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Abstract: The integration of circular economy principles into industrial processes is essential for 
achieving more sustainable materials. This study aimed to develop functional starch-based films by 
exploring the bioactive properties of vine shoot trimmings (VST) and spent hops (SH). Aqueous 
extraction of VST and SH (dried and fresh) was performed at 3%, 5% and 10% biomass at 50°C. The 
resulting extract was mixed with cationized starch and glycerol to prepare the films formulations, 
followed by drying at 65 ºC. All the films presented an excellent UPF of 50+ and water repellence 
properties. Low values of antioxidant activity were detected. The obtained results represent an 
opportunity to produce functional textiles, including leisurewear and outdoor sports garments and 
for footwear applications. 

Keywords: bioeconomy; textiles; starch-based films; functional properties; coloration 
 

1. Introduction 

Textile industry faces an increasing pressure from consumers and European Commission to 
adopt more sustainable raw materials and practices [1,2]. The intensive exploitation of natural 
resources, the contamination of effluents, greenhouse gas emissions, microplastics release, low 
biodegradability of textiles and the low recycling rates are highlighted as the main environmental 
concerns [3–5]. Emerging strategies to address these challenges are primarily focused on the 
implementation of circular economy models. In addition to promoting reuse, repair, eco-design, and 
recycling practices, the textile industry is also striving to implement the use of renewable raw 
materials [6–8]. Biopolymers like chitosan, alginates, poly(lactic acid) [9], bacterial cellulose [10], 
starch [11] and polyhydroxyalkanoates (PHA) [12] are already used in textile applications. In this 
paper starch was selected for the high abundance, thermoplastic properties and possibility to develop 
biodegradable and flexible bio-composites [13,14]. Starch is one of the most abundant biopolymers 
and can be obtained from renewable sources. It is produced by plants as well as certain strains of 
fungi and algae [15,16]. Due to its high absorbency, biodegradability, biocompatibility, and non-
toxicity, starch is widely utilized by various industries, including agriculture [16–18], cosmetics and 
personal care products [19–21], pharmaceutical [15,22,23], food industry [24–26], packaging [27–29] 
and paper industry [30–32]. 

Starch has also known applications related to textile field. Several studies focused on exploring 
starch as flocculant or absorbent of dyes/pigments from wastewaters derived from wet-finishing 
processes like dying and printing [33–36]. Admase et al. (2024), used cassava starch as an eco-friendly 
alternative to petroleum-based adhesives to join materials together by hot melt [37]. An antibacterial 
and hydrophobic polyester woven textile was developed using a ZnO/Zn(OH)₂/starch/stearic acid 
composite applied via dip-coating. The textile material demonstrated antibacterial activity against 
Staphylococcus aureus and exhibited washing durability for up to 20 cycles (antibacterial) and 5 cycles 
(water repellence) [38]. Starch is widely used in the textile industry as a thickening agent in printing 
formulations [39–41]. A patented process involved the use of quaternary ammonium-type cationic 
starch for cotton pre-treatment. The inventor claims that this modification, applied prior to dyeing, 
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shortens processing steps, enhances colour fastness, and improves anti-wrinkling performance [42]. 
Cationic starch was used as a coating pre-treatment for reactive dyeing. With increasing degrees of 
substitution, both dye absorption and colour intensity improved. These results suggest the potential 
for salt-free reactive dyeing [43]. Fernandes et al. (2025) applied cationic starch to develop functional 
textiles exhibiting water repellence with washing durability.[44]. 

The company ®ANGEL provides starch-based solutions for different industries, including textile 
sector. According to the company, starch can be applied to warp threads (sizing) before weaving to 
enhance their strength, stiffness, and smoothness, making them less susceptible to abrasion and 
breakage during the weaving process. Moreover, starch-treated yarns exhibit reduced airiness and a 
smoother surface, which helps minimize tangling and breakage and ultimately enhance production 
efficiency, fabric quality and durability [45]. Besides yarns sizing, BlueCraftAgro® which is 
specialized in starch processing, also mention the use of starch-based finishings to improve a fabric’s 
shine, resistance to wrinkling and as a thickener for printing formulations [46]. The Laundress New 
York sells starch-based sprays to be applied during ironing to achieve a crisp, professional finishing. 
Starch adds body to cotton and linen garments, making ironing easier while enhancing resistance to 
wrinkling and soiling [47]. AGRANA provide starch- based products as sizing agents, adhesives for 
textile webs, printing thickeners, including digital printing applications. These products are 
compatible with other finishing agents such as optical bleaching agents, filling agents, synthetic 
resins and dispersion agents [48]. Starch-based films are already intensively explored for sustainable 
food packaging and preservation offering protection against mold and humidity while extending 
product shelf life [49,50]. Based on our literature review, the use of starch-based films to develop 
functional textiles has not been previously reported. 

In our work, cationic-starch and extracts from vine shooting trimmings (VST) and spent hops 
(SH) were used to develop functional textiles with UV protection, antioxidant and water repellence 
properties. Those findings are relevant for outdoor garments such as leisurewear or sports 
applications. 

2. Materials and Methods 
2.1. Raw Materials 

VST and SH were supplied by Quinta de Amares (Amares, Portugal) and LETRA (Vila Verde, 
Portugal) respectively. Both wastes were dried at 60 °C until a constant weight and <20% moisture 
were obtained. VSTs were ground at 0.25 mm using a Retsch SM 300 cutting mill (Retsch GmbH, 
Haan, Germany). The SH was tested in the dried and fresh form. The fresh SH was frozen (-18°C) 
until use. 

The cationic starch was donated by COPAM (Loures, Portugal). Glycerol was purchased to 
Himedia. 

2.2. Functional Extracts Preparation 

Aqueous extraction was performed at 3 %, 5 %, and 10 % wastes biomass, for a final volume of 
200 mL. The extraction was performed in a laboratory machine that simulates exhaustion dyeing, 
Mathis Labomat (BFA/8), at 50 ºC, 30 rpm for 1 hour. The extracts were filtered using a vacuum pump 
and stored in the fridge (6 °C) until use. 

2.3. Preparation of Starch-Based Films 

The formulations consisted in cationized starch (6.25 % w/w) and glycerol (30 wt. % on the dry 
starch basis) combined with the functional extracts. As a control, water was used instead of the 
functional extracts (referred as control). The formulation was stirred for 10 minutes at room 
temperature. After, the temperature was increased to 80 ºC to start starch gelatinization. The mixture 
was maintained for 45 minutes at continuous stirring. Subsequently, 20 mL of the hot suspension was 
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poured into a silicone mold and remained at room temperature for 3 hours. Then, the formulations 
were dried in an oven Venticell 111 eco line (MMM) at 65 ºC and 10 % ventilation. 

2.4. Starch Films Characterization 

Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) analysis was 
performed to characterize the functional groups of the starch-based films (control and with functional 
extracts). The spectra of the samples was recorded in the range of 680–4000 cm−1 with a spectral 
resolution of 2 cm−1. 

Colour analysis was conducted in a colorimeter (datacolor, Spectro 750), using the standard 
illuminant CIE D65 and an observer angle of 10°. Colour coordinates from CIEL*a*b* colour space, 
where L* corresponds to lightness (value of 100 and 0 corresponds to white and perfect black, 
respectively); a* corresponds to the transition from green (−a*) to red (+a*); and b* corresponds to the 
transition from blue (−b*) to yellow (+b*). Three films (replicates) were measured for each 
concentration and 3 readings were performed for each film. 

The measurement of ultraviolet protection factor (UPF) of the starch-based films was performed 
following the standard in Australia/New Zealand A(S/NZ) 4399. For that, transmittance 
measurements (290 nm and 400 nm) were performed in UV–Vis spectrometer (UV−2600i, Shimadzu, 
Duisburg, Germany). Three films (replicates) were measured for each concentration and 6 readings 
were performed for each film. 

The antioxidant properties were determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) 
method. For that analysis, a film with 100 mg was immersed in 6 mL DPPH solution (0.024 mg/mL 
in ethanol). After 30 min in darkness at room temperature, the absorbance of the solution was 
recorded at 517 nm using a spectrophotometer (Shimadzu UV-2600i ISR-2600Plus). Two replicates of 
each biomass concentration were used. The antioxidant activity was determined as its capacity to 
scavenge the DPPH free radicals, according to the following equation: DPPH radical scavenging activityሺ%ሻ = 𝐴𝑏𝑠 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐴𝑏𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝐴𝑏𝑠 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 × 100 (1) 

Abscontrol corresponds to the absorbance of the control film and Abssample to the absorbance of the 
film with the functional extracts incorporated. 

Hydrophobic and oleophobic properties of the starch-based films were evaluated by measuring 
the contact angles of distilled water (3 µL) and diiodomethane (1 µL), referred to as WCA and DCA, 
respectively. These measurements were performed using a tensiometer (Biolin Scientific Attension 
Theta Flex). For each analysis, contact angle measurements were taken at three different locations on 
each sample. 

2.5. Statistical Analysis 

For statistical analysis, Microsoft Excel 365, and GraphPad Prism (version 10.4.1) were utilized. 
Analysis of variance (ANOVA) and Tukey’s multiple comparisons (α = 0.05) were used to calculate 
the statistically significant differences in the results between groups, and it was considered a 
confidence level of 95 % (p < 0.05) for the experimental results. 

3. Results 

This section presents the characterization of the developed starch-based films. 

3.1. Colorimetric Characterization 

Colour is an essential characteristic for textiles. For that the colour coordinates from CIEL*a*b* 
colour space were accessed and presented in the following figures (Figures 1–3). The control film was 
not considered since it was white and transparent. 
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Figure 1. Variation of L* colour coordinate of the starch-based films developed by the incorporation of VST 
(vine), fresh SH (hop) and dried SH (dried hop) extracts at different biomass concentrations (3 %, 5 % and 10 %). 

As shown in Figure 1, the L* coordinate values decrease with increasing concentrations of waste 
biomass, indicating that higher biomass content results in darker film coloration.VST films presented 
an inferior L* value compared to the SH films at the same, demonstrating darker coloration. Dried 
SH films presented a lower L* coordinate values and, consecutively, a darker colour then fresh SH. 
Statistical analysis reveals that the L* values of VST films differ significantly (p < 0.05) when the 
biomass concentration is increased up to 5% and 10%. For fresh SH, no significant differences were 
observed with changes in biomass concentration. However, in the case of dried SH, using 10% 
biomass led to a significant difference in film lightness compared to 3%. 

 

Figure 2. Variation of a* colour coordinate of the starch-based films developed by the incorporation of VST 
(vine), fresh SH (hop) and dried SH (dried hop) extracts at different biomass concentrations (3 %, 5 % and 10 %). 

As shown in Figure 2, the positive values of the a* coordinate for all films indicate a predominant 
red hue. Both VST and dried SH films showed a decrease in a* values with increasing concentration, 
although these differences were not statistically significant (p < 0.05). VST present higher a* 
coordinate values, indicating a reddish coloration compared to SH films. When comparing the three 
waste sources, statistically significant differences were observed at 3% concentration between VST 
and fresh SH films. 
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Figure 3. Variation of b* colour coordinate of the starch-based films developed by the incorporation of vine shoot 
trimmings (vine), fresh spent hops (hop) and dried spent hops (dried hops) extracts t different biomass 
concentrations (3 %, 5 % and 10 %). 

For all the films, b* coordinate showed only positive values indicating a dominant yellow 
coloration. A general decrease in b* values was observed with increasing biomass concentration. 
These differences were statistically significant (p < 0.05) when the concentration of VSH increased up 
to 3% and of dried SH to 10%. Comparing VST and SH, significant differences were observed at the 
5% biomass concentration. At 10%, significant differences between VSG and fresh SH. Fresh SH films 
have a yellowish colour compared to the dried SH and VST. 

In Table 1 are presented the colour differences (dE) between starch-based films developed with 
extracts containing 5% and 10% waste biomass, compared to the film incorporating the lowest 
biomass concentration of 3% (reference). 

Table 1. Colour difference analysis of the starch-based films. 

Waste biomass 
concentration 

Colour difference (dE) 

VST 3% 
Considered as 

reference 

 
VST 5% 11.3 ± 1.8 

VST 10% 11.2 ± 1.1 

Fresh SH 3% 
Considered as 

pattern 

 
Fresh SH 5% 9.1 ± 4.4 

Fresh SH 10% 10.3 ± 5.1 

Dried SH 3% 
Considered as 

pattern 

 
Dried SH 5% 6.2 ± 2.1 

Dried SH 10% 16.8 ± 4.0 

Analysing the dE values in Table 1, for both VST and SH, increasing the biomass concentration 
up to 3% led to noticeable colour changes but minimal differences were observed between the 5% 
and 10% concentrations for VST and fresh SH. This is an indication of saturation beyond 5%. For 
dried SH, the dE between 3% and 5% is less pronounced compared to VST and fresh SH. However, 
when the concentration increases to 10%, dE reaches the highest value among all the films. 

3.2. FTIR Spectra 

For chemical composition analysis of the starch-based films, the FTIR spectra was recorded 
(Figure 4). 
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Figure 4. FTIR spectra of the starch-based films: the control film and the films incorporating SH (fresh and dried) 
and VST. 

In Figure 4 is shown common absorption bands at around 3400-3200 cm-1 (O- H); 3000-2900 cm-

1 (C-H), 1600 cm-1 (C-O bending associated with OH group) and 1000 cm-1 (C-O) for SH and VST 
starch-based films. The board peak at 3400-3200 cm-1 and the peak at 1000 cm-1 are also found in the 
control (starch-film). However, these peaks are more intense in the films that incorporated the 
functional extracts. 

3.3. UV Protection 

The UV protection conferred by the starch-based films is presented in Table 2. 

Table 2. UV protection of the starch-based films functionalized with the incorporation of extracts from VST and 
SH (fresh and dried) at different concentrations. 

Extract UPF Classification 

Control < 15 N.A. 

VST 3% 50+ Excellent 

VST 5% 50+ Excellent 

VST 10% 50+ Excellent 

Fresh SH 3% 50+ Excellent 

Fresh SH 5% 50+ Excellent 

Fresh SH 10% 50+ Excellent 

Dried SH 3% 50+ Excellent 

Dried SH 5% 50+ Excellent 

Dried SH 10% 50+ Excellent 

All starch-based films incorporating the functional extracts have maximum UV protection (50+), 
classified as “Excellent”, according to Australia/New Zealand A(S/NZ) 4399. The incorporation of the 
functional extracts is responsible for conferring UV protection, since the control film, only made with 
water and starch, exhibited an UPF of 2.19 (UPF < 15). 
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3.4. Antioxidant Properties 

The antioxidant potential of the starch-based films was accessed by DPPH method and 
expressed as percentage of antioxidant activity (Figure 5) 

 

Figure 5. Antioxidant activity (%) of the of the starch-based films developed by the incorporation of VST (vine), 
fresh SH (hop) and dried SH (dried hops) extracts at different biomass concentrations (3 %, 5 % and 10 %). 

From the analysis of Figure 5, it can be observed that the antioxidant activity generally increases 
with the biomass concentration in the extracts incorporated into the films. Statistically significant 
differences (p < 0.05) were only observed in VST films comparing the 3% and 10% biomass 
concentrations. When comparing the different wastes, significant differences were only observed 
between VST and fresh SH films at the 10% biomass concentration. However, the films present lower 
antioxidant properties, corresponding the higher values to VST films at 10% biomass. 

3.5. Watter Repellence 

The characterization of static contact angles of water and diiodomethane for the starch-based 
films are summarized in Table 3. 

Table 3. Static contact angle of water (WCA) and diiodomethane (DCA) on the starch-based films. 

Extract WCA DCA 

Control 53.06 ± 4,61 43.630 ± 9.72 

VST 3% 120.69 ± 1,99 53.77 ± 4.46 

VST 5% 122.99 ± 5,10 58.16 ± 1.96 

VST 10% 120.39 ± 1,13 61.75 ± 1.92 

SH 3% 67.42 ± 0,97 53.42 ± 3.53 

SH 5% 68.09 ± 2,59 51.95 ± 0.70 

SH 10% 79.63 ± 4,90 60.70 ± 4.65 

Dried SH 3% 71.69 ± 4,34 53.90 ± 4.65 

Dried SH 5%   

Dried SH 10% 112.25 ± 5.53 49.80 ± 2.21 

Theoretically, hydrophobic/oleophobic surfaces have WCA/DCA superior to 90°. 
Superhydrophobic/oleophobic surfaces exhibit a WCA/DCA exceeding 150° [30,51]. Starch-based 
films incorporated VST (3%, 5%, 10%) extracts presented the higher WCA (~120°), indicating excellent 
water repellence and hydrophobic behaviour. Little variation is observed between the different waste 
biomass concentrations. The water repellence properties cannot be only attributed to the plasticizing 
effect of cationized starch and glycerol, as films incorporating residue extracts exhibited higher WCA 
values compared to the control. All starch-based films show DCA values below 90°, meaning they do 
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not exhibit oil repellence. However, some improvements were observed with the incorporation of the 
functional extracts, particularly for VST and SH at 10% when compared to the control. 

4. Discussion 

Agro-industrial wastes are known for being rich in colouring components and functional 
ingredients [52–54]. In this study VSH and SH (dried and fresh) were explored for their functional 
properties to develop 100% bio-based films with interesting properties for textile applications. 

All the films exhibited a brown coloration, with noticeable variations in shade intensity ranging 
from lighter to darker colours. As the concentration of waste biomass increased, the colour intensity 
of the films also intensified, as visually demonstrated in the last column of Table 1 and supported by 
the dE values presented in the same table. This colour difference is attributed to variations in the L* 
and b* coordinates. Despite dE values around 10 when comparing fresh SH films at 3% to 5% and 
10% biomass, not statistically significant differences (p < 0.05) were observed in the L*, a*, and b* 
colour coordinates. In the case of VST and SH, the difference is significant increasing biomass 
concentration up to 3% and at 10%, respectively. In contrast, increasing the concentration of fresh SH 
significant changes in the colour coordinates L*a*b*did not occur. Drying SH leaded to the production 
of films with a higher colour intensity (see images in Table 1), with statistic significant differences for 
L* and b* coordinates at 10% biomass concentration (p < 0.05). It is also important to note that the 
standard deviations in the colour coordinates are related to the heterogeneity among the replicated 
films. For that improvements in the drying step are needed. 

FTIR spectra of VST films detected intense bands at around 1000 cm-1, 1500 cm-1 and 1600 cm-1, 
typical peaks found at VST and attributed to the presence of polyphenolic compounds [55]. Those 
peaks are also found in SH films. A broad and intense peak at 3400-3200 cm-1 is also common for the 
control film and VST and SH films and is reported to be related to OH and NH groups. Those peaks 
were also found by other authors in VST [55] and SH [56].The FTIR spectra of the control films (not 
included functional extracts) revelled board peaks at 3400-3200 cm-1 and 1000 cm-1 also reported in 
literature [57]. The main differences detected due to the drying of SH was the higher intensity of the 
bands at 1600 cm-1 and 1450 cm-1, attributed to C -C group of aliphatic and/or unsaturated aromatic 
compounds and C-H bonds of hydrocarbons [58,59]. 

Despite the brown colour, the developed films were not opaque and even semi-transparent. For 
that, the Excellent UV protection (50+) presented by all the films is not exclusively related to 
coloration properties but may be attributed to the functional compounds present in the functional 
extracts. An early patent from 1976 reported the use of hops (Humulus lupulus) as a UV absorber in 
skincare applications [61]. However, Kurzawa et al. (2022) evaluated the sun protection factor (SPF) 
of aqueous extracts from hops and recorded a low to moderate UVA/UVB protection, with SPF 
increasing alongside extract concentration [62]. In our study, starch-based films containing SH 
extracts demonstrated a UV protection of 50+, even at the lowest SH concentration. Regarding wine 
industry wastes, grape seed extracts have been reported to protect fibroblasts from UV-induced 
damage [63]. For VST no information is available in the literature about the UV protection potential. 
Our findings are very relevant, as the use of SH and VST, as waste materials, allowed the 
development of films with a maximum UV protection. 

The antioxidant potential of SH is documented in the literature, primarily due to the presence of 
the phenolic compound xanthohumol in its composition [64–66]. Petrón et al., (2021) quantify an 
antioxidant activity in SH aqueous extracts superior to 70% [67]. VST are also a known source of 
antioxidants and in phenolic compounds such as flavonoids, stilbenes and condensed polyphenols 
[55,60,68]. However, in our study, the VST and SH films showed a low antioxidant activity. Although 
the drying temperature of the films was below 80 °C—the threshold commonly associated with 
antioxidant degradation [69,70]—the low antioxidant activity may be attributed to the extended 
drying duration (approximately 20 hours), which could have led to the degradation of bioactive 
compounds. No statistically significant differences (p < 0.05) were observed between dried and fresh 
SH in terms of antioxidant activity. 
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The incorporation of VST and dried SH extracts at 10% biomass, allowed the development of 
hydrophobic starch-based films. Hydrophobic textiles represent a significant market due to their 
association with self-cleaning, antimicrobial, and water-repellent properties [51]. 

VST are the main waste generated by the wine industry during pruning. Unlike grape pomace, 
which is considered a by-product and valorised in various industrial applications, VST remain 
unexploited considering the large quantity of its production [55,71]. Moreover, the typical disposal 
of VST by open-air burning or composted in the field is associated with negative environmental 
impacts [72,73]. SH (mixture of beer and hop plant) are generated in significant amounts after beer 
fermentation. Some studies report the valorisation of SH as fertilizer, but others mention its disposal, 
contributing to wastewaters contamination [64,65,74]. In fact, the companies that supplied the VST 
and SH confirmed having no existing valorisation routes for these wastes. Our findings are very 
relevant not only considering the development of functional 100% bio-based films but also for the 
valorisation of VST and SH wastes and as a solution for the negative environmental impacts 
associated with linear industrial process. 

5. Conclusions 

Starch-based films with colouring and functional properties were developed by the 
incorporation of aqueous extracts of VST and SH (dried and fresh). 100% bio-based films with UV 
protection of 50+ and water repellent properties were obtained following sustainable and easily 
scalable process for industrial applications. These functionalities are highly valued across various 
sectors, including sportswear, outdoor apparel, medical textiles, furniture upholstery, and footwear. 
Moreover, the use of water-based extracts and starch in the production of the films—without harmful 
chemicals—is significant not only for the manufacturing process but also for the films’ end-of-life. If 
landfilling is considered as the final disposal route, the faster biodegradation of these starch-based 
films, without releasing microplastics like those from PVC, polyurethane, or other petroleum-derived 
materials, further highlights the relevance of this work. The valorisation of VST and SH, which would 
otherwise be burned or discarded, aligns with bioeconomy principles and represents a pathway for 
improving sustainability for industry. 

Author Contributions: Conceptualization, A.M.F.; methodology, MM.; WCA and DWC measurements, VC; 
validation, A.M.F.; investigation, A.M.F. and MM; resources, C.J.S; data curation, A.M.F and MM; writing—
original draft preparation, A.M.F and MM; writing—review and editing, A.M.F; supervision, C.J.S.; project 
administration, C.J.S.; funding acquisition, C.J.S. All authors have read and agreed to the published version of 
the manuscript. 

Funding: The authors acknowledge the financial support from integrated project be@t – Textile Bioeconomy 
(TC-C12-i01, Sustainable Bioeconomy No. 02/C12- i01.01/2022), promoted by the Recovery and Resilience Plan 
(RRP), Next Generation EU, for the period 2021 – 2026. 

Data Availability Statement: The raw data supporting the conclusions of this article will be made available by 
the authors on request. 

Acknowledgments: The authors kindly thank Cervejaria Letra, Quinta de Amares and COPAM for the supply 
of materials. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Abbreviations 

The following abbreviations are used in this manuscript: 

VST Vine shoot trimmings 
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UPF Ultraviolet protection factor 
ATR-FTIR  Attenuated total reflectance–Fourier transform infrared spectroscopy 
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dE Colour difference 
WCA Water contact angle 
DCA Diiodomethane contact angle 
SPF Sun protective factor 
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