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Abstract: African Swine Fever (ASF) outbreak was first recorded in the Philippines in July 2019.
Since then, the disease has spread across provinces in Luzon, Visayas, and Mindanao causing
severe economic consequences for the country’s swine industry. Here, we report the genome
sequencing of ASF virus strains from outbreaks in several provinces of the Philippines between 2021
to 2023, using a long-read tiled amplicon sequencing approach. The coding-complete genomes
generated ranged from 187,609 to 189,540 bp in length, with GC content of 38.4% to 38.5%. Notably,
a strain from Bataan province had a 1.9-kb deletion at the 5’-end affecting several coding regions.
The strains were characterized using 13 genes and regions, namely, B646L gene, CD2v serogroup,
central variable region (CVR) of B602L gene, intergenic region (IGR) between I73R and 1329L genes,
IGR between A179L and A137R, O174L, K145R, Bt/Sj, J268L, ECO2, and multigene family (MGF) 505-
5R, and MGF 505-9R and 10R. The ASFV strains were most related to Asian and European p72
genotype II strains. Genetic profiling provides valuable information on the diversity of local strains
of ASFV in the Philippines, which are useful for epidemiology, diagnostics, and in vaccine
development.

Keywords: African swine fever virus; ASF; genomic epidemiology; whole-genome sequencing

1. Introduction

Infectious diseases remain to be the primary cause of losses in food animal production. In the
Philippines, recent outbreaks of African swine fever (ASF) and bird flu have been adding pressure
on the animal production sector to meet the growing demand for high-value animal protein and
products. Since 2005, ASFV has caused an estimated loss of at least nine million animals globally. In
the Philippines, since its first detection in 2019, at least half a million animal losses were reported.
Along with Indonesia, Malaysia, Thailand, and Vietnam, the Philippines is one of the five Asian
countries  affected by these diseases, with emerging markets in livestock production and
consumption [1].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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First reported in Kenya in the 1920s, ASF is a highly lethal hemorrhagic disease of domestic and
wild swine, with mortality rates approaching 100% [2]. It is caused by a large, enveloped, double-
stranded DNA virus of the genus Asfivirus, family Asfarviridae with a genome size of 170 to 194 kb
[3,4]. The virus replicates predominantly in monocytes and macrophages of the mononuclear
phagocyte system, and in the late stages of infection, other cell types may also be infected[5]. Feeding
of swill or untreated food scraps to animals, and illegal movements (smuggling) of animals and pig
products across boundaries are seen as the most common sources of occurrence and rapid spread of
ASF[6]. ASF virus currently has a very narrow host range with no zoonotic potential, and there are
no indications that this will change[7,8].

Since its re-emergence in Georgia in 2007, ASF has continued to spread across Caucasia and
Eastern-Europe, reaching the Caribbean, China, and several Southeast Asian countries [9-15]. In
the Philippines, the first outbreak was recorded in July 2019, leading to a significant reduction in the
country’s swine population by around 3 million hogs. This has resulted in losses of more than
PHP100 billion and an increase in the prices of pork products. As of April 2024, ASF has already
spread to 17 administrative regions, with a total of 73 provinces [16]. A recent study in the Philippines
pinpointed the primary factors fueling the spread of ASF. The findings highlighted swill feeding, lax
farm safety protocols, and personnel movement as major contributors to the disease's transmission
[17]. ASF has been considered a significant threat to worldwide pork production and currently,
neither therapy nor approved vaccine exists against the disease [18]. However, several countries,
including Spain, have successfully eradicated ASF. This was made possible by sufficient funding
for the establishment of a network of control measures, the deployment of mobile veterinary teams,
and the operation of a reference laboratory for ASF surveillance and outbreak detection [19].

Since the first report of ASF in the Philippines in 2019 and its rapid spread throughout the
country, several genome sequences of locally circulating strains have already been published or
uploaded to online repositories [20,21]. This study aimed to add to that collection of data and to
characterize the genomes of the circulating strains of ASFV from outbreaks in select provinces of the
Philippines between 2021 and 2023 by using a multi-gene-based approach. Specifically, the genomes
of the field strains were characterized based on the B646L gene, CD2v serogroup, central variable
region (CVR) of B602L gene (CVRsez), the intergenic region (IGR) between [73R and I329L genes
(IGRwsr-1329L), IGR between A179L and A137R (IGRairL-a137x), other regions such as O174L, K145R,
Bt/Sj, ]268L, ECO2, and various multigene families (MGF) such as MGF 505-5R, and MGF 505-9R and
10R regions, and were compared to other related ASFV strains. These target genes were analyzed to
monitor the potential emergence of new variants and could be useful in the source tracking of strains.
Genomes were also analyzed for the presence of structural variants, such as long insertion or deletion,
and were also compared to representative genomes of various ASFV genotypes to infer evolutionary
relatedness. To our knowledge, this is the first report on the genetic characterization of genomes of
ASFV strains from outbreaks in the Philippines between 2021 and 2023 generated through a long-
read sequencing platform.

2. Materials and Method

2.1. Sample Collection and Viral DNA Isolation

Whole blood samples were collected from domestic pigs exhibiting signs and symptoms of ASF
by licensed veterinary consultants. The collection followed the guidelines of the Bureau of Animal
Industry, Department of Agriculture (Philippines) during reported outbreaks in several locations in
the Philippines (Table 1). Blood samples were stored in ice or in cool packs and sent to the BioAssets
Veterinary Research and Diagnostic Laboratory (Sto. Tomas, Batangas, Philippines) for molecular
diagnostics and further processing. The total DNA was extracted using the MagMax™ DNA Multi-
Sample Kit (Thermo Fisher Scientific) or the IndiSpin Pathogen Kit (INDICAL Bioscience) following
the manufacturer’s protocol. The quality of the DNA extracts was assessed spectrophotometrically
using the DeNovix DS-11 microdrop spectrophotomer (DeNovix, USA) and visually confirmed by
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agarose gel electrophoresis. The extraction yield and quantity were measured using the Qubit™
1x dsDNA HS Assay Kit (Thermo Fisher Scientific, USA) on Qubit 4.0 fluorometer (Thermo Fisher
Scientific, USA). The presence of the ASF virus in the samples was confirmed either by quantitative
PCR using the VetMax™ African Swine Fever Virus Detection Kit (Applied Biosystems) or the Indical
virotype ASFV 2.0 PCR Kit (INDICAL Bioscience) following the manufacturer’s protocol.

Table 1. Genome sequencing data summary and Cq values of the ten (10) ASFV strains from select provinces in

the Philippines.
NCBI
Cq Assembly Mean Predicted
Strain Province %GC Accession
value length (bp) coverage ORFs
No.

ASFV Philippines/BAN20221-4/2022 Bataan 17.6 187,609 385 4,729x 183 PP737708

ASFV Philippines/PAN20211A/2021 Pangasinan 17.9 189,514 384 3,183x 187 PP737709

ASFV Philippines/BTG2021KSU1-1/2021 Batangas 20.2 189,540 384 4,985x 184 PP737710

ASFV Philippines/MSR202251/2022 Misamis 13 189,514 384 5,576x 175 PP737711
Oriental

ASFV Philippines/NEC20230726003/2023 Negros 19.2 189,537 384 5,092x 188 PP737712
Occidental

ASFV Philippines/NEC20230822001/2023 Negros 18.7 189,528 384 2,673x 188 PP737713
Occidental

ASFV Philippines/NEC20230929004A/2023 Negros 19.9 189,539 384  2,905x 186 PP737714
Occidental

ASFV Philippines/NEC20230929004B/2023 Negros 20.3 189,519 384 3,283x 187 PP737715
Occidental

ASFV Philippines/MDR202311F/2023 Mindoro 19.1 189,501 384 1,022x 187 PP737716
Oriental

ASFV/Philippines/Pangasinan/A4/2021 Pangasinan 21 192,265 38.3 2Ix 187 ON963982.2

2.2. Library Preparation for Targeted Tiled Amplicon Sequencing

For targeted tiled amplicon sequencing, the coding-complete genomic region was amplified
directly from the extracts following a tiling amplicon long-read sequencing protocol [21] with
modifications. Instead of combining the primers into pools, the primer pairs were used individually
to detect primer dropouts and to ensure successful amplification of all pairs prior to library
preparation and sequencing. Alternate primers were designed based on the previous coding-
complete genome sequence we obtained [20] for persistent primer dropouts. Sequences from up to
100 bp upstream of the forward primer and 100 bp downstream of the reverse primer (from low-
performing primer pairs) were obtained and were used in subsequent targeted amplification to fill
in the gaps. Alternate primers were assessed using the NCBI Primer-blast tool [22]. The PCR reaction
was carried out in a 15 ul reaction volume using 1 ul of DNA (5 to 10 ng/ul), 2x PCRBio VeriFi Hot
Start master mix (PCR Biosystems Ltd., UK), 200 nM primers, and the thermocycling conditions were
as follows: 95°C for one min, 40 cycles of 95°C for 15 s, 15 s annealing at 60°C, and 4 min and 40 s
extension at 72°C. Final extension was set at 72°C for 10 min. Amplicons were confirmed visually by
agarose gel electrophoresis (0.8% w/v agarose, 3 V per cm, for up to 1 h).

After PCR, the desired amplicons per sample were pooled and purified using QIAquick PCR
Purification Kit (Qiagen, USA). The purified pooled amplicons were quantified using the Qubit 1x
dsDNA HS Assay Kit (Thermo Fisher Scientific, USA). A total of 200 fmol amplicon DNA per sample
was used as input for the library preparation following the amplicons by ligation (SQK-LSK109)
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protocol for R9.4.1 flow cells (flongle or minlON) with native barcoding (EXP-NBD 104 or EXP-NBD
114) expansion (Oxford Nanopore Technologies [ONT], UK). Barcoded samples were pooled
equimolarly, and final DNA libraries (50 fmol for MinION or 20 fmol for flongle flow cell) were
loaded. Pools of four (4) to six (6) barcoded samples were sequenced at a time on a MinION mk1b
device, and the reads were obtained after 24-h run in MinKNOW Software (v. 23.11.7; ONT). The
genome of Pangasinan A4 strain (2021), on the other hand, was sequenced previously using SQK-
RPB-004 [20].

2.3. Genome Assembly and Annotation

Raw reads were basecalled using the super accurate model (Dorado v. 7.3.9; ONT) and were
demultiplexed in MinKNOW Software (v. 23.11.7; ONT) with default parameters. Basecalled reads
per sample were combined in one fastq file, which was used as input to a snakemake pipeline called
LILO (https://github.com/amandawarr/Lilo) [21]. After obtaining the output from LILO, basecalled
reads were mapped against the resulting scaffolds to assess the assembly quality using minimap2
(https://github.com/lh3/minimap?2) [23]. Sniffles2 [24] was used to detect structural variants (SVs) in
the assembled genomes. For genomes that could not be assembled using LILO, ViralWasm-
Consensus [25] was used as an alternate assembler. Genome coverage was determined using bedtools
[26] (v. 2.31.1), minimap?2 (v. 2.26-r1175) and samtools [27] (v. 1.19.2).

To annotate the assembled genomes, GenBank format of the coding sequences from ASFV strain
Georgia 2007/1 (Accession: NC_044959.2) was obtained from NCBI Nucleotide database and
compared against the assembled genomes in Genome Annotation Transfer Utility (GATU) tool [28]
using default blastn and needle parameters.

2.4. Genetic Characterization and Phylogenetic Analysis

Genomes of the field strains were characterized based on sequences of 13 genes and regions,
namely, B646L gene, EP402R for CD2v serogroup, central variable region (CVR) of B602L gene
(CVRseo2L) [29], the intergenic region (IGR) between I73R and I329L genes (IGRwsrs20t) [30], IGR
between A179L and A137R (IGRa1r-a137%) [31], other regions such as CP204L [32], O174L, K145R [33],
Bt/Sj and J268L [34], ECO2 (IGR between I1329L and I1215L and the partial I215L gene) [35], MGF 505-
5R, and MGF 505 9R and 10R regions [13]. Furthermore, these were compared to sequences of several
related ASFV strains. Additionally, to confirm the B646L genotype of the strains, the latest African
swine fever virus p72 genotyping tool and biotyping [36,37] was employed.

Representative genomes from various genotypes obtained from NCBI Datasets
(https://www.ncbi.nlm.nih.gov/datasets/) were downloaded (accessed on 01 July 2024) and were
compared against the assembled genomes. The entire genome sequences were aligned using the
MAFEFT [38] (v. 7.520) in Unipro UGENE software [39] (v. 48.1) and maximum likelihood trees were
constructed in IQTREE [40] (v. 2.3.1) using ModelFinder [41] and ultrafast bootstrap [42] with 1,000
replicates. Phylogenetic trees were visualized using TreeViewer [43] (v.2.2.0).

3. Results and Discussion

A total of ten (10) representative ASF-positive whole blood samples between 2021 and 2023 were
obtained from six (6) provinces (Figure 1). Of these samples, the most recent was from Mindoro
Oriental, which was a sample from one of the earliest cases in November 2023 in the province.
Samples from Negros Occidental 2023 cases were obtained within a few months prior to the outbreak
in Mindoro Oriental. The coding-complete genomes of the 10 strains were sequenced and assembled
with lengths ranging from 187,609 bp for Bataan 2022 strain to about 189,500 bp for the rest of the
strains (Table 1). Owing to the limitations of the tiled amplicon sequencing method we employed, we
were unable to obtain sequences for the terminal inverted repeat regions at both ends of the genome
[21]. The assembled genome of ASFV/Philippines/Pangasinan/A4/2021 (ON963982.2) is 192,265 bp in
length, which is longer than the assemblies obtained from tiled amplicon sequencing. Shotgun whole-
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genome sequencing of ASFV-positive blood sample was performed using a different library
preparation protocol, resulting to significantly lower mean coverage (21x) compared to tiled
amplicon sequencing (1,022x up to 5,576x). The increased coverage of the tiled amplicons are said to
produce more accurate assembly than shotgun sequencing directly from extracted DNA [21]. All the
10 coding-complete genomes were classified as Biotype 2 together with Georgia 2007/1 and other 120

genotype Il isolates [37].

Province Sample type Number of samples Year
Pangasinan Whole blood 2 2021

Whole blood i 2022
Batangas Whole blood 1 2021
Mindoro Oriental Whole blood 1 2023
Negros Occidental Whole blood 4 2023
Misamis Oriental Whole blood 1 2022

Figure 1. A map of select provinces in the Philippines as sources of ASF-positive samples from 2021 to 2023.

Representative samples were obtained from Luzon, Visayas, and in Mindanao, Philippines.

A maximum-likelihood phylogenomic tree was constructed to further analyze the genome of
ASFVs in the Philippines from the period covered. The tree revealed that the ASFV genomes from
the Philippines clustered together with p72 genotype Il ASFVs, which include strains detected in Asia

and in Europe (Figure 2).
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Figure 2. Maximum-likelihood consensus tree of select ASFV genomes and the genomes of the Philippine strains
inferred using the ultrafast bootstrap implemented in the IQ-TREE software (substitution model: GTR+F+I+R4)
with U18466.2 BA71V genome as the outgroup. The scale bar is given in numbers of substitutions per site and
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bootstrap resampling (1,000 iterations) support values are shown at the nodes. ASFV VP72 genotype II genomes
are highlighted in blue. Support values lower than 70% are not shown.

The complete sequences of genes and genomic regions selected for a multi-gene-based
characterization of the Philippine strains were obtained from annotation and through blastn
homology search with Georgia 2007/1 as the reference strain (GenBank Accession No.: FR682468.2).
The complete B646L and EP402R sequences of the 10 Philippine strains obtained from the assembled
genomes were 100% identical to the corresponding regions of Georgia 2007/1. All the strains belonged
to p72 genotype II and CD2v serogroup 8 (Figures 3 and 4, and Table 2). Among the Eurasian
countries, p72 genotype Il is the most common circulating genotype [14]. Based on several local ASFV
surveillance studies using p72 gene as target, all of the strains so far detected in the Philippines were
p72 genotype 11 [17,44,45]. In South Korea and in many Asian countries, the most frequently detected
p72 genotype Il isolates were classified as CD2v serogroup 8 [14,15]. Furthermore, the strains were
characterized as belonging to CVR1 Georgia variant type based on the CVR regions in the B602L gene
(100% identical to Georgia 2007/1 strain).

| KT795353 ETH/AA XX
S KT795355 ETH/017 XX
KM111294 Ken05/Tk1 IX
TL L27499  Uganda 1X
MN886937 Kitali IX
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M34142 BA71Va |
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PP737708 Philippines/BAN20221-4/2022 I
— OM461370A9 21 3 [}
PP737715 Philippines/NEC20230929004B/2023  II
PP737711 Philippines/MSR2022S1/2022 1]
PP737712 Philippines/NEC20230726003/2023 1]
ON963982 Philippines/A4/2021 1]
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BS: ultrafast bootstrap support PP737714 Philippines/NEC20230929004A/2023  II

Figure 3. Maximum likelihood tree based on the full-length ASFV p72 (B646L) sequence alignment of the
recently sequenced nine strains from the Philippines and select publicly available representative ASFV isolates
from other genotypes with midpoint root. Philippine strains are highlighted in blue and corresponding p72
genotype is indicated. Different genotypes are labeled respectively. Phylogeny was inferred using TVM+V+I
model in IQTREE following 1,000 ultrafast bootstrap iterations. Bootstrap values greater than 70 are indicated at

appropriate nodes and the scale bar indicates nucleotide substitutions per site.
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Figure 4. Maximum likelihood tree of full-length ASFV CD2v (EP402R) protein sequence alignment of the
Philippine strains (highlighted in blue) and representative ASFV strains and corresponding serogroup (SG) is

indicated. Phylogeny was inferred using HKY+F+G4 model in IQTREE following 1,000 ultrafast bootstrap

iterations. Bootstrap values greater than 70 are indicated at appropriate nodes and the scale bar indicates

nucleotide substitutions per site.

Table 2. Comparison of genome features of the 10 ASFV strains from various pig farms in the Philippines

between 2021 and 2023 using 13 genes and regions.
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n to-G)  to-A)
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Amino acid sequence alignment of the tetrameric tandem repeat sequences (TRS) of the B602L
CVR of the Philippine strains showed a 10 tandem amino acid repeat sequence pattern
(BNDBNDBNAA), which is 100% identical to the CVR of Georgia 2007/1 (Figure 5). There is no report
yet of other CVR types and variants in the country and in other Asian countries [14].

QSAYTCADTNVDTCASMCADTNVDTCASMCADTNVDTCASTCTSTEYTDLADPE

| PP737715.1 Philippines/NEC202309290048/2,
| PP737716.1 Philippines/MDR202311F/2023
| ON963982.2 Philippines/A4/2021

| PP737708.1 Philippines/BAN20221-4/2022 C Y
| PP737709.1 Philippines/PAN20211A/2021 c I
| PP737710.1 Philippines/BTG2021KSU1-1/202) c Y
| PP737711.1 Philippines/MSR202251/2022 c Y
| PP737712.1 /20, c I
| PP737713.1 /20. c ¥
| PP737714.1 /2 c L

c Y

c Y

c Y

Figure 5. Amino acid sequence alignment of the tetrameric tandem repeat sequences (TRS) of the central variable
region (CVR) of the B602L gene of the Philippine strains showing a ‘BNDBNDBNAA' pattern with 10 repeating
patterns. Letters in CVR sequence represent the TRS in ASFV strains: A = CAST, CVST, CTST, CASL; B =
CADT, CADI, CTDT, CAGT, CVDT; N =NVDT, NVGT, NVDI; D = CASM. .

The ten local strains were IGRwsr-13201 II variants containing an additional TRS (TATATAGGAA)
pattern (Figure 6). Based on the repetition number of TRS, IGRisr-120L Variants can be classified as
IGR I (two copies), IGRII (three copies), IGR III (four copies), and IGR 1V (five copies) [30]. In Europe
and in Asia, IGR II is the most common genotype. Among the neighboring Asian countries between
2018 and 2023, several IGR I variants were reported in China in 2018, in Vietnam in 2019, and in South
Korea in 2019 and in 2023. IGR III variants were likewise detected between 2019 and 2021 in China,
Vietnam, and in South Korea. IGR IV variants were only detected in Vietnam in 2021 [14]. IGRi73r-1320L
was considered as a genetic marker for p72 genotype II intragenotypic strain discrimination and was
applied in source tracking and tracing of ASFV strains in Eastern Europe [30,33].

!EEEEE;EEEEEEE;EEEEE;E;EEEEE;EEEEE EEE;EEEEE;EEEEEEE;EEEE

22 | 2 20 270 272 214 26 a7 20 2 ame o o0 20 Co 300 a2 a0+ 6 I 0 M2 e 6 D WG A T % A D0 I % 06
FRG682468.2 Georala_2007/1 | KATA TTAABEAATARATAA[CA A AT A A B A AT A T AT A A A T AT AT
MHE81419.1 ASFV/POL/2015/Podiaskle | AATA TTAABCAATAAATAACAAG- - TATATAGGAATATATAGEAATATAT
MK645909.1 ASFV-WbBSO1 AATA TTAABCAATAAATAACAARG- - TATATAGGAATATATAGGAATATAT
MT455800.1 ASFV/Kabardino-Balkaria_19/WB-564 AATA TTAABCAATAAATAACAAG- - TATATAGGAATATATAGGAATATATI IGR |
MI¥306190.1 ASFV/Amur_18/WB-6905 AATA TTAABCAATAAATAACAARG- - TATATAGBAATATATAGGAATATAT
OP§72342.1 Nigeria-RV502 AATA TTAABCAATAAATAACAAG - -« -« -ccmmmraene TATATAGGAATATATAGEAATATAT
MWB56068. 1MAL/19/Karonaa AATA TTAABCAATAAATAACAAG - - - ----------------- TATATAGGAATATATAGGAATATAT
PP737712.1 Phillppines/NEC20230726003/2023 AATA TTAABCAATAAATAAGAA AATATATAGGAATATATAGGAATATAT
PP737713.1 Phillopines/NEC20230822001/2023 AATA TTAABCAATAAATAACAR AATATATABGAATATATAGEAATATAT
PP737714.1 Phillopines/NEC202309290044/2023 AATA TTAABCAATAAATAACAA AATATATABGAATATATAGEAATATAT
PP737715.1 Phillopines/NEC202305290048/2023 AATA TTAABCAATAAATAACAA AATATATABGAATATATAGEAATATAT
PP73770B.1 Phillppines/BAN20221-4/2022 AATA TTAABCAATAAATAAGAA TATATAGEAATATATAGGAATATATAGGAATATAT
PP737710.1 Phillppines/BTG2021KSU1-1/2021 AATA TTAABCAATAAATAACAR TATATAGGEAATATATABGAATATATAGEAATATAT
PP737711.1 Phillopines/MSR202251/2022 AATA TTAABCAATAAATAACAA TATATAGEAATATATAGEAATATATAGEAATATAT
PP737716.1 Phillopines/MDR202311F/2023 AATA TTAABCAATAAATAACAA TATATAGEAATATATAGEAATATATAGGAATATAT
PP737708.1 Phillppines/PAN202114/2021 AATA TTAABCAATAAATAAGAA TATATABEAATATATABEAATATATABGAATATAT | IGRII
ONS63882.2 Phillppines/A4/2021 AATA TTAABCAATAAATAACAAG- - TATATAGGEAATATATABGAATATATAGEAATATAT
MW396979.1 ASFV/Timor-Leste/2019/1 AATA TTAABCAATAAATAACAARG- - TATATAGEAATATATAGEAATATATAGEAATATAT
MW465755.1 VNUA-ASFV-05L1/HaNam/VN/2020 AATA TTAABCAATAAATAACAARG- - TATATAGEAATATATAGEAATATATAGGAATATAT
LS478113.1 Estonia_2014 AATA TTAABCAATAAATAAGAAG- - TATATAGEAATATATAGGAATATATAGGAATATAT
MK128995.1 China/2018/AnhulXCGQ AATA TTAABCAATAAATAACAAG- - TATATAGGEAATATATABGAATATATAGEAATATAT
MK333181.1 DB/LN/2018 AATA TTAABCAATAAATAACAARG- - - - TATATAGEAATATATABGAATATATAGGAATATAT
MK333180.1 Pia/HLI/2018 AATA TTAABCAATAAATAACAARG- - - - -TATATAGEAATATATAGEAATATATAGGAATATAT
MK670729.1 China/Guangxlf2019 AATA TTAAGCAATAAATAACAAGTATATABEAATATATABBAATATATAGBAATATATABBAATATAT |GR III

Figure 6. Nucleotide sequence alignment of the intergenic region (IGR) between 173R and I329L genes. The
Philippine strains belonged to IGR II with one insertion of 10 nucleotides (GGAATATATA) compared to Georgia
2007/1 (GenBank accession no. FR682468.2). .

For IGRawoi-ar, all 10 strains had the same number of TRS (two repetitions of
‘GATACAATTGT’) as in Georgia 2007/1 strain. There was no deletion detected but a C-to-T
substitution were present at the 143rd and 144th positions in all four (4) Negros Occidental strains
and in the Mindoro Oriental strain (Figure 7). Interestingly, these strains were all from 2023 outbreaks
and were reported just several weeks apart. It is possible that these strains came from a common
source.
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Figure 7. Analysis of IGRa179.-a137% of the 10 ASFV strains from select provinces in the Philippines from outbreaks
between 2021 and 2023. Positions 143 and 144 from the start of the IGR of strains from Negros Occidental
(PP737712-PP737715) and from Mindoro Oriental (PP737716) had C-to-T substitution. The reference strain
(Georgia 2007/1, GenBank Acc. No.: NC_044959) is highlighted.

In terms of IGRwmcr 505 9r/10r analysis (Table 2), all 10 strains were identical to Georgia 2007/1 and
were classified as MGF-1 based on the insertion of a 17-nt TRS (GATAGTAGTTCAGTTAA) [46].
Recent expansion of MGF variants were based on the number and type of TRS found near the 9R and
10R genes as variation of the 17nt TRS ‘AGTAGTTCAGTITAAGAT  and
'AGTTCATTTAAGTCAAT’, respectively. Among the IGRwmcr s05 orior variants, MGF-1 (with
ABBCD__EFGHHH pattern) is the largest group, comprising almost 90% of strains from all sampled
countries in one report. Other IGRmcr 505 or/10r variants (MGF-2 to MGEF-8) have been detected in
European countries such as in Russia, Romania, Lithuania, Latvia, and in Poland [35].

The O174L gene can also be used in tandem with other genes or regions in strain tracing and
source tracking [35]. Variants of this gene are divided into three types: variant I, which is 100%
identical to Georgia 2007/1; variant [ with SNP; and variant II, with a 14-nt TRS (CAGTAGTGATTTT)
insertion. All the 10 Philippine strains belong to O174L variant I. Furthermore, K145R and MGF
505-5R genotyping showed that all the Philippine strains are 100% identical to Georgia 2007/1 and
are therefore considered as variant I (Table 2). Variant Il would have C65167A in K145R and G38332A
in MGF 505-5R [33].

The region spanning IGRmsL2150 and partial 12151 gene, which is named as ECO2, has been used
in ASFV strain tracking in Eastern Europe [35]. ECO2 variants can be grouped into four (4) variants:
ECO2-I variant is 100% identical to Georgia 2007/1, while ECO2-II, ECO2-III, and ECOII-IV variants
have the SNP at the 62nd position in I215L gene region, as A498G, and as G446A, respectively. All 10
Philippine strains were ECO2-I variants (Table 2). In Europe and in Asia, most of the ASFV strains
sampled were ECO2-I variants, while several ECO2-III and ECO2-IV variants detected recently in
China [35].

The intergenic Bt/Sj region of all 10 Philippine strains was identical to Georgia 2007/1, while the
J268L and CP204L genes of all but the Batangas 2021 strain (Philippines/BTG2021KSU1-1/2021) were
100% homologous to the reference strain (Table 2). The Batangas 2021 strain has G-to-A substitution
at the 144th position of J268L gene and an A-to-G substitution at the 210th position of CP204L gene
relative to the Georgia 2007/1 sequence.

The genomes of the 10 Philippine strains were also analyzed for presence of structural variant
(short or long indels). A 1.9-kb deletion was detected in the 5'-end of the genome of Bataan 2022 strain
(Philippines/BAN20221-4/2022), which corresponded to the region between 17,000th and 18,939th
positions of the Georgia 2007/1 genome (Figure 8). The deletion affected the MGF 360-6L, MGF 360-
4L and ASFV G ACD 00300 genes.
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Figure 8. Genome alignment of Bataan 2022 strain (PP737708) and Georgia 2007/1 (NC_044959.2) showing the
genes affected by a 1.9 kb deletion corresponding to the 17,000th and 18,939th positions of the reference Georgia
2007/1 genome. MGF 360-4L, ASFV G ACD 00300, and MGF 360-6L genes of the Bataan 2022 strain were affected.

Members of the MGF 360 and MGF 530 were observed to be important in virus cell tropism and
might be required for efficient virus replication in macrophages [47,48]. In the field isolate OURT88/3
and in the tissue-culture adapted BA71V isolates, deletion of 6 members of MGF 360 and up to 2
members of MGF 530 resulted to attenuation [49]. On the other hand, the function or role of ASFV G
ACD 00300 gene is yet to be elucidated. The animal source of the samples from Bataan province
showed acute clinical symptoms suggesting that the strain that infected the animals was not
attenuated despite having a deletion that affected MGF 360-6L and MGF 360-4L.

The analysis of ASFV whole-genome sequence of strains remains to be the most accurate method
for tracing the source of the virus and in understanding its spatiotemporal evolution. However, this
method can be time-consuming and can be limited by the availability of comparable strain data. Our
in-house tiling amplicon long-read sequencing approach allowed us to obtain coding-complete ASFV
genomes that can be subjected to a multi-gene based characterization. Analyzing select gene markers
allows for source tracking, strain tracing, and variants detection, and enables differentiation between
ASFV strains to better understand their introduction and spread. As shown in our data, the
circulating genotype II ASFV strains in the Philippines have already shown evidence of evolution
into several variants depending on the genetic markers analyzed. Further study should focus on
understanding various ASFV subgroups that could already be present in the Philippines through
analysis of additional genetic markers and generation of more whole-genome sequences of strains
from other outbreaks. These information on strains from select provinces in the country are timely,
especially now that the Philippines has authorized the use of modified live ASFV vaccines.
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