 0.802 1.261 1.534
100 14.31] 5612 11.36] 5871 0777 1.108 1.314
10 3.65 3.75 2.35 322] 0.614] 0989 1.192
20 3.61 561 2.96 509 0560 0949 1.205
X25519_AES1286CM _SHA236_Ed25519 50 6.35 12.13 518) 2123 07770 0864 1.229
100 982 2358 9.14] 2692 0582 0.939 1.309
10 37.05] 57.09 18.29] 6299 5982 5881 5944
20] 3559 95.87] 20.35] 105.04] 5.400] 18.079] 6.127
P384_AES256GCM _SHA334_P3B4 50| 33.32| 213.44] 2574 21201] 5637 5.924] 6.405
100 37.41] 43162] 32.04] 40090 4.855| 5040 5703

OpenMLS - Full Mode Results

Group Add Update |Remove |Process |Msg Msg Msg
Ciphersuite Size Member |Member [Member |Update |(100B) 11024B) |(2048B)
(ms) _ |(ms) |(ms)] _ |ims) _ |(ms) _ |(ms) __|{ms)
10 5.14 3.18 211 217 0.630 0.675 0.732
P256 AES128GCM 20 5.32 3.40 3.37 3.21 0.712 0.690 0.704
SHAZ256 P256 50 6.06 5.60 3.13 377 0.667 0.682 0.645
100 §.11 6.58 6.75 4.66 0.700 0.757 0.756
10 201 0.96 0.77 0.84 0.117 0.122 0.136
25519 AES128GCM 20 2.15 1.88 1.19 1.32 0.122 0.142 0.136
SHAZ256 Ed25519 50 3.07 2.50 2.43 2.09 0.163 0.164 0.152
100 4.44 3.81 3.66 291 0.178 0.175 0.193
10 1.81 1.28 0.95 0.80 0.126 0.133 0.146
¥25519 CHACHAZ20 20 247 1.82 1.18 1.11 0.131 0.159 0.150
SHAZ56 Ed25519 50 3.17 2.49 212 201 0.143 0.173 0.163
100 4.41 3.69 3.52 3.02 0.172 0.194 0.209

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

37 of 46
OpenMLS MLSpp
Key Export Performance Key Export Performance
Median Group |Median

G Si CV (% CV (%

rOUP 128 | e {ms) (%) Size Time (ms) (%)
10 0.0034 13.94 10 0.005683 |5.16
20 0.0050 10.24 20 0.00558 |1.75
50 0.0080 15.92 50 0.005655 (3.02
100 0.0132 13.32 100 0.005663 (6.5
Encryption and Decryption Performance Encryption and Decryption Performance
M E t D t M E t D t

.essage ncn‘rp Encrypt ecr.yp Decrypt .essage ncr\:,'p Encrypt ecr.yp Decrypt
Size Median oV (%) Median oV (%) Size Median oV (%) Median oV (%)
(bytes) (ms) (ms) (bytes) |{ms) (ms)
100 0.0004 8.33 0.0003 |8.82 100 0.0012 3.42 0.0011 2.58
1024 0.0011 13.13 0.0010 |8.02 1024 0.0019 3.1 0.0016 3.23
2048 0.0019 10.42 0.0018 |10.63 2048 0.0026 2.16 0.0021 4.52
OpenMLS Total Time Performance MLSpp Total Time Performance
Grou 100B 1024B 2048B Grou 100B 10248 |204EB

i P Median [Median |[Median . P Median [Median |Median
Size Size

{ms) {ms) {ms) {ms) {ms) {ms)

10 0.0041 0.0060 0.0073 10 0.0083 0.0094 |0.0104
20 0.0057 0.0070 0.0086 20 0.0077 0.0093 |0.0106
50 0.0089 0.0108 0.0121 50 0.0079 0.0093 |0.0103
100 0.0144 0.0155 0.0170 100 0.0077 0.0089 |0.0103

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

38 of 46
Appendix B. Threshold Signature Results
Kryptology - FROST - DKG -Ed25519
33% Threshold DKG Signing Verification End to End
Threshol [Median Time Median Median Median Time
Modes (n) CW (%)) CV (%)) CV (%) CV (%)
dit) (ms) Time (ms) Time (ps) (ms)
5 2 548 2026 114 1403 15517 2353 7.87 2798
10 4 38.46 13.87 3.65 1096 92.46 6.01 5434 1924
20 7 20056 6.63 11.18 1816 90.02 3.32 28342 10.45
40 14 135417 1.85 52.28 1155 101.96 5.79 1947 .57 415
B0 20 487394 3.25 14262 1221 B86.95 4.08 5852.95 1.99
100 33 22342 32 1487 562493 676 9011 0492 26535.31 253
66% Threshold DKG Signing Verification End to End
Threshol |Median Time Median Median Median Time
Modes (n) CW (%)) CV (%)) CV (%) CV (%)
dit) (ms) Time (ms) Time (ps) (ms)
5 4 982 1814 361 26.87 9041 8.59 1156 917
10 7 48.53 11.44 1212 22.44 91.88 3.34 68.72 1112
20 14 34952 7.09 518 2166 11799 24938 392 .35 349
40 27 2468.97 179 248.81 5.485 8921 3.17 276.89 991
B0 40 9265.31 1.88 82411 £.19 93.89 1266 12114 81 1.39
100 BE 4291585 3.23] 3471.01 3.61] 150.8593 4.18 54228.44 2.43
Kryptology - FROST -DKG- secp256k1
33% Threshold DKG Signing Verification End to End
Threshol |Median Time Median Median Median Time
Modes (n) CV (%)) CV (%)) CV (%) CV (%)
dit) (ms) Time (ms) Time (ps) (ms)
5 2 3541 20.63 7.55 1966 038.47 33.19 50.63 1785
10 4 21388 B8.52 23.26 17.60 529.09 23.56 263.06 1213
20 7 132166 5.28 BB.56 12.37 705.89 44 67 1436.12 B8.20
40 14 10077.84 2.53 28452 1091 549.06 40.49 11697 .41 421
60 20 3790752 14 50| 100284 3.60 54186 2383 41344 78 437
100 33 172592 43 242 3396.30 1.80 093.40 3052 17394896 155
66% DKG Signing Verification End to End
Threshol |Median Time Median Median Median Time
Modes (n) CV (%)) CV (%)) CV (%) CV (%)
dit) (ms) Time (ms) Time (ps) (ms)
5 4 50.29 1291 22.09 2023 878.70 4342 79.17 9.39
10 7 31318 8.35 72.29 1411 046.48 33.1 42751 B8.20
20 14 2432 58 5.49 302.04 16.24 579.56 50.67 272429 413
40 27 18516.92 2.85| 127055 3.82 579.55 21.83 19326.77 451
60 40 78514 81 1.83| 5144381 511 04126 2508 80340.13 545
100 BE 31597524 1.68| 15975.60 171 905.33 26.08 347080.33 1.50

© 2025 by the Distributed under a Creative Commons CC BY lic

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

39 of 46
Zcash Foundation - FROST - DKG - Ed25519
33% Threshold DKG Signing Verification End to End
Threshol Median Median
Nodes (n) Median (ms) |CV (24) CV (%) CW (%) Median (ms) | CV (%)
dit) ims) (ps)
5 2 5.29 1.85 0.61 9.05 15517 B8.43 B£.65 454
10 4 38.46 4.49 114 5.87 9246 31.01 39.09 5.2
20 7 252.03 146 226 853 90.02 1187 236.09 3.38
40 14 17153.28 1.62 B5.25 9.27 10196 1474 1708.33 191
B0 20 53304 1.11 1165 7.69 116.16 1076 544651 0.63
100 34 24357.32 0.5 28.91 B.64 115.21 50.9 24865.36 0.67
66% Threshold DKG signing verification End to End
Threshaol Median Median
Nodes (n) Median (ms) |CV (34) CV (%) CW (%) Median (ms) | CV (%)
dit] ims] (ps)
5 4 95 1.38 112 181 9041 1128 1051 15
10 7 58.3 2.13 2.21 7.46 91.88 5.75 50.46 3.8
20 14 42324 0.88 6.35 1493 11799 2037 43371 261
40 27 313562 122 18.35 314 8921 1413 320545 0.82
B0 40 11085.14 1.11 3798 5.33 11427 17497 10477.19 0.78
100 67 46831.99 1.38 101.66 3.5 110.42 379.14 47916.47 0.45
Bank Italia - FROST-DKG - Secp256k1
33% Threshold DKG Signing Verification End to End
Threshol [Median Time Median Median Median Time
Nodes (n) CV (%) i CV (%)) CV (%) CV (%)
dit) (ms) Time (ms) Time (ps) (ms)
5 2 3499 84 84 D.58 305 69.6 653 437 166
10 4 235 3.98 1.69 B81.26 76.1 7.47 238 1.47
20 7 132 3.88 481 3.06 73.8 B6.89 134 2.4
40 14 921 2.96 23.37 2.89 67.4 422 922 1.85
B0 20 2802 26.27 57.63 476 £9.5 5.2 2834 2075
100 34 12978 1061 291.07 38.88 639 716 12815 9.09
66% Threshold DKG Signing Verification End to End
Threshol [Median Time Median Median Median Time
Nodes (n) CV (%) i CV (%)) CV (%) CV (3)
dit) (ms) Time (ms) Time (ps) (ms)
5 4 5592 3.39 170 3164 67.5 454 7.38 79.79
10 7 33 277 4 67 125 65.1 576 36.2 3.29
20 14 230 5 2174 3.55 B67.6 53.38 239 4.34
40 27 1659 43.68 123.40 5.5 65.9 5531 1761 4027
B0 40 5363 1571 357.37 8121 B7.6 421 5472 1414
100 a7 27044 4.13] 153970 4291 82.1 43.93 27871 4.26

© 2025 by the Distributed under a Creative Commons CC BY lic

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

40 of 46
BLS-BLSTRS-DKG
33% Threshold DEG Signing Werification End to End
Threshol [Median Time Median Median Median Time
Modes (n) CV (%) . CV (%)) v (%) v (2)
d(t) (ms) Time (ms) Time (ps) (ms)
5 2 6.16 5.39 0.62 4.42| 154347 2.97 3.47 3.87
10 4 45 46 143 1.05 707 144543 155 4834 220
20 7 306.98 2491 156 774 149812 7.18 303.97 1.86
40 14 2356.71 1.43 2.87 12.18| 1517.14 293 237042 191
B0 20 751598 1.07 412 22.32| 1515.86 3.10 764657 0.67
100 34 35762.23 2.92 5.82 7.50| 1551.24 2.28 35705.35 0.68
66% Threshold DEG signing verification End to End
Threshol [Median Time Median Median Median Time
Modes (n) CV (%) . CV (%)) v (%) v (2)
d(t) [(ms) Time (ms) Time {us) {ms)
5 4 12.33 3.04 1.05 5.29| 1573.08 3.51 1459 3.62
10 7 7899 1496 159 10.85| 161563 4 82 8258 647
20 14 B609.09 1.80 2.88 1166 1516.66 3.00 5604 81 111
40 27 454638 0.89 5.36 2005| 155148 B.69 4522 .32 0.89
B0 40 15128.73 1.38 B8.48 8.05| 1507.28 1.62 15297.59 0.75
100 67 70244.19 1.57 14.73 15.05| 151353 2.39 70334.35 0.57
BLSTTC - BLS - DKG
33% Threshold DKG Signing Verification End to End
Threshol |Median Time Median Median Median Time
Modes (n) CV (%) i CV (%)) CV (%) W (%)
d(t) [ms) Time (ms) Time {us) {ms)
5 2 1122 418 1.60 5.54| 143B.87 10,73 145169481 8.3
10 4 17498 3.5 2.80 5.33| 134023 5.81| 1518.011255 B8.03
20 7 2083.02 2.33 441 147 1363.79 4.42| 3451.216934 452
40 14 34777.16 294 9.28 1198 1367.71 5.53| 351541427 414
50 20 155833.00 3.73 1307 1223 137575 6.79| 157221 8173 5.1
100 34| 1244927.00 3.72 5.36 13.03| 142934 10.60 12463626 3 .65
66% Threshold DKG Signing Verification End to End
Threshol [Median Time Median Median Median Time
Modes (n) CV (%) i CV (%)) CV (%) W (%)
d (t) [ms) Time (ms) Time {us) {ms)
5 4 45.04 1.42 174 6.89| 140274 1433 1.40 5.55
10 7 530.69 1.09 251 5.13| 142401 7.58 80.73 593
20 14 842245 0.90 5.85 £.01| 142088 1375 B02.44 3.28
40 27 12376070 1.87 10.04 462 1373.18 B.63 4522.50 122
50 40 60734540 0.15 1043 1758 141136 5.46 14990.82 0.89
100 67 |- - - - - - - -

s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

41 of 46
FROST-Bankltalia Netsim - secp256k1
40% Threshold DKG signing Verification End to End
Threshold | Median Median Median Median
Nodes () i cv (%) i O CV (%)] CV (%)
(t) Time [ms) Time [msz) Time [ms) Time (ms)
5 2 160.4 22 1297 na 0.2 na 3504 13
10 4 3433 15 2169 na 0.2 na 500.5 12
20 8 457 4 5 2724 na 0.1 na 7221 B
40 16 1318 29 367.3 na 0.1 na 1685.7 26
120ms +/-30ms + 5% packet loss
40% Threshold DKG Signing Verification End to End
Threshold | Median Median Median Median
Modes (n)) CV (%)) W (%)) CV (%) i W (%)
(t) Time [ms) Time [msz) Time [ms) Time (ms)
5 2 na na na na na na na na
10 4 5425 34 415.2 na 0.2 na 9955 27
20 8 1125 23 493 na 0.2 na 162549 17
40 16 1960.5 2 1008.4 na 0.1 na 2967.7 14
BLSTRS- BLS-Netsim
50ms +/-10ms + 2% packet loss
40% Threshold DKG Signing Verification End to End
Thresheold | Median Median Median Median
Nodes | CV (% CV (% CV (% CV (%
odes (n) 1) Time (ms) %) | rime (ms) &) | ime (ms) (&) | fime (ms) (%)
5 2 23128 29.6 75.35 40.7 3.38 28.1 310.23 16.7
10 4 32257 113.2 68.15 416 3.05 455 398.73 16.6
20 B §931.26 218 79.59 376 212 646 1050 465
40 16 5150 5 156.92 28.3 3.14 324 5290 43
120ms +/-30ms + 5% packet loss
40% Threshold DKG Signing Verification End to End
Thresheld | Median Median Median Median
Nodes | CV (% CV (% CV (% CV (%
odes{n] 1y | Time (ms) % | time tms)) |time tms)] Y™ | Time (ms) (%)
5 2 381.53 115 157.11 447 13B.5 479 534.21 169
10 4 552 BB 147 17725 401 125 36.1 755.79 152
20 B 1200 97 177.36 16.7 10B.5 271 1400 B.5
40 16 5580 B.3 22501 137 137 28.1 5810 7.4

s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

42 of 46

FROST Bulk Signing Performance (Zcash Ed25519)

Nodes Cycles 1[3||::e DKG Cv 15‘::1:3 Signing :::Lr:etl ::r[lff‘;:’catl Sign & Total cv Total Time
(24) CV (%) Verify (24)
(ms) (ms) [ms) (%)
10| 81152 145| 114841 112 213 16.8| 1203.06 446
201458
20 100 78444 11.2] 115765 2.3 2198 78| 1162794 157| 12435.46
200 78444 12| 23033.8 2 4459 5.8| 2323425 1.38| 2404577
400| 81531 125 45620 2 89.29 3.5| 46391.39 0.91] 4720291
10| 3055.57 9] 1267.25 3.8 2.15 13.9| 138277 4.48] 4448.34
100| 298655 11.4] 126935 31 22.03 7.2 1477106 1.87| 1782663
40 200| 289695 8.4| 25055.3 2.4 4455 5.4| 27367.17 1.64] 3042274
400| 2969.82 8.7] 503359 2.3 89.26 3.5| 52488.77 0.80] 5554434
FROST Bankltalia Bulk Signing NetSim (secp256k1)
DKG Signing _ . . .
Nodes |[Cycles Time I[;:]G v Time 251;:!5 :_:;;w :J;;rlfv v 3::: SV /DKG |Total Time
[ms) [ms)
20 10 4526 139 2776.2 5.4 15 17.2 27777 172 32303
20 100 4785 1.8] 26137.8 2.2 136 10.4(261514 0.104| 266299
20 200 460.9 08| 52161.6 2.2 314 5.9 52193 0.0295 526539
20 400 546.5 0.5| 103719 1.3 60.9 3.6| 103780.1 0.009| 1043266
40 10 937.5 19.4| 3500.7 7.9 16 8.5 3902.3 0.85 4339.8
40 100 904 25| 357453 19 145 3.4| 35760.2 0.034| 366642
40 200 926.8 13| 71895.5 11 299 2.3 7152597 00115 728565
40 400 8145 05| 147239 0.8 55.3 2.7| 147294 4| 0.00675| 145108.9
BLSTRS Bulk Signing NetSim
DKG Signing _ . . .
Nodes |[Cycles Time I[;:]G v Time 251;:!5 :_:;;w :J;;rlfv v 3::: SV /DKG |Total Time
(ms) (ms)
20 10 7495 9.3 857.6 3.6 595.3 9.5 14529 194 2202.40|
100 8427 17.1 8589.1 49 5960.5 2.5 14549.6 17.27| 15392.30|
200 7946 4.4 17762.2 3.2| 115594 1.6 293216 36.90| 30116.20|
400 7758 2.6| 36397.4 2.2 233743 1.5 59671.7 76.92| 60447 .50
40 10| 36311 57 10936 144 567.8 5.8 1e661.4 0.46 5292.50
100 34514 43| 113256 2.8 5784 43 171136 4.96| 20565.00
200| 35056 89| 230817 31| 115195 22| 345612 9.86| 383066.80
4po| 34845 3.70| 455849 22| 236308 17| eo2157| 19.86| 72700.20)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

43 of 46

Zcash DKG vs TD

DKG Time | "Usted
Nodes Dealer
(ms)] .
Time (ms) |Ratio
5 285.56 73.85 3.87
10 46277 84.46 5.48
20 847.58 101.05 8.39
40| 3,260.10 127 25.67
60| 9,116.86 147.13 61.96
100|31,335.87 162.69 192.61

FROST Bankltalia-DKG vs TD

D

Nodes |DKG(ms) |
odes ms Total(ms)

Ratio

5 154.93 64.42

2.40
10 267.15 68.91 3.88
20] 415.72 75.84 5.48
40 901.48 149.78 6.02

60| 1738.23 157.21 11.06
100 5184.08 167.85 30.89

BLSTRS BLS DKG vs TD

DKG
TD Time
MNodes |Time Ratio
(ms)
(ms)
20 749.5 74.4 10.65
40 3631.1 156.4 27.16

References

1. Jangsher, S.; Al-Dweik, A.; Iraqi, Y.; Pandey, A.; Giacalone,].P. Group Secret Key Generation Using Physical
Layer Security for UAV Swarm Communications. IEEE Transactions on Aerospace and Electronic Systems 2023,
59, 8550-8564. https://doi.org/10.1109/TAES.2023.3307092.

2. Kwan, C; Kish, L.; Saez, Y.; Cao, X. Low Cost and Unconditionally Secure Communications for Complex
UAS Networks. In Proceedings of the IECON 2018 - 44th Annual Conference of the IEEE Industrial
Electronics Society, Oct. 2018, pp. 5895-5900. https:/ /doi.org/10.1109/IECON.2018.8591080.

3. El-Zawawy, M.A_; Brighente, A.; Conti, M. Authenticating Drone-Assisted Internet of Vehicles Using
Elliptic Curve Cryptography and Blockchain. IEEE Transactions on Network and Service Management 2023,
20, 1775-1789. https://doi.org/10.1109/TNSM.2022.3217320.

4. Gupta, S.G.; Ghonge, M.M.; Jawandhiya, PM. Review of Unmanned Aircraft System (UAS). International
Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 2013, 2, 1645-1658.

5. Shachtman, N. Insurgents Intercepting Predator Video? No Problem. Wired 2009.

6. Swinney, C.J.; Woods,].C. A Review of Security Incidents and Defence Techniques Relating to the Malicious
Use of Small Unmanned Aerial Systems. IEEE Aerospace and Electronic Systems Magazine 2022, 37, 14-28.
https://doi.org/10.1109/MAES.2022.3151308.

7. Abdalla, A.S.; Marojevic, V. Security Threats and Cellular Network Procedures for Unmanned Aircraft
Systems: Challenges and Opportunities. IEEE Communications Standards Magazine 2022, 6, 104-111. https:
//doi.org/10.1109/MCOMSTD.2022.9973273.

8. Author’s Name. Article Title. https://www.bbc.co.uk/news/articles/ckgn47e5qyno, Year of Publication.
Accessed: 2025-08-28.

9. Civil Aviation Authority. CAP 722: Unmanned Aircraft System Operations in UK Airspace — Guidance.
Technical Report 722, Civil Aviation Authority, Gatwick, UK, 2024.

10. Military Aviation Authority. RA 1600: Remotely Piloted Air Systems (RPAS). Technical Report 1600, UK
Ministry of Defence, 2023. Issue 9.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/TAES.2023.3307092
https://doi.org/10.1109/IECON.2018.8591080
https://doi.org/10.1109/TNSM.2022.3217320
https://doi.org/10.1109/MAES.2022.3151308
https://doi.org/10.1109/MCOMSTD.2022.9973273
https://doi.org/10.1109/MCOMSTD.2022.9973273
https://www.bbc.co.uk/news/articles/ckgn47e5qyno
https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

44 of 46

11. Civil Aviation Authority. CAP 2973: Cyber Security Guidance for Innovators. Technical Report 2973, Civil
Aviation Authority, Gatwick, UK, 2024.

12. United Kingdom. Input to UN Secretary-General’s Report on Lethal Autonomous Weapons Systems (LAWS).
Technical report, United Nations Office for Disarmament Affairs, 2024. Submission in accordance with
General Assembly Resolution 78/241.

13. Lamport, L.; Shostak, R.; Pease, M. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 1982,
4,382-401. https://doi.org/10.1145/357172.357176.

14. Shamir, A. How to Share a Secret. Communications of the ACM 1979, 22, 612—-613. https://doi.org/10.1145/
359168.359176.

15. Blakley, G.R. Safeguarding cryptographic keys. In Proceedings of the 1979 International Workshop on
Managing Requirements Knowledge (MARK), Jun. 1979, pp. 313-318. https://doi.org/10.1109/MARK.19
79.8817296.

16. Feldman, P. A practical scheme for non-interactive verifiable secret sharing. In Proceedings of the 28th
Annual Symposium on Foundations of Computer Science (SFCS 1987), Oct 1987, pp. 427-438. https:
//doi.org/10.1109/SFCS.1987 4.

17. Pedersen, T.P. A Threshold Cryptosystem without a Trusted Party. In Proceedings of the Advances
in Cryptology — EUROCRYPT ’91; Davies, D.W., Ed., Berlin, Heidelberg, 1991; pp. 522-526. https:
//doi.org/10.1007 /3-540-46416-6_47.

18. Pedersen, T.P. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In Proceedings
of the Advances in Cryptology — CRYPTO ’91; Feigenbaum, J., Ed., Berlin, Heidelberg, 1992; pp. 129-140.
https://doi.org/10.1007 /3-540-46766-1_9.

19. Administrator. Exclusive: British Navy to Pair F-35B Fighter Jets with Drones and Add Deck-Launched
Missiles on Aircraft Carrier. https://armyrecognition.com/news/navy-news/2025/exclusive-british-navy-
to-pair-f-35b-fighter-jets-with-drones-and-add-deck-launched-missiles-on-aircraft-carrier, 2025. Accessed:
Jun. 11, 2025.

20. Chandramouli, A.; Choudhury, A.; Patra, A. A Survey on Perfectly Secure Verifiable Secret-sharing. ACM
Computing Surveys 2022, 54, 1-36. https://doi.org/10.1145/3512344.

21. Gennaro, R.; Jarecki, S.; Krawczyk, H.; Rabin, T. Revisiting the Distributed Key Generation for Discrete-Log
Based Cryptosystems. In Proceedings of the Topics in Cryptology — CT-RSA 2003. Springer, 2003, Vol. 2612,
Lecture Notes in Computer Science, pp. 373-390. https://doi.org/10.1007/3-540-36563-X_25.

22. Ergezer, S.; Kinkelin, H.; Rezabek, F. A survey on Threshold Signature Schemes. In Proceedings of the
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (II'TM), Summer
Semester 2020, 2020, pp. 49-54. https://doi.org/10.2313/NET-2020-11-1_10.

23. Sedghighadikolaei, K.; Yavuz, A.A. A Comprehensive Survey of Threshold Digital Signatures: NIST
Standards, Post-Quantum Cryptography, Exotic Techniques, and Real-World Applications. arXiv preprint
arXiv:2311.05514 2023.

24. Schnorr, C.P. Efficient signature generation by smart cards. J. Cryptology 1991, 4, 161-174. https://doi.org/
10.1007 /BF00196725.

25. Stinson, D.R.; Strobl, R. Provably Secure Distributed Schnorr Signatures and a (t, n) Threshold Scheme for
Implicit Certificates. In Proceedings of the Information Security and Privacy; Varadharajan, V.; Mu, Y., Eds.,
Berlin, Heidelberg, 2001; Vol. 2119, Lecture Notes in Computer Science, pp. 417-434. https://doi.org/10.1007/
3-540-47719-5_33.

26. Boneh, D.; Lynn, B.; Shacham, H. Short Signatures from the Weil Pairing. In Proceedings of the Advances in
Cryptology — ASIACRYPT 2001; Boyd, C., Ed. Springer, Berlin, Heidelberg, 2001, Vol. 2248, Lecture Notes in
Computer Science, pp. 514-532. https://doi.org/10.1007 /3-540-45682-1_30.

27. Boneh, D.; Gentry, C.; Lynn, B.; Shacham, H. Aggregate and Verifiably Encrypted Signatures from Bilinear
Maps. In Proceedings of the Advances in Cryptology - EUROCRYPT 2003; Biham, E., Ed. Springer, Berlin,
Heidelberg, 2003, Vol. 2656, Lecture Notes in Computer Science, pp. 416-432. https://doi.org/10.1007 /3-540-
39200-9_26.

28. Diffie, W.; Hellman, M. New Directions in Cryptography. IEEE Transactions on Information Theory 1976,
1T-22, 644-654.

29. Steiner, M,; Tsudik, G.; Waidner, M. Diffie-Hellman Key Distribution Extended to Group Communication.
In Proceedings of the Proceedings of the 3rd ACM Conference on Computer and Communications Security,
New Delhi, India, 1996; CCS '96, pp. 31-37. https://doi.org/10.1145/238168.238182.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://armyrecognition.com/news/navy-news/2025/exclusive-british-navy-to-pair-f-35b-fighter-jets-with-drones-and-add-deck-launched-missiles-on-aircraft-carrier
https://armyrecognition.com/news/navy-news/2025/exclusive-british-navy-to-pair-f-35b-fighter-jets-with-drones-and-add-deck-launched-missiles-on-aircraft-carrier
https://doi.org/10.1145/3512344
https://doi.org/10.1007/3-540-36563-X_25
https://doi.org/10.2313/NET-2020-11-1_10
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1145/238168.238182
https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

45 of 46

30. Cohn-Gordon, K.; Cremers, C.; Garratt, L.; Millican, J.; Milner, K. On Ends-to-Ends Encryption: Asyn-
chronous Group Messaging with Strong Security Guarantees. In Proceedings of the Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, Oct 2018; CCS
"18, pp. 1802-1819. https://doi.org/10.1145/3243734.3243747.

31. Bhargavan, K.; Barnes, R.; Rescorla, E. TreeKEM: Asynchronous Decentralized Key Management for Large
Dynamic Groups: A protocol proposal for Messaging Layer Security (MLS). Research report, Inria Paris,
2018. hal-02425247.

32. Castro, M.; Liskov, B. Practical Byzantine Fault Tolerance and Proactive Recovery. ACM Transactions on
Computer Systems 2002, 20, 398-461. https://doi.org/10.1145/571637.571640.

33. Bondar, K. How Ukraine’s Operation “Spider’s Web” Redefines Asymmetric Warfare. https://www.
csis.org/analysis/how-ukraines-spider-web-operation-redefines-asymmetric-warfare, 2025. Accessed:
2024-07-23.

34. ISW Press. Russian Force Generation and Technological Adaptations Update: June 27, 2025.
https:/ /www.understandingwar.org/backgrounder/russian-force-generation-and-technological-
adaptations-update-june-27-2025, 2025. Accessed: 2024-07-23.

35. Noguchi, T.; Nakagawa, M.; Yoshida, M.; Ramonet, A.G. A Secure Secret Key-Sharing System for Resource-
Constrained IoT Devices Using MQTT. In Proceedings of the 2022 24th International Conference on Advanced
Communication Technology (ICACT), 2022, pp. 147-153. https://doi.org/10.23919 /ICACT53585.2022.9728
781.

36. Tan, H.; Zheng, W.; Vijayakumar, P. Secure and Efficient Authenticated Key Management Scheme for UAV-
Assisted Infrastructure-Less IoVs. IEEE Transactions on Intelligent Transportation Systems 2023, 24, 6389-6400.
https://doi.org/10.1109/TITS.2023.3252082.

37. Wang, Y,; Yang, D.; Zhao, Y.; Zhan, T.; Yang, Y.; Huang, W. Secure and Efficient Authenticated Key
Management Scheme for FANET. In Proceedings of the Proceedings of the 2025 4th International Conference
on Cyber Security, Artificial Intelligence and the Digital Economy, Kuala Lumpur, Malaysia, 2025; pp.
125-131. https://doi.org/10.1145/3729706.3729725.

38. Yang, Z; Wang, Z.; Qiu, F; Li, F. A group key agreement protocol based on ECDH and short signature.
Journal of Information Security and Applications 2023, 72, 103388. https:/ /doi.org/10.1016/].jisa.2022.103388.

39. Leon, A.; Britt, C.J. UXS Authentication and Key Exchange Requirements for Multidomain Operation and
Joint Interoperability. PhD thesis, Naval Postgraduate School, Monterey, CA, 2022. Doctoral dissertation.

40. Wallez, T.; Protzenko, J.; Beurdouche, B.; Bhargavan, K. TreeSync: Authenticated Group Management for
Messaging Layer Security. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23),
2023.

41. Marstrander, E. Use of Messaging Layer Security in a Military UAV Swarm. Master’s thesis, Norwegian
University of Science and Technology (NTNU), 2023.

42. Ippolito, C.A.; Krishnakumar, K.S.; Stepanyan, V.; Bencomo, A.; Chakrabarty, A.; Hening, S. An Autonomy
Architecture Concept for High-Density Operations of Small UAS in Urban Environments. In Proceedings of
the ATAA Scitech 2019 Forum, San Diego, California, 2019. https://doi.org/10.2514/6.2019-0689.

43. Boldyreva, A. Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-
Group Signature Scheme. In Proceedings of the Public Key Cryptography — PKC 2003; Desmedt, Y.G., Ed.,
Berlin, Heidelberg, 2003; Vol. 2567, Lecture Notes in Computer Science, pp. 31-46. https://doi.org/10.1007/3-
540-36288-6_3.

44. Gennaro, R,; Jarecki, S.; Krawczyk, H.; Rabin, T. Secure Applications of Pedersen’s Distributed Key
Generation Protocol. In Topics in Cryptology — CT-RSA 2003; Joye, M., Ed.; Springer, Berlin, Heidelberg, 2003;
Vol. 2612, Lecture Notes in Computer Science, pp. 152-170. https://doi.org/10.1007 /3-540-36563-X_26.

45. Komlo, C.; Goldberg, I. FROST: Flexible Round-Optimized Schnorr Threshold Signatures. Cryptology
ePrint Archive, Paper 2020/852, 2020.

46. Al-Tawil, I; Al-Tawil, S.M.; Al-Tawil, M.I. Benchmarking Cryptographic Protocols for IoT Malware Defence.
In Proceedings of the International Conference on Information and Communication Technology and Baha'i
Faith (ICTBF). IEEE, 2021, pp. 1-6. https://doi.org/10.1109/ICTBF52762.2021.9472304.

47. Geisler, M. Digital signatures in wireless sensor networks. Master’s thesis, Aalborg University, 2008.

48. Leppdénen, P. Performance measurement of cryptographic protocols. Master’s thesis, University of Oulu,
2014.

49. Group, LM.W. The Messaging Layer Security (MLS) Protocol. RFC 9420, 2023.

50. MLS Working Group. MLS Implementations. GitHub, 2024. Accessed: August 24, 2025.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1145/571637.571640
https://www.csis.org/analysis/how-ukraines-spider-web-operation-redefines-asymmetric-warfare
https://www.csis.org/analysis/how-ukraines-spider-web-operation-redefines-asymmetric-warfare
https://www.understandingwar.org/backgrounder/russian-force-generation-and-technological-adaptations-update-june-27-2025
https://www.understandingwar.org/backgrounder/russian-force-generation-and-technological-adaptations-update-june-27-2025
https://doi.org/10.23919/ICACT53585.2022.9728781
https://doi.org/10.23919/ICACT53585.2022.9728781
https://doi.org/10.1109/TITS.2023.3252082
https://doi.org/10.1145/3729706.3729725
https://doi.org/10.1016/j.jisa.2022.103388
https://doi.org/10.2514/6.2019-0689
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36563-X_26
https://doi.org/10.1109/ICTBF52762.2021.9472304
https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2025 doi:10.20944/preprints202512.0827.v1

46 of 46

51. Roch, Paul. Dissertation. GitHub, 2024. Accessed: August 24, 2025.
52. Kiefer, F. Post-Quantum OpenMLS 2024. Accessed: 2025-07-15.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0827.v1
http://creativecommons.org/licenses/by/4.0/

