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What are the main findings?

e Investigate and review of domain transfer capabilities of existing segmentation networks.

e  Identify the best network structure for image segmentation in precision agriculture.

¢  Finding those networks that perform best in terms of misclassifications.

What is the implication of the main finding?

¢ Tointegrate in instruments as Copernicus periodical services of analysis of cultures for the study
in precision agriculture

e  To perform Data analytics of cultures on large scale in temporal and spatial geographical areas.

Abstract: It is important in agriculture the role of remote sensing applied to the classification of
LandCover. Recently deep convolutional neural networks (CNN) have become increasingly and
widely popular for their application to the study of monitoring and mapping of the land. In this work,
we study existing semantic networks when applying to public datasets such as LandCover.ai. A
comparison of fifteen neural networks is made and we find out that, in spite of they all have good
performances, there are differences in the state of the outliers so we carry on a sistematical study of
them. Our outcomes show that the most promising models achieve an accuracy of 99.06%, with a
71.5% of intersection over union (IoU) and 88.43% of recall, based on test set. We also conduct a study
of the outliers dividing the misclassifications for tipology and find out that PSPNet, FCN and
UperNet are the most effective models for handling the outliers. The dataset on which this research
was carried out is publicly available at https://landcover.ai.linuxpolska.com/.

Keywords: remote sensing; computer vision; precision agriculture.

1. Introduction

Due to the effective use of agricultural image processing and its high performance, semantic
segmentation has gained recognition as a significant research topic and has been employed
extensively in numerous agricultural domains in recent years ([1], [2], [3], [4]). Deep learning
techniques are important in the agriculture sector and in mapping landcover using remote sensing
high spatial resolution (HSR) ([5], [6]). Monitoring land cover is crucial for natural resource
management, and these high-resolution photos, known as remote sensing photographs, can be
utilized extensively for agricultural and landcover classifications [7]. Several fields of activity,
including precision agriculture [8], urban planning [9, 10], environmental protection, land resource
management and land classification can take great advantage of remote sensing. The literature on
semantic segmentation is extensive and includes a large variety of datasets, of which we give some
examples of the most popular. One of these is SpaceNet MVIO, an open-source Multiview Overhead
Imagery dataset [11] used for segmentation and object detection tasks. The outcomes are produced
in three areas:

1)Expanding object detection and segmentation models to previously unseen

resolutions;

2) Detecting buildings;

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202503.0149.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2025 d0i:10.20944/preprints202503.0149.v1

2 of 19

3) Confirm whether resolution adjustments for segmentation and object detection models had
an impact and do research on them and their consequences. One dataset that can be used for semantic
segmentation of agricultural patterns is Agriculture-vision, which is composed of extensive aerial
field photos [12]. This dataset has been analyzed using popular semantic segmentation models,
specifically DeeplabV3+.

Other works include one that uses a better Unet model to apply semantic segmentation to rice
lodging, Xin Zhao et al. [13], and another that uses SOMs and a Deeplab CNN to segment remote
sensing data in agriculture [3]. Multilayer perceptrons (MLPs) and RF classifiers are used in work
concerning the classification of crop types and land cover [4]. Semantic segmentation has been
applied to UAV-acquired pictures [14] by comparing various approaches, including DeeplabV3+,
EfficientNet, FPN, and AGN, with the author's approach, AgriSegNet, a model whose backbone
characteristics are extracted from the DeepLabV3+ mode.

Other works see the application of U-Net to segmentation in the agriculture of wheat [15] and
an application of an adapted version of VGG-16, a deep neural network semantic segmentation of
mixed crops [16]. Many works are present in literature about the segmentation of crop, weed, and
background of which we give two examples: an encoder-decoder network trained to recognize weed,
crop, and background [17], and a deep learning model of U-Net trained to segment weed and crop
[18]. Javiera Castillo-Navarro is credited with work on MiniFrance [19], a dataset designed for
semisupervised learning. In the relative work two networks perform semantic segmentation:
BerundaNet and W-Net.

Monitoring and assessing land cover and land use are crucial agricultural practices [20]. Remote
sensing data is helpful in order to monitor landscape and agricultural activities and enables the study
of the rate of urbanization, deforestation, and agricultural intensity ([8], [9], [10], [21], [12]). Most of
these investigations use multispectral satellite imagery, which can be most expensive when obtained
at high resolution. Although a study of land mapping can be conducted through transfer learning of
existing networks, a comparative analysis of how this transfer learning functions more or less
depending on the neural network chosen has not yet been conducted, in order to accurately
determine its utility for the agriculture sector.

In this research, we aim to identify the best models for agriculture image segmentation by
analyzing outliers and evaluating the quality of existing semantic segmentation models. This work
was carried out according to the following steps:

* first of all, we select according to their performances fifteen neural networks, at the state of the
art, created using the MMSegmentation toolbox [22] for Python to apply semantic segmentation, and
metrics like accuracy, intersection over union (IoU) and recall are assessed;

* second, we use statistical tools to analyze the results and identify the networks that perform
best;

¢ third, confusion maps are created to determine the type and quality of eventual
misclassifications, and a comparison of those networks is then carried out by examining the quantity
and quality of errors committed. The images in which vision gives origin to a mistake are the so-
called outliers. Finally, we provide a summary of the best networks with a low number of relevant
network mistakes.

The rest of the paper is divided into three chapters. Chapter 2 contains a brief description of the
dataset, LandCover.ai, the segmentation methods, and performance evaluation metrics. Chapter 3
presents the experimental results and discussion. Chapter 4 concludes our paper, opening the road
to future insights of the research.

2. Materials and Methods
2.1. Data Preparation

First, we arrange data preparation, so that data are processed and converted from their original
state to one more suitable for the subsequent analysis [23]. The LandCover.ai dataset consists of 8
images with a resolution of 50 cm (about 4200 x 4700 pixels) and 33 photographs with a resolution of
25 cm (approximately 9000 x 9500 pixels). As Adrian Boguszewski [7] did, since most networks have
an input range between 200 and 1024 pixels, we split 41 originals and respective masks into 512 x
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512-pixel smaller ones. There are 10674 photos and 10674 masks in total, excluding smaller ones.
Figure 1 shows a selection of photos in the dataset after a split of originals.

@)

(b)

(d)

Figure 1. Sample images taken from the dataset LandCover.ai.

2.2. Semantic Segmentation Neural Networks

In this work, semantic segmentation of the LandCover.ai dataset is performed using Python and
15 networks trained via the MMSegmentation tools within the Python framework. This framework
is offered by MMSegmentation, an open toolbox suitable for the consistent use and assessment of
semantic segmentation techniques. Most well-known semantic segmentation techniques and datasets
have excellent fine-tunings available in MMSegmentation. Accuracy, intersection over union, and
recall are the metrics computed as mean metrics with respect to each class in semantic segmentation
tasks. Now, the description of the used networks in this work is as follows.

2.2.1. Asymmetrical Non-Local Neural Network for Semantic Segmentation (ANN) [24]

In the Asymmetric Non-local Neural Network, the semantic segmentation spatial feature
extraction can be enhanced by implying non-local operations that encapsulate long-range
dependencies, hence enhancing segmentation accuracy by paying attention to both local and global
context information of an image. [23]. The Asymmetric Pyramid Non-local Block (APNB) and
Asymmetric Fusion Non-local Block (AFNB) are integrated into a pyramid sampling module to
drastically decrease computation time and memory use and at the same time grant good results.
Different levels of features are combined, which improves performance.

2.2.2. APCNet [25]
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Point cloud processing focuses on optimizing deep semantic segmentation networks. It
incorporates context features through attention mechanisms, improving performance, by applying
APCNet (Attention Pyramid Context Network).

Multiple well-drawn Adaptive Context Modules (ACMs) are located within multiscale contextual
representations produced by APCNet. A context vector is computed when the local affinity
coefficient associated with each sub-region is assessed by each ACM.

2.2.3. BiSeNetV2 [26]

BiSeNetV2 is a real-time semantic segmentation model that enhances its feature extraction and
segmentation through both the spatial and context path. Its architecture permits holding little
features usually overlooked in speeding up elaboration thanks to its in-core features Branch and
Semantic Branch. This will increase the elaboration accuracy significantly.

2.2.4. CCNet [27]

Image segmentation is enhanced by CCNET (Criss-Cross Network) enhances image
segmentation by wusing cluster-based representations and dense cross-level connections.
Consequently, it can be assigned an accurate semantic label to each pixel.

Each pixel in the image is provided with a semantic class label. However, because of the rigid
geometric structures of this network, is difficult to find an answer to issues in some FCN applications
where a quicker and more accurate understanding of images is needed. Criss Cross Network can
extract more comprehensive and contextual information from every pixel.

2.2.5. DANet [28]

The scope of focusing on relevant features of images and improving them can be obtained by
employing the Dual Attention Network (DAN) which integrates both spatial and channel-wise
attention mechanisms.

With the help of a Dual Attention Network for Scene Segmentation is possible to determine the
positions of the various items in the image, and detailed dependencies can be represented in both
spatial and channel dimensions thanks to a position attention module and a channel attention model.

2.2.6. DeepLabV3+ [29]

Deep neural networks for semantic segmentation tasks can use Spatial pyramid pooling module,
in order to encode multiscale informations by intercepting the incoming features, or can use an
encode decoder structure to catch thin object boundaries and to compose all the spatial details.
DeepLabV3+ combines the advantages of both methods, by adding to the previous DeepLabV3 a
decoding module to obtain better defined boundaries of the objects in the scene.

2.2.7. FastFCN [30]

FastFCN is a semantic segmentation model that relates the efficacy of fully convolutional
networks (FCNs) with a quick, excellent output. It manages a unique lightweight encoder-decoder
architecture that decreases computational complexity while preserving performance. FastFCN
pioneers a dilated convolution procedure to extend the receptive subject, advancing contextual
insight. The model also improves segmentation by using a more efficient feature fusion strategy,
increasing fine-grained details. This makes FastFCN appropriate for real-time segmentation tasks,
uniquely on resource-constrained machines.

2.2.8. Fast-SCNN [31]

A Fast Semantic Segmentation Convolutional Neural Network (CNN) is designed to proficiently
match pixel-wise class labels to images while diminishing computational complexity. Commonly
techniques are employed like dilated convolutions, reduced network depth, and lightweight
architectures for faster processing.

A fast segmentation network for real-time scene understanding is the focus of R. R. K. Poudel's work.
This network is required when images need to be analyzed rapidly in or-der to provide a prompt
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reaction or develop a rapid or binding action based on the envi-ronmental situation. Furthermore,
the work shows that further applications to auxiliary tasks do not require additional pre-training
once the model has been suitably trained.

2.2.9. FCN [32]

Fully Convolutional Network (FCN) is a deep learning architecture constructed for semantic
image segmentation. Unlike traditional CNNs that output fixed-size feature maps, FCNs substitute
totally connected layers with convolutional layers, granting the network to construct pixel-wise
expectations. FCNs use an encoder-decoder construction, where the encoder describes high-level
features and the decoder upsamples to create segmentation maps. Skip connections are often used to
preserve fine-grained spatial information from earlier layers. FCNs are widely assumed for tasks
expecting dense pixel-level classification, such as scene understanding and medical image analysis.

2.2.10. GCNet [33]

Segmentation accuracy can be improved by incorporating global context through a self-attention

mechanism, as CGNet (Global Context Network) is deputed to perform, capturing long-range
dependencies in the input image.
GCNet is able to capture the long-term dependencies and connections between images or scenes
separated by significant periods of time with less computation and the same accuracy by simplifying
the network to take into account that many queries are the same in different regions of a picture and
by concentrating the analysis only in the parts of the images that shows changes.

2.2.11. ICNet [34]

Image Cascade Network (ICNet) is a semantic segmentation model designed for efficient real-
time performance by increasingly improving estimates through a multi-resolution method. It uses a
cascade construct to handle images at distinctive resolutions, balancing accuracy and speed.

The Image Cascade Network (ICNet) is a real time semantic segmentation system that produces
a fast elaboration of the images, in order to provide real time scene parsing in all the situations where
immediate and deep understanding of the scene is required and speedy is a critical factor for action.
For istance, it is the case of automatic driving and of all robotic interactions. Moreover, thanks to a
new framework which saves operations in multiple resolutions, and to a powerfull fusion unit, ICNet
grants an optimal union of accuracy and speed.

2.2.12. ISANet [35]

An Image Spatial Attention Network (ISANet) enhances the focal point at salient regions of an
image via learning of spatial attention maps. It enhances feature representation for object detection
and image classification. ISANet puts a high value on improvement in suitability of the self-attention
mechanism for semantic segmentation.The two following attention modules evaluate the two sparse
affinity matrices that make up its structure. Processing high-resolution feature maps decreases
computing and memory complexity.

2.2.13. OCRNet [36]

The Object Contextual Representations Network (OCR-Net) improves object segmentation by
uniting object context knowledge through adaptive contextual learning, by integrating object context
information through adaptive contextual learning. Capturing detailed object boundaries and long-
range dependencies in the way to obtain a higher accuracy. The OC-RNet operates in three main
steps: first, a deep network determines a rough soft segmentation; second, the description for each
object region is estimated by compiling the descriptions with respect to pixels in the corresponding
object region. Third, OCR is used to enrich each pixel's description.

2.2.14. PSPNet [37]

Pyramid Scene Parsing Network (PSPNet) is a deep learning model constructed for semantic
segmentation where a pyramid pooling module is used to obtain multi-scale context information
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from an image. Segmentation accuracy is enhanced by contemplating both local and global contextual
information at several spatial scales.

The target of scene parsing is that of attributing each pixel in the image a category label, the
function for which PSPNet is designed. Pyramid scene parsing network has the property to merge
proper global features. The pixel-level feature is extended to the especially created global pyramid
pooling one, additionally to conventional enlarged FCN [3, 40] for pixel prediction. The local and
global traces together make the ultimate forecast more consistent.

2.2.15. UperNet [38]

With Unified Perceptual Parsing for Scene Understanding, multiple scene understanding are
fused into a single model. UperNet simultaneously handles semantic segmentation, depth
estimation, and object recognition for the complete study.

In order to simulate the complexity of human vision as closely as possible, Unified Perceptual
Parsing is a multitasking framework that can identify a large number of objects features, and
situations in an image at the same time. As a result, it can catalog and process a large amount of
information, construct segments, and elaborate a large number of concepts.

2.3. Training

After having attended to data preparation, which consists of dividing the images into smaller
ones, the dataset must be split into train and test sets. We select 500 photos for the test set and
undersample the other 10174 images because the original dataset is unbal-anced ([39], [40], [41]). In
our case, only a small percentage of pixels are labeled as belonging to the less represented class of
water, while the most represented pixels refer to the woodland class. We add undersampling to the
training set by choosing images with more balanced classes because we think that appropriate
undersampling can be helpful. The number of pixels for each of the classes is summed for each of the
greyscale masks.

The individual images and masks are then taken when four out of five classes have a minimum of
one thousand pixels affixed.

A selection of our photos and respective masks both with and without undersampling is presented
in Figure 2. We create a training set of 250000 iterations for every network over the entire dataset,
saving at each 50000 iteration and returning accuracy and loss values every 2500 iterations.

Other parameters of the training are the learning rate of 0.01, with a momentum of 0.9,

type='SGD', and a weight decay of 0.0005, optimization function SGD, and batch size equal to 1.
As a criterion of evaluating the performance we chose the accuracy and loss on the training and
validation sets as a performance metric. Figure 3 shows the accuracy and loss trend for the Network
ANN during the training phase. We utilize accuracy, intersection over union, and recall in their mean
values and on all five classes to evaluate t}}e model once it has been trained.

(b)

Y
IS DN
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Figure 2. Sample images. (a) Sample images with relative masks before undersampling. (b) Sample images with
relative masks after undersampling.

0.8

Accuracy
Loss

0.6
0.4
0.2

0.0

0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Number of iterations Number of iterations

(a) (b)

Figure 3. Trends of accuracy and loss during the training of PSPNet. a) Trend of the accuracy during the training
of PSPNet. (b) The trend of the loss during the training of PSPNet.

2.4. Study of the Outliers

Now, have a detailed look at the outliers after figuring out the segmentation task metrics. We
calculate outliers for each class and analyze them. First, we analyze outliers with res-pect to
intersection over union because it is the most important. Intersection over union is a physical
definition and assesses the level of overlying between the ground truth region and the prediction
region; because Accuracy depends on binary cross-entropy. According to the following rule, we first
produce a “confusion map” for each class. This is a fourth image colored in three distinct ways
according to the different pixel categories: 1. where the prediction of the network is similar to the
ground truth, pixels are green as shown in Figure 4. These are called true positives (subfigure (a) and
(b));

Original image Inference mask Inference result  Confusion map

(a)

(b)

(c)

(d)
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Figure 4. Outliers reported in three cases corresponding to three different colors: (a) Outliers with the case of
true positives. (b) Outliers with the case of true positives and false negatives. (c) Outliers with the case of false
negatives. (d) Outliers with the case of false positives.

2. the red pixels in subfigure (b) and (c) are called “false negatives”, as the network fails to
forecast the relevant class, in opposite to the ground truth (fig 4); 3. the blue pixels in subfigure (d)
are known as false positives in subfigure (d); in this case, the network correctly predicts the right class
but the prediction is not present in the ground truth picture pixels (fig. 4). Now, we surely can assess
that while the ground truth frequently makes mistakes, the neural network frequently performs right.
As an example, in subfigure d the neural network correctly distinguishes road, while the ground
truth doesn’t, making a mistake.

Above, we classified the various cases of misclassifications, now we are going on to a through
analysis of the outliers.

In this step, to examine each of the 500 test set photos of the outliers, we rely on the three-pixel
categories. As explained above, we create five confusion maps for each original image in the dataset,
coloring the pixels according to the classes represented in them. We then selected the confusion maps
where the intersection over the union of the associated class is less than 0.3. Subsequently, we defined
threshold confusion maps in which at least 1000 pixels are either red or blue, that is where the image
was correctly predicted. The next step was to classify the three kinds of misclassifications for each
selected image, defined as follows, according to the different colors of pixels (fig. 5):

¢ mistakes of the network; is the case in which the neural network makes a mistake while the
ground truth is correct. For example, in subfigure a the image has been traced with respect to the
woodland, but the neural network doesn’t recognize as woodland a part of the image that should be
classified as woodland while the ground truth does;

¢ mistakes of the ground truth; in this case, the ground truth occurs in an error while the neural
network classifies correctly the contents of the image. Subfigure b presents the case of an image in
which the neural network recognizes a tree correctly, while the ground truth doesn’t;

* ambiguous mistakes, cases not falling under either of the first two. These are the cases in which
the original image is confused. In these cases, we cannot impute the hypothetical errors either at the
ground truth or at the neural network. For instance, subfigure c represents an image traced with
respect to background, in which the neural network classifies as background that part of the image
corresponding to shadows, in blue, while the ground truth doesn’t. Whether it is right to classify
shadows as background is an ambiguous case. Also in the red pixels there is an ambiguity between
background and woodland, since it is not clear where the area covered by trees finishes.

The proposed method is the pseudo-code 1 for the algorithm of model training and selection
procedure.

Algorithm 1 Model training and selection procedure

1: Input: 500 images from LandCover.ai, each 512 x 512 pixels, with their relative masks.

2: Output: A model to categorize misclassifications by typology.

3: Step 1: Generate five confusion maps per image (FP: Green, FN: Blue, TP: Red, TN: Black).
4: Step 2: Compute Intersection over Union (IoU) for each class C:

Select images where IoU(C) < 0.3.
5: Step 3: Threshold confusion maps. Select images with |FP” or EN| > 1000 pixels.
6: Step 4: Classify misclassification types: mistakes of the neural network, mistakes of the ground

truth and ambiguous mistakes.
7: Step 5: Select the best-performing neural network model based on: minor number of mistakes of

the network
8: Step 6: End.

3. Experiments
3.1. Experimental Setup
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The performance of fifteen distinct neural networks is demonstrated by the use of semantic
segmentation techniques, evaluated in the first phase on performance metrics like recall, accuracy
and intersection over union. As the second step of this experiment, we individuate the outliers by
creating confusion maps of the 500 test set photos according to the five distinct classes. Finally, it has
been possible to determine the frequency of various mistakes types regarding the liable actors such
as network, ground truth, and ambiguous mistakes for each of the fifteen networks throughout the
entire test set.

3.2. Results of Semantic Segmentation

Accuracy, IoU and recall are the parameters used to assess the model in relation to the semantic
segmentation problem. In this work, they are computed on all five classes and in their mean values
for each of the fifteen networks chosen and are reported as boxplots in Figure 6, with the following
mean values for all networks: intersection over union is above 60%, accuracy in its mean value is
above 98%, and recall is above 85%, as shown in boxplots (fig. 6). The values in subfigures a and b
are clustered around the mean value, the variance accuracy is low.

The IoU variance is higher in subfigures (c) and (d). In terms of dimensions, the variance in
subfigures e and f is between the first two. The violin plots for the fifteen networks that reflect mean
accuracy, mean intersection over union, and mean recall are shown in Fig. 7. This picture portrays a
scenario similar to violin plots and one that we assess in our case: subfigure a and b have a smaller
variance in accuracy, subfigure (c) and (d) have a larger variance in IoU, and subfigure e and f have
a recall variance positioned between the first two. Our models achieve an accuracy of 99.06%, with a
71.5% of intersection over union (IoU) and 88.43% of recall. Table 1 shows the accuracy results
obtained for each class along with the mean values. The results of intersection over union for all
classes, together with their mean values, are presented in Table 2.

Table 3 presents the recall results for each class along with the mean values.

In Table 4 the computational costs and sizes of the networks are reported.Moreover, we must
recognize that where there are buildings and woodland neural net-works work better, while they
perform worse in the presence of water and roads.

Original image

Inference mask Inference result Confusion map

(@)

(©

Figure 5. A sample of outliers with three typologies of misclassifications represented: (a) Mistake of the network
corresponds to the area with red pixels (b) Mistake of the ground truth corresponds to the area with red
pixels. (¢) Ambiguous mistakes corrrespond to the area with blue pixels and area with red pixels.
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Always about performances of the different neural networks we can assess that FCN performs
best regarding accuracy, followed by APCNet. The best network in terms of intersection over union
is CCNet, which is followed by FCN; in terms of recall, the best network is ICNet, which is followed
by PSPNet.

Using the feature of the MMSegmentation library, we make inferences. First we have a model,
then an image, and then an inference is made. Figure 8 is a demonstration inference with three neural
networks over an image taken in a landcover.ai dataset with both an original and an inference mask.
Given the buildings and trees, we can determine that the road is well-known. Regarding the network
mistakes, PSPNet is the neural network that performs best followed by FCN and UPerNet, the two
other networks that exhibit good performance in terms of the overall amount of mistakes and
mistakes in the network.
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Figure 6. Accuracy, intersection over union and recall distribution across fifteen networks: (a) Mean accuracy
distribution across 8 networks. (b) Mean accuracy distribution across 7 networks. (c) Mean IoU distribution
across 8 networks. (d) Mean IoU distribution across 7 networks. (e) Mean recall distribution across 8 networks.
(f) Mean recall distribution across 7 networks.
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Figure 7. Accuracy, intersection over union and recall distribution across fifteen networks: (a) Violin plots of the
mean accuracy distribution across 8 networks. (b) Violin plots of the mean accuracy distribution across 7
networks. (c¢) Violin plots of the mean IoU distribution across 8 networks. (d) Violin plots of the mean IoU
distribution across 7 networks. (e) Violin plots of the mean recall distribution across 8 networks. (f) Violin plots
of the mean recall distribution across 7 networks.

3.3. Results of the Study of the Outliers

In Table 5 the results of this study of outliers are reported. We investigate the outliers aiming at
classifying the misclassifications. We indicate the neural networks that perform best as those
networks in correspondence of which fewer mistakes are due to the neural networks. The network
that performs best is PSPNet with 21 mistakes of the network, followed by FCN with 26 mistakes and
UPerNet with 28 mistakes, always of the neural network, while as regard the total number of mistakes
the neural networks which perform best are FCN, PSPNet and ANN. We can say that as regard per
class results there is not a network which outperforms the others, there is no need of ANOVA test to
understand it: for example we have that PSPNet is the network which performs best in terms of total
number mistakes related to the class background, which is not the best network as regard the total
number of mistakes related to the class woodland and roads. The best network as regard the total
number of mistakes related to the class woodland are ANN and ISANet, as regard the total number
of mistakes related to the class roads the best network is FCN, as regard the total number of mistake
related to class water is PSPNet, as regards the total number of mistakes related to class buildings the
best networks are CCNet, ICNet, ISANet and PSPNet. We choose as a metric on which to conduct
our analysis the intersection over union, since it is a measure of how much the two surfaces (the
ground truth region and

Table 1. Accuracy across 15 networks.

Accuracy
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Neural network Background Buildings Woodland Water Roads Mean accuracy

ANN 0.9770 0.99900  0.9825 0.9974  0.9957 0.9903
APCNet 0.9775@ 0.99900  0.9830@ 0.9978M 0.9956  0.9906?
BiSeNetV2 0.9732 0.9984 0.9800 0.9969 0.9952  0.9887
CCNet 0.9770 0.9990M  0.9825 0.9976@ 0.9956  0.9904
DANet 0.9752 0.9989@  0.9821 0.9963 0.9956 0.9896
DeepLabV3 0.9742 0.9987 0.9811 0.9974 0.9949 0.9896
FastFCN 0.9739 0.9987 0.9814 0.9960 0.9953 0.9891
Fast-SCNN 0.9686 0.9981 0.9770 0.9958 0.9942  0.9867
FCN 0.9779M 0.9990M  0.9835M 0.9977  0.9960M 0.9908M
GCNet 0.9764 0.99900  0.9824 0.9981 0.9951 0.9902
ICNet 0.9769 0.9989@  0.9828 0.9973  0.9958 0.9904
ISANet 0.9759 0.99900  0.9817 0.9972  0.9957 0.9899
OCRNet 0.9745 0.99900  0.9815 0.9960 0.9955 0.9893
PSPNet 0.9765 0.9989@  0.9820 0.9978M 0.9956  0.9902
UPerNet 0.9758 0.9989@  0.9821 0.9965  0.9959@ 0.9899

Maximum value in correspondence of each label and in correspondence of the mean value.
Second value in correspondence of each label and in correspondence of the mean value.

Table 2. Intersection over union across 15 networks.

Intersection over union

Neural network  Background Buildings Woodland Water Roads Mean IoU
ANN 0.8391® 0.6702 0.6341 0.3382 0.5254 0.6689
APCNet 0.8438 0.6746 0.6276 0.3741 0.5139 0.6711
BiSeNetV2 0.8267 0.5311 0.5804 0.2932 0.4566 0.6172
CCNet 0.8389® 0.6636 0.6474 0.4118 0.5196 0.7150®
DANet 0.8374 0.6502 0.6289 0.3385 0.4699 0.6496
DeepLabV3 0.8338 0.5642 0.5805 0.3136 0.4017 0.6132
FastFCN 0.8325 0.6194 0.6210 0.3843 0.4822 0.6567
FCN 0.8402 0.7086® 0.6526M 0.4467®  0.54560 0.6967®
Fast-SCNN 0.8224 0.5165 0.5815 0.2861 0.4338 0.6082
GCNet 0.8367 0.6594 0.6232 0.49310  0.5060 0.6782
ICNet 0.8417 0.7085M 0.6305 0.3429 0.4967 0.6654
ISANet 0.8370 0.6660 0.6241 0.3380 0.5145 0.6550
OCRNet 0.8355 0.6259 0.6312 0.3307 0.5034 0.6551
PSPNet 0.8391® 0.6168 0.6214 0.4278 0.5116 0.6673
UPerNet 0.8321 0.6604 0.6265 0.3428 0.5299® 0.6608

Maximum value in correspondence of each label and in correspondence of the mean value.
Second value in correspondence of each label and in correspondence of the mean value.

Table 3. Recall across 15 networks.

Recall
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Neural network Background  Buildings Woodland  Water Roads  Mean IoU
ANN 0.9375 0.8414 0.8482 0.8278M  0.7802  0.8815
APCNet 0.9389 0.8405 0.8506 0.8105  0.7798  0.8823
BiSeNetV2 0.9333 0.8148 0.8400 0.8025  0.7472  0.8704
CCNet 0.9338 0.8483® 0.8575 0.8141  0.7807  0.8828
DANet 0.9403 0.8276 0.8502 0.7998  0.7594  0.8776
DeepLabV3 0.9443® 0.7832 0.8001 0.8187  0.6769  0.8540
FastFCN 0.9356 0.8245 0.8297 0.7573  0.7447  0.8656
Fast-SCNN 0.9264 0.7986 0.8334 0.7759  0.7359  0.8628
FCN 0.9501™ 0.8202 0.8336 0.7902 07615  0.8772
GCNet 0.9382 0.8398 0.8523 0.7850  0.7771  0.8807
ICNet 0.9417 0.8452 0.8544 0.8100  0.7788  0.8843M
ISANet 0.9356 0.8378 0.8570 0.8198®  0.7872M  0.8836
OCRNet 0.9340 0.8403 0.8628™ 0.8195  0.7847® 0.8834
PSPNet 0.9364 0.8498M 0.8609® 0.8148  0.7808  0.8842™
UPerNet 0.9371 0.8475 0.8517 0.8129  0.7684  0.8806

Maximum value in correspondence of each label and in correspondence of the mean value.

Second value in correspondence of each label and in correspondence of the mean value.

Computational cost and size

Neural network Computational cost Size

ANN 185 GFLOPS 46.217 Mparams

APCNet 204 GFLOPS 56.346 Mparams

BiSeNetV2 12 GFLOPS 14.789 Mparams

CCNet 201 GFLOPS 49.815 Mparams

DANet 211 GFLOPS 49.821 Mparams

DeepLabV3+ 176 GFLOPS 43.579 Mparams

FastFCN 130 GFLOPS 68.7 Mparams

Fast-SCNN 0.5 GFLOPS 1.454 Mparams

FCN 197 GFLOPS 49.486 Mparams

GCNet 197 GFLOPS 49.619 Mparams

ICNet 15 GFLOPS 47.824 Mparams

ISANet 149 GFLOPS 37.696 Mparams

OCRNet 267 GFLOPS 68.192 Mparams

PSPNet 178 GFLOPS 48.964 Mparams

UPerNet 236 GFLOPS 48.964 Mparams

Table 5. Study of the outliers.
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buildi

ngs 1 3 1 0 0
wood

land 19 16 12 8
water 9 26 9 3 8 0 2 2 13 4 3 33 0 7
road 8§ 23 16 13 10 20 19 19 7 25 7 9 22 12 7
Total

mistakes

of network 46 76 49 31 29 41 48 48 26 72 27 33 87 21 28
Mistakes
of the
ground
truth
backg
round 17 7 3 13 9

buildi

ngs 0 4 0 0 0

wood

land 10 53 28 2 17 23 27 27 17 55 16 20 60 15 16
water 0 2 0 0 o0 0 0 0 0 1 0 O 0 0 0
road 14 22 16 11 13 10 13 13 10 27 13 12 23 11 8
Total

mistakes

of the

groundtrut

h 41 88 47 46 38 44 56 56 36 101 38 46 103 42 36
Ambiguou

s mistakes

backg 47 41 53 53 24 33 35 32 16 39
round 29 35 44 30 33

buildi

ngs 0 5 2 0 1

wood

land 54 65 45 59 58 68 68 36 6 52 43 3 66 66
water 2 1 7 4 7 6 3 3 3 3 6 5 2 0 4
road 13 15 19 19 20 20 32 32 10 17 21 18 15 20 9
Total

ambiguou 11

s mistakes 87 60 137 98 133 127 160 160 83 50 2 101 53 102 118

7 11 14 14 17 7 9 13 4 7

— N

Total

backg

round 55 50 58 50 57 62 78 78 53 54 51 61 64 37 56
buildi

ngs 1 12 3 0o 2 2 8 8 1 5 0 0 8 0 2
wood

land 72 73 105 75 83 92 109 109 60 78 75 72 76 85 89
water 1 29 16 7 15 6 5 5 4 17 10 8 3 0 11
road 35 60 51 43 43 50 64 64 27 69 41 39 60 43 24

17 17 14 17
Total 4 224 233 5 200 212 264 264 5 223 7 180 243 165 182

the prediction region) are overlapping.
So not always the discrepancy between neural network prediction and ground truth is due to a
mistake of the neural network, but sometimes it is a human mistake and other
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times it is an ambiguous case, so the actual predictive power of neural networks is superior. In
our research we investigate all the cases, distinguishing the best networks and values of accuracy,
intersection over union and recall. These metrics are calculated as a function of true positives, false
positives, true negatives and false negatives.

3. Discussion

The CNN architecture of our models is conformable enough to adjust to the different data
elements and attributes of agricultural images since semantic methods of segmentation and their
applications in agriculture have evolved rapidly in recent years. As previously said, the inaccurate
classification is not always due to the network; in many cases it is due to the ground truth. Then,
there are cases in which also the human eye can occur in an error, because of confused images, these
are called ambiguous mistakes. The best models thus depend on the situation where the network
gives the minor number of mistakes rather than just the best values of accuracy, recall, and
intersection over union.

In this study, using the deep learning MMSegmentation toolbox fifteen neural networks are
trained to generate semantic segmentation algorithms. For each of the five classes chosen three
metrics—accuracy, intersection over union, and recall—are determined as mean quantities.
Segmentation tasks are developed using the MSegmentation Toolbox. Images used in this work are
described as background, building, woodland, water, and road.

To choose the best model out of all networks under consideration, we report accuracy,
intersection over union, and recall values in terms of violin plots and boxplots. With aforementioned
settings, we have best models for inference in precision agriculture. For five classes, we report
aforementioned values (recall, accuracy, and intersection over union) as well.

The best networks, in our conclusion for outliers in terms of intersection over union, evaluating
performances in respect of network mistakes, are PSPNet, FCN, and UperNet. In any case we put on
evidence that a combination of neural networks can give better results in specific cases.

The images considered in such an outlier analysis are simply called confusion maps, and labelled
true positives, false positives, true negatives, and false negatives with respect to a target class.

As indicated in section 2.4. intersection over union defines the level of overlapping of the reading of
the surfaces as for the ground truth and the prediction region. The images are selected when the
intersection over union is smaller than 0.3. These cases are called outliers. The examination of outliers
is carried out with regard to the intersection over union across all five classes, as indicated in section
2.4. Subsequently, a study is carried out with the objective of classifying the test set's photos according
to the typology of misclassifications, distinguishing between mistakes of the network, mistakes of the
ground truth, and ambiguous mistakes.

Original image Inference mask Inference result Ground Truth
mask

background

woodland

(a)

background

woodland

(b)
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()

Figure 8. Inferences of three networks on the dataset of LandCover.ai. (a) Inference with FCNN. (b) Inference
with PSPNet. (c) Inference with UPerNet.

5. Conclusions

The judging of the increasing application of deep CNN in agriculture and in its study in general
is the prerogative of this work, after having explored the LandCover.ai dataset and the semantic
segmentation. Our goal then is to understand the model that is best performing for studying precision
agriculture and its characteristics. We considered that precision agriculture has unique "image
patterns” which are well different from those in which most segmentation networks were developed
(medicine, automotive,...), hence the effectiveness of transfer learning among these fields may differ
as well. So we conduct the study of those patterns in agriculture through semantic segmentation
algorithms by choosing fifteen neural networks and the study of the outliers aiming at finding those
models which perform best not just taking into account metrics such as accuracy, intersection over
union and recall, but the kind of misclassifications encountered.

For the future we are planning to apply these development methodologies to new datasets, for
example a dataset formed by the Copernicus images, to get information about agricultural areas. In
fact there is not yet generalizability in passing from local (i.e. LandCover.ai dataset) to global (i.e.
world images) level, therefore from aerial images to satellite images. The techniques used for the
development of this project can also be used on some datasets of images detected by drones by
selecting the best-performing system on a case-by-case basis, depending on the type of detection,
with the understanding that for some applications in the area of agriculture both detection systems
can be used.
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