

Article

Not peer-reviewed version

Proof of the Binary Goldbach Conjecture

Philippe Sainty*

Posted Date: 13 June 2025

doi: 10.20944/preprints202410.1262.v4

Keywords: prime number theorem; binary goldbach conjecture; chen's weak conjecture; lagrange-lemoine-levy conjecture; bachet-bezout-goldbach conjecture; gaps between consecutive prime

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Proof of the Binary Goldbach Conjecture

Philippe Sainty

University Pierre et Marie Curie, Paris, France; duranddupont346@gmail.com

Abstract: In this article the proof of the binary Goldbach conjecture is established (Any integer greater than one is the mean arithmetic of two positive primes) . To this end, Chen's weak conjecture is proved (Any even integer greater than one is the difference of two positive primes) and a "localised" algorithm is developed for the construction of two recurrent sequences of primes (U_{2n}) and (V_{2n}) , $((U_{2n})$ dependent of (V_{2n})) such that for any integer $n \ge 2$ their sum is equal to 2n: (U_{2n}) and (V_{2n}) are the extreme Goldbach decomponents. To form them, a third sequence of primes (W_{2n}) is defined for any integer $n \ge 3$ by $W_{2n} = \text{Sup}(p \in \mathcal{P})$: $p \leq 2n - 3$), \mathcal{P} denoting the set of positive primes. The Goldbach conjecture has been proved 2n between 4 and 4.10^{18} and in the neighbourhood of 10^{100} , for all even integers 10^{200} and 10^{300} for intervals of amplitude 10^9 . In the table of extreme Goldbach decomponents given via programs in Maxima and Maple in Appendix 13 and files of Researchgate, Internet $2n = 10^{3000}$ Archive and OEIS, values of the order of are reached. A global proof by strong recurrence "finite ascent and descent method" on all the Goldbach decomponents is presented by using sequences of primes (Wq_{2n}) defined by $Wq_{2n} = \text{Sup}(p \in \mathcal{P}: p \leq 2n - q)$ for any U_{2n} by $(2n)^{0.525}$, 0.7 $\ln^{2.2}(2n)$ with probability one odd prime q, and a majorization of and $20.\ln(n)$ on average for any integr n large enough is justified. In addition, the Lagrange-Lemoine-Levy conjecture and its generalization called "Bachet-Bézout-Goldbach" conjecture are proven by the same type of method.

Keywords: prime number theorem; binary goldbach conjecture; chen's weak conjecture; lagrange-lemoine-levy conjecture; bachet-bezout-goldbach conjecture; gaps between consecutive primes

1. Overview

Number theory "the queen of mathematics" studies the structures and properties defined on integers and primes (Euclid [14], Hadamard [17], Hardy and Wright [19], Landau [25], Tchebychev [41]). Numerous problems have been raised and conjectures made, the statements of which are often simple but very difficult to prove. These main components include:

- Elementary arithmetic.
- _ Operations on integers, determination and properties of primes.

(Basic operations, congruence, gcd, lcm,).

- Decomposition of integers into products or sums of primes
- (Fundamental theorem of arithmetic, decomposition of large numbers, cryptography and Goldbach's conjecture).
 - Analytical number theory .
 - Distribution of primes (Prime Number Theorem, Hadamard [17],

De la Vallée-Poussin [42], Littlewood [28] and Erdos [13], the Riemann hypothesis,....).

– Gaps between consecutive primes (Bombieri, Davenport [3], Cramer [8], Baker, Harmann, Iwaniec, Pintz [4,5,22], Granville [16], Maynard [30], Tao [40],

Shanks [36], Tchebychev [41] and Zhang [46]).

- Algebraic, probabilistic, combinatorial and algorithmic number theories .
- Modular arithmetic.
- Diophantine approximations and equations
- Arithmetic and algebraic functions.

Diophantine and number geometry.

2. Definitions Notations and Background

The integers n, k, p, q, r,..... used in this article are always positive. (2.1)

The symbol " | " means : such as or knowing that. (2.2)

Let \mathcal{P} be the infinite set of positive primes p_k (called simply primes) (2.3)

$$(p_1 = 2; p_2 = 3; p_3 = 5; p_4 = 7; p_5 = 11; p_6 = 13; \dots)$$

For any integer $K \ge 1$ $\mathcal{P}_K = \{ p \in \mathcal{P} : p \le 2K \}$ (2.4)

Writing the large numbers calculated in Appendix 13 is simplified by defining the following constants:

$$M = 10^9$$
 ; $R = 4.10^8$; $G = 10^{100}$; $S = 10^{500}$; $T = 10^{1000}$

(2.5)

ln(x) denotes the neperian logarithm of the real x > 0 (2.6)

Let (W_{2n}) be the sequence of primes defined by

$$\forall n \in \mathbb{N} + 3$$
 $W_{2n} = \text{Sup } (p \in \mathcal{P} : p \leq 2n - 3)$

(2.7)

For any odd prime q, let (Wq_{2n}) be the sequence of primes defined by

$$\forall n \in \mathbb{N} \qquad n \geq \frac{(q+3)}{2} \qquad Wq_{2n} = \operatorname{Sup} (p \in \mathcal{P} : p \leq 2n - q)$$
(2.8)

Any sequence denoted by $(G_{2n}) = (U_{2n}; V_{2n})$ verifying (2.9) is called a **Goldbach** sequence.

$$\forall n \in \mathbb{N} + 2$$
 $U_{2n}, V_{2n} \in \mathcal{P}$ and $U_{2n} + V_{2n} = 2n$ (2.9)

 U_{2n} and V_{2n} are also known as "Goldbach partitions or Goldbach decomponents".

Iwaniec,Pintz [22] have shown that for a sufficiently large integer n there is always a prime between $n-n^{23/42}$ and n. Baker and Harman [4,5] concluded that there is a prime in the interval $[n; n+o(n^{0.525})]$. Thus this results provides an increase of the gap between two consecutive primes p_k and p_{k+1} of the form

$$\forall \ \varepsilon > 0 \qquad \exists \ k_{\varepsilon} \in \mathbb{N}^* \quad \middle| \quad \forall \ k \in \mathbb{N} \quad k \geq \ k_{\varepsilon} \qquad \qquad p_{k+1} - p_k < \varepsilon. p_k^{0.525}$$

(2.10)

The results obtained on the Cramer-Granville-Maier-Nicely conjecture [1,3,8,16,28,31] imply the following majorization.

For any real c > 2 and for any integer $k \ge 500$

$$p_{k+1} - p_k \le 0.7 \ln^c(p_k)$$
 (with probability one) (2.11)

and

$$p_{k+1} - p_k \le 20.\ln(p_k)$$
 (on average) (2.12)

The following abbreviations have been adopted:

Lagrange-Lemoine-Levy conjecture (3L) conjecture (2.13)
 Bachet-Bézout-Goldbach conjecture (BBG) conjecture (2.14)
 (Extreme) Goldbach decomponents (E).G.D. (2.15)

3. Introduction

Chen [6], Hardy, Littlewood [18], Hegfollt, Platt [19], Ramaré, Saouter [30], Tao [36], Tchebychev [37] and Vinogradov [39] have taken important steps and obtained promising results on the Goldbach conjecture (Any integer $n \ge 2$ is the mean arithmetic of two primes).

Indeed, Helfgott, Platt [19] proved the ternary Goldbach conjecture in 2013.

Silva, Herzog, Pardi [34] held the record for calculating the terms of Goldbach sequences after determining pairs of primes $(U_{2n}; V_{2n})$ verifying

$$\forall n \in \mathbb{N} \quad | \quad 4 \le 2n \le 4.10^{18}$$
 $U_{2n} + V_{2n} = 2n$ (3.1)

Goldbach's conjecture has also been verified for all even integers 2n satisfying

$$10^{5k} \le 2n \le 10^{5k} + 10^8$$
 : $k = 3, 4, 5, 6, \dots, 20$

and

$$10^{10k} \le 2n \le 10^{10k} + 10^9$$
: $k = 20, 21, 22, 23, 24, \dots, 30$

by Deshouillers, te Riele, Saouter [10].

In previous research work there is no explicit construction of recurrent Goldbach sequences.

In this article, for any integer $n \ge 3$ the E.G.D. U_{2n} and V_{2n} are computed iteratively using a simple and efficient "localised" algorithm.

Using Maxima and Maple scientific softwares on a personal computer Silva's record is broken and many E.G.D. are calculated up to the neighbourhood of $2n = 10^{500}$, 10^{1000} and even 10^{3000} (see Sainty [31] "In Researchgate.net, Internet Archive, and OEIS, E.G.D. files are supplied: E.G.D. File S Around $2n = 10^{S}$ for $S = 1, 2, 3, \dots, 3000$ ").

The binary Goldbach conjecture can be proved globally by strong recurrence on all G.D. using (Wq_{2n}) sequences of primes in the same way via Goldbach(-) conjecture (Any even integer greater than one is the difference of two primes) demonstrated in Teorem 4.

- Remark.
- 1. **Chen conjecture**: For any integer $K \ge 1$ there are infinitely many pairs of primes with a difference equal to 2K.
 - 2. **De Polignac conjecture :** Same as Chen, but with consecutive pairs of primes.
 - 3. What we know:

April 2013, Yitang Zhang [41] demonstrates that the smallest even integer 2*K* verifying the conjecture is greater than 70 million.

In 2014, James Maynard [28] then Terence Tao [36] lowered this limit to 246.

We validate Chen's weak conjecture by verifying directly in the primes tables that all even gaps from 2 to 246 are possible (see Appendix 14).

In addition, the (3L) conjectures [9,20,22,27,29,35,40] and its generalization called (BBG) conjecture are validated.

Using case disjunction reasoning we construct two recurrent E.G.D. sequences of primes (V_{2n}) and (U_{2n}) according to the sequence (W_{2n}) by the following process

For any integer $n \ge 2$

$$U_4 = 2$$
 and $V_4 = 2$ (3.2)

Let n be an integer greater than two

• Either

 $(2n - W_{2n})$ is a prime

then V_{2n} and U_{2n} are defined directly in terms of W_{2n} .

• Either

 $(2n - W_{2n})$ is a composite number

then V_{2n} and U_{2n} are determined from the previous terms of the sequence (G_{2n}) .

4. Theorem (Chen's Weak or Goldbach(-) Conjecture)

$$\forall \ K \in \mathbb{N}^* \qquad \exists \ p \,,\, q \in \mathcal{P} \ \Big| \qquad \qquad p \,-\, q = 2K$$

$$(4.1)$$

$$If \quad K \ \geq \ 2 \qquad \qquad 3 \leq \ q \ \leq \ 2K \qquad and \qquad 3 + 2K \ \leq \ p$$

 $\leq 4K$

Practical method on some examples:

First of all (5-3=2), then we begin the process at (7-3=4), we will select the smallest primes for which the difference is precisely (11-5=6), then (11-3=8), then (11-3=8), then (11-3=8)

(13 - 3 = 10),......, then 2K (demonstration established by strong recurrence, by the asurd and feedback). All pairs of Goldbach(-) partitions obtained by this method for K between 2 and are listed in Appendix 14 to validate it using Tao results.

Proof. An other proof can also be established by strong recurrence on the integer $K \ge 2$. Let $\mathcal{P}_{Chen}(K)$ be the following property

"
$$\forall$$
 $K \in \mathbb{N}^*$ \exists $p, q \in \mathcal{P}$ | $p - q = 2K$ $3 \le q \le 2K$ and $2K + 3 \le p \le 4K$ " (4.2)

- ► $\mathcal{P}_{Chen}(2)$ is true: 7 3 = 4 $q = 3 \le 4$ and $p = 7 \le 4 \times 2 = 8$
- ► Let's show

$$\forall M \in \mathbb{N} \mid 2 \le M \le K$$
 then $\mathcal{P}_{Chen}(M) \implies \mathcal{P}_{Chen}(K+1)$

We reason through the absurd

Let
$$p, q \in \mathcal{P}_K$$
 | $p \ge q$
 $\forall P, Q \in \mathcal{P}$ | $P \ge Q$ $\exists h, m \in \mathbb{N}$ | $P = p + 2h$ and $Q = q + 2m$

we assume that

$$P - Q = p + 2h - q - 2m \neq 2(K + 1)$$

(4.3)

Therefore

$$p - q \neq 2(K + 1 - h + m).$$

(4.4)

You can always choose $h \ge m$ and $h - m \le K + 1$.

The set $\{K+1-h+m; 2h \text{ and } 2m \text{ are any gaps between primes}\}$ contains all even integers between 2 and 2K.

However the strong recurrence hypothesis asserts that

$$\forall M \in \mathbb{N} \mid M \leq K \quad \exists p, q \in \mathcal{P} \mid p - q = 2M$$

(4.5)

By choosing: M = K + 1 - h + m

this contradicts (4.4).

So

$$\exists h, m \in \mathbb{N}$$
 | $P - Q = p + 2h - q - 2m = 2(K + 1)$

(4.6)

knowing

$$p, p+2h, q, q+2m \in \mathcal{P}$$
 $h \ge m \text{ and } h-m \le K+1$

Thus validating the heredity of property $\mathcal{P}_{Chen}(K)$.

The property $\mathcal{P}_{Chen}(K)$ is therefore true. As a result Goldbach(-) conjecture is validated.

5. Corollary

Let (R_{2K}) and (Q_{2K}) be two sequences of primes determined by

$$R_{2K} = \operatorname{Inf} \left(p \in \mathcal{P} : \ p - 2K \in \mathcal{P} \right) \quad and \quad \underline{Q_{2K}} = \operatorname{Inf} \left(p \in \mathcal{P} : \ 2K + p \in \mathcal{P} \right) = R_{2K} - 2K \tag{5.1}$$

They are defined for any integer $K \in \mathbb{N}^*$ (5.2) and satisfy

$$\lim R_{2K} = +\infty \tag{5.3}$$

$$\forall \ K \in \mathbb{N}^*$$
 R_{2K} , $Q_{2K} \in \mathcal{P}$ and R_{2K} - Q_{2K} = $2K$

(5.4)

$$\forall K \in \mathbb{N}^* \ / \ 2 \le K \le 16$$
 $3 \le Q_{2K} \le 2K$ and $2K + 3 \le R_{2K} \le 4K$

(5.5)

For any integer K large enough

$$3 \le Q_{2K} \le (2K)^{0.525}$$
 and $2K + 3 \le R_{2K} \le 2K + (2K)^{0.525}$

(5.6)

```
Proof.
```

(5.1); (5.2): According to the previous theorem, the sequences (R_{2K}) and (Q_{2K}) are defined by

strong recurrence (finite descent).

- $(5.3): R_{2K} \ge 2K \implies \lim R_{2K} = +\infty$
- (5.4): By construction, these sequences thus verify: $R_{2K} Q_{2K} = 2K$
- (5.5): The property can be verified directly term-to-term by examining the sequence proposed above.
 - (5.6): This property is verified up to 2K = 246 by calculations on the previous list.

We prove this result by recurrence

First of all we order the Goldbach(-) decomponents at a fixed prime q, so as to obtain the estimate (5.6) more easily.

Let q_r be the (r+1)th prime :

We examine the sequences of primes $(T_r(K))_{K \in \mathbb{N}}$ satisfying:

$$T_1(K) = 2K + 3$$

$$(T_1(K); 2K) \rightarrow (5;2); (74); (11;8); (13;10); (17;14); (19;16); (23;20); (29;26); (29;28);...$$

$$T_2(K) = 2K + 5$$

$$(T_2(K); 2K) \rightarrow (7;2); (11;6); (13;8); (17;12); (19;14); (23;18); (29;24); (31;26);$$

(37;32).....

$$T_3(K) = 2K + 7$$

$$(T_3(K); 2K) \rightarrow (11;4); (13;6); (17;10); (19;12); (23;16); (29;22); (31;24); (37;30).....$$

$$T_4(K) = 2K + 11$$

$$(T11(K); 2K) \rightarrow (13;2); (17;6); (19;8); (23;12); (29;18); (31;20); (37;26); (41;30);$$

(43;34).....

$$(T13(K); 2K) \rightarrow (17;4); (19;6); (23;10); (29;16); (31;18); (37;24); (41;28); (43;30);$$

(47;34).....

 $T_r(K) = 2K + q_r \quad (K \in \mathbb{N}^*: T_r(K) \text{ and } q_r \text{ are primes}) \quad (\text{see Appendix 15})$

For any integer K satisfying $(2K)^{0.525} > q_r$ the property holds for $T_r(K)$.

Therefore it is generally validated for all $K > K_0$, since we obtain all possible cases of

Chen's weak conjecture starting with $T_1(K)$, then $T_2(K)$, then $T_3(K)$ for $(2K)^{0.525} \le q_r$

(can be proved by strong recurrence using the same method as in Theorem 4 by "finite descent").

Let $a = \frac{40}{21}$ and $P_a(r)$ be the following property

"For any integer $M \mid 2M < (q_r)^a$ there exists at least a prime $q < q_r \mid 2M + q \in \mathcal{P}''$

▶ $P_a(K_0)$ is true (see Appendix 15).

$$P_a(r) \implies P_a(r+1)$$

$$q_{r+1} \le q_r + q_r^{0.525}$$

(5.6)

It is assumed that M /

$$T_{r+1}(K) - q_{r+1} \neq 2M$$
 knowing $2M < (q_{r+1})^{c_p}$

$$\forall T_m(R), q_m \in \mathcal{P} \quad \exists h, s \in \mathbb{N} \quad | T_{r+1}(K) = T_m(R) + 2h \quad \text{and} \quad q_{r+1} = q_m + 2s$$

(5.7)

then

$$T_m(R) - q_m \neq 2(M + s - h)$$
 (5.8)

which is impossible according to the hypothesis of strong recurrence since

2(M+s-h) is less than Sup $(q_m)^a$ and that all primes $T_m(R)$, q_m satisfy the recurrence hypothesis.

We deduce that:

$$Pc_n(r) \implies Pc_n(r+1)$$

Thus the property (5.5) is true.

6. Lemma (Goldbach's Fundamental Lemma)

Let q be an odd prime

For any integer $n \ge n_a$ there exists an integer s

$$2n - Wq_{2s} \in \mathcal{P} \tag{6.1}$$

Let (Zq_{2n}) be the sequence of primes defined by

$$\forall n \in \mathbb{N} \quad n \geq n_q$$
 $Zq_{2n} = \text{Inf} \left(2n - Wq_{2k} \in \mathcal{P} : k \in \mathbb{N} \right)$

(6.2)

All D.G. are contains in the set
$$\{(2n-Zq_{2n}\;;\;Zq_{2n}\;)\;n\in\mathbb{N}\;+3\}$$

For any integer $n\geq n_0$
$$Z3_{2n}\leq (2n)^{0.525}$$
 (6.3)

$$Z3_{2n} \le o (2n)^{0.525} \tag{6.4}$$

Proof. The proofs of propositions (6.1), (6.2) and (6.3) are established following the same principle of strong recurrence as in Theorem 4 and Corollary 5 by "return, absurd and finite descent"

(6.1): $2n - Wq_{2k} = 2n - 2M_r - Wr_{2k} = 2(n - M_r) - Wr_{2k}$ then by the absurd the property is validated.

(Proof to develop).

Remark. A better estimate of the following form can be obtained by the same method with probability 1 or on average using the results of Bombieri [3], Cramer [8], Granville [9], Nicely [29] and Maier [27]:

$$\forall n \in \mathbb{N} : n \ge n_0$$
 ; For any real $c > 2$; $\exists K' > 1$ $\Big|$ $U_{2n} < 1.7 \ln(n)^c$ (with probability one) and $U_{2n} < K'.\ln(n)$ (on average)

7. Principle of Proof

To determine the E.G.D , three sequences of primes (W_{2n}) , (V_{2n}) , (V_{2n}) are defined and they verify the following properties

$$\lim V_{2n} = +\infty. \tag{7.1}$$

 $\forall n \in \mathbb{N} + 2$ V_{2n} is defined as a function of $W_{2n} = \text{Sup} (p \in P : p \le 2n - 3)$

(7.2)

(W_{2n}) is an increasing sequence of primes that contains all of them except $p_1 = 2$

(7.3)

$$\lim W_{2n} = +\infty \tag{7.4}$$

(U_{2n}) is a complementary sequence to (W_{2n}) of negligible primes with respect to 2n (7.5)

For any integer
$$n \ge 3$$
 (7.6)

• If $(2n - W_{2n})$ is a prime

then V_{2n} and U_{2n} are defined by

$$V_{2n} = W_{2n}$$
 and $U_{2n} = 2n - W_{2n}$ (7.7)

• Otherwise, if $(2n - W_{2n})$ is a composite number

we search for two previous terms of the sequence (G_{2n}) , $U_{2(n-k)}$ and $V_{2(n-k)}$ satisfying the following conditions

$$U_{2(n-k)}, V_{2(n-k)}, [U_{2(n-k)} + 2k] \in \mathcal{P}$$
 (7.8)

$$U_{2(n-k)} + V_{2(n-k)} = 2(n-k)$$

which is always possible (see Theorem 4 and "Goldbach's fundamental Lemma 6")
So by setting

$$V_{2n} = V_{2(n-k)}$$
 and $U_{2n} = U_{2(n-k)} + 2k$ (7.9)

two new primes V_{2n} and U_{2n} satisfying (4.10) are generated /

$$U_{2n} + V_{2n} = 2n (7.10)$$

This process is then repeated incrementing n by one unit $(n \leftarrow n+1)$.

• **Remark.** Using the same method as in Theorem 4, we can the following equivalent property by strong recurrence: For any integer n greater than 48

$$\mathcal{P}_{ret}$$
 (n) : " There exists an integer K such that $2K + U_{2(n-k)} \in \mathcal{P}$ "

(7.11)

To this end, .

- $\mathcal{P}_{ret}(49)$ is true.
- ► The heredity of the property $\mathcal{P}_{ret}(n)$: $\mathcal{P}_{ret}(n) \Longrightarrow \mathcal{P}_{ret}(n+1)$ can be proved by the absurd and returning to the previous terms by noting that For any integer $r \mid r \leq n$, there is at least one integer M_r

$$U_{2(n+1-k)} = 2 M_r + U_{2(r+1-k)}$$

then

$$2K + U_{2(n+1-k)} = 2(K + M_r) + U_{2(r+1-k)}$$

$$= 2P + U_{2(r+1+M_r-P)}$$

(7.12)

By posing: $P = K + M_r$ and $r + 1 + M_r \le n$ Now, according to the recurrence hypothesis on $\mathcal{P}_{ret}(n)$ there exists an integer $P / M_r \le n$

$$2P + U_{2(r+1+M_r-P)} \in \mathcal{P} (7.13)$$

then there exists an integer K

$$2K + U_{2(n+1-k)} \in \mathcal{P} \tag{7.14}$$

In summary, the property $P_{ret}(n)$ is hereditary and, as a result, verifiable.

On adapte le meme type de raisonnement à l'aide du theorem 4 dans le cas général avec la suite (Wq_{2n}) en montrant :

For any integer n > 2 there exists an integer K

$$2K + q_{2n} \in \mathcal{P}$$

8. Theorem (Goldbach Conjecture)

There exists at least a recurrent sequence $(G_{2n}) = (U_{2n}; V_{2n})$ of primes satisfying the following conditions.

For any integer $n \ge 2$

$$U_{2n}$$
 , V_{2n} \in \mathcal{P} and U_{2n} + V_{2n} = $2n$

(8.1)

(Any integer $n \ge 2$ is the mean arithmetic of two primes)

An algorithm can be used to explicitly compute any term U_{2n} and V_{2n} . (8.2)

Proof.

■ GLOBAL STRONG RECURRENCE:

The proof can be made using the following strong recurrence principle.

Let $P_G(n)$ be the property defined for any integer $n \ge 2$ by

 $P_G(n)$: "For any integer p satisfying $2 \le p \le n$ there exists two primes U_{2p} and V_{2p} such their sum is equal to 2p ".

$$(\forall p \in \mathbb{N} \quad \middle| \quad 2 \le p \le n \qquad \qquad U_{2p} \ , \ V_{2p} \ \in \ \mathcal{P} \qquad \text{and} \qquad U_{2p} \ + V_{2p} \ = 2p \)$$

Let's show by strong recurrence that $P_G(n)$ is true for any integer $n \ge 2$

- $P_G(2)$ is true: it suffices to choose $U_4 = V_4 = 2$.
- Let's show that the property $P_G(n)$ is hereditary : $P_G(n) \implies P_G(n+1)$ Assume property $P_G(n)$ is true.
- If $(2(n+1) W_{2(n+1)})$ is a prime then $V_{2(n+1)}$ and $U_{2(n+1)}$ are defined by

$$V_{2(n+1)} = W_{2(n+1)}$$
 and $U_{2(n+1)} = 2(n+1) - W_{2(n+1)}$ (8.10)

• Otherwise, if $(2(n+1) - W_{2(n+1)})$ is a composite number

there exists an integer k to obtain two terms $U_{2(n+1-k)}$ and $V_{2(n+1-k)}$ satisfying the following conditions

$$U_{2(n+1-k)}, V_{2(n+1-k)}$$
 and $U_{2(n+1-k)} + 2k \in \mathcal{P}$ (8.11)

$$U_{2(n+1-k)} + V_{2(n+1-k)} = 2(n+1-k)$$

we use the previous terms of the sequence (G_{2n}) .

For any integer q / $1 \le q \le n - 3$ we have

$$3 \le U_{2(n-q)} \le n$$
.

Then there exists an integer k $1 \le k \le n-3$

$$R_{2n} = U_{2(n-k)} + 2k \in \mathcal{P} \tag{8.4}$$

following the Bertrand principle and Theorem 4 since all primes smaller than $(2n)^{0.525}$ are in the set $\{U_{2k}: k \le n\}$

(If there were no such primes, we would have a contradiction with the Theorem 4 or with *Goldbach's fundamental Lemma 6*) . In fact, in an equivalent way (see the previous remark) we can copy the proof of Teorem 4 by performing a similar strong recurrence "finite descent feedback and absurd" directly on the set { $U_{2k}: k \le n$ }

$$R_{2n} = U_{2(n-k)} + 2k \in \mathcal{P} \tag{8.4}$$

The smallest integer $k \mid R_{2n} \in \mathcal{P}$ is denoted by k_n . So by setting

$$U_{2n} = U_{2(n-k_n)} + 2k_n$$
 and $V_{2n} = V_{2(n-k_n)} \in \mathcal{P}$ (8.5)

(These two terms are primes)

In the previous steps two primes $U_{2(n-k_n)}$ and $V_{2(n-k_n)}$ whose sum is equal to $2(n-k_n)$ were determined.

$$U_{2(n-k_n)} + V_{2(n-k_n)} = 2(n-k_n) \tag{8.6}$$

By adding the term $2k_n$ to each member of the equality (8.6) it follows

$$U_{2(n-k_n)} + 2k_n + V_{2(n-k_n)} = 2(n-k_n) + 2k_n$$
(8.7)

$$\Leftrightarrow \qquad \left[U_{2(n-k_n)} + 2k_n \right] + V_{2(n-k_n)} = 2n \tag{8.8}$$

$$U_{2n} + V_{2n} = 2n$$

(8.9)

Two new primes $V_{2(n+1)}$ and $U_{2(n+1)}$ satisfying ($U_{2(n+1)} + V_{2(n+1)} = 2(n+1)$) are generated.

It follows that $P_G(n+1)$ is true. Then the property $P_G(n)$ is hereditary : $P_G(n) \implies P_G(n+1)$.

Therefore for any integer $n \ge 2$ the property $P_G(n)$ is true. It follows

 $\forall n \in \mathbb{N}+2$ there are two primes U_{2n} and V_{2n} and such their sum is 2n: $U_{2n} + V_{2n} = 2n$

ALGORITHM:

For any integer $n \ge 3$

• If $(2n - W_{2n})$ is a prime then V_{2n} and U_{2n} are defined by

$$V_{2n} = W_{2n}$$
 and $U_{2n} = 2n - W_{2n}$ (8.3)

• Otherwise, if $(2n - W_{2n})$ is a composite number we use the previous terms of the sequence (G_{2n}) . For any integer $q \mid 1 \le q \le n - 3$ we have

$$3 \le U_{2(n-q)} \le n$$
.

Then there exists an integer k $1 \le k \le n-3$

$$R_{2n} = U_{2(n-k)} + 2k \in \mathcal{P} \tag{8.4}$$

following the Bertrand principle and Theorem 4 since all primes smaller than $(2n)^{0.525}$ are in the set $\{U_{2k}: k \le n\}$

(If there were no such primes, we would have a contradiction with the Theorem 4 or with Goldbach's fundamental Lemma 6) . In fact, in an equivalent way (see the previous remark) we can copy the proof of Teorem 4 by performing a similar strong recurrence "finite descent feedback and absurd" directly on the set { $U_{2k}: k \le n$ }/

$$R_{2n} = U_{2(n-k)} + 2k \in \mathcal{P} \tag{8.4}$$

The smallest integer $k \mid R_{2n} \in \mathcal{P}$ is denoted by k_n .

$$U_{2n} = U_{2(n-k_n)} + 2k_n$$
 and $V_{2n} = V_{2(n-k_n)} \in \mathcal{P}$ (8.5)

(These two terms are primes)

In the previous steps two primes $U_{2(n-k_n)}$ and $V_{2(n-k_n)}$ whose sum is equal to $2(n-k_n)$ were determined.

$$U_{2(n-k_n)} + V_{2(n-k_n)} = 2(n-k_n) \tag{8.6}$$

By adding the term $2k_n$ to each member of the equality (8.6) it follows

$$U_{2(n-k_n)} + 2k_n + V_{2(n-k_n)} = 2(n-k_n) + 2k_n$$
(8.7)

$$\Leftrightarrow \qquad \left[U_{2(n-k_n)} + 2k_n \right] + V_{2(n-k_n)} = 2n \tag{8.8}$$

$$\Leftrightarrow \qquad U_{2n} + V_{2n} = 2n \tag{8.9}$$

Finally for any integer $n \ge 3$ this algorithm determines two sequences of primes (U_{2n}) and (V_{2n}) verifying Goldbach's conjecture.

9. Lemma

The sequence (U_{2n}) verifies the following majorization For any integer $n \ge 65$

$$U_{2n} \le (2n)^{0.525} \tag{9.1}$$

and

$$U_{2n} = o\left((2n)^{0.525}\right) \tag{9.2}$$

Proof. According to the programm 12.2 and Appendix 13 the majorization (9.1) is verified for any integer $n \mid 65 \le n \le 2000$.

For any integer n > 2000 the proof is established by recurrence. For this purpose let $P_{bhip}(n)$ be the following property

$$P_{bhip}(n): \quad U_{2n} \le (2n)^{0.525} \quad .$$
 (9.3)

- ▶ $P_{bhip}(2000)$ is true according to program 12.2 and the table in appendix 13.
- ► For any integer $n \ge 2000$ let's show that $P_{bhip}(n)$ is hereditary : $P_{bhip}(n)$ \Longrightarrow $.P_{bhip}(n+1)$

Assume that $P_{bhip}(n)$ is true: then

• If $(2(n+1) - W_{2(n+1)})$ is a prime

then $V_{2(n+1)}$ and $U_{2(n+1)}$ are defined by

$$V_{2(n+1)} = W_{2(n+1)}$$
 and $U_{2(n+1)} = 2(n+1) - W_{2(n+1)}$ (9.4)

According to the results in [4,5,20] (see Lemma 6) there is a constant K > 0 such that

$$2(n+1)$$
 - $K \cdot [2(n+1)]^{0.525} < W_{2(n+1)} < 2(n+1)$

$$\Rightarrow \qquad U_{2(n+1)} \leq K \cdot [2(n+1)]$$

1)]^{0.525}

• Otherwise, if $(2(n+1) - W_{2(n+1)})$ is a composite number

$$\exists \ p \in \mathbb{N}^* \ / \ \ U_{2(n+1)} = U_{2(n+1-p)} + 2p \tag{9.5}$$

According to [4,5,19]

$$U_{2(n+1)} = 2p + U_{2(n+1-p)} = 2p + 2(n+1-p) - W_{2(n+1-p)} = 2(n+1) - W_{2(n+1-p)}$$

(9.6)

Via "Goldbach's fundamental Lemma 6" it follows that

$$U_{2(n+1)} < K. [2(n+1)]^{0.525}$$
(9.7)

 $P_{bhip}(n + 1)$ is true then $P_{bhip}(n)$ is hereditary.

So for any integer $n \ge 2000$ the property $P_{bhip}(n)$ is true.

Finally $U_{2(n+1)} \leq [2(n+1)]^{0.525}$

• Remark. A more precise estimate can be obtained using the Cipolla or Axler frames [2,7].

10. Theorem

For any integer $n \ge 3$ it is easy to check

$$(W_{2n})$$
 is a positive increasing sequence of primes (10.1)

$$\{ W_{2n} : n \in IN + 3 \} \cup \{ 2 \} = \mathcal{P}$$
 (10.2)

$$\lim W_{2n} = +\infty \tag{10.3}$$

 (U_{2n}) and (V_{2n}) are sequences of primes and the set $\{U_{2k}: k \leq n\}$

(10.4)

contains all primes less than ln(n)

$$n \le V_{2n} \le W_{2n} \tag{10.5}$$

$$3 \le 2n - W_{2n} \le U_{2n} \le n \tag{10.6}$$

$$\lim V_{2n} = +00 \tag{10.7}$$

Proof.

(10.1): For any integer $n \ge 2$ $\mathcal{P}_n \subset \mathcal{P}_{n+1}$. Therefore, $W_{2n} \le W_{2(n+1)}$. So the sequence (W_{2n})

is increasing.

(10.2): Any prime except $p_1 = 2$ is odd, hence the result.

(10.3): $\lim W_{2n} = \lim p_k = +\infty$

(10.4): By definition $V_{2n} = W_{2n}$ or there exits an integer $k \le n-2$ such that $V_{2n} = V_{2(n-k)}$

so the terms of the sequence (V_{2n}) are primes.

(10.5): According to Lemma 6, for any integer $n \ge 65$

$$U_{2n} < (2n)^{0.525}$$

therefore

$$U_{2n} < (2n)^{0.55} < n$$

and

$$V_{2n} = 2n - U_{2n} > 2n - n > n$$

For any integer $n \mid 3 \le n \le 65$ verification is carried out according to the computer program in paragraph 12.2 and the table in appendix 13.

We can also see that by construction $V_{2n} \ge U_{2n}$ because if we assume the opposite then V_{2n} is not the largest prime number verifying

$$\frac{1}{2} (U_{2n} + V_{2n}) = n$$
.

So

$$V_{2n} \geq n$$

$$V_{2n} \le W_{2n} \implies 2n - W_{2n} \le 2n - V_{2n} = U_{2n}$$
 (10.7)

By (10.5) for any integer $n \ge 2$: $n \le V_{2n}$

 $\lim V_{2n} = +\infty.$

11. Properties

For any integer $k \ge 2$ there are infinitely many integers $n \mid U_{2n} = p_k$ (11.1) $V_{2n} \sim 2n \qquad (n \to +\infty)$ (11.2)

For any integer $n \ge 5000$

$$U_{2n} \ll V_{2n}$$
 and $\lim \left(\frac{U_{2n}}{V_{2n}} \right) = 0$

(11.3)

The smallest integer $n \mid U_{2n} \neq 2n - W_{2n}$ is obtained for n = 49 and $G_{98} = (79; 19)$

(11.4)

(This type of terms increases in the Goldbach sequence (G_{2n}) as n increases in the sense of the Schnirelmann density and there are an infinite number of them; their proportion per interval can be computed using the results given in [33]).

The sequence (G_{2n}) is "extremal" in the sense that for any integer $n \geq 2$

(11.5)

 V_{2n} and U_{2n} are the largest and smallest possible primes such that $U_{2n} + V_{2n} = 2n$. The Cramer-Granville-Maier-Nicely conjecture [8],[15],[20,22,24,25,27,29,35] is verified with probability one. It leads to the following majorization For any integer $p \ge 500$

$$U_{2p} \le 0.7 \left[\ln(2p) \right]^{(2.2 - \frac{1}{p})}$$
 (with probability one) (11.7)

The proof is similar to that of Lemma 9 and is validated by the studying functions of the type

$$f: x \to a.g(x) + b[\ln(g(x))]^c$$
 $(a,b > 0; c > 2)$ with

 $g: x \to 0.7 [ln(x)]^{(c-\frac{1}{x})}$ and $h: x \to 0.7 [ln(x)]^{(2.2-\frac{1}{x})}$ using Maple software.

A better estimate can be obtained via [26,28,30].

According to Bombieri [3] and using the same method as in the proof of Lemma 8, we obtain the following estimate of U_{2n}

$$\forall \quad \varepsilon > 0$$
 $U_{2n} = O \left(\ln^{1.3+\varepsilon}(2n) \right)$

(on average) (11.8)

12. Algorithm

12.1. Algorithm Written in Natural Language.

Inputs:

Input four integer variables : k, N, n, P

Input: $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$,, p_N the first N primes.

: P = M, R, G, S or T as indicated in paragraph 2

Algorithm body:

A) Compute:
$$W_{2n} = \text{Sup}(p \in \mathcal{P}: p \le 2n - 3)$$

If
$$T_{2n} = (2n - W_{2n})$$
 is a prime

$$U_{2n} \leftarrow T_{2n} \quad \text{and} \quad V_{2n} \leftarrow W_{2n}$$
 (12.1.1)

otherwise

B) If T_{2n} is a composite number

Let: k = 1

B.1) While $U_{2(n-k)} + 2k$ is a composite number

assign to k the value k+1 ($k \leftarrow k+1$).

return to B1)

End while

Assign to k the value k_n ($k_n \leftarrow k$)

Let:

$$U_{2n} = U_{2(n-k_n)} + 2k_n$$
 and $V_{2n} = V_{2(n-k_n)}$ (12.1.2)

Assign to n the value n + 1 ($n \leftarrow n + 1$ and return to **A**)

End:

Outputs for integers less than 104::

Print
$$(2n = \bullet; 2n - 3 = \bullet; W_{2n} = \bullet; T_{2n} = \bullet; V_{2n} = \bullet; U_{2n} = \bullet)$$

Outputs for large integers:

```
Print (2n - P = \bullet; 2n - 3 - P = \bullet; W_{2n} - P = \bullet; T_{2n} = \bullet; V_{2n} - P = \bullet; U_{2n} = \bullet)
12.2. Program Written with Maxima Software for 2n Around 10<sup>500</sup>_
     c: 10**500; for n: c + 20000 step 2 thru c + 20020 do
     ( b:2,test:0, b:next_prime(b),d:n-b,
     if primep(d)
     then print(n-c, b, d-c)
     else while test = 0 do (e:n-b, if primep(e))
     then test:1, print(n-c, b, e-c)
     else test : 0 ,b:next-prime(b)) ;
12.3. Program Written \ with Maplesoft Maple for \ 2n \ Around \ 10^{2000}
     G := 10^2000;
     for n from G + 40000 by 2 to G + 40100 do
     B:=2;
         t := 0;
              b := prevprime(b);
     e:=n - b;
         if isprime(e) then
              print(n - G, b, e - G);
              while t = 0 do e:=n - b; if isprime(e) then t := 1; print(n - G, b,e - G); else t := 0; b :=
prevprime(b); end if; end do;
         end if;
     end do;
```

RESULTS:

n - G	e - l	,	b
40000,	39957,	43	
40002,	39091,	911	
40004,	39957,	47	
40006,	39549,	457	
40008,	25369,	14639	
40010,	39957,	53	
40012,	39549,	463	
40014,	17737,	22277	
40016,	39957,	59	
40018,	39957,	61	
40020,	39091,	929	
40022, 3	39141,	881	
40024, 3	39957,	67	
40026, 3	35443,	4583	
40028, 3	39957,	71	

40030, 39957,	73
40032, 39091,	941
40034, 35443,	4591
40036, 39957,	79
40038, 39091,	947
40040, 39957,	83
40042, 23139,	16903
40044, 39091,	953
40046, 39957,	89
40048, 39549,	499
40050, -46067,	86117

13. Appendix

Application of Algorithm 12 : Table of extreme Goldbach partitions U_{2n} and V_{2n} computed from program 12.2 ($2 \le 2n \le 10^{1000} + 4020$).

The ** sign in the table below indicates the results given by the algorithm 12 in case **B)** of return to the previous terms of the sequence (G_{2n}) .

WATCH OUT!

To simplify the display of large numbers $n (2n > 10^9)$ the results are entered as follows:

$$2n$$
 - P , $(2n$ - $3)$ - P , W_{2n} - P $\,$, $\,T_{2n}$, $\,V_{2n}$ - P $\,$ and $\,U_{2n}$

with

P = M, R, G, S, or T constants defined in (2.3)

2n 2n - 3	W_{2n}	T_{2n} =2 n - W_{2n}	V_{2n}	U_{2n}
4 1	Х	X	2	2
6 3	3	3	3	3
8 5	5	3	5	3
1 10 7	7	3	7	3
112	7	5	7	5
9 14 11	11	3	11	3

16 13	13	3	13	3
18 15	13	5	13	5
20 17	17	3	17	3
22 19	19	3	19	3
24 21	19	5	19	5
26 23	23	3	23	3
28 25	23	5	23	5
30 27	23	7	23	7
32 29	29	3	29	3
34 31	31	3	31	3
36 33	31	5	31	5
38 35	31	7	31	7
40 37	37	3	37	3
1				
80 77	73	7	73	7
82 79	79	3	79	3
84 81	79	5	79	5
86 83	83	3	83	3
88 85	83	5	83	5
90 87	83	7	83	7
92	89	3	89	3

89					
94	89		5	89	5
91 96					
93	89		7	89	7
**98	89		9	79	19
95	09		9	79	19
100 97	97		3	97	3
<i>)1</i>				_	
120					F
117	113	7		113	7
**122					13
119	113	9		109	
124 121	113	11		113	11
126					
123	113	13		113	13
**128					19
125	113	15		109	
130 127	127	3		127	3
132					_
129	127	5		127	5
134					3
131	131	3		131	
136 133	131	5		131	5
138					
135	131	7		131	7
140		_			3
137	137	3		137	
**=00					
**500 497	491	9		487	13
502					2
499	499	3		499	3
504		_		400	5
501	499	5		499	

506 503	503	3	503	3
508	300	3	300	
505	503	5	503	5
510				7
507	503	7	503	
1000 997	997	3	997	3
1002 999	997	5	997	5
1004 1001	997	7	997	7
**1006 1003	997	9	983	23
1008 1005	997	11	997	11
1010 1007	997	13	997	13
1012 1009	1009	3	1009	3
1014 1011	1009	5	1009	5
1016 1013	1013	3	1013	3
1018 1015	1013	5	1013	5
10002 9999	9973	29	9973	29
10004 10001	9973	31	9973	31
**10006 10003	9973	33	9923	83
**10008 10005	9973	35	9967	41
10010 10007	10007	3	10007	3
10012 10009	10009	3	10009	3

10014 10011	10009	5	10009	5
10016 10013	10009	7	10009	7
**10018 10015	10009	9	10007	11
10020 10017	10009	11	10009	11
2n - M	(2n M	$T_{2n} = 2n - W_{2n}$	17 3.4	11
- 3) - M	W_{2n} - M	$T_{2n} = 2n - W_{2n}$	V_{2n} - M	U_{2n}
+1000 +997	+993	7	+993	7
**+1002 +999	+993	9	+931	71
+1004 +1001	+993	11	+993	11
+1006 +1003	+993	13	+993	13
**+1008 +1005	+993	15	+919	89
+1010 +1007	+993	17	+993	17
+1012 +1009	+993	19	+993	19
+1014 +1011	+1011	3	+1011	3
+1016 +1013	+1011	5	+1011	5
+1018 +1015	+1011	7	+1011	7
**+1020 +1017	+1011	9	+931	89
2n - R - 3) - R	$(2n W_{2n} - R)$	$T_{2n}=2n-W_{2n}$	V_{2n} - R	U_{2n}
**+1000 +997	+979	21	+903	97
+1002 +999	+979	23	+979	23

**+1004 +1001	+979	25	+951	53
**+1006 +1003	+979	27	+903	103
+1008 +1005	+979	29	+979	29
+1010 +1007	+979	31	+979	31
**+1012 +1009	+979	33	+951	61
**+1014 +1011	+979	35	+ 781	233
+1016 +1013	+979	37	+979	37
**+1018 +1015	+979	39	+951	67
+1020 +1017	+1017	3	+1017	3
2n - G				
(2n-3)-G	W_{2n} - G	$T_{2n} = 2n - W_{2n}$	V_{2n} - G	U_{2n}
	₩ _{2n} - G +9631	$T_{2n} = 2n - W_{2n}$ 369	<i>V</i> _{2<i>n</i>} - <i>G</i> +7443	U _{2n} 2557
(2n - 3) - G **+10000				
(2n - 3) - G **+10000 +9997 **+10002	+9631	369	+7443	2557
(2n - 3) - G **+10000 +9997 **+10002 +9999 +10004	+9631 +9631	369 371	+7443 +9259	2557 743
(2n - 3) - G **+10000 +9997 **+10002 +9999 +10004 +10001 **+10006	+9631 +9631 +9631	369 371 373	+7443 +9259 +9631	2557 743 373
(2n - 3) - G **+10000 +9997 **+10002 +9999 +10004 +10001 **+10006 +10003 **+10008	+9631 +9631 +9631	369 371 373 375	+7443 +9259 +9631 +8583	2557 743 373 1423
(2n - 3) - G **+10000 +9997 **+10002 +9999 +10004 +10001 **+10006 +10003 **+10008 + 10005 +10010	+9631 +9631 +9631 +9631	369 371 373 375	+7443 +9259 +9631 +8583 +6637	2557 743 373 1423 3371
(2n - 3) - G **+10000 +9997 **+10002 +9999 +10004 +10001 **+10006 +10003 **+10008 + 10005 +10010 +10007 **+10012	+9631 +9631 +9631 +9631 +9631	 369 371 373 375 377 379 	+7443 +9259 +9631 +8583 +6637 +9631	2557 743 373 1423 3371 379
(2n - 3) - G **+10000 +9997 **+10002 +9999 +10004 +10001 **+10006 +10003 **+10008 + 10005 +10010 +10007 **+10012 +10009 +10014	+9631 +9631 +9631 +9631 +9631	 369 371 373 375 377 379 381 	+7443 +9259 +9631 +8583 +6637 +9631 +8583	2557 743 373 1423 3371 379 1429
(2n - 3) - G **+10000 +9997 **+10002 +9999 +10004 +10001 **+10008 +10005 +10010 +10007 **+10012 +10009 +10014 +10011 **+10016	+9631 +9631 +9631 +9631 +9631 +9631	369 371 373 375 377 379 381	+7443 +9259 +9631 +8583 +6637 +9631 +8583	2557 743 373 1423 3371 379 1429

+10015 +10020				
+10020	+9631	389	+9631	389
2n-S (2n-3)-S	W_{2n} - S	$T_{2n} = 2n - W_{2n}$	V_{2n} - S	U_{2n}
**+20000 +19997	+18031	1969	+17409	2591
**+20002 +19999	+18031	1971	+ 17409	2593
+20004 +20001	+18031	1973	+18031	1973
**+20006 +20003	+18031	1975	+16663	3343
**+20008 +20005	+18031	1977	+16941	3067
+20010 +20007	+18031	1979	+18031	1979
**+20012 +20009	+18031	1981	+5671	14341
**+20014 +20011	+18031	1983	+4101	15913
**+20016 +20013	+18031	1985	+3229	16787
+20018 +20015	+18031	1987	+18031	1987
**+20020 +20017	+18031	1989	+16941	3079
2n-T (2n-3)-T	W_{2n} - T	$T_{2n} = 2n - W_{2n}$	$V_{2n}-T$	U_{2n}
**+40000 +39997	+29737	10263	+ 21567	18433
**+40002 +39999	+29737	10265	+ 22273	17729
+40004 +40001	+29737	10267	+29737	10267
**+40006 +40003	+29737	10269	+21567	18439

+40008 +40005	+29737	10271	+29737	10271
+40010 + 40007	+29737	10273	+29737	10273
**+40012 +40009	+29737	10275	+10401	29611
**+40014 +40011	+29737	10277	-56003	96017
**+40016 +40013	+29737	10279	+27057	12959
**+40018 +40015	+29737	10281	+25947	14071
**+40020 +40017	+29737	10283	+24493	15527

14. Appendix

7-3=4 11-5=6 11-3=8 13-3=10 17-5=12 17-3=14 19-3=16 23-5=18 23-3=20 29-7=22 29-5=24 29-3=26 31-3=28 37-7=30 37-5=32 37-3=34 41-5=36 41-3=38 43-3=40 47-5=42 47-3=44 53-7=46 53-5=48 53-3=50 59-7=52 59-5=54 59-3=56 61-3=58 67-7=60 67-5=62 67-3=64 71-5=66 71-3=68 73-3=70 79-7=72 79-5=74 79-3=76 83-5=78 83-3=80 89-7=82 89-5=84 89-3=86 101-13=88 97-7=90 97-5=92 97-3=94 101-5=96 101-3=98 103-3=100 107-5=102 107-3=104 109-3=106 113-5=108 113-3=110 131-127-120 127- 131-127-7=120 127-5=122 127-3=124 131-5=126 131-3=128 137-7=130 11=116 13=118 137-3=134 139-3=136 149-151-140 149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=1								
41-5=36 41-3=38 43-3=40 47-5=42 47-3=44 53-7=46 53-5=48 53-3=50 59-7=52 59-5=54 59-3=56 61-3=58 67-7=60 67-5=62 67-3=64 71-5=66 71-3=68 73-3=70 79-7=72 79-5=74 79-3=76 83-5=78 83-3=80 89-7=82 89-5=84 89-3=86 101-13=88 97-7=90 97-5=92 97-3=94 101-5=96 101-3=98 103-3=100 107-5=102 107-3=104 109-3=106 113-5=108 113-3=110 131-127-19=112 13=114 127-110 131-116 13-118 127-7=120 127-5=122 127-3=124 131-5=126 131-3=128 137-7=130 11=116 13=118 139-3=136 149-151-149 149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 <td>7-3=4</td> <td>11-5=6</td> <td>11-3=8</td> <td>13-3=10</td> <td>17-5=12</td> <td>17-3=14</td> <td>19-3=16</td> <td>23-5=18</td>	7-3=4	11-5=6	11-3=8	13-3=10	17-5=12	17-3=14	19-3=16	23-5=18
59-7=52 59-5=54 59-3=56 61-3=58 67-7=60 67-5=62 67-3=64 71-5=66 71-3=68 73-3=70 79-7=72 79-5=74 79-3=76 83-5=78 83-3=80 89-7=82 89-5=84 89-3=86 101-13=88 97-7=90 97-5=92 97-3=94 101-5=96 101-3=98 103-3=100 107-5=102 107-3=104 109-3=106 113-5=108 113-3=110 131-127-19=112 13=114 127-131-116 131-116 131-116 131-3=128 137-7=130 131-3=128 137-7=130 137-5=132 137-3=134 139-3=136 149-151-149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191-180 11=182 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=180	23-3=20	29-7=22	29-5=24	29-3=26	31-3=28	37-7=30	37-5=32	37-3=34
71-3=68 73-3=70 79-7=72 79-5=74 79-3=76 83-5=78 83-3=80 89-7=82 89-5=84 89-3=86 101-13=88 97-7=90 97-5=92 97-3=94 101-5=96 101-3=98 103-3=100 107-5=102 107-3=104 109-3=106 113-5=108 113-3=110 131-127-19=112 13=114 127-110 131-12 127-7=120 127-5=122 127-3=124 131-5=126 131-3=128 137-7=130 11=116 13=118 139-3=136 149-151-149 149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191-180 11=182 191-3=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211-204 211-5=206 211-3=208 223-13-210 229-29-27 227-23-7=216 223-5=	41-5=36	41-3=38	43-3=40	47-5=42	47-3=44	53-7=46	53-5=48	53-3=50
89-5=84 89-3=86 101-13=88 97-7=90 97-5=92 97-3=94 101-5=96 101-3=98 103-3=100 107-5=102 107-3=104 109-3=106 113-5=108 113-3=110 131- 127- 19=112 133-114 127- 131- 127-7=120 127-5=122 127-3=124 131-5=126 131-3=128 137-7=130 11=116 13=118 139-3=136 149- 151- 149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191- 193- 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211- 2204 211-5=206 211-3=208 223-13-210 229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 233-5=228 233-3=230 239-7=232 239-5=234	59-7=52	59-5=54	59-3=56	61-3=58	67-7=60	67-5=62	67-3=64	71-5=66
103-3=100 107-5=102 107-3=104 109-3=106 113-5=108 113-3=110 131- 127- 13=114 127- 19=112 13=114 127- 131- 127-7=120 127-5=122 127-3=124 131-5=126 131-3=128 137-7=130 137-5=132 137-3=134 139-3=136 149- 151- 149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191- 193- 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211- 2204 211-5=206 211-3=208 223-13=198 129- 3=196 211- 211- 233- 211-7=204 211-5=206 211-3=208 223-13=210 229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 233-5=228 233-3=230 239-7=232 239-5=234 239-3=236	71-3=68	73-3=70	79-7=72	79-5=74	79-3=76	83-5=78	83-3=80	89-7=82
127- 131- 127-7=120 127-5=122 127-3=124 131-5=126 131-3=128 137-7=130 137-5=132 137-3=134 139-3=136 149- 151- 149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191- 193- 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211- 233- 211-7=204 211-5=206 211-3=208 223-13=196 199-3=196 211- 211- 233- 211-7=204 211-5=206 211-3=208 223-13=210 229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242	89-5=84	89-3=86	101-13=88	97-7=90	97-5=92	97-3=94	101-5=96	101-3=98
127- 131- 127-7=120 127-5=122 127-3=124 131-5=126 131-3=128 137-7=130 137-5=132 137-3=134 139-3=136 149- 151- 149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191- 193- 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211- 233- 211-7=204 211-5=206 211-3=208 223-13=190 229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 239-5=234 239-3=236 241-3=238 251- 271- 233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251- 271-	103-3=100	107-5=102	107-3=104	109-3=106	113-5=108	113-3=110	131-	127-
11=116 13=118 139-3=136 149-151-149-7=142 149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191-193-194 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211-233-214 211-7=204 211-5=206 211-3=208 223-13=210 229-27-27-223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 239-7=232 239-5=234 239-3=236 241-3=238 251-271-11=240 29=242							19=112	13=114
137-5=132 137-3=134 139-3=136 149- 151- 149-7=142 149-5=144 149-3=146 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191- 193- 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211- 233- 211-7=204 211-5=206 211-3=208 223-13=190 229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242	127-	131-	127-7=120	127-5=122	127-3=124	131-5=126	131-3=128	137-7=130
11=138 11=140 151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191- 193- 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211- 233- 211-7=204 211-5=206 211-3=208 223-13=210 229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251- 271-	11=116	13=118						
151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162 167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191- 193- 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211- 233- 211-7=204 211-5=206 211-3=208 223- 13=198 11=200 31=202 227-5=222 227-3=224 229-3=226 17=212 13=214 233-5=218 223-3=220 227-5=222 227-3=224 229-3=226 233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242	137-5=132	137-3=134	139-3=136	149-	151-	149-7=142	149-5=144	149-3=146
167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178 191- 193- 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 11=180 11=182 211- 233- 211-7=204 211-5=206 211-3=208 223- 13=198 11=200 31=202 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 239-5=234 239-3=236 241-3=238 251- 271- 233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242				11=138	11=140			
191- 193- 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194 199-3=196 211- 211- 233- 211-7=204 211-5=206 211-3=208 223- 13=198 11=200 31=202 13=210 229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242	151-3=148	157-7=150	157-5=152	157-3=154	163-7=156	163-5=158	163-3=160	167-5=162
11=180 11=182 199-3=196 211- 13=198 11=200 229- 227- 17=212 13=214 233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242	167-3=164	173-7=166	173-5=168	173-3=170	179-7=172	179-5=174	179-3=176	181-3=178
199-3=196 211- 211- 233- 211-7=204 211-5=206 211-3=208 223- 13=198 11=200 31=202 13=210 229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242	191-	193-	191-7=184	191-5=186	191-3=188	193-3=190	197-5=192	197-3=194
13=198 11=200 31=202 13=210 229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242	11=180	11=182						
229- 227- 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226 17=212 13=214 233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242	199-3=196	211-	211-	233-	211-7=204	211-5=206	211-3=208	223-
17=212 13=214 233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242		13=198	11=200	31=202				13=210
233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251- 271- 11=240 29=242	229-	227-	223-7=216	223-5=218	223-3=220	227-5=222	227-3=224	229-3=226
11=240 29=242	17=212	13=214						
	233-5=228	233-3=230	239-7=232	239-5=234	239-3=236	241-3=238	251-	271-
251-7=244 251-5=246							11=240	29=242
	251-7=244	251-5=246						

15. Appendix

_	_	,	
1	Ι.	1	Ľ١
1	22	ı	NI

$I_T(\mathbf{K})$											
	$q_1 = 3$	$q_2 = 5$	$q_3 = 7$	$q_4 = 11$	$q_5 = 13$	$q_6 = 12$	$q_7 = 19$	$q_8 = 23$	$q_9 = 29$	$q_{10} = 3$	q ₁₁ =37
2K = 2	5	7		13		19			31		
2K = 4	7		11		17		23				41
2K = 6		11	13	17	19	23		29		37	43
2K = 8	11	13		19				31	37		
2K = 10	13				23		29			41	47
2K = 12		17;12	19;12	23;12		29;12	31;12		41;12	43;12	
K = 7	17;14	19;14				31;14		37;14	43;14		
K = 8	19;16		23;16		29;16					47;16	59
K = 9		23;18		29;18	31;18		37;18	41;18	47;18		61
2K =20	23			31		37		43			67
2K=22			29;22				41;22			53;22	
2K=24		29	31		37	41	43	47	53		71
2K=26	29	31		37		43					73
2K=28	31				41		47			59	
2K=30			37	41	43	47		53	59	61	
		37;32		43;32					61;32		79
	37;34		41;34		47;34		53;34				
		41;36	43;36	47;36		53;36		59;36		67;36	83
	41;38	43;38						61;38	67;38		
	43;40		47;40		53;40		59;40			71;40	
		47;42		53;42		59;42	61;42		71;42	73;42	89
	47;44					61;44		67;44	73;44		
			53;46		59;46						
		53;48		59;48	61;48		67;48	71;48		79;48	
	53;50			61;50		67;50		73;50	79;50		97
			59;52				71;52			83;52	
		59;54	61;54		67;54	71;54	73;54		83;54		
	59;56	61;56		67;56		73;56		79;56			
	61;58				71;58					89;58	
			67;60	71;60	73;60		79;60	83;60	89;60		

16. Perspectives and Generalizations

16.1. Other Goldbach Sequences (G'_{2n}) Independent of (G_{2n}) may be Studied Using the Increasing Sequences of Primes (W'_{2n}) Defined by

For any integer $n \ge 3$

$$W'_{2n} = \text{Sup}(p \in \mathcal{P}: p \le f(n))$$
 (16.1.1)

f is a function defined on the interval $I = [3; +\infty[$ and satisfying the following conditions

- \bullet *f* is strictly increasing on the interval *I*
- f(3) = 3 and $\lim_{x \to +\infty} f(x) = +\infty$

• $\forall x \in I \quad f(x) \leq 2x - 3$

For example, one of the following functions defined on *I* can be selected.

- $\Box \quad f: \quad x \to a \, x + 3 3a \qquad (a \in \mathbb{R}: 0 < a \le 2)$
- \Box g: $x \to [4\sqrt{3x} 9]$ ([x] is the integer part of the real x)
- \Box h: $x \to 6 \ln \left(\frac{x}{3}\right) + 3$
- 16.2. Using this Method it Would be Interesting to Study the Schnirelmann Density [33] of Primes
 - 3 , 5 , 7, 11 ,...... in the sequence (U_{2n}) on variable intervals .
- 16.3. It is Possible to Exceed the Values Shown in the Table of $2n = 10^{1000}$ (Many E.G.D have been calculated for values of 2n in the order of $10^{2000} + 10^5$, Sainty [31]) by perfecting this algorithm starting from n, exploiting the fact that one of Goldbach's decomponents can be chosen equal to 12p + 1, (the set of G.D consists of primes of the form 6p 1 or 6p + 1) using Cipolla-Axler-Dusart type functions [2,7,11,12] to better identify the terms of (G_{2n}) , using supercomputers and more efficients software as Maple.
- 16.4. Diophantine equations and conjectures of the same nature ((3L) conjecture [9,20,22,24,25,36]) can be processed using similar reasoning and algorithms.
- To validate the (3L) conjecture we study the following sequences of primes (Wl_{2n}), (Vl_{2n}) and (Ul_{2n}) defined by

For any integer $n \ge 3$ $Wl_{2n} = \operatorname{Sup} (p \in \mathcal{P}: p \le n-1)$

(16.4.1)

• If $Tl_{2n} = (2n + 1 - 2 Wl_{2n})$ is a **prime**

then let

$$Vl_{2n} = Wl_{2n}$$
 and $Ul_{2n} = Tl_{2n}$ (16.4.2)

• If Tl_{2n} is a composite number

then there exists an integer k $1 \le k \le n-3$

$$Ul_{2(n-k)} + 2k \in \mathcal{P} \tag{16.4.3}$$

then let

$$Vl_{2n} = Vl_{2(n-k)}$$
 and $Ul_{2n} = Ul_{2(n-k)} + 2k$ (16.4.4)

- Using the same type of reasoning a generalization the (BBG) conjecture of the following form can be validated
 - Let *K* and *Q* be two odd integers prime to each other :

For any integer $n \ge 3(K+Q)$ there exist two primes Ub_{2n} and Vb_{2n} verifying

$$K. Ub_{2n} + Q. Vb_{2n} = 2n$$
 (16.4.5)

• Let *K* and *Q* be two integers of different parity prime to each other :

For any integer $n \mid 2n \ge 3(K+Q)$ there are two primes Ub_{2n} and Vb_{2n} verifying

$$K.Ub_{2n} + Q.Vb_{2n} = 2n + 1$$
 (16.4.6)

16.5. Remark.

GOLDBACH(-):

$$R_{2K} = \text{Inf}(p \in \mathcal{P}: p-2K \in \mathcal{P})$$
 and $Q_{2K} = \text{Inf}(p \in \mathcal{P}: 2K + p \in \mathcal{P}) = R_{2K} - 2K$

GOLDBACH(+):

$$V_{2K} = \operatorname{Sup}(p \in \mathcal{P}: 2K - p \in \mathcal{P})$$
 and $\underline{U_{2K}} = \operatorname{Inf}(p \in \mathcal{P}: 2K - p \in \mathcal{P}) = 2K - V_{2K}$

(Is it possible to envisage a symmetry in the Goldbach triangle parametrized by arithmetic sequences between the representations of primes and integers?)

16.6. The sequences (Wq_{2n}) generate all the G.D. and may enable us to better estimate the values of Goldbach's distribution function G of the Goldbach's Comet [Woon].

17. Conclusion

17.1. A Recurrent and Explicit Goldbach Sequence (G_{2n}) = (U_{2n} ; V_{2n}) Verifying

$$\forall n \in \mathbb{N} + 2$$
 U_{2n} , $V_{2n} \in \mathcal{P}$ and $U_{2n} + V_{2n} = 2n$

has been developed using an simple and efficient "localised" algorithm.

17.2. The records of Silva [35] and Deshouillers, te Riele, Saouter [10] are beaten on a personal computer and 25 E.G.D U_{2n} and V_{2n} are obtained for values of the order $2n = 10^{1000}$ for a computation time of less than half an hour (see Sainty [31]).

17.3. For a given integer $n \ge 49$ the evaluation of the terms U_{2n} and V_{2n} does not require the computing of all previous terms U_{2k} and V_{2k} | $1 \le k < n-1$. We just need to know the primes U_{2k} and V_{2k} satisfying

$$U_{2k} \le 7.\ln^{1.3}(2n)$$
 and $2n - 7.\ln^{1.3}(2n) \le V_{2k} \le 2n$ (on average)

(17.3.1)

This property allows any E.G.D U_{2n} and V_{2n} to be calculated quite quickly, the upper limit being defined by the scientific software and the computer's ability to determine the largest prime preceding 2n-2 (prev_prime(2n-2) function).

17.4. Therefore the (BBG), the (3L) and the binary Goldbach(-&&+) conjectures "Any even integer greater than three is the sum and difference of two primes" are true.

In fact these two conjectures are intertwined.

References

- 1. <u>L.</u> Adleman, K. Mc Curley, "Open Problems in Number Theoretic Complexity", "II. Algorithmic number theory" (Ithaca, NY,1994), 291–322, Lecture Notes in Comput. Sci., 877, Springer, Berlin, (1994).
- 2. C. Axler, "New Estimates for the nth Prime" 19.4.2 2 Journal of Integer Sequences, Vol. 22, 30 p., (2019),
- 3. E. Bombieri, Davenport, "Small differences between prime numbers", Proc. Roy. Soc. Ser. A293, pp. 1-18, (1966).
- 4. R. C. Baker, Harman, G. "The difference between consecutive primes". Proc. London Math. Soc. (3) 72, 2 (1996), 261–280.
- 5. R. C. Baker, Harman, G., and Pintz, J. "The difference between consecutive primes". II. Proc. London Math. Soc. (3) 83, 3 (2001), 532–562.
- 6. J. R. Chen, "On the representation of a large even integer as the sum of a prime and the product of at most two primes". Kexue Tongbao 17 (1966), pp. 385-386 (Chinese).
- 7. M. Cipolla, "La determinazione assintotica dell n imo numero primo", Rend. Acad. Sci. Fis. Mat. Napoli 8(3) (1902).
- 8. H. Cramer, "On the order of magnitude of the difference between consecutive prime numbers", Acta Arithmetica vol. 2, (1986), p.23-46.
- 9. N. Dawar, "Lemoine's Conjecture: A Limited Solution Using Computers", TechRxiv [Archive online] (2023).
- 10. Deshouillers, J.-M.; te Riele, H. J. J.; and Saouter, Y. "New Experimental Results Concerning The Goldbach Conjecture." In <u>Algorithmic Number Theory: Proceedings of the 3rd International Symposium (ANTS-III)</u> <u>held at Reed College, Portland, OR, June 21-25, 1998</u> (Ed. J. P. Buhler). Berlin: Springer-Verlag, pp. 204-215, 1998. Modélisation, analyse et simulation (MAS), Rapport MAS-R9804, 31 mars 1998.
- 11. P. Dusart, "About the prime counting function π ", PhD Thesis. University of Limoges, France, (1998).
- 12. P. Dusart, "HDR: Estimations explicites en théorie des nombres", HDR, University of Limoges, France, (2022).
- 13. P. Erdos, "On a new method in elementary number theory which leads to an elementary proof of the prime number theorem", Proc. Natl. Acad. Sci. USA 36, pp. 374-384 (1949).
- 14. Euclid, (trans. Bernard Vitrac), "Les éléments d'Euclide", Ed. PUF Paris, vol.2, p. 444-446 and p. 339-341, (1994). [] G. G. Filhoa, G.D.G. Jaimea, F.M.de Oliveira Gouveaa, S. Keller Füchter, "Bridging Mathematics and AI: A novel approach to Goldbach's Conjecture", Contents lists available at ScienceDirect: Measurement: Sensors journal homepage: www.sciencedirect.com/journal
- 15. A. Granville, <u>"Harald Cramér and the distribution of prime numbers"</u>, Scandinavian Actuarial Journal, 1: 12–28,(1995).
- 16. J. Hadamard, "On the zeros of the function $\zeta(s)$ of Riemann". C. R. 122, p.1470-1473 (1896), and "On the distribution of zeros of the function $\zeta'(s)$ and its arithmetical consequences". S. M. F. Bull. 24, pp. 199-220 (1896).
- 17. J. Härdig, "Goldbach's conjecture", Examensarbete i matematik, 15 hp U.U.D.M. Project Report August 2020:37, UPPSALA UNIVERSITET.
- 18. G. H. Hardy, Wright, "An introduction to the Theory of numbers", Oxford: Oxford University Press 621 p. (2008).
- 19. [18] <u>G. H. Hardy</u>, J. E. Littlewood, "Some problems of 'partitio numerorum'"; III: «On the expression of a number as a sum of primes« (<u>Acta Math.</u> Vol. 44: pp. 1 70, (1922)
- 20. H. Helfgott, Platt, "The ternary Goldbach conjecture", Gaz. Math. Soc. Math. Fr. 140, pp. 5-18 (2014).

 "The weak Goldbach conjecture", Gac. R. Soc. Mat. Esp. 16, no. 4, 709-726 (2013). "Numerical verification

- of the ternary Goldbach conjecture up to $8.875.10^{30}$ ", Exp. Math. 22, n° 4, 406-409 (2013).(arXiv1312.7748, 2013), (to appear in Ann. Math.).
- 21. L. Hodges, "A lesser-known Goldbach conjecture", Math. Mag., 66 (1993): 45–47.
- 22. H. Iwaniec, Pintz, "Primes in short intervals". Monatsh. Math. 98, pp. 115-143 (1984).
- 23. J. O. Kiltinen and P. B. Young, "Goldbach, Lemoine, and a Know/Don't Know Problem", Mathematics Magazine, 58(4) (Sep., 1985), p. 195–203.
- 24. E. Landau, "Handbuch der Lehre von der Verteiligung der Primzahlen", vol. 1 and vol. 2 (1909), published by Chelsea Publishing Company (1953).
- 25. E. Lemoine, "L'intermédiaire de mathématiciens", vol. 1, 1894, p. 179, vol. 3, 1896, p. 151
- 26. H. Levy, "On Goldbach's conjecture", Math. Gaz." 47 (1963): 274
- 27. J. Littlewood, "Sur la distribution des nombres premiers", CRAS Paris, vol. 158, (1914), p. 1869-1875.
- 28. H. Maier, "Primes in short intervals". Michigan Math. J., 32(2):221–225, 1985.
- 29. J. Maynard, "Small gaps between primes", <u>Annals of Mathematics</u>, vol. 181, 2015, p. 383–413 (<u>arXiv 1311.4600</u>), [Submitted on 19 Nov 2013 (<u>v1</u>), last revised 28 Oct 2019 (this version, v3)].
- 30. [29] T. R. *Nicely, "New maximal prime gaps and first occurrences", Mathematics of Computation, 68* (227): 1311–1315, (1999) [] D. Parrochia, "Sur les conjectures de Goldbach forte et faible (quelques remarques historico-épistémologiques)". Preprint submitted on 15 Dec 2023,. HAL Id: hal-04346907, https://hal.science/hal-04346907v1
- 31. O. Ramaré, Saouter, "Short effective intervals containing primes", J. Number theory, 98, No. 1, p..10-33 (2003).
- 32. Ph. Sainty, "Goldbach decomponents: File S Around $2n = 10^S$ for $S = 1, 2, 3, \dots, 1000$ ", https://www.researchgate.net, Internet Archive archive.org and (OEIS)
- 33. The On-Line Encyclopedia of Integer Sequences, https://oeis.org (to appear). [] Ph. Sainty, "About the strong EULER-GOLDBACH conjecture", Matematicheskie Zametki /Mathematical Notes, In press., hal-03838423, HAL Id:hal-03838423, https://cnrs.hal.science/hal-03838423v1,Submitted on 3 Nov 2022.
- 34. D. Shanks, "On Maximal Gaps between Successive Primes", Mathematics of Computation, American Mathematical Society, 18 (88): 646–651, (1964).
- 35. L. Schnirelmann, "Schnirelmann density", Wikipedia, (on line, internet) and "A proof of the fundamental theorem on the density of sums of sets of positive integers", Annals of Math, 2nd series, vol. 43, no. 3, (1942), pp. 523-527.
- 36. T. O. e Silva, Herzog, Pardi, "Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10¹⁸". Math. Comput. 83, no. 288, pp. 2033-2060 (2014).
- 37. Z-W. Sun, "On sums of primes and triangular numbers" » [archive], arXiv, 2008 (arXiv 0803.3737).
- 38. T. Tao, "Every odd number greater than 1 is the sum of at most five primes", Math. Comput. 83, no. 286, p.997-1038(2014).
- 39. P. Tchebychev, "Mémoire sur les nombres premiers" J. math. pures et appliquées, 1ère série, t.17, p. 366-390 et p. 381-382, (1852).
- 40. C.- J. de La Vallée-Poussin, "Recherches analytiques sur la théorie des nombres premiers", Brux. S. sc. 21 B, pp. 183-256, 281-362, 363-397, vol.21 B, pp. 351-368, (1896).
- 41. A. Vinogradov, "Representation of an odd number as a sum of three primes". Dokl. Akad.Nauk. SSR, 15:291-294, (1937).

- 42. E.W. Weisstein, "<u>Levy's Conjecture" » [archive]</u>, sur <u>MathWorld</u>, CRC Concise Encyclopédie de mathématiques (CRC Press,), 733-4, (1999). Max See Chin Woon, "On Partitions of Goldbach's Conjecture" DPMMS, arXiv: math/0010027v2 [math.GM 4 Oct 2000]
- 43. Y. Zhang, "Bounded gaps between primes", Ann. Math. (2) 179, no. 3, pp.1121-1174 (2014).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.