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Abstract: Latterly, the development of green synthesized polymeric nanoparticles with anticancer studies has
been an emerging field in academia, and in the pharmaceutical and chemical industry. Vegetable oils are
potential substitutes for petroleum derivatives, as they present themselves as a clean and environmentally
friendly alternative and are available in high quantities at relatively low prices. Biomass-derived chemicals can
be converted into monomers with unique structures, generating materials with new properties for the synthesis
of sustainable monomers and polymers. In this way, the production of bio-based polymeric nanoparticles
appears as a great application of green chemistry for biomedical uses. There is an increasing demand for
biocompatible and biodegradable materials for specific applications in biomedical as cancer therapy,
encouraging scientists in working on research towards designing polymers, with enhanced properties and
clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these
APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability,
reduce problems with volatility and degradation, reduce side effects, and increase treatment efficiency. Thus,
this review aims to discuss the use of green chemistry for bio-based nanoparticle production and its application
in anticancer medicine. The use of vegetable oils for the production of renewable monomers and polymers will
be discussed, bringing castor oil as an ideal candidate for such application, as well as more suitable methods
for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.

Keywords: green chemistry; vegetable oils; bio-based nanoparticles; oncology APIs

1. Introduction

The polymer industry plays a significant role in our society as polymers have become essential
materials in modern societies. But issues with the extensive use of fossil-based raw materials, large
amounts of reagents, and the accumulation of polymeric materials in the environment have
increased. The necessity of releasing the polymer industry from its dependence on depleting
resources represents a significant concern, pushing the search for industrially applicable renewable
alternatives [1].

Materials in the environment give scientists and engineers the possibility to change the
polymerization process intend to develop a sustainable society. Research has focused mainly on
replacing fossil raw materials with renewable alternatives and on developing end-of-life options that
generate materials that are suitable for recycling or biodegradation [2].

The development of sustainable technologies has been dealt with in several ways, one of which
is the application of the principles of green chemistry to various processes. The design of chemical
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products and processes, that reduce or eliminate the use and generation of hazardous substances, is
essential to living without having a negative impact to the environment. The sustainability evaluation
of a product’s manufacture starts from the analysis of the employed feedstock and its extraction. This
consideration highlights the importance of the 7th principle of green chemistry: “a raw material or
feedstock should be renewable rather than depleting, wherever technically and economically
practicable” [3].

A collaborative effort by industry, academia, and the government is needed to promote the
adoption of the green chemistry technologies necessary to achieve a sustainable civilization. The
progress of chemistry research, associated with the industrial revolution, created a new scope for the
preparation of novel polymeric materials based on renewable resources.

Biomass-derived chemicals can be converted into monomers with unique structures, leading to
materials with novel properties, or modified in order to substitute commercial petroleum-based.
Vegetable oils represent one of the most interesting classes of renewables for the synthesis of
sustainable monomers and polymers and it can undergo polymerization by different polymerization
processes, as emulsion solvent evaporation and miniemulsion polymerization via thiol-ene.
Miniemulsion polymerization is a heterogeneous polymerization process used for the production of
polymers in the form of nanoparticles, aiming at different applications of polymeric material. The
thiol-ene reactions can be used in polymer and monomer synthesis and modification, side-chain/end-
group modification, and preparation of various types of branched macromolecules. In the solvent
evaporation technique, polymer solutions are prepared in volatile solvent and emulsions are
formulated. These kinds of polymeric nanoparticles can be used in biomedical and pharmaceutical
applications as antitumor therapy [1,4-6].

Nanoparticles have been of significant interest over the last decade as they offer great benefits
for drug delivery to overcome limitations in conventional chemotherapy for anticancer treatments
for example. Nanoparticles for use as antitumor drug carriers have been in development due to their
many advantages as prolonging the biological circulation time, minimizing non-specific uptake,
preventing undesirable side effects, improving cellular penetration, and allowing for specific cancer-
targeting [7].

A considerable amount of works has been conducted in search of novel cancer therapies using
nanoparticle technology. Combined treatments employ either naturally active ingredients or drugs
already intended for other uses, with the aim to increase cell sensitivity to therapy and reduce drug
toxicity, using a particular pharmaceutical combination and nanotechnology to develop drug
delivery systems for targeting drugs to specific tumors [8].

2. Green Chemistry: monomers and polymers from renewable resources

The term green chemistry, as adopted by the IUPAC, is defined as: the invention, design and
application of chemical products and processes to reduce or to eliminate the use and generation of
hazardous substances. Since their initial appearance in the scientific literature, the terms "green" and
"sustainable" have been increasingly used and are nowadays present in several research areas. Green
chemistry may be considered in the scientific and economical context in which academia, industry
and government are attempting to converge their efforts for the development of a sustainable
civilization [9].

Green chemistry, also called sustainable chemistry, dates from 1991 when the U.S.
Environmental Protection Agency (EPA) launched the Alternative Synthetic Pathways for Pollution
Prevention research program under the auspices of the Pollution Prevention Act of 1990. But the
name green chemistry was officially adopted in 1996. American chemistry Paul Anastas, one of the
principal founders of green chemistry, claimed that by improving how chemicals are synthesized, it
might be possible to prevent the production of pollutants. Also helped, together with John Warner in
1998, to create green chemistry’s 12 principles: as prevent waste wherever possible; design chemicals
that break down into harmless products after they are used; or; use renewable feedstocks [10].

Fossil oil is consumed both in supplying energy as well as in the production of chemicals and
polymers. Its extensive exploitation over the last 60 years has led to the cost-effective easy
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manufacture of daily life products. The increase in the world population and economic development,
along with the decrease of the economically available amount of fossil oil, highlights the issue of its
finite availability. With a regeneration time of several million years, fossil resources are faster
extracted and consumed than they are produced and are thus considered as non-renewable.
Furthermore, environmental concerns related to their production and use, such as greenhouse gas
emission and the disposal of these non-degradable materials that led to serious environmental
pollution, motivate researchers to develop sustainable solutions [3,11].

The progress of chemistry research, associated with the industrial revolution, created a new
scope for the preparation of novel polymeric materials based on renewable resources, first through
the chemical modification of natural polymers from the mid-nineteenth century, which gave rise to
the first commercial thermoplastic materials, like cellulose acetate and nitrate and the first elastomers,
through the vulcanization of natural rubber. Later, these processes were complemented by
approaches based on the controlled polymerization of a variety of natural monomers and oligomers
[12].

The utilization of renewable raw materials, taking advantage of the synthetic potential of nature,
can meet other principles of green chemistry, such as a built-in design for degradation or an expected
lower toxicity of the resulting products [13].

Biomass-derived chemicals can be either converted into monomers with unique structures,
leading to materials with novel properties, or modified in order to mimic commercial petroleum-
based key molecules and monomers. Some of the most widely applied renewable raw materials in
the chemical include plant oils, polysaccharides, sugars, wood, and others. For instance carbon
dioxide is copolymerized with propylene oxide to generate propylene carbonate polyols; Terpenes,
such as limonene, are chemically transformed to limonene oxide and copolymerized with carbon
dioxide to generate poly(limonene carbonate); Triglycerides, from vegetable oils, are transformed
into long chain aliphatic polyesters; Natural carbohydrate polymers, such as starch, are broken down
to glucose, which is subsequently transformed to polymers such as poly(ethylene furoate),
polylactide, bio-derived poly(ethylene terephthalate) or bio-derived polyethylene. Products obtained
from these renewables are as diverse as pharmaceuticals, coatings, packaging materials or fine
chemicals [2,3,13].

Vegetable oils represent one of the most interesting classes of renewables for the synthesis of
sustainable monomers and polymers, as they are available in high amounts, and relatively low prices
make them industrially attractive. Their long aliphatic chain contributes as a major element to the
polymer backbone [1,3,13].

Biodegradable polymers are defined as polymers that are degraded and catabolized, eventually
to carbon dioxide and water, by naturally occurring microorganisms such as bacteria, fungi or algae.
In addition, when they are degraded, these polymers should not generate any substances that are
harmful to the natural environment. Generally, natural materials or synthetic polymers which
contain hydrolysable bonds in the backbone, such as polyamides, polyesters and polyether are
interesting candidates for biodegradation. Several parameters have been reported to influence the
degradation behavior of biodegradable polymers as the chemical composition, the molecular weight,
and the crystallinity of the polymer. Although the biodegradability of a material is independent of
the origin of the starting raw materials used, biomass represents an abundant renewable resource for
the production of biodegradable materials [11].

3. Synthesis of monomers from vegetable oils

Oils of vegetable origin are historically and currently the most important renewable feedstock
of the chemical industry [14]. Due to their universal availability, inherent biodegradability and low
price, vegetable oils have become an area of intensive interest for both academic and industrial
research as platform chemicals for polymeric materials [15].

The major components of vegetable oils are triglycerides (tri-esters of glycerol with long-chain
fatty acids) with varying composition of fatty acids depending on the plant, the crop, the season, and
the growing conditions [13]. Vegetable triglycerides are among the most renewable resources
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exploited in science, in addition to other reasons, because of their unsaturated varieties [12]. A general
molecular structure of triglycerides is demonstrated in Figure 1.

Figure 1. Structure of polyunsaturated triglyceride.

Although triglycerides are found in almost all plants, the quantity that is available varies, and
even common crops such as soybeans are estimated to yield only 20 wt% of triglycerides. Another
challenge is that the chemical compositions of triglycerides vary both between and within a particular
crop [2].

The physical and chemical properties of vegetable oils are mainly determined by the fatty acid
chain length and the numbers and locations of double bonds in the fatty acid chains. Usually, the
length of the fatty chain is between C12 and C20, with oleic acid (C18:1), linoleic acid (C18:2) and
linolenic acid (C18:3) being the most common [15].

The fatty acids account for 95% of the total weight of triglycerides and their content is
characteristic for each plant oil [1]. The structures of some frequently studied fatty acids are depicted
in Figure 2.

Figure 2. Fatty acids commonly used in polymer chemistry: a) oleic acid, b) linoleic acid, c) linolenic
acid, d) erucic acid, e) petroselinic acid, f) ricinoleic acid, g) vernolic acid, h) 10-undecenoic acid.

Fatty acids and esters can be easily obtained either by simple hydrolysis or alcoholysis of
triglycerides. They are valuable renewable building blocks for the synthesis of designed monomers
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in the search for specific polymer properties that do not require extensive chemical modification prior
to their application [1].

There a growing interest in the use of fatty acids as precursors of monomers, not only because
of their renewability, but also because of the properties they can provide to the final molecule [1]. The
most common oils used in this kind of studies are castor oil, due to the hydroxyl group presence, and
soybean oil, due to the low cost and high availability. Castor oil is a very versatile renewable
feedstock for all kinds of polymeric materials, including polyesters, polyamides, polyurethanes, and
many others [16].

A process that has considerable potential is reacting the alkene groups found in unsaturated
fatty esters to produce a, w-diene or a,w-diols. Methyl 10-undecenoic acid, a castor oil derived, was
shown to be a suitable starting material for the preparation of esters with alkene groups that can be
lead in biodegradable polymers [16].

4. Castor oil as renewable raw material

Castor oil, from castor plant (Ricinus communis), a native of tropical Asia and Africa, is one of the
most exploited vegetable oils as raw material for the chemical industry. It is naturalized and
cultivated on commercial scale all around the world in temperate zones. Like other plant oils, castor
oil has to be extracted by a variety of processes or a combination of processes, such as different
pressures and solvent extraction followed by a refining process.

The fatty acids of castor oil consist of up to 90% ricinoleic acid and varying small amounts of
saturated and unsaturated fatty acids as oleic acid, linoleic acid and linolenic acid. The high content
of ricinoleic acid is the reason for the high value of castor oil and its versatile application possibilities
in the chemical industry. From castor oil processing, like from other applications of vegetable oils,
glycerol is obtained as a byproduct, being a platform chemical with widespread application
possibilities in cosmetics, pharmaceuticals, detergents, the manufacture of resins and additives, and
also in the food industry [17].

As mentioned, castor oil is a very useful renewable resource and finds a wide range of
applications for material synthesis in industry. For instance, certain characteristics of castor oil, like
high lubricity, high viscosity over a wide range of temperatures, and insolubility in aliphatic
petrochemical fuels and solvents, make it directly applicable as lubricant; coatings and inks, polymers
and foam. Biotechnology offers ways to alter the composition of castor oil fatty acids with a focus on
processes in the chemical industry with emphasis on development and application in polymer
science. There are several possible chemical transformations of castor oil depending on the reacting
functional group. Ester reaction: hydrolysis, esterification, alcoholysis, saponification, reduction,
amidation, halogenation; Double bond reaction: oxidation, polymerization, hydrogenation,
epoxidation, halogenation, addition reactions, sulfonation, metathesis; Hydroxyl group reactions:
dehydration, hydrolysis, caustic fusion, pyrolysis, alkoxylation, esterification, halogenation,
urethane formation, sulfonation [18].

The pyrolysis of ricinoleic acid at high temperatures (>350 °C) splits the ricinoleate molecule at
the hydroxyl group to form heptaldehyde and undecenoic acid (Figure 3) which is a platform
chemical that can be used to synthesize a large variety of renewable monomers and polymers [18—
20].
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Figure 3. Products of the thermal fragmentation of ricinoleic acid. 1) Ricinoleic Acid, 2) 10-undecenoic
acid, 3) Heptanal.

The use of castor oils as a raw material in the synthesis of polymeric materials is very well
established. Polymers of castor oil are applied in various fields such as wound dressing, drug
delivery, bone tissue engineering and membranes for fuel cell fabrication [21].

A vast array of copolymers is viable when castor oil (or ricinoleic acid) is combined with other
monomers. Materials with varied properties could be obtained by tweaking the chemistry of these
copolymers. Altering of comonomer compositions leads to polyesters with controlled mechanical,
thermal, viscoelastic properties, as well as degradation profiles [22].

Laurentino et al. (2018) synthesized a biobased monomer acrylated ricinoleic acid from castor oil
and copolymerized with methyl methacrylate in miniemulsion forming polymeric nanoparticles. The
addition of the biobased monomer led to a decrease in the glass transition temperature of the
copolymer and to the formation of a small fraction of gel, resulting in materials with interesting
properties for future applications as pressure sensitive adhesives [23].

In the medical field, biodegradable aliphatic polyesters are the preferred materials as
biomaterials because of their biodegradation and biocompatibility. Cardoso et al. (2018) obtained
biocompatible polymeric nanoparticles via thiol-ene polymerization in miniemulsion using a fully
renewable o, w-diene monomer obtained from 10-undecenoic acid and 1,3-propanediol, both derived
from castor oil [24].

Also in the biomedical application of polymers nanoparticles, Machado et al. (2017) synthesized
a poly(thioether-ester) nanoparticles via thiol-ene miniemulsion polymerization using a biobased
a,w-diene monomer, namely dianhydro-d-glucityl diundec-10-enoate, synthesized from 10-
undecenoic acid (derived from castor oil) and isosorbide (derived from starch) [25]. These kinds of
polymers nanoparticles have tremendous scope for further fabrications for the biomedical
application area, including studies for anticancer treatments.

5. Polymeric nanoparticles and some production techniques

Nanoparticles are frequently defined as solid, colloidal particles in the range 10-1000 nm. This is
a collective term given for any type of polymer nanoparticle, but specifically for nanospheres and
nanocapsules. Nanocapsules act as drug reservoirs, due to their vesicular structure, in which the
retained active pharmaceutical ingredients are reserved in an aqueous or non-aqueous liquid core
placed in the vesicle cavity and enclosed by the solidified polymeric shell. On the other hand,
nanospheres are matrix particles, particles whose entire mass is solid and molecules may be adsorbed
at the sphere surface or encapsulated within the particle [6,26].

The field of polymer nanoparticles plays an important role in a wide spectrum of areas ranging
from electronics [27], conducting materials [28], medicine [29,30] and biotechnology [31].

The polymeric nanoparticles are promising vehicles for drug delivery by easy manipulation to
prepare carriers with the objective of delivering the drugs to a specific target and has advantages
such as increases the stability of any volatile pharmaceutical agents; offer a significant improvement
over traditional oral and intravenous methods of administration in terms of efficiency and
effectiveness and delivers a higher concentration of pharmaceutical agent to the desired location. The
choice of polymer and the ability to modify drug release from polymeric nanoparticles have made
them great candidates for cancer therapy, delivery of vaccines, contraceptives, and delivery of
targeted antibiotics [32].

Polymers are very convenient materials for the manufacture of nanoparticles with many
potential medical applications. The polymers used in preparation of nanoparticles should be
compatible with the body in the terms of adaptability and biodegradable. The most commonly used
natural polymers in preparation of polymeric nanoparticles are chitosan, gelatin, sodium alginate
and albumin. The synthetic polymers are mostly represented by Polylactides (PLA), Polyglycolides
(PGA), Poly (lactide co-glycolides) (PLGA), Polyanhydrides, Polyorthoesters, Polycyanoacrylates,
Polycaprolactone, Poly glutamic acid, Poly malic acid, Poly (N-vinyl pyrrolidone), Poly (methyl
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methacrylate), Poly (vinyl alcohol), Poly (acrylic acid), Poly acrylamide, Poly (ethylene glycol) and
Poly (methacrylic acid). Although there are many possibilities of polymers, the application of
derivatives of castor oil, as 10-undecenoic acid, for preparation of monomers used on production of
polymer nanoparticles has been increased [26,32].

Polymers nanoparticles can be conveniently prepared either from preformed polymers or by
direct polymerization of monomers using classical mechanisms. Methods like solvent evaporation
[33], salting-out [34], dialysis [35], and supercritical fluid technology [36], can be utilized for the
preparation of polymers nanoparticles from preformed polymers. On the other hand, polymers
nanoparticles can be directly synthesized by the polymerization of monomers using various
polymerization techniques such as microemulsion, miniemulsion, and interfacial polymerization
(Figure 4) [6].

Solvent 7
; Emulsion
Evaporation
Nanoprecipitation
Dispersion Salting-out

Miniemulsion

Microemulsion

Nanoparticles B
Dialysis Interfacial

Supercritical fluid Controlled/Living

technology radical

Figure 4. Schematic representation of various techniques for the preparation of polymer
nanoparticles.

5.1. Solvent evaporation technique

The emulsification solvent evaporation technique was first reported by Gurny et al. (1981).
Hydrophobic polymer (synthetic, semi-synthetic or natural) and drug (usually lipophilic) are
dissolved in an organic solvent (e.g. chloroform, dichloromethane, ethyl acetate) which is volatile and
water-immiscible. This solution is then emulsified in an aqueous stabilizer solution. Emulsification is
carried out by sonication or under high-energy homogenization to reduce the size of the emulsion
droplets and an emulsion is formed. The organic solvent is then removed by evaporation at room
temperature under stirring or under reduced pressure. Afterward, the solidified nanoparticles can be
collected by ultracentrifugation and washed with distilled water to remove additives such as
surfactants (Figure 5) [6,37-40].
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Figure 5. Scheme of the emulsification-solvent evaporation technique.

Solvent evaporation is the most employed technique to prepare nanoparticles of polymers in the
current literature on techniques using a dispersion of preformed polymers [41-43]. In the
polymerization of monomers, the publications on the miniemulsion polymerization and the
development of a wide range of renewable polymer materials have recently increased substantially

(6]

5.2. Miniemulsion polymerization

The miniemulsion is part of the emulsified polymerization systems and has as main
characteristic the size of the drops and the stability of the final emulsion. A nanoemulsion can be
considered as a conventional emulsion containing very small particles (size ranging from 50 to 500
nm) [44,45].

Ugelstad et al. (1973) were pioneers in the study of polymerizations in miniemulsions describing
the polymerization process in monomer drops. Their discussions led to speculation about the
possibility of nucleation and polymerization in very small monomer droplets during emulsion
polymerization [46].

Asua (2002) defined miniemulsions as dispersions of small monomer drops in water, stabilized
by a surfactant against the coalescence of the drops by the action of the Brownian motion (union of
two or more drops, occurring the rupture of the interface and resulting in a larger drop) and a co-
stabilizer, to minimize diffusional degradation (Ostwald Ripening, a process in which small drops
are grouped by the difference of pressure, leading to an increase in the average size of droplets)[47].
A typical formulation includes water, monomer, co-stabilizing (when used), surfactant and initiator
(which can be soluble in the aqueous or organic phase). The surfactant is dissolved in water, the active
to be encapsulated is dissolved in the monomer and both are mixed under agitation. A shear
mechanism (homogenization) is required to ensure the submicrometric size of the drops [44].

The mechanical homogenization of miniemulsions can be obtained by different methods.
Initially, simple agitation was used as the main means of homogenization. Subsequently the use of
omni-mixers and ultra-turrax was cataloged. However, the energy transferred by these techniques is
not enough to obtain small drops distributed homogeneously. A much higher energy for
fragmentation of large drops into small ones is required. Currently, ultrasonication is used especially
for homogenization of small quantities. While micro-corrugators or high-pressure homogenizers are
favorable for large quantities of emulsion [44].

In the first stage of the miniemulsion polymerization process, small drops are formed by a
system containing the dispersed phase (monomer, active to be encapsulated and co-stabilizer) and
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continuous phase (aqueous phase with a surfactant). The initiator can be added in the dispersed
phase or continuous phase, depending on whether it is hydro or organic soluble. The surface area of
droplets in these systems is very large, and most surfactant is adsorbed on the surface of the droplets
[48]. In the second step the drops are nucleated and polymerized [49,50]. In Figure 6, the scheme of
the miniemulsion polymerization process is demonstrated.

| .
Organic phase|  Sonication :i?\"; ;L"":: Fo Z;nai:i:,tlon ‘ ‘
«© > ,5 |
e e Tas
9 .
L‘Aqu.e{):s phase v .:‘u. ‘ ‘

Stable nanodroplets Stable nanoparticles

(50-500nm)

Figure 6. Scheme of the miniemulsion process. Source: Adapted from [49].

6. Thiol-ene polymerization for nanoparticles production

Thiol chemistry, a versatile tool, was first described in 1905 by Posner. The author reports the
thiol coupling to different types of mono and bi unsaturated compounds such as aliphatics,
aromatics, terpenes, and hydroaromatics. The thiol-ene free radical addition drags special interest
due to its application range and simplicity. Early work on this field has appeared in late 1930s to early
1950s [51].

A patent concerning the polymerization of dithiols and dialkenes via radical additions dates
back to 1941. The reaction is well known to proceed via free-radical mechanism. Generally, radical
reactions are known to be quite fast reactions, and thiol-ene additions offer some additional features
such as robustness and efficiency, which have made this reaction to be considered as one of the click
reactions and very popular during the last years [52].

Like a traditional free-radical polymerization, thiol-ene polymerization reaction proceeds
divided into three stages: initiation, propagation, and termination, plus a chain transfer step. At
initiation, the formation of thiol groups occurs by removing hydrogen. During propagation, the thiol
radical is added to the unsaturated moiety (ene) group of the olefin, which generates an unpaired
electron in the central carbon of the chain. Chain transfer occurs when the central carbon donates the
electron to the thiol group, producing another thiol group, thereby restoring the mechanism (Figure
7). Termination occurs through radical-radical coupling [53].

RS\/\
R4

Thiol-ene product

II
hy . Propagation RS )
RS-H + Initiator — g R-S cycle \/\
or A R4
I
Rq

Figure 7. The mechanism for the hydrothiolation of a C=C bond in the presence of an initiator.
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The efficiency of this reaction, therefore, requires the unsaturation in terminal position and
strongly depends on the thiol compound used. As mentioned above, the propagation step of this
reaction is the addition of a thiyl radical to a C=C double bond and the subsequent abstraction of a
hydrogen atom by the formed carbon radical from another thiol compound, forming a new thiyl
radical. The formation of the carbon radical is reversible and a rate-determining step, which explains
the low reactivity of internal alkenes [52].

There has been impressive growth in the use of the thiol-ene reaction in polymer synthesis and
modification as the use in monomer synthesis and side-chain/end-group modification, preparation
of various types of branched macromolecules, the preparation of inorganic-organic composites,
nanoparticle modification, surface modification, bio-related applications, and crosslinked polymers
[4].

Cases of reactions between vegetable oils or derivatives and thiols are found in the scientific
literature, such as the work made by Turung et al. (2010) that described the use of methyl-10-
undecenoate, a castor oil derived, in thiol-ene reactions [16]. A variety of renewable monomers was
obtained in high yields. Their polymerization was also studied, and the material properties of the
resulting polyesters were investigated revealing good thermal properties, making them possible
candidates for the substitution of petroleum-based materials. Lluch et al. (2010) developed a
methodology that was applied in a biomass-derived monomer of 10-undecenoic acid [54]. Thiol-ene
click step growth polymerization was used to prepare alkene-functionalized linear polymers with
variable molar mass.

Hu et al. (2017) developed a multi-responsive crosslinked-core poly(thioether ester) micelles.
Firstly, a poly (thioether ester) was synthesized by the thiol-ene polymerization using ethanedithiol
and glycidyl methacrylate as monomers [55]. The resultant poly (thioether ester) was then coupled
with carboxyl terminated poly (ethylene glycol) (PEG) and lipoic acid to give a graft copolymer that
could self-assemble into micelles in the aqueous media and turn into crosslinked-core nanoparticles
in the presence of dithiothreitol. The crosslinked-core micelles showed a more compact structure and
higher drug loading efficiency as compared with non-crosslinked micelles. These results indicate that
the cross-linked micelles may provide huge potential for controlled drug delivery in cancer therapy.

In the work of Chen et al. (2014), cationic polymeric nanocapsules were generated as potentially
therapeutic nanocarriers [56]. These nanocapsules were synthesized from allyl-functionalized
cationic polylactide (CPLA) by efficient UV-induced thiol-ene interfacial cross-linking in transparent
miniemulsions. These nanocapsules can effectively bypass the multidrug resistance of cancer cells,
thereby resulting in increased intracellular drug concentration and reduced cell viability.

In virtue of some already mentioned advantages of thiol-ene reactions, as the possibility that be
carried out under mild conditions, the possibility of producing cros-linked and functionalized
structures and improvement of degradability, this kind of reaction is considered a great
environmentally friendly candidate for synthesizing biocompatible and biodegradable polymers for
biomedical application as cancer therapy [24,57-59].

The use of in situ miniemulsion polymerization (polymerization of monomer and encapsulation
of active at the same time) by thiol-ene have been evidenced. The nanoparticles have several
applications: pharmaceutical, biomedical, and cosmetic. These can be administered in different routes
such as intravenous, ocular, oral, intramuscular, subcutaneous and cutaneous. The development of
polymeric nanoparticle formulations containing anticancer-like actives, for example, is a relevant
strategy. This kind of system can increase the bioavailability of encapsulated substances and reduce
problems related to early degradation. In addition, it is possible to functionalize the surface of the
nanoparticles, with a coupling of proteins, for example, focusing on increased circulation in the
biological environment and the possibility of targeted site delivery.

7. Application of polymeric nanoparticles in cancer therapy

Nanoparticles have been of significant interest over the last decade as they offer great benefits
for drug delivery system. In recent times, nanoparticles are extensively employed as biomaterials
because of their favorable characteristics in terms of simple elaboration and design, good
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biocompatibility, and a broad structure variety [7]. Nanoparticles can be considered ideal candidates
for cancer therapy in comparison with other possibilities as chemotherapy [26].

Chemotherapy is a predominant treatment strategy against cancer wherein anticancer drugs are
used to induce cell death in cancer cells. However, it has several limitations such as the requirement
of high drug dose, adverse effects, and multidrug resistance that reduce the efficacy of the therapy.
To overcome the limitations associated with chemotherapy, nanomedicine strategies employing the
formulations of anticancer drugs in various nanocarriers forms have been reported [60].

Nanoparticles for anticancer drug delivery had reached the first clinical trial in the mid-1980s,
and the first nanoparticles (e.g., liposomal with encapsulated doxorubicin) had entered the
pharmaceutical market in 1995. Since then, numerous new nanoparticles for cancer drug delivery are
under development due to their many advantages as enhancing solubility of hydrophobic drugs,
prolonging circulation time, preventing side effects, improving intracellular penetration, and
allowing for specific cancer-targeting [7].

In Table 1 recent uses of nanoparticles for cancer therapy are given. The Polyhydroxyalkanoates
(PHAS) are natural, non-toxic, biodegradable, and biocompatible polyesters. The Cyclodextrin (CDs)
and its derivatives are natural cyclic oligosaccharides and Poly(lactic-co-glycolic acid) (PLGA) is a
copolymer of lactic acid and glycolic acid.

Table 1. Demonstration of currently developed nanoparticles as drug delivery systems for anticancer

application.
. . . . Biological
Polymeric nanoparticles Oncology APIs Nanoparticles production study Ref.
Emulsificati lvent
Ellipticine mulsification/Solven in vitro [61,62]
evaporation
Emulsification/Solvent o
Cisplatin uistica 1on/ oven in vitro [63]
evaporation
Emulsification/Solvent )
Thymoquinone muistica 1on/ oven in vitro [64]
evaporation
Double
Paclitaxel emulsification/Solvent in vitro [65]
Polyhydroxyalkanoates evaporation
(PHASs) nanoparticles Double
5-Fluorouracil emulsification/Solvent in vitro [66]
evaporation
Etoposide Solvent evaporation in vitro [67]
Double
Doxorubicin emulsification/Solvent in vitro [68]
evaporation
Rhodamine B Emulsification/Solvent .
. . . n vitro [69]
isothiocyanate (RBITC) evaporation
Docetaxel Nanoprecipitation in vitro [70]
Cyclodextrin (CDs) Camptothe.:cin Nanoprec%p%tat%on z:n vz:tro [71]
. Acyclovir Nanoprecipitation in vitro [72]
nanoparticles e
. Emulsification/Solvent L
Paclitaxel . in vivo [73]
evaporation method
Thiol- Ay Isi
Zinc phthalocyanine tol-ene mlFuer'nu ston in vitro [74]
polymerization
Thiol- ini Isi d
Poly(thioether-ester) Full-spectrum toTene Mimemuision an L
. . Emulsification/Solvent in vitro [75]
nanoparticles cannabis extract .
evaporation
. Thiol-ene miniemulsion .
4-nitrochalcone L. in vitro [76]
polymerization
Biological
Polymeric nanoparticles Oncology APIs Nanoparticles production 101081€AL  References

study
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Paclitaxel Emuls1f1ca.t1c.)n a?nd Pre c1.1n1ca1 [77]
Nanopracipitation (mice)
Double
Topotecan-tamoxifen emulsification/Solvent in vitro [78]
evaporation
Emulsification/Solvent
Lupeol muistica 1on./ otven in vitro [79]
evaporation
Emulsificati lvent
Gemcitabine muistica 1on./So ven in vitro [80]
evaporation
9-nitro-camptothecin Nanoprecipitation in vitro [81]
Paclitaxel, . _DO‘,lble L
.. emulsification/Solvent in vitro [82]
Doxorubicin .
evaporation
Paclitaxel Nanoprecipitation in vitro [83]
Emulsification/Solvent
Cisplatin mulsification/Solven in vitro [84]
Poly-(lactic-co-glycolic evaporation
o . &Y Paclitaxel/superparam Emulsification/Solvent L
acid) (PLGA) .. . . in vitro [85]
. agnetic iron oxide evaporation
nanoparticles e
. . Emulsification/Solvent L
Tamoxifen, Quercetin . in vitro [86]
evaporation
Docetaxel Nanoprecipitation in vitro [87]
A - e L
Tetrahidrocannabinol Nanoprecipitation in vitro [88]
Doxorubicin Solvent displacement in vitro [89]
Paclitaxel Nanoprecipitation Pre clinical [90]
Bicalutamide Nanoprecipitation in vitro [91]
Emulsification/Solvent
siRNA, Paclitaxel muistica 10n/ otven in vitro [92]
evaporation
Paclitaxel, . POl,lble .
. emulsification/Solvent in vivo [93]
Doxorubicin .
evaporation
Methotrexate Emuls?flcat.lon and in vivo [94]
diffusion
Cisplatin Nanoprecipitation Pre clinical [95]
Biological
Polymeric nanoparticles Oncology APIs Nanoparticles production lztl(:g;ca References
Doxorubicin Solvent displacement in vitro [96]
Pre clinical
Paclitaxel Nanoprecipitation riznclilcr:)ca [97]
Curcumin Nanoprecipitation in vivo [98]
Double Pre clinical
PE38KDL emulsification/Solvent (mice) [99]
evaporation
Paclitaxel and Emulsification/Solvent L
. . . n vitro [100]
magnetic fluid evaporation
Poly-(lactic-co-glycolic Double
acid) (PLGA) Gemcitabine emulsification/Solvent in vitro [101]
nanoparticles evaporation
Emulsificati L
Paclitaxel mu ?l }ca ’10n/ in vitro [102]
Precipitation
Emulsification/Solvent
Capecitabine muisthica 1on/ orven in vitro [103]
evaporation
Emulsification/Solvent
SN-38 mulsification/Solven in vitro [104]
evaporation
Double
BSA emulsification/Solvent in vitro [105]

evaporation
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Quercetin Coordination reaction in vitro [106]
Curcumin Ionic gelation method in vitro [107]
Metformin Ionic gelation method " vlt;;)vz(z)nd " [108]
Chitosan nanoparticles N Ivent-aided
Chlorin e6 On,s otventraice . in vitro [109]
counterion complexation
o vit di
Adriamycin Dialysis method e ;?vzn " [110]
Emulsification/Solvent
Docetaxel muistica 1on./ olven in vitro [111]
evaporation
' vit di
Thalidomide Dialysis method ot ‘Z?vzn " [112]
Polycaprolactone (PCL) o L .
. Nanoprecipitation in vitro and in
nanoparticles Docetaxel . . [113]
technique vivo
it di
Dihydroartemisinin Self-assembly method ot ;?vzn " [114]
Oxymatrine pH gradient method in vitro [115]
Biological
Polymeric nanoparticles Oncology APIs Nanoparticles production 1cs)hc:§;ca References
Paclitaxel and in vi j
acitaxe .an Self-assembly method " vltr? and i [116]
curcumin vivo
Polycaprolactone (PCL) Flutamide Nanoprecipitation method - [117]
nanoparticles 5-fluorouracil Double emulsion technique in vitro [118]
Silibinin Solvent displacement in vztr? and in [119]
process vivo
— I
Doxorubicin Self-assembly method et ;z?vl(l)n " [120]
Cellulose Nanoparticles 5-Fluorouracil co-precipitation method in vitro [121]
Coumarin and oil in water emulsion in vitro [122]

curcumin technique

Nanoparticles utilization in conventional chemotherapy is recognized and have been accepted
by the FDA (Food and Drug Administration) for broader usage. Anticancer drugs entrapment within
nanoparticles guards them against efflux transporters and the nano-sized range accelerates its
entrance through biological membranes. Besides, the polymer shell affords protects the drug against
the body enzymes. Current developments in nanotechnology have revealed many types of targeting
strategies for augmenting drug accumulation into the tumor while restricting the undesirable toxicity
to normal cells. As the nanoparticles designed for targeted drug delivery systems, that increase the
anticancer active ingredients delivered in tumors and no affecting non-cancerous regions [26].

Some of the applications of nanoparticles in cancer therapy can be seen in the work of Vivek et
al. (2014) that developed a novel biodegradable antibody conjugated polymeric nanoparticles
designated for targeted delivery in breast cancer receptors [60]. The formulated nanoparticles were
capable of sustained pH depended drug release. The results indicated that the formulated
nanoparticles were found to provide better anticancer and inhibitory activity against breast cancer
cells than the free anticancer agent by in vitro and in vivo evaluations.

Han et al. (2012) evaluated the inhibition of glioma growth in vivo by combining the interstitial
chemotherapy and the targeting drug delivery strategy [123]. They developed 3-bis(2- chloroethyl)-
1-nitrosourea-loaded wafers that were implanted in the tumor and 3-bis(2- chloroethyl)-1-
nitrosourea-loaded poly(lactic acid) nanoparticles decorated with transferrin that were administrated
by intracarotid perfusion. The results showed that the combined therapy significantly prolonged the
survival time of glioma-bearing rats in comparison with either treatment alone.

Feuser et al. (2016) synthesized and characterized Zinc (II) phthalocyanine loaded poly(methyl
methacrylate) obtained by miniemulsion polymerization for photodynamic therapy in leukemic cells
[124]. The cytotoxicity and phototoxicity studies indicated that the nanoparticles improving the
photobiological activity of zinc phthalocyanine on leukemic cells. Although good results of Zinc (II)
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phthalocyanine loaded poly(methyl methacrylate) were obtained for photodynamic therapy, the
poly(methyl methacrylate) is not a biodegradable polymer. Boosting other works with new kinds of
renewable and biodegradable polymer as poly(thioether-ester).

Due to reasons exploited, nanoparticles present many applications in cancer remediation. There
are a lot of possibilities of nanoparticle technology that need to be explored to harness their
remarkable perspective as a new class of targeted remediation for cancer therapy.

8. Oncology Active Pharmaceutical Ingredients (APIs)

According to the World Health Organization (WHO), an active pharmaceutical ingredient (API)
is any substance or combination of substances used in a finished pharmaceutical product, intended
to furnish pharmacological activity or to otherwise have a direct effect in the diagnosis, cure,
mitigation, treatment or prevention of disease, or to have direct effect in restoring, correcting or
modifying physiological functions in human beings [125].

Oncology or anticancer APIs also called antineoplastic drugs refer to the biologically active
components present in anti-cancer drugs. They are effective in the treatment of malignant, or
cancerous, disease. There are several major classes of oncology APIs. These include alkylating agents,
antimetabolites, natural products, hormones, and a great number of assets that demonstrate
anticancer activity and are used in the treatment of malignant diseases.

Nanoparticles containing oncology APIs offer a different alternative to conventional treatments,
mostly due to their targeted delivery and action. They also can be used as biosensors, allowing cancer
detection or carriers in targeted drug delivery to specific locations [126].

The nanoencapsulation of APIs exhibits other advantages over conventional medical
methodologies.

The nanoparticles have the ability to target and enter into selective tissue at the molecular level;
Provide a large surface area and high absorption rate; Increase cellular uptake and drug localization;
Accurate and targeted drug delivery to cancerous cells without interactions with healthy cells; Use
lower dosage due to the encapsulation of drugs or small molecules; Improve uptake of poorly soluble
drugs; Decrease medicinal toxicity; Minimize or suppress the resistance arising from the
physiological barriers in the body [126,127]. For these and other reasons already mentioned, new
oncology APIs have been studied in cancer treatment strategies. Table 2 brings examples of new
oncology APISs for cancer treatment.

Table 2. Examples of new oncology APIs for cancer treatment.

Oncology (APIs) Kinds of Cancer Biological study References
Breast, lung, liver, y .
Quercetin reast, ung, ven in vitro and in vivo [128-131]
colon cancers, intestine
Bevacizumab Colorectal, glibastoma in vitro and vitro [132-135]
th th
Catharanthus roseus Breast, cervical, liver in vitro [136-138]
extract
1 1, col
Irinotecan Colorecta ! coon, in vitro [139-141]
gastric
Isolated cannabinoids Melanoma, glioma, in vitro. in ovo and
or full-spectrum ovarian, leukemia, i;; vivo [75,88,142,143]
cannabis extract adenocarcinoma, lung
Prostate, tic, . .
Olaparib rostate, pancreatic in vitro and vitro [144-146]
breast, ovarian
Podophyllum extract Carcinoma, breast in vitro [147-149]
Gli , gliobast , L )
Temozolomide toma 1%1 ;Og astoma in vitro and vitro [150-152]
Vemurafenib Resistent melanoma in vitro and vitro [153,154]
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Breast, liver, carcinoma,
Zinc phthalocyanine cervical in vitro and in vivo [74,155,156]
adenocarcinoma

9. Conclusions

The necessity of releasing the polymer industry from its dependence on non-renewable
resources represents a significant concern. In this way, vegetable oils represent one of the most
interesting renewables classes for synthesizing sustainable monomers and polymers that can be
applied for biomedical as nanoparticles containing active pharmaceutical ingredients for anticancer
therapy. Nanoparticles are rapidly changing the direction of cancer treatment, they can deliver the
oncology APIs to a specific target, such as a tumour region, and control the delivery release,
increasing the effectiveness of treatments and reducing possible side effects. Incorporating the
enhanced properties of green synthesized nanoparticles loaded oncology APIs into cancer treatment
and diagnosis has opened new possibilities for biomedical applications and presents itself as a
promising future.
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