

Harmonisation of Classical Wave Equation

Alireza Jamali*

Senior Researcher

Natural Philosophy Department, Hermite Foundation[†]

alireza.jamali.mp@gmail.com

September 9, 2021

Abstract

In this short note we present a technique using which one attributes frequency and wavevector to (almost) arbitrary scalar fields. Our proposed definition is then applied to the classical wave equation to yield a novel nonlinear PDE.

Keywords— harmonic analysis, nonlinear partial differential equation

Harmonic waves possess a special significance in the foundations of modern physics as the notions of frequency and wavevector which are characteristics of harmonic waves appear *explicitly* in Einstein-Planck relation $E = \hbar\omega$ and de Broglie hypothesis $\mathbf{p} = \hbar\mathbf{k}$. Being the cornerstones of Fourier analysis, importance of harmonic waves is not limited to physics and the study of such waves is a lively field of mathematical research to the extent that *harmonic analysis* is a major branch of analysis. The monumental importance of harmonic waves in foundations of quantum mechanics suggests that they must be thought of as being *more* than mere Fourier transform variables. Indeed a strong reading of $E = \hbar\omega$ and $\mathbf{p} = \hbar\mathbf{k}$ suggests that all waves are harmonic and if one is not it must be *enforced* to become a harmonic wave. This is the maxim that we follow in this note: we propose a definition using which one can attribute frequency and wavevector to all sufficiently smooth non-zero scalar fields. To motivate our definition we start from the simplest case of a forward-in-time¹ harmonic wave $\phi : \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{C}$

$$\phi(\mathbf{x}, t) = e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)};$$

*Corresponding author.

[†]3rd Floor - Block No. 6 - Akbari Alley - After Dardasht Intersection - Janbazané Sharghi - Tehran - Iran

¹Basically the reason for this assumption is the notion of *arrow of time*.

now observe that

$$\frac{\partial \phi}{\partial t} = -i\omega\phi$$

and

$$\nabla\phi = i\mathbf{k}\phi.$$

The *prima facie* approach that has been thoroughly pursued both in quantum physics and mathematics[1] is to take these equations as defining *eigenvalue* problems for operators $\hat{\omega}$ and $\hat{\mathbf{k}}$. This eigenvalue perspective however need not *necessarily* be the case: notice that one can well have

$$\frac{\partial \phi}{\partial t} \frac{1}{\phi} = -i\omega$$

and

$$\frac{\nabla\phi}{\phi} = i\mathbf{k}$$

for a non-zero ϕ . This observation suggests the following

Definition 1 (*Harmonisation* of a non-zero scalar field). *Let $\phi : \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{C} \setminus \{0\}$ and $\phi \in \mathcal{C}^2$. Then*

$$\boxed{\omega := \frac{i}{\phi} \frac{\partial \phi}{\partial t}, \quad \mathbf{k} := -i \frac{\nabla\phi}{\phi}} \quad (1)$$

This definition can now be substituted in

Definition 2 (The Classical Wave Equation).

$$c^2 \nabla^2 \phi = \frac{\partial^2 \phi}{\partial t^2}, \quad (2)$$

where

$$c := \frac{\omega}{\|\mathbf{k}\|} \quad (3)$$

for a harmonic wave²,

to arrive at the following novel nonlinear PDE:

Corollary.

$$\boxed{\left| \frac{\partial \phi}{\partial t} \right|^2 \nabla^2 \phi = \frac{\partial^2 \phi}{\partial t^2} |\nabla\phi|^2} \quad (4)$$

Proof. To substitute (1) in (2) we need to utilise (3) which requires us to specify the norm of \mathbf{k} , which is naturally seen to be the usual norm of \mathbb{C}^3 : Since according to (1), \mathbf{k} is a complex vector we have

$$\|\mathbf{k}\|^2 = \langle \mathbf{k}, \mathbf{k} \rangle = \mathbf{k} \cdot \bar{\mathbf{k}} = (-i \frac{\nabla\phi}{\phi}) \cdot (i \frac{\nabla\bar{\phi}}{\bar{\phi}}) = \frac{|\nabla\phi|^2}{|\phi|^2}$$

where dot denotes euclidean inner product and $\bar{\mathbf{k}}$ is the complex conjugate of \mathbf{k} ; as usual $|\cdot|$ denotes the modulus of a complex number. By a similar rationale

$$\omega^2 = \langle \omega, \omega \rangle = \omega \bar{\omega} = \left(\frac{i}{\phi} \frac{\partial \phi}{\partial t} \right) \left(-\frac{i}{\bar{\phi}} \frac{\partial \bar{\phi}}{\partial t} \right) = \frac{1}{|\phi|^2} \left| \frac{\partial \phi}{\partial t} \right|^2$$

²The norm depends on the space in which ϕ lives. ϕ can well be a *real* harmonic wave, like $\phi(\mathbf{x}, t) = \sin(\mathbf{k} \cdot \mathbf{x} - \omega t)$. Therefore we do not here in this definition specify a particular norm.

therefore

$$c^2 = \frac{\left| \frac{\partial \phi}{\partial t} \right|^2}{|\nabla \phi|^2}. \quad (5)$$

Substituting (5) in (2) now yields (4). \square

References

[1] Brian C. Hall. *Quantum Theory for Mathematicians*. Springer-Verlag New York, 2013.