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Article
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Abstract: Variable selection methods have been a focus in the context of econometrics and statistics
literature. In this paper, we consider additive spatial autoregressive model with high-dimensional
covariates. Instead of adopting the traditional regularization approaches, we offer a novel multi-
step sparse boosting algorithm to conduct model-based prediction and variable selection. One main
advantage of this new method is that we do not need to perform the time-consuming selection of tuning
parameters. Extensive numerical examples illustrate the advantage of the proposed methodology. An
application of Boston housing price data is further provided to demonstrate the proposed methodology.

Keywords: sparse boosting; variable selection; spatial autoregressive model; additive model; instru-
ment variable

1. Introduction
Spatial data, also known as geospatial data, commonly appear in fields such as environmental

health, economics, and epidemiology. This type of data can be represented by numerical values in
a geographic coordinate system. The spatial autoregressive (SAR) model, which includes a spatially
lagged term of the response variable to account for spatial dependence among spatial units, has become
an important research topic in recent econometrics and statistics literature. Significant developments
in the estimation and inference of this model can be found in the works of Cliff and Ord [1], Anselin
[2], Robert [3], among others.

The linear SAR model, which extends the ordinary linear regression model by incorporating a
spatially lagged term of the response variable, has been extensively studied [4–8]. However, it imposes
assumptions that might be unrealistic in practice, rendering it inefficient if not correctly specified. To
enhance model flexibility and adaptability, the nonparametric SAR model allows for investigating the
relationship between the response variable and predictors without assuming a specific shape for the
relationship. This model has recently gained much attention from econometricians and statisticians.
One of the most powerful and useful models in spatial statistics is the partial linear SAR model,
where the spatially lagged response variable and some predictors enter the model linearly, while the
remaining predictors are incorporated nonparametrically. Specifically, Su and Jin [9] proposed a profile
quasi-maximum likelihood estimation method for the model. Koch and Krisztin [10] proposed an
estimation method based on B-splines and genetic algorithms. Chen et al. [11] proposed a two-step
Bayesian approach based on kernel estimation and Bayesian methods for inference. Krisztin [12]
proposed a novel Bayesian semiparametric estimation method combining penalized splines with
Bayesian methods. Li and Mei [13] proposed a method to test linear constraints on the parameters of
the partially linear SAR model.

Beyond the partial linear SAR model, Su [14] studied the SAR model, where the spatially lagged
response variable enters the model linearly and all predictors enter nonparametrically, proposing
semiparametric GMM estimation under weak moment conditions. Wei et al. [15] studied SAR models
with varying coefficients to capture heterogeneous effects of covariates and spatial interaction. Du
et al. [16] considered a class of partially linear additive SAR models and proposed a generalized

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 February 2025 doi:10.20944/preprints202502.0644.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202502.0644.v1
http://creativecommons.org/licenses/by/4.0/


2 of 14

method of moments estimator. Cheng and Chen [17] studied partially linear single-index SAR models
and proposed profile maximum likelihood estimators. In this paper, we will consider the additive
SAR model, which is more flexible than the SAR model examined in [14], as it includes only one
nonparametric component, easing the curse of dimensionality issue. In particular, we will address
high-dimensional data settings where the dimensionality of predictors may exceed the sample size.

Data science is an ever-expanding field. High-dimensional models, where the feature dimension
grows exponentially or non-polynomially fast with sample size, have become a focus in statistical
literature. Including irrelevant features in the model can lead to undesirable computational issues and
unstable estimation. To address these challenges, variable screening and selection techniques have
been developed. Among these developments, penalized approaches such as lasso [18], SCAD [19],
MCP [20], and their various extensions [21–23] have been thoroughly studied to identify important
covariates and estimate the coefficients of interest simultaneously, thereby improving the prediction
accuracy and interpretability of statistical models. For example, following the idea of group lasso [23]
and adaptive lasso [22], Wei et al. [15] proposed a local linear shrinkage estimator for the SAR model
with varying coefficients for model selection. Nevertheless, these regularization methods have one
major disadvantage: they all involve tuning parameters that must be chosen using computationally
intensive methods such as cross-validation.

In recent decades, boosting methods have become an effective alternative tool for high-
dimensional data settings to perform variable selection and model estimation. They offer several
advantages, such as relatively smaller computational cost, lower risk of overfitting, and simpler ad-
justments to incorporate additional constraints. Boosting was initially conceptualized as a machine
learning algorithm that constructs better base learners to minimize the loss function with every itera-
tion. The original version of the boosting algorithm proposed by Schapire [24] and Freund [25] did not
fully exploit the potential of base learners. This changed when Freund and Schapire [26] proposed the
AdaBoost algorithm, which could adapt to base learners more effectively. Following the development
of this algorithm, many other boosting algorithms have been formulated, with major variations in their
loss functions. For instance, AdaBoost with the exponential loss, L2Boosting [27] with the squared
error loss, SparseL2Boosting [28] with the penalized loss, and HingeBoost [29] with the weighted hinge
loss. Other versions of boosting algorithms proposed recently include pAUCBoost [30], Twin Boosting
[31], Twin HingeBoost [29], ER-Boost [32], GSBoosting [33], among others. As demonstrated by Yue et
al. [34–37], sparse boosting achieves better variable selection performance than L2Boosting as well as
some penalized methods such as lasso. However, the application of (sparse) boosting approaches in
high-dimensional SAR models has not yet been investigated.

However, there currently exists a lack of exploration regarding the application of (sparse) boosting
methods in the study of high-dimensional spatial autoregressive (SAR) models, which provides
an opportunity for further investigation in this research. This paper focuses on additive spatial
autoregressive models with high-dimensional covariates and proposes a novel multi-step sparse
boosting algorithm aimed at model-based prediction and variable selection, rather than relying on
traditional regularization methods. A significant advantage of this new method is that it eliminates the
need for time-consuming tuning parameter selection, thereby enhancing the convenience of modeling.
Our approach is designed specifically for high-dimensional additive spatial autoregressive models,
improving the flexibility and adaptability of the model in complex situations. Extending existing
boosting techniques to such complex model structures presents a considerable technical challenge and
requires deeper exploration both theoretically and practically. The detailed research presented in this
paper facilitates the first application of this method in the field, thereby providing a foundation for
future research. Through simulation studies and real data examples, we demonstrate the superior
performance of the proposed method compared to various alternative algorithms. Our results not
only fill the existing research gap in the literature but also offer empirical support for the multi-step
sparse boosting method as an effective tool for high-dimensional data analysis, especially in scenarios
involving complex relationships among variables.
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The rest of the paper is organized as follows. In Section 2, the additive autoregressive model is
formulated, and a multi-step sparse boosting algorithm is proposed. In Section 3, simulation studies are
conducted to demonstrate the validity of this multi-step method. In Section 4, the performance of the
multi-step sparse boosting method is evaluated by analyzing Boston housing price data. Concluding
remarks are given in Section 5.

2. Methodology
2.1. Model and Estimation

Consider the following additive spatial autoregressive model:

Y = ρWY +
p

∑
j=1

gj(Xj) + ϵ, (1)

where Y = (y1, · · · , yn)T is the n × 1 vector of the observations of the response variable with n being
the number of spatial units, W is an n × n spatial weight matrix of known constants with zero diagonal
elements and WY is referred to as spatial lag of Y, ρ is the spatial autoregressive parameter with
|ρ| < 1, Xj = (X1j, · · · , Xnj)

T is the n × 1 vector of the j-th regressor and X = (X1, · · · , Xp) is the n × p
observed matrix of regressors. For simplicity, the covariates X1, · · · , Xp are assumed to be distributed
on compact intervals [a1, b1], · · · , [ap, bp] respectively. gj(.)s are unknown smooth functions on [aj, bj]

with the assumption that E[gj(Xj)] = 0 for identifiability purpose. ϵ = (ϵ1, · · · , ϵn)T is an n × 1 vector
of i.i.d disturbances with zero mean and finite variance σ2.

The smoothing splines technique is typically used to estimate the unknown functions, demon-
strating steady performance in practice. In this paper, we will use B-spline basis functions to ap-
proximate the unknown coefficient functions gj(.), j = 1, · · · , p. Let B(.) = (B1(.), . . . , BL(.)) be an
equally spaced B-spline basis, where L is the dimension of the basis. Similar to Huang et al. [38],
let B̄l j =

1
n ∑n

i=1 Bl(Xnj), πl j(.) = Bl(.) − B̄l j, πj(.) = (π1j(.), · · · , πLj(.)). Then under appropriate
smoothness assumptions, gj(.) ≈ ∑L

l=1 πl j(.)αl j = πj(.)αj for j = 1, · · · , p. Then the spline estimator
of g(.) = ∑

p
j=1 gj(.) is ĝ(.) = π(.)α, where π(.) = (π1(.), · · · , πp(.)), α = (αT

1 , · · · , αT
p )

T . It is obvious
that ∑n

i=1 ĝj(Xij) = 0 for j = 1, · · · , p.
Then the model (1) can be rewritten as follows

Y ≈ ρWY +
p

∑
j=1

πj(Xj)αj + ϵ

= ρWY + πα + ϵ,

(2)

where π = (π1(X1), · · · , πp(Xd). Let P = π(πTπ)−1πT denote the projection matrix onto the space
spanned by π. Similar to [39], partialing out the B-spline approximation, we obtain

(I − P)Y ≈ (I − P)ρWY + (I − P)ϵ. (3)

In the above equation, a problem of endogeneity emerges because the spatially lagged value of Y is
correlated with the stochastic disturbance. Suppose H is a relevant vector instrument to eliminate the
endogeneity of WY. Let D = WY. Regressing D on instrument H via OLS produces the fitted value
for the endogenous variable D:

D̂ = H(HT H)−1HT D. (4)

Substituting D with its predicted value in model (3), it becomes

(I − P)Y ≈ (I − P)ρH(HT H)−1HT D + (I − P)ϵ

= (I − P)ρMD + (I − P)ϵ,
(5)
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where M = H(HT H)−1HT . Then by OLS,

ρ̂ = (DT M(I − P)MD)−1DT M(I − P)Y. (6)

Substituting D with D̂ and ρ with ρ̂ in model (2), it becomes

Y ≈ ρ̂D + πα + ϵ. (7)

Then the least squares loss function is close to

(Y − ρ̂D − πα)T(Y − ρ̂D − πα). (8)

However, when dimensionality of π is larger than sample size n, least square estimation fails. In this
case, we will adopt sparse boosting approach to estimate α. Denote α̂ as the estimator of α obtained
through sparse boosting, using the squared loss function (8) as the loss function. The detailed sparse
boosting algorithm will be given in the next subsection.

Consequently, gj(.) can be estimated by ĝj(.) = πj(.)α̂j for j = 1, · · · , p. The variance σ2 can be
estimated by

σ̂2 =
1
n
(Y − ρ̂WY − πα̂)T(Y − ρ̂WY − πα̂). (9)

Similar to [39], we use an analogous rationality for the construction of instrument variables. In the
first step, we simply regress Y on pseudo regressors variables WY and π. Then the least squares loss
function is

(Y − ρWY − πα)T(Y − ρWY − πα) (10)

Denote (ρ̃, α̃) as the estimators of (ρ, α) obtained through sparse boosting, using the squared loss
function (10) as the loss function. Then, we can use the following instrumental variable:

H̃ = W(I − ρ̃W)−1πα̃. (11)

In the second step, instrumental variable H̃ is used to obtain the estimators ᾱ and ρ̄, which are then
used to construct the instrumental variable

H = W(I − ρ̄W)−1πᾱ. (12)

Finally, use the instrumental variables H to obtain the final estimators ρ̂ and α̂ = (α̂T
1 , · · · , α̂T

p )
T . The

function gj(.) can be estimated by ĝj(.) = π̂j(.)α̂j for j = 1, · · · , p and the response Y can be estimated
by Ŷ = (I − ρ̂W)−1πα̂.

2.2. Sparse Boosting Techniques

Sparse boosting can be viewed as iteratively pursuing gradient descending in function space using
a penalized empirical risk function that integrates squared loss and the complexity of the boosting
measure. Similar to Yue et al. ([34–37]), we will adopt the g-prior minimum description length (gMDL)
[40], a combination of squared loss and the trace of boosting operator, as the penalized empirical
risk function to estimate the update criterion in each iteration and the stopping criterion. We use
it because it has a data driven penalty to avoid the selection of the tuning parameter. To facilitate
presentation, suppose the vector Y∗ is regressed on the p∗-dimensional matrix X∗ = (X∗

1 , · · · , X∗
p).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 February 2025 doi:10.20944/preprints202502.0644.v1

https://doi.org/10.20944/preprints202502.0644.v1


5 of 14

Then the least squares loss function involved in sparse boosting is (Y∗ − X∗θ∗)T(Y∗ − X∗θ∗), where
θ∗ = ((θ∗1 )

T , · · · , (θ∗p)T)T . The gMDL takes the form:

gMDL(Y∗, RSS, trace(B)) =log(F) +
trace(B)

n
log(

Y∗TY∗ − RSS
trace(B)× F

),

F =
RSS

n − trace(B) ,
(13)

where RSS is the residual sum of squares and B is the boosting operator. The model achieve shortest
description of data will be chosen.

We present the sparse boosting approach more specifically. The initial value of θ∗ is set to the zero
vector, i.e. θ∗[0] = 0. In each of the kth iteration (0 < k ≤ K, and K is the maximum number of iterations
considered in the first step), we use the residual R[k] = Y∗ − X∗θ∗[k−1] from the current iteration to fit
each of the j-th component X∗

j , j = 1, · · · , p∗. The fit, denoted by λ̂
[k]
j , is calculated by minimizing the

squared loss function (R[k]− X∗
j λ)T(R[k]− X∗

j λ) with respect to λ. Therefore, the least squares estimate

is λ̂
[k]
j = [(X∗

j )
T(X∗

j )]
−1(X∗

j )
T R[k], the corresponding hat matrix is Hd = (X∗

j )[(X∗
j )

T(X∗
j )]

−1(X∗
j )

T

and the residual sum of squares is RSS[k]
j = (R[k] − X∗

j λ̂
[k]
j )T(R[k] − X∗

j λ̂
[k]
j ). The chosen element ŝk is

attained by:

ŝk = argmin1≤j≤p∗gMDL(Y∗, RSS[k]
j , trace(B[k]

j )), (14)

where B[1]
j = Hj and B[k]

j = I − (I − Hj)(I − νHŝk−1). · · · .(I − νHŝ1) for k > 1 is the first step
boosting operator for choosing jth element in the kth iteration. Hence, there is an unique element
X∗

ŝk
to be selected at each iteration, and only the corresponding coefficient vector θ

∗[k]
ŝk

changes, i.e.,

θ
∗[k]
ŝk

= θ
∗[k−1]
ŝk

+ νλ̂
[k]
ŝk

, where ν is the pre-specified step-size parameter. All the other θ
∗[k]
j for j ̸= ŝk

keep unchanged. We repeat this procedure for K times and the number of iterations K can be estimated
by

K̂ = argmin1≤k≤KgMDL(Y∗, RSS[k]
ŝk

, trace(B[k])), (15)

where B[k] = I − (I − νHŝk ). · · · .(I − νHŝ1).

From the sparse boosting, we get the estimator of θ∗ by θ∗[K̂] = ((θ
∗[K̂]
1 )T , · · · , (θ∗[K̂]p )T)T .

For least squares loss function (8), Y∗ = Y − ρ̂D and X∗ = π, and for least squares loss function
(10), Y∗ = Y and X∗ = (WY, π).

Overall, as illustrated in Figure 1, the flowchart visually summarizes the methodologies and steps
articulated in this paper, thereby enhancing the understanding of our proposed multi-step sparse
boosting algorithm for high-dimensional additive spatial autoregressive models.

In Step I, the algorithm starts with parameter initialization, followed by iterations to identify
optimal variables using the g-prior minimum description length (gMDL) criterion. Coefficients are
updated until a stopping criterion is met, resulting in covariance matrix estimates.

Step II applies the sparse boosting algorithm again to refine variable selection and update coef-
ficients. This approach enhances model accuracy and selection efficiency, making it well-suited for
high-dimensional data analysis.
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Step I: Estimate Covariance Matrix

Initialization

Increase k1

Calculate ŝk1

Update Coefficients

Repeat Steps for K1

Stopping Criterion

Output Results

Step II: Use Sparse Boosting Again

Initialization

Increase k2

Calculate ŝk2

Update Coefficients

Repeat Steps for K2

Stopping Criterion

Output Final Results

Figure 1. Flowchart of the Sparse Boosting Algorithm: The methodological framework and computational
processes of the sparse boosting algorithm, facilitating comprehension of the key steps involved.

3. Simulation
In this section, we investigate the finite sample performance of the proposed methodology with

Monte Carlo simulation studies. The data is generated from the following model:

Y = ρWY +
1000

∑
j=1

gj(Xj) + ϵ, (16)

where X1, · · · , X1000 are all i.i.d on [−1, 1]. g1(x) = g3(x) = 2 tan(x), g2(x) = g4(x) = 2 sin(x) and
g5(x) = · · · g1000(x) = 0. The error term ϵ follows a normal distribution with mean 0 and variance
σ2. Similar to [41], the weight matrix is set to be W = IR ⊗ Em, where Em = (lT

mlm − lm)/(m − 1), lm
is the m-dimensional unit vector, and ⊗ is Kronecker product. Thus, the number of spatial units is
n = R × m. For comparison, we consider (R, m) = (10, 10) and (20, 20), corresponding to n = 100 and
400 respectively. We evaluate three different values of ρ = 0.2, 0.5, 0.8, representing weak to strong
spatial dependence of the responses. Additionally, we consider σ2 = 0.5 and 1. The degree of freedom
for B-splines basis is set to be ⌊(N/⌊N/log(N)⌋⌋, where ⌊x⌋ is the integer part of x.

In face of ultra-high dimensional data, pre-screening can be adopted to reduce the dimension-
ality to a moderate size. In particular, we adopt marginal screening by l2-norm [42] to screen out
irrelevant covariates. More specifically, we regress Y on each covariate to construct the marginal
model Y = ρ0WY + g0j(Xj) + ϵ0j, j = 1, · · · , p. The empirical l2-norm of an estimated function
ĝ0j(Xj) = (ĝ0j(X1j), · · · , ĝ0j(Xnj))

T is defined as:

∥ĝ0j(Xj)∥2 =
1
n
(

ĝ0j(X1j), · · · , ĝ0j(Xnj)
)(

ĝ0j(X1j), · · · , ĝ0j(Xnj)
)T . (17)

A greater value of this measure suggest a stronger association between the covariate and the response.
Following the recommendation by [42–45], the covariates with the largest ⌊ n

log(n) ⌋ l2-norm are selected.
Thus, for sample size 100 and 400, the first 21 and 66 variables in the ranked list are selected to conduct
downstream analysis, respectively. Thereafter, we proceed to use our proposed multi-step sparse
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boosting approach to build up the final parsimonious model. For comparison, besides the proposed
method using sparse boosting in each step, we also examine other approaches such as l2-boosting,
lasso regression and elastic net regression in each step.

In our implementation, we set the maximum number of boosting iterations to K = 500 and the
elastic net mixing parameter to 0.5. Penalized methods were executed using the R package glmnet,
with tuning parameters selected via 5-fold cross-validation. To assess the performance of our approach,
we analyze results from 500 replications, reporting the following metrics:
S: coverage probability that the top ⌊ n

log(n) ⌋ covariates after screening includes all important covariates;
TP: the median of true positives;
FP: the median of false positives;
Size: the median of model sizes;
ISPE: the average of in-sample prediction errors defined as (Y − Ŷ)T((Y − Ŷ)/n;
RMISE: the average of root mean integrated squared errors defined as√

1
n ∑4

j=1(gj(Xj)− ĝj(Xj))T(gj(Xj)− ĝj(Xj));
Bias(ρ): the mean bias of ρ;
Bias(σ): the mean bias of σ.

The simulation results presented in Tables 1 and 2, based on 500 replications, provide comprehen-
sive insights into the performance of various methods for variable screening and selection under two
conditions (σ = 0.5 and σ = 1.0).

Table 1. Results of variable screening, variable selection, and estimation for simulation when σ = 0.5. The values
in the parentheses are the robust standard deviations. M1: our proposed multi-step sparse boosting method; M2:
except sparse boosting, l2-boosting are used in each step; M3: except sparse boosting, lasso regression are used in
each step; M4: except sparse boosting, elastic net regression are used in each step. S: coverage probability that the
top ⌊ n

log(n) ⌋ covariates after screening includes all important covariates; TP: the median of true positive; FP: the
median of false positive; Size: the median of model sizes; ISPE: the average of mean square error; RMISE: the
average of root mean integrated squared error; Bias(ρ): the mean bias of ρ; Bias(σ): the mean bias of σ. The values
in the parentheses are the robust standard deviations; Simulation based on 500 replicates.

n ρ Method S TP FP Size ISPE RMISE Bias(ρ) Bias(σ)

100 0.2 M1 0.88 ( 0.32 ) 4 ( 0.45 ) 4 ( 2.31 ) 8 ( 2.31 ) 1.123 ( 1.640 ) 0.754 ( 0.538 ) -0.025 ( 0.240 ) 0.393 ( 0.538 )
M2 0.88 ( 0.32 ) 4 ( 0.20 ) 12 ( 2.19 ) 16 ( 2.18 ) 1.212 ( 1.578 ) 0.782 ( 0.496 ) -0.032 ( 0.216 ) 0.461 ( 0.507 )
M3 0.88 ( 0.32 ) 4 ( 0.20 ) 15 ( 2.42 ) 19 ( 2.49 ) 1.235 ( 1.500 ) 0.802 ( 0.499 ) -0.031 ( 0.228 ) 0.486 ( 0.496 )
M4 0.88 ( 0.32 ) 4 ( 0.16 ) 16 ( 1.66 ) 20 ( 1.70 ) 1.336 ( 1.527 ) 0.843 ( 0.495 ) -0.029 ( 0.216 ) 0.535 ( 0.486 )

0.5 M1 0.92 ( 0.28 ) 4 ( 0.28 ) 4 ( 2.50 ) 8 ( 2.43 ) 1.320 ( 1.657 ) 0.694 ( 0.444 ) -0.002 ( 0.112 ) 0.331 ( 0.447 )
M2 0.92 ( 0.28 ) 4 ( 0.04 ) 12 ( 2.43 ) 16 ( 2.43 ) 1.495 ( 1.764 ) 0.744 ( 0.442 ) 0.004 ( 0.118 ) 0.420 ( 0.453 )
M3 0.92 ( 0.28 ) 4 ( 0.06 ) 15 ( 2.36 ) 19 ( 2.36 ) 1.567 ( 1.796 ) 0.773 ( 0.449 ) 0.001 ( 0.109 ) 0.451 ( 0.450 )
M4 0.92 ( 0.28 ) 4 ( 0.05 ) 16 ( 1.82 ) 20 ( 1.82 ) 1.609 ( 1.688 ) 0.797 ( 0.428 ) 0.001 ( 0.107 ) 0.486 ( 0.426 )

0.8 M1 0.99 ( 0.12 ) 4 ( 0.08 ) 4 ( 1.94 ) 8 ( 1.93 ) 3.127 ( 2.182 ) 0.578 ( 0.197 ) 0.005 ( 0.049 ) 0.204 ( 0.191 )
M2 0.99 ( 0.12 ) 4 ( 0 ) 12 ( 2.29 ) 16 ( 2.29 ) 3.405 ( 2.099 ) 0.623 ( 0.175 ) 0.006 ( 0.039 ) 0.284 ( 0.158 )
M3 0.99 ( 0.12 ) 4 ( 0 ) 14 ( 2.24 ) 18 ( 2.24 ) 3.443 ( 2.061 ) 0.641 ( 0.165 ) 0.006 ( 0.038 ) 0.310 ( 0.147 )
M4 0.99 ( 0.12 ) 4 ( 0 ) 16 ( 1.69 ) 20 ( 1.69 ) 3.64 ( 2.096 ) 0.670 ( 0.167 ) 0.006 ( 0.038 ) 0.354 ( 0.151 )

400 0.2 M1 1 ( 0 ) 4 ( 0.75 ) 5 ( 3.10 ) 9 ( 3.38 ) 1.116 ( 1.674 ) 0.630 ( 0.450 ) -0.018 ( 0.691 ) 0.402 ( 0.512 )
M2 1 ( 0 ) 4 ( 0 ) 33 ( 4.28 ) 37 ( 4.28 ) 1.023 ( 1.199 ) 0.589 ( 0.068 ) -0.038 ( 0.649 ) 0.376 ( 0.294 )
M3 1 ( 0 ) 4 ( 0 ) 52 ( 8.40 ) 56 ( 8.40 ) 0.841 ( 1.199 ) 0.410 ( 0.153 ) -0.039 ( 0.635 ) 0.276 ( 0.329 )
M4 1 ( 0 ) 4 ( 0 ) 55 ( 8.24 ) 59 ( 8.24 ) 0.827 ( 1.008 ) 0.443 ( 0.135 ) -0.055 ( 0.604 ) 0.299 ( 0.287 )

0.5 M1 1 ( 0 ) 4 ( 0.62 ) 5 ( 2.91 ) 9 ( 3.12 ) 1.370 ( 1.892 ) 0.596 ( 0.376 ) -0.009 ( 0.416 ) 0.360 ( 0.433 )
M2 1 ( 0 ) 4 ( 0 ) 33 ( 4.19 ) 37 ( 4.19 ) 1.261 ( 1.510 ) 0.580 ( 0.050 ) -0.026 ( 0.308 ) 0.338 ( 0.166 )
M3 1 ( 0 ) 4 ( 0 ) 52 ( 8.55 ) 56 ( 8.55 ) 0.982 ( 1.156 ) 0.389 ( 0.124 ) -0.020 ( 0.331 ) 0.237 ( 0.236 )
M4 1 ( 0 ) 4 ( 0 ) 55 ( 8.72 ) 59 ( 8.72 ) 1.068 ( 1.273 ) 0.427 ( 0.122 ) -0.022 ( 0.328 ) 0.268 ( 0.219 )

0.8 M1 1 ( 0 ) 4 ( 0 ) 5 ( 2.25 ) 9 ( 2.25 ) 2.437 ( 1.593 ) 0.534 ( 0.049 ) -0.046 ( 0.134 ) 0.284 ( 0.204 )
M2 1 ( 0 ) 4 ( 0 ) 33 ( 4.34 ) 37 ( 4.34 ) 2.720 ( 1.892 ) 0.579 ( 0.046 ) -0.021 ( 0.134 ) 0.331 ( 0.200 )
M3 1 ( 0 ) 4 ( 0 ) 52 ( 8.62 ) 56 ( 8.62 ) 2.299 ( 1.820 ) 0.388 ( 0.116 ) -0.023 ( 0.157 ) 0.233 ( 0.279 )
M4 1 ( 0 ) 4 ( 0 ) 56 ( 8.83 ) 60 ( 8.83 ) 2.377 ( 1.832 ) 0.417 ( 0.095 ) -0.028 ( 0.109 ) 0.245 ( 0.180 )

At σ = 0.5, M1 consistently achieves high coverage probabilities, reaching 0.99 when ρ = 0.8,
while maintaining a true positive count of 4 and significantly reducing the false positive rates compared
to other methods. For example, M2 has a maximum of 12 false positives when n = 100 and ρ = 0.2,
while M3 and M4 peak at 15 and 16 false positives, respectively. In terms of in-sample prediction error
(ISPE), M1 demonstrates robust performance with values ranging from 1.123 to 3.127. M2, M3, and
M4 show higher ISPE values, indicating a tendency toward overfitting, with M2 reaching 3.405 at
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n = 100 and ρ = 0.8, M3 reaching 3.443, and M4 reaching 3.64. M1 also excels in root mean integrated
squared error (RMISE), with values between 0.534 and 0.754 at n = 100 and n = 400, while M2 ranges
from 0.579 to 0.782. At n = 100, M3 and M4 have even higher values, further demonstrating M1’s
effectiveness in making accurate predictions.

At σ = 1.0, similar trends are observed with the performance of M1 being even more pronounced.
For instance, M1 maintains a coverage probability of 1.00 when ρ = 0.8. The ISPE for M1 ranges from
2.280 to 5.771, while M4’s ISPE peaks at 6.681, highlighting M1’s advantage in prediction accuracy.
Additionally, the false positive rates for M2, M3, and M4 increase, reaching more than 40 at n = 400,
further affirming M1’s superior performance. Despite maintaining a median true positive count of 4,
M1 shows lower bias in parameter estimation, with Bias(ρ) ranging from -0.107 to 0.002 compared to
higher biases in the other methods.

In summary, the multi-step sparse boosting method (M1) outperforms alternative approaches
in variable selection and parameter estimation, excelling in maintaining lower false positive rates
and superior estimation accuracy. This establishes the multi-step sparse boosting method as a highly
effective method for high-dimensional data analysis, particularly in scenarios involving complex
relationships among variables.

Table 2. Results of variable screening, variable selection, and estimation for simulation when σ = 1. The values in
the parentheses are the robust standard deviations. M1: our proposed multi-step sparse boosting method; M2:
except sparse boosting, l2-boosting are used in each step; M3: except sparse boosting, lasso regression are used in
each step; M4: except sparse boosting, elastic net regression are used in each step. S: coverage probability that the
top ⌊ n

log(n) ⌋ covariates after screening includes all important covariates; TP: the median of true positive; FP: the
median of false positive; Size: the median of model sizes; ISPE: the average of mean square error; RMISE: the
average of root mean integrated squared error; Bias(ρ): the mean bias of ρ; Bias(σ): the mean bias of σ. The values
in the parentheses are the robust standard deviations; Simulation based on 500 replicates.

n ρ Method S TP FP Size ISPE RMISE Bias(ρ) Bias(σ)

100 0.2 M1 0.85 ( 0.36 ) 4 ( 0.38 ) 6 ( 2.65 ) 10 ( 2.67 ) 2.280 ( 1.853 ) 1.000 ( 0.537 ) -0.079 ( 0.329 ) 0.402 ( 0.503 )
M2 0.85 ( 0.36 ) 4 ( 0.15 ) 14 ( 1.91 ) 17 ( 1.92 ) 2.586 ( 1.790 ) 1.037 ( 0.493 ) -0.072 ( 0.309 ) 0.523 ( 0.470 )
M3 0.85 ( 0.36 ) 4 ( 0.17 ) 15 ( 2.14 ) 19 ( 2.20 ) 2.796 ( 1.752 ) 1.128 ( 0.489 ) -0.074 ( 0.319 ) 0.598 ( 0.462 )
M4 0.85 ( 0.36 ) 4 ( 0.15 ) 16 ( 1.73 ) 20 ( 1.79 ) 2.948 ( 1.726 ) 1.173 ( 0.479 ) -0.074 ( 0.316 ) 0.650 ( 0.452 )

0.5 M1 0.90 ( 0.30 ) 4 ( 0.19 ) 6 ( 2.49 ) 10 ( 2.44 ) 2.656 ( 1.762 ) 0.921 ( 0.429 ) -0.004 ( 0.186 ) 0.335 ( 0.387 )
M2 0.90 ( 0.30 ) 4 ( 0.10 ) 14 ( 1.85 ) 18 ( 1.84 ) 3.067 ( 1.799 ) 0.980 ( 0.413 ) 0.003 ( 0.174 ) 0.471 ( 0.371 )
M3 0.90 ( 0.30 ) 4 ( 0.08 ) 16 ( 1.80 ) 20 ( 1.80 ) 3.323 ( 1.865 ) 1.070 ( 0.418 ) 0.003 ( 0.184 ) 0.544 ( 0.374 )
M4 0.90 ( 0.30 ) 4 ( 0.05 ) 16 ( 1.44 ) 20 ( 1.44 ) 3.446 ( 1.726 ) 1.116 ( 0.408 ) 0.001 ( 0.181 ) 0.594 ( 0.360 )

0.8 M1 1 ( 0.06 ) 4 ( 0 ) 6 ( 2.16 ) 10 ( 2.16 ) 5.771 ( 2.019 ) 0.782 ( 0.186 ) 0.002 ( 0.058 ) 0.190 ( 0.164 )
M2 1 ( 0.06 ) 4 ( 0 ) 13 ( 1.76 ) 17 ( 1.76 ) 6.277 ( 1.939 ) 0.824 ( 0.162 ) 0.004 ( 0.056 ) 0.313 ( 0.159 )
M3 1 ( 0.06 ) 4 ( 0 ) 15 ( 1.92 ) 19 ( 1.92 ) 6.567 ( 1.921 ) 0.906 ( 0.172 ) 0.008 ( 0.056 ) 0.373 ( 0.162 )
M4 1 ( 0.06 ) 4 ( 0 ) 16 ( 1.37 ) 20 ( 1.37 ) 6.681 ( 1.848 ) 0.943 ( 0.179 ) 0.006 ( 0.055 ) 0.424 ( 0.168 )

400 0.2 M1 1 ( 0 ) 4 ( 0.65 ) 12 ( 4.03 ) 16 ( 4.38 ) 2.327 ( 1.895 ) 0.715 ( 0.386 ) -0.051 ( 1.052 ) 0.440 ( 0.526 )
M2 1 ( 0 ) 4 ( 0 ) 42 ( 3.43 ) 46 ( 3.43 ) 2.367 ( 1.498 ) 0.715 ( 0.089 ) -0.012 ( 0.939 ) 0.451 ( 0.390 )
M3 1 ( 0 ) 4 ( 0 ) 45 ( 12.00 ) 49 ( 12.00 ) 2.245 ( 1.363 ) 0.727 ( 0.157 ) -0.005 ( 1.020 ) 0.460 ( 0.418 )
M4 1 ( 0 ) 4 ( 0 ) 47 ( 10.79 ) 51 ( 10.79 ) 2.304 ( 1.337 ) 0.762 ( 0.151 ) -0.036 ( 1.047 ) 0.494 ( 0.432 )

0.5 M1 1 ( 0 ) 4 ( 0.43 ) 12 ( 3.86 ) 16 ( 4.01 ) 2.484 ( 1.819 ) 0.665 ( 0.258 ) -0.080 ( 0.594 ) 0.361 ( 0.416 )
M2 1 ( 0 ) 4 ( 0 ) 41 ( 3.60 ) 45 ( 3.60 ) 2.635 ( 1.733 ) 0.714 ( 0.092 ) -0.069 ( 0.599 ) 0.444 ( 0.411 )
M3 1 ( 0 ) 4 ( 0 ) 44 ( 11.66 ) 48 ( 11.66 ) 2.579 ( 1.601 ) 0.715 ( 0.154 ) -0.085 ( 0.648 ) 0.432 ( 0.407 )
M4 1 ( 0 ) 4 ( 0 ) 46 ( 10.75 ) 50 ( 10.75 ) 2.650 ( 1.606 ) 0.751 ( 0.148 ) -0.039 ( 0.613 ) 0.453 ( 0.387 )

0.8 M1 1 ( 0 ) 4 ( 0 ) 12 ( 3.38 ) 16 ( 3.38 ) 4.800 ( 1.832 ) 0.628 ( 0.081 ) -0.107 ( 0.227 ) 0.330 ( 0.382 )
M2 1 ( 0 ) 4 ( 0 ) 41 ( 3.81 ) 45 ( 3.81 ) 5.042 ( 1.664 ) 0.687 ( 0.056 ) -0.111 ( 0.195 ) 0.412 ( 0.347 )
M3 1 ( 0 ) 4 ( 0 ) 44 ( 12.22 ) 48 ( 12.22 ) 5.101 ( 1.827 ) 0.682 ( 0.120 ) -0.109 ( 0.236 ) 0.415 ( 0.401 )
M4 1 ( 0 ) 4 ( 0 ) 45 ( 10.98 ) 49 ( 10.98 ) 5.152 ( 1.787 ) 0.716 ( 0.102 ) -0.105 ( 0.229 ) 0.432 ( 0.376 )

4. Real Data Analysis
In this section, we apply the proposed method to the Boston housing price data, originally

collected by Harrison and Rubinfield [46] and integrated by Gilley and Pace [47]. The dataset is
available for download from http://ugrad.stat.ubc.ca/R/library/mlbench/html/BostonHousing.
html. It comprises median house prices observed in 506 census tracts in the Boston area in 1970,
alongside a set of variables presumed to influence house prices. Table 3 provides a detailed description
of these variables:
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Table 3. Description of the variables in Boston housing data.

Variable Varaible Description

MEDV Median value of owner-occupied housing expressed in USD 1,000’s
CRIM Per capita murder rate by town
ZN Proportion of residential land zoned for lots over 25, 000 square feet
B Proportion of Black residents by town
RM Average number of rooms per dwelling
DIS Weighted distances to five Boston employment centers
NOX Nitric oxides concentration (parts per 10 millions) per town
AGE Proportion of owner-occupied units built before 1940
INDUS Proportion of non-retail business acres per town
RAD Index of accessibility to radial highways per town
PTRATIO Pupil-teacher ratio by town
LSTAT Percentage of lower status population
TAX Full-value property tax rate per USD 10,000
CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)

The Boston housing price dataset is widely used in spatial econometrics and has been extensively
studied in the literature. For the same data set, Xie et al. [48] adopted spatial autoregressive model, Li
and Mei [13] considered partially linear spatial autoregressive model and Du et al. [16] used partially
linear additive spatial autoregressive models. In the following, we will consider the additive spatial
autoregressive model

MEDVi =ρ
506

∑
j=1

wijMEDVj + g1(CRIM) + g2(ZN) + g3(B) + g4(RM) + g5(DIS) + g6(NOX) + g7(AGE)

+ g8(INDUS) + g9(RAD) + g10(PTRATIO) + g11(LSTAT) + g12(TAX) + ϵi, i = 1, · · · , 506.

(18)

Where MEDVi represents the median house value for census tract i, ρ is the spatial autoregressive

parameter, wij denotes the spatial weight matrix with entries set as max(1 − dij
d0

, 0), where dij is the
Euclidean distance based on longitude and latitude coordinates of any two houses, d0 is the threshold
distance (set to 0.05 following Su and Yang [4]), resulting in a weight matrix with 19.1% nonzero
elements. For comparative analysis, we consider the following methods explored in our simulation
study: multi-step sparse boosting, multi-step l2-boosting, multi-step lasso and multi-step elastic net.
These methods will be used to estimate the functions gj(.) and ρ, aiming to identify the significant
determinants of housing prices while accounting for spatial dependencies among census tracts.

The results of variable selection, estimation and prediction are summarized in Table 4. In addition
to the number of selected variables, we also report the in-sample prediction error (ISPE) ∑n

i=1(Yi − Ŷi)
2

and out-of-sample prediction error (OSPE) measured by 5-fold cross-validation.
From Table 4, we observe that, compared to traditional lasso and elastic net methods, the l2

Boosting and Sparse l2 Boosting methods for the varying-coefficient model exhibit smaller OSPE, while
also producing relatively sparser models. The smaller ISPE may be due to overfitting in the traditional
models which choosing all of the variables. These conventional models exhibit errors that increase by
a factor of 6 to 7 during out-of-sample predictions, whereas our proposed model demonstrates greater
stability with smaller fluctuations when comparing ISPE to OSPE. Our Sparse L2 Boosting method
for the varying-coefficient AFT model performs remarkably well in terms of sparsity, estimation, and
prediction.
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Table 4. Boston housing price example: variable selection, estimation and prediction performance. No.: Number
of variables selected; Variables: Names of selected variables; ISPE: In-sample prediction error 1

n ∑n
i=1(Yi − Ŷi)

2;
OSPE: 5-fold cross-validation out-of-sample prediction error.

Method No. Variables ISPE OSPE

multi-step sparse boosting 2 RM (3), LSTAT (9) 0.665 0.951
multi-step l2 boosting 2 RM (3), LSTAT (9) 0.665 0.951

multi-step lasso 12 CRIM (1), B (2), RM (3), DIS (4), NOX (5),
AGE (6), INDUS (7), PTRATIO (8), LSTAT (9),

ZN (10), RAD (11), TAX (12)

0.172 1.197

multi-step elastic net 12 CRIM (1), B (2), RM (3), DIS (4), NOX (5),
AGE (6), INDUS (7), PTRATIO (8), LSTAT (9),

ZN (10), RAD (11), TAX (12)

0.160 1.232

Additionally, we present a Venn diagram in Figure 2 showing the overlapping genes identified
by all different methods. We observe that SparseL2Boosting and l2Boosting select 2 variables (RM
and LSTAT) which mostly affect the Boston housing prices in common, while lasso and elastic net
methods identify all the 12 variables in common. However, SparseL2Boosting and l2Boosting produce
distinct lists of selected variables compared to the other methods, with only 2 variables selected by all
methods.

We plot the estimated curves of varying coefficients for RM and LSTAT, which are the two selected
variables by sparse boosting method, with their 95% confidence bands constructed by 500 bootstrap
resamples in Figure 3. All of the functions are quite different from a straight line and this suggest that
the varying-coefficient model is more appropriate to describe the covariate effects on boston housing
prices in our data. Using more sophisticated semiparametric model specification may provide more
accurate model for the high-dimensional analysis. Furthermore, we observe different functional forms
for the two impact variables.

0
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0

Sparse Boosting L2 Boosting

Lasso Elastic Net

Figure 2. Venn diagram showing overlapping genes selected among all methods. Blue: sparse boosting; Green: l2
boosting; Red:lasso regression; Yellow: elastic net regression
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Figure 3. Estimated nonparametric function with their 95% confidence bands based on 500 bootstraps for the
selected variables in the final spatial additive model by multi-step sparse boosting.

5. Concluding Remarks
This paper introduces a useful multi-step sparse boosting algorithm specifically designed for

additive spatial autoregressive models with high-dimensional covariates, addressing critical aspects
of variable selection and parameter estimation. Our methodology effectively facilitates model-based
prediction without the burden of time-consuming tuning parameter selection, thereby streamlining
the modeling process.

Using B-spline basis functions for approximating varying coefficients is a critical component
of our approach, which allows for smooth and accurate representations even when the underlying
assumptions regarding smoothness may be violated, enhancing the robustness of the model. Moreover,
a noteworthy aspect of our finding is the two-step sparse boosting approach employing the generalized
Minimum Description Length (gMDL) model selection criterion. The gMDL criterion utilizes a data-
driven penalty for squared loss, promoting model parsimony while effectively filtering out irrelevant
covariates.

The simulation results illustrate the efficacy of our proposed approach. Our multi-step sparse
boosting method consistently exhibits fewer false positives than alternative methods, while true
positive rates accurately reflect the actual number of relevant variables. In contrast, traditional
methods utilizing boosting, lasso, or elastic net tend to suffer from overfitting, as evidenced by lower
in-sample prediction errors (ISPE) and larger model sizes. Meanwhile, the real-world application of
our methodology to the Boston housing price data further confirms its effectiveness and stability in
identifying significant predictors of housing prices. By accurately selecting key variables, our approach
enhances the model’s predictive performance and interpretability.

However, several limitations of our study must be acknowledged. Firstly, although B-spline basis
functions offer significant advantages, they may not fully capture the intricate complexities of all
data relationships, potentially limiting the model’s applicability to more diverse or nuanced datasets.
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Therefore, while our research encompasses thorough simulations and empirical testing on the housing
price datasets, it is imperative to extend evaluations across a wider array of datasets.

This method can be extended to various fields, not limited to environmental studies, healthcare,
and social sciences. Additionally, it is applicable to both nonparametric and semiparametric models,
although our focus here has been on nonparametric approaches. This broader analysis is crucial to
comprehensively validate the model’s versatility and effectiveness across various contexts within the
disciplines of econometrics and statistics.

Acknowledgments: We thank the editor and reviewers for their careful review and insightful comments. This
study has been been partly supported by awards XXXX in Singapore.
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