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Abstract: This study investigates the effect of assuming isotropic properties for the heart’s
myocardium on the Body Surface Potential Map (BSPM) under both homogeneous and
inhomogeneous torso volume conductor models. The human torso was modeled as an
inhomogeneous volume using CT data, and the heart as a volume source based on diffusion tensor
imaging (DTI), incorporating both anisotropic and isotropic conductivity assumptions. Using the
Monodomain Reaction-Diffusion Equation (MD-RDE), excitation propagation isochrones were
computed. Results show that simplifying the heart as an isotropic material introduces notable
discrepancies in activation patterns and BSPM characteristics. Quantitative assessment using
correlation coefficient and relative error metrics confirms that heart anisotropy plays a critical role in
generating accurate BSPMs.
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1. Introduction

The conduction system represents the initial excitation points of the heart’s Myocardium which
in turn generate excitation propagation through the heart Myocardium. The potential difference
between activated spaces and inactivated spaces inside the heart produces volume current sources
(volume sources) that generate both potential and magnetic fields, which can be observed on the
body surface and outside the body respectively [1].

The scope of much of the work deals with identifying the ventricular conduction system. The
most common models that are used to identify the ventricular conduction system are those described
by Tawara [2], Massing et. al.[3], and Durrer et. al.[4]. Modeling of the ventricular conduction systems
involves either assigning the early activation sites according to the measurements of Durrer et. al. [5—
10], or building a network according to the anatomical structure and activation isochrones [11-15].

The heart Myocardium has strong anisotropic properties that affect both the electrical and the
mechanical functions of the heart. Modeling the Myocardium as isotropic material is addressed in
some models [5,16-18], but most of the other models consider the Myocardium as an anisotropic
material [11,19-25]. Excitation propagation of the heart is usually modeled in tissue scale based on
Monodomain Reaction Diffusion Equation (MD-RDE) [17,20-29].

The body can be modeled either as a homogenous or as an inhomogeneous volume conductor.
For a homogenous volume conductor, it is assumed that all organs including the blood volume inside
ventricles have the same physical parameters. In contrast, for an inhomogeneous volume-conductor,
each organ has its own parameters. Inhomogeneity of the body affects the produced surface potential
as introduced by Gulrajani and Mailloux [30], where it was shown that the blood mass has the largest
effect on the body surface potential.

All of the organs in reality are anisotropic materials. Some tissues such as the skeletal muscles
have strong anisotropic properties while others like liver and lungs have almost isotropic properties
[1]. Including organ anisotropy requires a huge amount of data that describes the composition of each
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organ. However, considering the organs to be an isotropic material is acceptable and this will simplify
the modeling [1].

Some models describe the volume conductor (the body) in terms of an approximate shape, but
the most widely used is the realistic torso shape. The realistic torso shape models are either a
homogenous volume conductor [11,16,24,25,31,32] or the widely used inhomogeneous volume
conductor [8,13,17,18,20,33-36]. Most models employ the body surface potential
[6,8,10,12,13,16,20,23-25,32,35,37], while a minority of models use the heart’s magnetic field map [38].

This study focuses on measuring the effect of considering the heart’s myocardium an isotropic
material on the BSPM. The analysis is done for both homogeneous and inhomogeneous body.

2. Methods

2.1. The Human Torso and the Human Heart Modeling

Human torso (Figure 1) has been modeled as inhomogeneous volume conductor using CT-Scans
[36] and human heart is modeled as anisotropic volume source [19] using DTI images. The ventricles
conduction network is extracted as well based on DTI images [15].
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Figure 1. System’s layout [37].

2.2. Activation Isochrones Modeling

The excitation propagation isochrones for both the anisotropic heart materials (Figure 2) and the
isotropic heart material (Figure 3) are constructed using Monodomain Reaction Diffusion Equation
(MD-RDE) where the conductivity of the isotropic heart material is taken to be the average of both
materials (wWhere 0,=34.4 mS/mm and ©,=5.96 mS/mm then o ,,; =20 mS/mm) [28]. It was reported

that excluding the anisotropy information about the heart material will significantly affects the
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produced excitation propagation [29] where there are significant differences in activation time
between the two cases.

Figure 2. The isochrones for the excitation propagation of the heart when it is considered an Anisotropic material
[28].

Figure 3. The isochrones for the excitation propagation of the heart when it is considered an Isotropic material
[29].

3. Results

As the reference configuration, the heart is considered anisotropic material and the body is an
inhomogeneous volume conductor where the Body Surface Potential Map (BSPM) has been
constructed [19]. The effect of the heart material isotropy on the BSPM is measured based on
Coefficient Correlation (CC) and Relative Error (RE) between the reference configuration to the
following 2 configurations (Table 1, Figure 4 and Figure 5):

Conlf. 1: Isotropic heart / homogeneous body.

Contf. 2: Isotropic heart / Inhomogeneous body.

Table 1. CC and RE between the reference configuration and the two heart’s configurations.

CC RE

ID Conf. 1 Conf. 2 Conf. 1 Conf. 2
0.611 0.634 0.845 0.810

2 0.857 0.835 0.577 0.577
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3 0.830 0.797 0.567 0.603
4 0.708 0.574 0.710 0.862
5 0.818 0.502 0.581 0.966
6 0.891 0.625 0.562 0.874
7 0.930 0.739 0.560 0.747
8 0.963 0.814 0.573 0.660
9 0.983 0.869 0.582 0.608
10 0.974 0.900 0.559 0.597
11 0.955 0.931 0.497 0.565
12 0.954 0.963 0.417 0.506
13 0.971 0.979 0.332 0.504
14 0.983 0.981 0.284 0.578
15 0.985 0.977 0.304 0.712
16 0.983 0.980 0.328 0.835
17 0.968 0.981 0.299 0.927
18 0.924 0.981 0.387 0.966
19 0.873 0.975 0.488 0.885
20 0.805 0.971 0.598 0.751
21 0.749 0.960 0.665 0.799
22 0.601 0.954 0.802 0.884
23 0.068 0.967 1.015 1.014
Mean | 0.843 0.865 0.545 0.749
SD 0.200 0.146 0.180 0.156
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Figure 4. CC chart of the isotropic/anisotropic heart’s configurations.
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Figure 5. RE chart of the isotropic/anisotropic heart’s configurations.

Finally, the relatively low CC and the relatively large RE of both configurations confirm that
heart anisotropy significantly affects the produced BSPM.

4. Conclusions

The study demonstrates that the myocardial anisotropy has a significant influence on the
accuracy of BSPM simulations. When the heart is modeled as an isotropic material, notable
differences in excitation propagation and surface potential distributions are observed, especially
when compared to the reference configuration of an anisotropic heart within an inhomogeneous
torso. The relatively low correlation coefficients and high relative errors in simplified configurations
confirm that omitting anisotropy leads to less accurate BSPMs. These findings highlight the
importance of preserving myocardial fiber orientation in cardiac modeling for clinical and research
applications.
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