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ihab_el_aff@hotmail.com 

Computer Engineering Dep., Faculty of Engineering and Natural Sciences, Üsküdar University, Türkiye 

Abstract:  This  study  investigates  the  effect  of  assuming  isotropic  properties  for  the  heart’s 

myocardium  on  the  Body  Surface  Potential  Map  (BSPM)  under  both  homogeneous  and 

inhomogeneous  torso  volume  conductor  models.  The  human  torso  was  modeled  as  an 

inhomogeneous volume using CT data, and the heart as a volume source based on diffusion tensor 

imaging  (DTI),  incorporating both anisotropic and  isotropic  conductivity assumptions. Using  the 

Monodomain  Reaction‐Diffusion  Equation  (MD‐RDE),  excitation  propagation  isochrones  were 

computed.  Results  show  that  simplifying  the  heart  as  an  isotropic material  introduces  notable 

discrepancies  in  activation  patterns  and  BSPM  characteristics.  Quantitative  assessment  using 

correlation coefficient and relative error metrics confirms that heart anisotropy plays a critical role in 

generating accurate BSPMs. 

Keywords: Cardiac Electrophysiology; Body Surface Potential Map (BSPM); Monodomain Reaction‐

Diffusion Equation (MD‐RDE); cardiac excitation 

 

1. Introduction 

The conduction system represents the initial excitation points of the heart’s Myocardium which 

in  turn generate  excitation propagation  through  the heart Myocardium. The potential difference 

between activated spaces and inactivated spaces inside the heart produces volume current sources 

(volume sources)  that generate both potential and magnetic  fields, which can be observed on  the 

body surface and outside the body respectively [1]. 

The scope of much of the work deals with identifying the ventricular conduction system. The 

most common models that are used to identify the ventricular conduction system are those described 

by Tawara [2], Massing et. al.[3], and Durrer et. al.[4]. Modeling of the ventricular conduction systems 

involves either assigning the early activation sites according to the measurements of Durrer et. al. [5–

10], or building a network according to the anatomical structure and activation isochrones [11–15]. 

The heart Myocardium has strong anisotropic properties that affect both the electrical and the 

mechanical functions of the heart. Modeling the Myocardium as isotropic material is addressed in 

some models  [5,16–18], but most of  the other models consider  the Myocardium as an anisotropic 

material [11,19–25]. Excitation propagation of the heart is usually modeled in tissue scale based on 

Monodomain Reaction Diffusion Equation (MD‐RDE) [17,20–29]. 

The body can be modeled either as a homogenous or as an inhomogeneous volume conductor. 

For a homogenous volume conductor, it is assumed that all organs including the blood volume inside 

ventricles have the same physical parameters. In contrast, for an inhomogeneous volume‐conductor, 

each organ has its own parameters. Inhomogeneity of the body affects the produced surface potential 

as introduced by Gulrajani and Mailloux [30], where it was shown that the blood mass has the largest 

effect on the body surface potential. 

All of the organs in reality are anisotropic materials. Some tissues such as the skeletal muscles 

have strong anisotropic properties while others like liver and lungs have almost isotropic properties 

[1]. Including organ anisotropy requires a huge amount of data that describes the composition of each 
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organ. However, considering the organs to be an isotropic material is acceptable and this will simplify 

the modeling [1]. 

Some models describe the volume conductor (the body) in terms of an approximate shape, but 

the most widely  used  is  the  realistic  torso  shape.  The  realistic  torso  shape models  are  either  a 

homogenous  volume  conductor  [11,16,24,25,31,32]  or  the  widely  used  inhomogeneous  volume 

conductor  [8,13,17,18,20,33–36].  Most  models  employ  the  body  surface  potential 

[6,8,10,12,13,16,20,23–25,32,35,37], while a minority of models use the heart’s magnetic field map [38].   

This study focuses on measuring the effect of considering the heart’s myocardium an isotropic 

material on the BSPM. The analysis is done for both homogeneous and inhomogeneous body. 

2. Methods 

2.1. The Human Torso and the Human Heart Modeling 

Human torso (Figure 1) has been modeled as inhomogeneous volume conductor using CT‐Scans 

[36] and human heart is modeled as anisotropic volume source [19] using DTI images. The ventricles 

conduction network is extracted as well based on DTI images [15].     

 

Figure 1. System’s layout [37]. 

2.2. Activation Isochrones Modeling 

The excitation propagation isochrones for both the anisotropic heart materials (Figure 2) and the 

isotropic heart material (Figure 3) are constructed using Monodomain Reaction Diffusion Equation 

(MD‐RDE) where the conductivity of the isotropic heart material is taken to be the average of both 

materials (where l =34.4 mS/mm and  t =5.96 mS/mm then  AVG =20 mS/mm) [28]. It was reported 

that  excluding  the  anisotropy  information  about  the  heart material will  significantly  affects  the 
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produced  excitation  propagation  [29] where  there  are  significant  differences  in  activation  time 

between the two cases.   

 

Figure 2. The isochrones for the excitation propagation of the heart when it is considered an Anisotropic material 

[28]. 

 

Figure 3. The isochrones for the excitation propagation of the heart when it is considered an Isotropic material 

[29]. 

3. Results 

As the reference configuration, the heart is considered anisotropic material and the body is an 

inhomogeneous  volume  conductor  where  the  Body  Surface  Potential  Map  (BSPM)  has  been 

constructed  [19].  The  effect  of  the  heart material  isotropy  on  the  BSPM  is measured  based  on 

Coefficient Correlation  (CC)  and Relative  Error  (RE)  between  the  reference  configuration  to  the 

following 2 configurations (Table 1, Figure 4 and Figure 5): 

Conf. 1: Isotropic heart / homogeneous body. 

Conf. 2: Isotropic heart / Inhomogeneous body. 

Table 1. CC and RE between the reference configuration and the two heart’s configurations. 

  CC    RE 

ID  Conf. 1  Conf. 2    Conf. 1  Conf. 2 

1  0.611  0.634    0.845  0.810 

2  0.857  0.835    0.577  0.577 
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3  0.830  0.797    0.567  0.603 

4  0.708  0.574    0.710  0.862 

5  0.818  0.502    0.581  0.966 

6  0.891  0.625    0.562  0.874 

7  0.930  0.739    0.560  0.747 

8  0.963  0.814    0.573  0.660 

9  0.983  0.869    0.582  0.608 

10  0.974  0.900    0.559  0.597 

11  0.955  0.931    0.497  0.565 

12  0.954  0.963    0.417  0.506 

13  0.971  0.979    0.332  0.504 

14  0.983  0.981    0.284  0.578 

15  0.985  0.977    0.304  0.712 

16  0.983  0.980    0.328  0.835 

17  0.968  0.981    0.299  0.927 

18  0.924  0.981    0.387  0.966 

19  0.873  0.975    0.488  0.885 

20  0.805  0.971    0.598  0.751 

21  0.749  0.960    0.665  0.799 

22  0.601  0.954    0.802  0.884 

23  0.068  0.967    1.015  1.014 

           

Mean  0.843  0.865    0.545  0.749 

SD  0.200  0.146    0.180  0.156 

 

Figure 4. CC chart of the isotropic/anisotropic heart’s configurations. 
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Figure 5. RE chart of the isotropic/anisotropic heart’s configurations. 

Finally, the relatively  low CC and the relatively  large RE of both configurations confirm that 

heart anisotropy significantly affects the produced BSPM. 

4. Conclusions 

The  study  demonstrates  that  the myocardial  anisotropy  has  a  significant  influence  on  the 

accuracy  of  BSPM  simulations.  When  the  heart  is  modeled  as  an  isotropic  material,  notable 

differences  in  excitation propagation  and  surface potential distributions  are  observed,  especially 

when  compared  to  the  reference  configuration of an anisotropic heart within an  inhomogeneous 

torso. The relatively low correlation coefficients and high relative errors in simplified configurations 

confirm  that  omitting  anisotropy  leads  to  less  accurate  BSPMs.  These  findings  highlight  the 

importance of preserving myocardial fiber orientation in cardiac modeling for clinical and research 

applications. 
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