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What are the main findings? 

• Investigate and review of domain transfer capabilities of existing segmentation networks. 

• Identify the best network structure for image segmentation in precision agriculture. 

• Finding those networks that perform best in terms of misclassifications. 

What is the implication of the main finding? 

• To integrate in instruments as Copernicus periodical services of analysis of cultures for the study 

in precision agriculture 

• To perform Data analytics of cultures on large scale in temporal and spatial geographical areas. 

Abstract: It is important in agriculture the role of remote sensing applied to the classification of 

LandCover. Recently deep convolutional neural networks (CNN) have become increasingly and 

widely popular for their application to the study of monitoring and mapping of the land. In this work, 

we study existing semantic networks when applying to public datasets such as LandCover.ai. A 

comparison of fifteen neural networks is made and we find out that, in spite of they all have good 

performances, there are differences in the state of the outliers so we carry on a sistematical study of 

them. Our outcomes show that the most promising models achieve an accuracy of 99.06%, with a 

71.5% of intersection over union (IoU) and 88.43% of recall, based on test set. We also conduct a study 

of the outliers dividing the misclassifications for tipology and find out that PSPNet, FCN and 

UperNet are the most effective models for handling the outliers. The dataset on which this research 

was carried out is publicly available at https://landcover.ai.linuxpolska.com/. 

Keywords: remote sensing; computer vision; precision agriculture.  

 

1. Introduction 

Due to the effective use of agricultural image processing and its high performance, semantic 

segmentation has gained recognition as a significant research topic and has been employed 

extensively in numerous agricultural domains in recent years ([1], [2], [3], [4]). Deep learning 

techniques are important in the agriculture sector and in mapping landcover using remote sensing 

high spatial resolution (HSR) ([5], [6]). Monitoring land cover is crucial for natural resource 

management, and these high-resolution photos, known as remote sensing photographs, can be 

utilized extensively for agricultural and landcover classifications [7]. Several fields of activity, 

including precision agriculture [8], urban planning [9, 10], environmental protection, land resource 

management and land classification can take great advantage of remote sensing. The literature on 

semantic segmentation is extensive and includes a large variety of datasets, of which we give some 

examples of the most popular. One of these is SpaceNet MVIO, an open-source Multiview Overhead 

Imagery dataset [11] used for segmentation and object detection tasks. The outcomes are produced 

in three areas:  

1)Expanding object detection and segmentation models to previously unseen 

resolutions;  

2) Detecting buildings; 
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3) Confirm whether resolution adjustments for segmentation and object detection models had 

an impact and do research on them and their consequences. One dataset that can be used for semantic 

segmentation of agricultural patterns is Agriculture-vision, which is composed of extensive aerial 

field photos [12]. This dataset has been analyzed using popular semantic segmentation models, 

specifically DeeplabV3+. 

Other works include one that uses a better Unet model to apply semantic segmentation to rice 

lodging, Xin Zhao et al. [13], and another that uses SOMs and a Deeplab CNN to segment remote 

sensing data in agriculture [3]. Multilayer perceptrons (MLPs) and RF classifiers are used in work 

concerning the classification of crop types and land cover [4]. Semantic segmentation has been 

applied to UAV-acquired pictures [14] by comparing various approaches, including DeeplabV3+, 

EfficientNet, FPN, and AGN, with the author's approach, AgriSegNet, a model whose backbone 

characteristics are extracted from the DeepLabV3+ mode.  

Other works see the application of U-Net to segmentation in the agriculture of wheat [15] and 

an application of an adapted version of VGG-16, a deep neural network semantic segmentation of 

mixed crops [16]. Many works are present in literature about the segmentation of crop, weed, and 

background of which we give two examples: an encoder-decoder network trained to recognize weed, 

crop, and background [17], and a deep learning model of U-Net trained to segment weed and crop 

[18]. Javiera Castillo-Navarro is credited with work on MiniFrance [19], a dataset designed for 

semisupervised learning. In the relative work two networks perform semantic segmentation: 

BerundaNet and W-Net. 

Monitoring and assessing land cover and land use are crucial agricultural practices [20]. Remote 

sensing data is helpful in order to monitor landscape and agricultural activities and enables the study 

of the rate of urbanization, deforestation, and agricultural intensity ([8], [9], [10], [21], [12]). Most of 

these investigations use multispectral satellite imagery, which can be most expensive when obtained 

at high resolution. Although a study of land mapping can be conducted through transfer learning of 

existing networks, a comparative analysis of how this transfer learning functions more or less 

depending on the neural network chosen has not yet been conducted, in order to accurately 

determine its utility for the agriculture sector. 

In this research, we aim to identify the best models for agriculture image segmentation by 

analyzing outliers and evaluating the quality of existing semantic segmentation models. This work 

was carried out according to the following steps:  

• first of all, we select according to their performances fifteen neural networks, at the state of the 

art, created using the MMSegmentation toolbox [22] for Python to apply semantic segmentation, and 

metrics like accuracy, intersection over union (IoU) and recall are assessed;  

• second, we use statistical tools to analyze the results and identify the networks that perform 

best; 

• third, confusion maps are created to determine the type and quality of eventual 

misclassifications, and a comparison of those networks is then carried out by examining the quantity 

and quality of errors committed. The images in which vision gives origin to a mistake are the so-

called outliers. Finally, we provide a summary of the best networks with a low number of relevant 

network mistakes. 

The rest of the paper is divided into three chapters. Chapter 2 contains a brief description of the 

dataset, LandCover.ai, the segmentation methods, and performance evaluation metrics. Chapter 3 

presents the experimental results and discussion. Chapter 4 concludes our paper, opening the road 

to future insights of the research. 

2. Materials and Methods 

2.1. Data Preparation 

First, we arrange data preparation, so that data are processed and converted from their original 

state to one more suitable for the subsequent analysis [23]. The LandCover.ai dataset consists of 8 

images with a resolution of 50 cm (about 4200 x 4700 pixels) and 33 photographs with a resolution of 

25 cm (approximately 9000 x 9500 pixels). As Adrian Boguszewski [7] did, since most networks have 

an input range between 200 and 1024 pixels, we split 41 originals and respective masks into 512 x 
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512-pixel smaller ones. There are 10674 photos and 10674 masks in total, excluding smaller ones. 

Figure 1 shows a selection of photos in the dataset after a split of originals. 
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Figure 1. Sample images taken from the dataset LandCover.ai. 

2.2. Semantic Segmentation Neural Networks 

In this work, semantic segmentation of the LandCover.ai dataset is performed using Python and 

15 networks trained via the MMSegmentation tools within the Python framework. This framework 

is offered by MMSegmentation, an open toolbox suitable for the consistent use and assessment of 

semantic segmentation techniques. Most well-known semantic segmentation techniques and datasets 

have excellent fine-tunings available in MMSegmentation. Accuracy, intersection over union, and 

recall are the metrics computed as mean metrics with respect to each class in semantic segmentation 

tasks. Now, the description of the used networks in this work is as follows. 

2.2.1. Asymmetrical Non-Local Neural Network for Semantic Segmentation (ANN) [24] 

In the Asymmetric Non-local Neural Network, the semantic segmentation spatial feature 

extraction can be enhanced by implying non-local operations that encapsulate long-range 

dependencies, hence enhancing segmentation accuracy by paying attention to both local and global 

context information of an image. [23]. The Asymmetric Pyramid Non-local Block (APNB) and 

Asymmetric Fusion Non-local Block (AFNB) are integrated into a pyramid sampling module to 

drastically decrease computation time and memory use and at the same time grant good results. 

Different levels of features are combined, which improves performance. 

2.2.2. APCNet [25] 
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Point cloud processing focuses on optimizing deep semantic segmentation networks. It 

incorporates context features through attention mechanisms, improving performance, by applying 

APCNet (Attention Pyramid Context Network). 

Multiple well-drawn Adaptive Context Modules (ACMs) are located within multiscale contextual 

representations produced by APCNet. A context vector is computed when the local affinity 

coefficient associated with each sub-region is assessed by each ACM. 

2.2.3. BiSeNetV2 [26] 

BiSeNetV2 is a real-time semantic segmentation model that enhances its feature extraction and 

segmentation through both the spatial and context path. Its architecture permits holding little 

features usually overlooked in speeding up elaboration thanks to its in-core features Branch and 

Semantic Branch. This will increase the elaboration accuracy significantly. 

2.2.4. CCNet [27] 

Image segmentation is enhanced by CCNET (Criss-Cross Network) enhances image 

segmentation by using cluster-based representations and dense cross-level connections. 

Consequently, it can be assigned an accurate semantic label to each pixel. 

Each pixel in the image is provided with a semantic class label. However, because of the rigid 

geometric structures of this network, is difficult to find an answer to issues in some FCN applications 

where a quicker and more accurate understanding of images is needed. Criss Cross Network can 

extract more comprehensive and contextual information from every pixel. 

2.2.5. DANet [28] 

The scope of focusing on relevant features of images and improving them can be obtained by 

employing the Dual Attention Network (DAN) which integrates both spatial and channel-wise 

attention mechanisms.  

With the help of a Dual Attention Network for Scene Segmentation is possible to determine the 

positions of the various items in the image, and detailed dependencies can be represented in both 

spatial and channel dimensions thanks to a position attention module and a channel attention model. 

2.2.6. DeepLabV3+ [29] 

Deep neural networks for semantic segmentation tasks can use Spatial pyramid pooling module, 

in order to encode multiscale informations by intercepting the incoming features, or can use an 

encode decoder structure to catch thin object boundaries and to compose all the spatial details. 

DeepLabV3+ combines the advantages of both methods, by adding to the previous DeepLabV3 a 

decoding module to obtain better defined boundaries of the objects in the scene. 

2.2.7. FastFCN [30] 

FastFCN is a semantic segmentation model that relates the efficacy of fully convolutional 

networks (FCNs) with a quick, excellent output. It manages a unique lightweight encoder-decoder 

architecture that decreases computational complexity while preserving performance. FastFCN 

pioneers a dilated convolution procedure to extend the receptive subject, advancing contextual 

insight. The model also improves segmentation by using a more efficient feature fusion strategy, 

increasing fine-grained details. This makes FastFCN appropriate for real-time segmentation tasks, 

uniquely on resource-constrained machines. 

2.2.8. Fast-SCNN [31] 

A Fast Semantic Segmentation Convolutional Neural Network (CNN) is designed to proficiently 

match pixel-wise class labels to images while diminishing computational complexity. Commonly 

techniques are employed like dilated convolutions, reduced network depth, and lightweight 

architectures for faster processing. 

A fast segmentation network for real-time scene understanding is the focus of R. R. K. Poudel's work. 

This network is required when images need to be analyzed rapidly in or-der to provide a prompt 
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reaction or develop a rapid or binding action based on the envi-ronmental situation. Furthermore, 

the work shows that further applications to auxiliary tasks do not require additional pre-training 

once the model has been suitably trained. 

2.2.9. FCN [32] 

Fully Convolutional Network (FCN) is a deep learning architecture constructed for semantic 

image segmentation. Unlike traditional CNNs that output fixed-size feature maps, FCNs substitute 

totally connected layers with convolutional layers, granting the network to construct pixel-wise 

expectations. FCNs use an encoder-decoder construction, where the encoder describes high-level 

features and the decoder upsamples to create segmentation maps. Skip connections are often used to 

preserve fine-grained spatial information from earlier layers. FCNs are widely assumed for tasks 

expecting dense pixel-level classification, such as scene understanding and medical image analysis. 

2.2.10. GCNet [33] 

Segmentation accuracy can be improved by incorporating global context through a self-attention 

mechanism, as CGNet (Global Context Network) is deputed to perform, capturing long-range 

dependencies in the input image.  

GCNet is able to capture the long-term dependencies and connections between images or scenes 

separated by significant periods of time with less computation and the same accuracy by simplifying 

the network to take into account that many queries are the same in different regions of a picture and 

by concentrating the analysis only in the parts of the images that shows changes. 

2.2.11. ICNet [34] 

Image Cascade Network (ICNet) is a semantic segmentation model designed for efficient real-

time performance by increasingly improving estimates through a multi-resolution method. It uses a 

cascade construct to handle images at distinctive resolutions, balancing accuracy and speed. 

The Image Cascade Network (ICNet) is a real time semantic segmentation system that produces 

a fast elaboration of the images, in order to provide real time scene parsing in all the situations where 

immediate and deep understanding of the scene is required and speedy is a critical factor for action. 

For istance, it is the case of automatic driving and of all robotic interactions. Moreover, thanks to a 

new framework which saves operations in multiple resolutions, and to a powerfull fusion unit, ICNet 

grants an optimal union of accuracy and speed. 

2.2.12. ISANet [35] 

An Image Spatial Attention Network (ISANet) enhances the focal point at salient regions of an 

image via learning of spatial attention maps. It enhances feature representation for object detection 

and image classification. ISANet puts a high value on improvement in suitability of the self-attention 

mechanism for semantic segmentation.The two following attention modules evaluate the two sparse 

affinity matrices that make up its structure. Processing high-resolution feature maps decreases 

computing and memory complexity. 

2.2.13. OCRNet [36] 

The Object Contextual Representations Network (OCR-Net) improves object segmentation by 

uniting object context knowledge through adaptive contextual learning, by integrating object context 

information through adaptive contextual learning. Capturing detailed object boundaries and long-

range dependencies in the way to obtain a higher accuracy. The OC-RNet operates in three main 

steps: first, a deep network determines a rough soft segmentation; second, the description for each 

object region is estimated by compiling the descriptions with respect to pixels in the corresponding 

object region. Third, OCR is used to enrich each pixel's description. 

2.2.14. PSPNet [37] 

Pyramid Scene Parsing Network (PSPNet) is a deep learning model constructed for semantic 

segmentation where a pyramid pooling module is used to obtain multi-scale context information 
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from an image. Segmentation accuracy is enhanced by contemplating both local and global contextual 

information at several spatial scales. 

The target of scene parsing is that of attributing each pixel in the image a category label, the 

function for which PSPNet is designed. Pyramid scene parsing network has the property to merge 

proper global features. The pixel-level feature is extended to the especially created global pyramid 

pooling one, additionally to conventional enlarged FCN [3, 40] for pixel prediction. The local and 

global traces together make the ultimate forecast more consistent.  

2.2.15. UperNet [38] 

With Unified Perceptual Parsing for Scene Understanding, multiple scene understanding are 

fused into a single model. UperNet simultaneously handles semantic segmentation, depth 

estimation, and object recognition for the complete study. 

In order to simulate the complexity of human vision as closely as possible, Unified Perceptual 

Parsing is a multitasking framework that can identify a large number of objects features, and 

situations in an image at the same time. As a result, it can catalog and process a large amount of 

information, construct segments, and elaborate a large number of concepts. 

2.3. Training 

After having attended to data preparation, which consists of dividing the images into smaller 

ones, the dataset must be split into train and test sets. We select 500 photos for the test set and 

undersample the other 10174 images because the original dataset is unbal-anced ([39], [40], [41]). In 

our case, only a small percentage of pixels are labeled as belonging to the less represented class of 

water, while the most represented pixels refer to the woodland class. We add undersampling to the 

training set by choosing images with more balanced classes because we think that appropriate 

undersampling can be helpful. The number of pixels for each of the classes is summed for each of the 

greyscale masks. 

The individual images and masks are then taken when four out of five classes have a minimum of 

one thousand pixels affixed. 

A selection of our photos and respective masks both with and without undersampling is presented 

in Figure 2. We create a training set of 250000 iterations for every network over the entire dataset, 

saving at each 50000 iteration and returning accuracy and loss values every 2500 iterations.  

Other parameters of the training are the learning rate of 0.01, with a momentum of 0.9, 

type='SGD', and a weight decay of 0.0005, optimization function SGD, and batch size equal to 1. 

As a criterion of evaluating the performance we chose the accuracy and loss on the training and 

validation sets as a performance metric. Figure 3 shows the accuracy and loss trend for the Network 

ANN during the training phase. We utilize accuracy, intersection over union, and recall in their mean 

values and on all five classes to evaluate the model once it has been trained. 
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Figure 2. Sample images. (a) Sample images with relative masks before undersampling. (b) Sample images with 

relative masks after undersampling. 

 

Figure 3. Trends of accuracy and loss during the training of PSPNet. a) Trend of the accuracy during the training 

of PSPNet. (b) The trend of the loss during the training of PSPNet. 

2.4. Study of the Outliers 

Now, have a detailed look at the outliers after figuring out the segmentation task metrics. We 

calculate outliers for each class and analyze them. First, we analyze outliers with res-pect to 

intersection over union because it is the most important. Intersection over union is a physical 

definition and assesses the level of overlying between the ground truth region and the prediction 

region; because Accuracy depends on binary cross-entropy. According to the following rule, we first 

produce a “confusion map” for each class. This is a fourth image colored in three distinct ways 

according to the different pixel categories: 1. where the prediction of the network is similar to the 

ground truth, pixels are green as shown in Figure 4. These are called true positives (subfigure (a) and 

(b)); 

  Original image     Inference mask     Inference result    Confusion map 
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Figure 4. Outliers reported in three cases corresponding to three different colors: (a) Outliers with the case of 

true positives. (b) Outliers with the case of true positives and false negatives. (c) Outliers with the case of false 

negatives. (d) Outliers with the case of false positives. 

2. the red pixels in subfigure (b) and (c) are called “false negatives”, as the network fails to 

forecast the relevant class, in opposite to the ground truth (fig 4); 3. the blue pixels in subfigure (d) 

are known as false positives in subfigure (d); in this case, the network correctly predicts the right class 

but the prediction is not present in the ground truth picture pixels (fig. 4). Now, we surely can assess 

that while the ground truth frequently makes mistakes, the neural network frequently performs right. 

As an example, in subfigure d the neural network correctly distinguishes road, while the ground 

truth doesn’t, making a mistake.  

Above, we classified the various cases of misclassifications, now we are going on to a through 

analysis of the outliers. 

In this step, to examine each of the 500 test set photos of the outliers, we rely on the three-pixel 

categories. As explained above, we create five confusion maps for each original image in the dataset, 

coloring the pixels according to the classes represented in them. We then selected the confusion maps 

where the intersection over the union of the associated class is less than 0.3. Subsequently, we defined 

threshold confusion maps in which at least 1000 pixels are either red or blue, that is where the image 

was correctly predicted. The next step was to classify the three kinds of misclassifications for each 

selected image, defined as follows, according to the different colors of pixels (fig. 5): 

• mistakes of the network; is the case in which the neural network makes a mistake while the 

ground truth is correct. For example, in subfigure a the image has been traced with respect to the 

woodland, but the neural network doesn’t recognize as woodland a part of the image that should be 

classified as woodland while the ground truth does; 

• mistakes of the ground truth; in this case, the ground truth occurs in an error while the neural 

network classifies correctly the contents of the image. Subfigure b presents the case of an image in 

which the neural network recognizes a tree correctly, while the ground truth doesn’t; 

• ambiguous mistakes, cases not falling under either of the first two. These are the cases in which 

the original image is confused. In these cases, we cannot impute the hypothetical errors either at the 

ground truth or at the neural network. For instance, subfigure c represents an image traced with 

respect to background, in which the neural network classifies as background that part of the image 

corresponding to shadows, in blue, while the ground truth doesn’t. Whether it is right to classify 

shadows as background is an ambiguous case. Also in the red pixels there is an ambiguity between 

background and woodland, since it is not clear where the area covered by trees finishes. 

The proposed method is the pseudo-code 1 for the algorithm of model training and selection 

procedure. 

 

3. Experiments 

3.1. Experimental Setup 
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The performance of fifteen distinct neural networks is demonstrated by the use of semantic 

segmentation techniques, evaluated in the first phase on performance metrics like recall, accuracy 

and intersection over union. As the second step of this experiment, we individuate the outliers by 

creating confusion maps of the 500 test set photos according to the five distinct classes. Finally, it has 

been possible to determine the frequency of various mistakes types regarding the liable actors such 

as network, ground truth, and ambiguous mistakes for each of the fifteen networks throughout the 

entire test set.  

3.2. Results of Semantic Segmentation 

Accuracy, IoU and recall are the parameters used to assess the model in relation to the semantic 

segmentation problem. In this work, they are computed on all five classes and in their mean values 

for each of the fifteen networks chosen and are reported as boxplots in Figure 6, with the following 

mean values for all networks: intersection over union is above 60%, accuracy in its mean value is 

above 98%, and recall is above 85%, as shown in boxplots (fig. 6). The values in subfigures a and b 

are clustered around the mean value, the variance accuracy is low. 

The IoU variance is higher in subfigures (c) and (d). In terms of dimensions, the variance in 

subfigures e and f is between the first two. The violin plots for the fifteen networks that reflect mean 

accuracy, mean intersection over union, and mean recall are shown in Fig. 7. This picture portrays a 

scenario similar to violin plots and one that we assess in our case: subfigure a and b have a smaller 

variance in accuracy, subfigure (c) and (d) have a larger variance in IoU, and subfigure e and f have 

a recall variance positioned between the first two. Our models achieve an accuracy of 99.06%, with a 

71.5% of intersection over union (IoU) and 88.43% of recall. Table 1 shows the accuracy results 

obtained for each class along with the mean values. The results of intersection over union for all 

classes, together with their mean values, are presented in Table 2.  

Table 3 presents the recall results for each class along with the mean values. 

In Table 4 the computational costs and sizes of the networks are reported.Moreover, we must 

recognize that where there are buildings and woodland neural net-works work better, while they 

perform worse in the presence of water and roads. 

  Original image     Inference mask     Inference result      Confusion map 
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Figure 5. A sample of outliers with three typologies of misclassifications represented: (a) Mistake of the network 

corresponds to the area with red pixels (b) Mistake of the ground truth      corresponds to the area with red 

pixels. (c) Ambiguous mistakes corrrespond to the area with blue pixels and area with red pixels. 
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Always about performances of the different neural networks we can assess that FCN performs 

best regarding accuracy, followed by APCNet. The best network in terms of intersection over union 

is CCNet, which is followed by FCN; in terms of recall, the best network is ICNet, which is followed 

by PSPNet.  

Using the feature of the MMSegmentation library, we make inferences. First we have a model, 

then an image, and then an inference is made. Figure 8 is a demonstration inference with three neural 

networks over an image taken in a landcover.ai dataset with both an original and an inference mask. 

Given the buildings and trees, we can determine that the road is well-known. Regarding the network 

mistakes, PSPNet is the neural network that performs best followed by FCN and UPerNet, the two 

other networks that exhibit good performance in terms of the overall amount of mistakes and 

mistakes in the network. 

 

Figure 6. Accuracy, intersection over union and recall distribution across fifteen networks: (a) Mean accuracy 

distribution across 8 networks. (b)  Mean accuracy distribution across 7 networks. (c) Mean IoU distribution 

across 8 networks. (d) Mean IoU distribution across 7 networks. (e) Mean recall distribution across 8 networks. 

(f) Mean recall distribution across 7 networks. 
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Figure 7. Accuracy, intersection over union and recall distribution across fifteen networks: (a) Violin plots of the 

mean accuracy distribution across 8 networks. (b) Violin plots of the mean accuracy distribution across 7 

networks. (c) Violin plots of the mean IoU distribution across 8 networks. (d) Violin plots of the mean IoU 

distribution across 7 networks. (e) Violin plots of the mean recall distribution across 8 networks. (f) Violin plots 

of the mean recall distribution across 7 networks. 

3.3. Results of the Study of the Outliers 

In Table 5 the results of this study of outliers are reported. We investigate the outliers aiming at 

classifying the misclassifications. We indicate the neural networks that perform best as those 

networks in correspondence of which fewer mistakes are due to the neural networks. The network 

that performs best is PSPNet with 21 mistakes of the network, followed by FCN with 26 mistakes and 

UPerNet with 28 mistakes, always of the neural network, while as regard the total number of mistakes 

the neural networks which perform best are FCN, PSPNet and ANN. We can say that as regard per 

class results there is not a network which outperforms the others, there is no need of ANOVA test to 

understand it: for example we have that PSPNet is the network which performs best in terms of total 

number mistakes related to the class background, which is not the best network as regard the total 

number of mistakes related to the class woodland and roads. The best network as regard the total 

number of mistakes related to the class woodland are ANN and ISANet, as regard the total number 

of mistakes related to the class roads the best network is FCN, as regard the total number of mistake 

related to class water is PSPNet, as regards the total number of mistakes related to class buildings the 

best networks are CCNet, ICNet, ISANet and PSPNet. We choose as a metric on which to conduct 

our analysis the intersection over union, since it is a measure of how much the two surfaces (the 

ground truth region and  

Table 1. Accuracy across 15 networks. 

            Accuracy         
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Neural network Background Buildings Woodland Water Roads Mean accuracy 

ANN 0.9770 0.9990(1) 0.9825 0.9974 0.9957 0.9903 

APCNet  0.9775(2) 0.9990(1) 0.9830(2) 0.9978(1) 0.9956 0.9906(2) 

BiSeNetV2  0.9732 0.9984 0.9800 0.9969 0.9952 0.9887 

CCNet 0.9770 0.9990(1) 0.9825 0.9976(2) 0.9956 0.9904 

DANet  0.9752 0.9989(2) 0.9821 0.9963 0.9956 0.9896 

DeepLabV3  0.9742 0.9987 0.9811 0.9974 0.9949 0.9896 

FastFCN 0.9739 0.9987 0.9814 0.9960 0.9953 0.9891 

Fast-SCNN 0.9686 0.9981 0.9770 0.9958 0.9942 0.9867 

FCN 0.9779(1) 0.9990(1) 0.9835(1) 0.9977 0.9960(1) 0.9908(1) 

GCNet 0.9764 0.9990(1) 0.9824 0.9981 0.9951 0.9902 

ICNet 0.9769 0.9989(2) 0.9828 0.9973 0.9958 0.9904 

ISANet 0.9759 0.9990(1) 0.9817 0.9972 0.9957 0.9899 

OCRNet 0.9745 0.9990(1) 0.9815 0.9960 0.9955 0.9893 

PSPNet 0.9765 0.9989(2) 0.9820 0.9978(1) 0.9956 0.9902 

UPerNet 0.9758 0.9989(2) 0.9821 0.9965 0.9959(2) 0.9899 

Maximum value in correspondence of each label and in correspondence of the mean value. 

Second value in correspondence of each label and in correspondence of the mean value. 

Table 2. Intersection over union across 15 networks. 

                                                        

Intersection over union         

Neural network Background Buildings Woodland Water Roads Mean IoU 

ANN 0.8391(1) 0.6702 0.6341 0.3382 0.5254 0.6689 

APCNet  0.8438 0.6746 0.6276 0.3741 0.5139 0.6711 

BiSeNetV2  0.8267 0.5311 0.5804 0.2932 0.4566 0.6172 

CCNet 0.8389(2) 0.6636 0.6474(2) 0.4118 0.5196 0.7150(1) 

DANet  0.8374 0.6502 0.6289 0.3385 0.4699 0.6496 

DeepLabV3  0.8338 0.5642 0.5805 0.3136 0.4017 0.6132 

FastFCN 0.8325 0.6194 0.6210 0.3843 0.4822 0.6567 

FCN 0.8402 0.7086(2) 0.6526(1) 0.4467(2) 0.5456(1) 0.6967(2) 

Fast-SCNN  0.8224 0.5165 0.5815 0.2861 0.4338 0.6082 

GCNet  0.8367 0.6594 0.6232 0.4931(1) 0.5060 0.6782 

ICNet 0.8417 0.7085(1) 0.6305 0.3429 0.4967 0.6654 

ISANet 0.8370 0.6660 0.6241 0.3380 0.5145 0.6550 

OCRNet 0.8355 0.6259 0.6312 0.3307 0.5034 0.6551 

PSPNet 0.8391(1) 0.6168 0.6214 0.4278 0.5116 0.6673 

UPerNet  0.8321 0.6604 0.6265 0.3428 0.5299(2) 0.6608 

Maximum value in correspondence of each label and in correspondence of the mean value. 

Second value in correspondence of each label and in correspondence of the mean value. 

Table 3. Recall across 15 networks. 

                                                                                            

Recall                                           
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Neural network Background Buildings Woodland Water Roads Mean IoU 

ANN 0.9375 0.8414 0.8482 0.8278(1) 0.7802 0.8815 

APCNet  0.9389 0.8405 0.8506 0.8105 0.7798 0.8823 

BiSeNetV2  0.9333 0.8148 0.8400 0.8025 0.7472 0.8704 

CCNet 0.9338 0.8483(2) 0.8575 0.8141 0.7807 0.8828 

DANet  0.9403 0.8276 0.8502 0.7998 0.7594 0.8776 

DeepLabV3  0.9443(2) 0.7832 0.8001 0.8187 0.6769 0.8540 

FastFCN 0.9356 0.8245 0.8297 0.7573 0.7447 0.8656 

Fast-SCNN 0.9264 0.7986 0.8334 0.7759 0.7359 0.8628 

FCN 0.9501(1) 0.8202 0.8336 0.7902 0.7615 0.8772 

GCNet 0.9382 0.8398 0.8523 0.7850 0.7771 0.8807 

ICNet 0.9417 0.8452 0.8544 0.8100 0.7788 0.8843(1) 

ISANet 0.9356 0.8378 0.8570 0.8198(2) 0.7872(1) 0.8836 

OCRNet 0.9340 0.8403 0.8628(1) 0.8195 0.7847(2) 0.8834 

PSPNet 0.9364 0.8498(1) 0.8609(2) 0.8148 0.7808 0.8842(2) 

UPerNet 0.9371 0.8475 0.8517 0.8129 0.7684 0.8806 

Maximum value in correspondence of each label and in correspondence of the mean value. 

Second value in correspondence of each label and in correspondence of the mean value.  

  Computational cost and size                                 

Neural network   Computational cost Size 

ANN   185 GFLOPS 46.217 Mparams 

APCNet   204 GFLOPS 56.346 Mparams 

BiSeNetV2   12 GFLOPS 14.789 Mparams 

CCNet  201 GFLOPS 49.815 Mparams 

DANet   211 GFLOPS 49.821 Mparams 

DeepLabV3+  176 GFLOPS 43.579 Mparams 

FastFCN  130 GFLOPS 68.7 Mparams 

Fast-SCNN   0.5 GFLOPS 1.454 Mparams 

FCN  197 GFLOPS 49.486 Mparams 

GCNet   197 GFLOPS 49.619 Mparams 

ICNet  15 GFLOPS 47.824 Mparams 

ISANet   149 GFLOPS 37.696 Mparams 

OCRNet   267 GFLOPS 68.192 Mparams 

PSPNet  178 GFLOPS 48.964 Mparams 

UPerNet    236 GFLOPS 48.964 Mparams 

Table 5. Study of the outliers. 
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buildi

ngs  1 3 1 0 
1 0 2 2 

0 
2 0 0 4 0 1 

wood

land  19 16 12 8 
7 11 14 14 

7 
17 7 9 13 4 7 

water  9 26 9 3 8 0 2 2 1 13 4 3 33 0 7 

road  8 23 16 13 10 20 19 19 7 25 7 9 22 12 7 

Total 

mistakes 

of network 46 76 49 31 29 41 48 48 26 72 27 33 87 21 28 

Mistakes 

of the 

ground 

truth     

    

 

      

backg

round  17 7 3 13 
7 11 14 14 

9 
15 9 14 17 16 11 

buildi

ngs  0 4 0 0 
1 0 2 2 

0 
3 0 0 3 0 1 

wood

land  10 53 28 22 
17 23 27 27 

17 
55 16 20 60 15 16 

water  0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 

road  14 22 16 11 13 10 13 13 10 27 13 12 23 11 8 

Total 

mistakes 

of the 

groundtrut

h 41 88 47 46 38 44 56 56 36 101 38 46 103 42 36 

Ambiguou

s mistakes     

    

 

      

backg

round  29 35 44 30 
47 41 53 53 

33 
24 33 35 32 16 39 

buildi

ngs  0 5 2 0 
0 2 4 4 

1 
0 0 0 1 0 0 

wood

land  43 4 65 45 
59 58 68 68 

36 
6 52 43 3 66 66 

water  2 1 7 4 7 6 3 3 3 3 6 5 2 0 4 

road  13 15 19 19 20 20 32 32 10 17 21 18 15 20 9 

Total 

ambiguou

s mistakes 87 60 137 98 133 127 160 160 83 50 

11

2 101 53 102 118 
                 

Total                 
backg

round  55 50 58 50 57 62 78 78 53 54 51 61 64 37 56 

buildi

ngs  1 12 3 0 2 2 8 8 1 5 0 0 8 0 2 

wood

land  72 73 105 75 83 92 109 109 60 78 75 72 76 85 89 

water  11 29 16 7 15 6 5 5 4 17 10 8 35 0 11 

road  35 60 51 43 43 50 64 64 27 69 41 39 60 43 24 

Total  

17

4 224 233 

17

5 200 212 264 264 

14

5 223 

17

7 180 243 165 182 

the prediction region) are overlapping. 

So not always the discrepancy between neural network prediction and ground truth is due to a 

mistake of the neural network, but sometimes it is a human mistake and other  
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times it is an ambiguous case, so the actual predictive power of neural networks is superior. In 

our research we investigate all the cases, distinguishing the best networks and values of accuracy, 

intersection over union and recall. These metrics are calculated as a function of true positives, false 

positives, true negatives and false negatives.   

3. Discussion 

The CNN architecture of our models is conformable enough to adjust to the different data 

elements and attributes of agricultural images since semantic methods of segmentation and their 

applications in agriculture have evolved rapidly in recent years. As previously said, the inaccurate 

classification is not always due to the network; in many cases it is due to the ground truth. Then, 

there are cases in which also the human eye can occur in an error, because of confused images, these 

are called ambiguous mistakes. The best models thus depend on the situation where the network 

gives the minor number of mistakes rather than just the best values of accuracy, recall, and 

intersection over union.  

In this study, using the deep learning MMSegmentation toolbox  fifteen neural networks are 

trained to generate semantic segmentation algorithms. For each of the five classes chosen three 

metrics—accuracy, intersection over union, and recall—are determined as mean quantities. 

Segmentation tasks are developed using the MSegmentation Toolbox. Images used in this work are 

described as  background, building, woodland, water, and road. 

To choose the best model out of all networks under consideration, we report accuracy, 

intersection over union, and recall values in terms of violin plots and boxplots. With aforementioned 

settings, we have best models for inference in precision agriculture. For five classes, we report 

aforementioned values (recall, accuracy, and intersection over union) as well. 

The best networks, in our conclusion for outliers in terms of intersection over union, evaluating 

performances in respect of network mistakes, are PSPNet, FCN, and UperNet. In any case we put on 

evidence that a combination of neural networks can give better results in specific cases. 

The images considered in such an outlier analysis are simply called confusion maps, and labelled 

true positives, false positives, true negatives, and false negatives with respect to a target class. 

As indicated in section 2.4. intersection over union defines the level of overlapping of the reading of 

the surfaces as for the ground truth and the prediction region. The images are selected when the 

intersection over union is smaller than 0.3. These cases are called outliers. The examination of outliers 

is carried out with regard to the intersection over union across all five classes, as indicated in section 

2.4. Subsequently, a study is carried out with the objective of classifying the test set's photos according 

to the typology of misclassifications, distinguishing between mistakes of the network, mistakes of the 

ground truth, and ambiguous mistakes.  

  

 

 Original image     Inference mask    Inference result  Ground Truth 

mask 
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Figure 8. Inferences of three networks on the dataset of LandCover.ai. (a) Inference with FCNN. (b) Inference 

with PSPNet. (c) Inference with UPerNet. 

5. Conclusions 

The judging of the increasing application of deep CNN in agriculture and in its study in general 

is the prerogative of this work, after having explored the LandCover.ai dataset and the semantic 

segmentation. Our goal then is to understand the model that is best performing for studying precision 

agriculture and its characteristics. We considered that precision agriculture has unique "image 

patterns" which are well different from those in which most segmentation networks were developed 

(medicine, automotive,...), hence the effectiveness of transfer learning among these fields may differ 

as well. So we conduct the study of those patterns in agriculture through semantic segmentation 

algorithms by choosing fifteen neural networks and the study of the outliers aiming at finding those 

models which perform best not just taking into account metrics such as accuracy, intersection over 

union and recall, but the kind of misclassifications encountered. 

For the future we are planning to apply these development methodologies to new datasets, for 

example a dataset formed by the Copernicus images, to get information about agricultural areas. In 

fact there is not yet generalizability in passing from local (i.e. LandCover.ai dataset) to global (i.e. 

world images) level, therefore from aerial images to satellite images. The techniques used for the 

development of this project can also be used on some datasets of images detected by drones by 

selecting the best-performing system on a case-by-case basis, depending on the type of detection, 

with the understanding that for some applications in the area of agriculture both detection systems 

can be used. 
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