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Abstract

In this short note we present a technique using which one attributes
frequency and wavevector to (almost) arbitrary scalar fields. Our pro-
posed definition is then applied to the classical wave equation to yield a
novel nonlinear PDE.
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Harmonic waves posses a special significance in the foundations of mod-
ern physics as the notions of frequency and wavevector which are charac-
teristics of harmonic waves appear explicitly in Einstein-Planck relation
FE = hw and de Broglie hypothesis p = hk. Being the cornerstones of
Fourier analysis, importance of harmonic waves is not limited to physics
and the study of such waves is a lively field of mathematical research to
the extent that harmonic analysis is a major branch of analysis.

The monumental importance of harmonic waves in foundations of quan-
tum mechanics suggests that they must be thought of as being more than
mere Fourier transform variables. Indeed a strong reading of ' = hw and
p = hk suggests that all waves are harmonic and if one is not it must be
enforced to become a harmonic wave. This is the maxim that we follow in
this note: we propose a definition using which one can attribute frequency
and wavevector to all sufficiently smooth non-zero scalar fields. To moti-
vate our definition we start from the simplest case of a forward-in-time?
harmonic wave ¢ : R3 x R — C

¢(X7 t) — ei(k~x—wt);
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I Basically the reason for this assumption is the notion of arrow of time.

by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202109.0217.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2021 doi:10.20944/preprints202109.0217.v1

now observe that

% = —iwe
and
V¢ = iko.

The prima facie approach that has been thoroughly pursued both in quan-
tum physics and mathematics[1] is to take these equations as defining
eigenvalue problems for operators & and k. This eigenvalue perspective
however need not necessarily be the case: notice that one can well have
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and v

for a non-zero ¢. This observation suggests the following

Definition 1 (Harmonisation of a non-zero scalar field). Let ¢ : R* xR —
C\{0} and ¢ € C*. Then

109 _ .V
W= g a0 k= i (1)
This definition can now be substituted in
Definition 2 (The Classical Wave Equation).
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v =22, (2)
where w
C .= W (3)

for a harmonic wave?,

to arrive at the following novel nonlinear PDE:

Corollary.
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Proof. To substitute (1) in (2) we need to utilise (3) which requires us to
specify the norm of k, which is naturally seen to be the usual norm of C*:
Since according to (1), k is a complex vector we have

Vv Vo, _ |Ve?
iv2) (i) =
¢ ¢ ]2
where dot denotes euclidean inner product and k is the complex conjugate

of k; as usual | - | denotes the modulus of a complex number. By a similar
rationale

IK]* = (k) =k - k= (~

idp., i0p, 1 2
sor’"gor) T jop

2The norm depends on the space in which ¢ lives. ¢ can well be a real harmonic wave, like
¢(x,t) = sin(k - x —wt). Therefore we do not here in this definition specify a particular norm.
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therefore

2 _ |5l

s=1gl ©)
Substituting (5) in (2) now yields (4). O
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