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Abstract: Project managers should balance a variety of resource elements in building projects while 

taking into account many major concerns, including time, cost, quality, risk, and the environment. 

This study presents a framework for resource trade-offs in project scheduling based on the Building 

Information Modeling (BIM) methodology and metaheuristic algorithms. First, a new metaheuristic 

algorithm called Fire Hawk Optimizer (FHO) is used. Using project management software and the 

BIM process, a 3D model of the construction is created. In order to maximize quality while mini-

mizing time, cost, risk, and CO2 in the project under consideration, an optimization problem is cre-

ated, and the FHO's capability for solving it is assessed. A predefined stopping condition is taken 

into account while doing 30 independent optimization runs to obtain the statistical metrics, such as 

the mean, standard deviation, and the required number of objective function evaluations. The re-

sults show that the FHO algorithm is capable of producing competitive and exceptional outcomes 

when it comes to trade-off various resource options in projects. 

Keywords: Fire Hawk Optimizer; optimization; metaheuristic algorithms; Building Information 

Modelling (BIM); resource management; project resource management 

 

1. Introduction 

Understanding the trade-off between the project's primary aims is one of the most 

critical components of planning and controlling construction projects. The time-cost trade-

off (TCT) problem has triggered many studies so far. Regardless of overhead costs, re-

duced project activity time will increase project costs due to the increased resources given 

to speed activity implementation. In other words, shorter project durations are frequently 

linked with higher construction costs, necessitating TCT to minimize the cost of schedule 

compression [1]. Consequently, Schedulers should do a TCT study to find the most cost-

effective duration for a project; some research has been done using optimization algo-

rithms to tackle TCT problems in the building and construction industry. Furthermore, in 

recent years, most construction projects have considered some other factors in TCT prob-

lems like risk, quality, energy, and environmental factors. The construction sector is ulti-

mately accountable for a wide variety of environmental problems caused by the construc-

tion and operation of structures. Construction processes contribute significantly to air pol-

lution and greenhouse gas emissions, and building materials production emits more car-

bon dioxide (CO2) than any other kind of industrial production. Delivering a project in the 

intended time, at the desired cost, with the appropriate quality, and with the least amount 

of risk or uncertainty is an essential success factor for project assessment. However, envi-

ronmental issues have received a lot of attention lately [2]. 

The two kinds of optimization algorithms are exact and approximation optimization 

techniques; the best solution could be identified using exact algorithms. However, in the 

case of complicated optimization problems, they are insufficiently efficient, and their com-

puting time grows exponentially concerning the problem's dimensions. As a result, given 

the limitations of exact methods and the need for precision and speed in identifying 
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appropriate answers, approximate algorithms, such as metaheuristics, can find suitable 

solutions close to the optimal solution in a shorter amount of time could be utilized to 

solve complicated problems. In fact, the Greek prefix "meta," shown within the title, is 

utilized to demonstrate that these algorithms are "higher-level" heuristic algorithms dif-

ferentiating with problem-specific heuristics [3]. Despite the fact that metaheuristic algo-

rithms provide acceptable results, they do not deliver optimal solutions. In general, me-

taheuristics could be divided into four categories depending on the source of their inspi-

ration, (i) Evolutionary Algorithms (EAs): They are effective heuristic search techniques 

based on Darwinian evolution that capture global solutions to complicated optimization 

problems while maintaining robustness and flexibility [4]; such as rat swarm optimizer 

(RSO) [5]; the wisdom of artificial crowds (WoAC) [6]; tuna swarm optimization (TSO) 

[7]; and artificial bee colony (ABC) [8]. (ii) Swarm Intelligence (SI): they are a computa-

tional intelligence approach for solving intricate problems. SI comprises a group study of 

how people in a population interact with one another on a local level. Nature is frequently 

a source of inspiration, especially for biological systems [9]. Furthermore, SI may be de-

veloped by the collective behaviour of artificial agents like robots in foraging robots [10]; 

(iii) Human and animal behaviour-based algorithms: they are inspired by some specific 

behaviour of individuals in society or animals in nature, such as Search Algorithm 

(CapSA) [11], Golden Tortoise Beetle Optimizer (GTBO) [12], Battle Royale Optimization 

(BRO) [13], passing vehicle search (PVS) [14], Dynamic Virtual Bats Algorithm (DVBA) 

[15], crow search algorithm (CSA) [16], and Tribe-Charged System Search (T-CSS) [17]. 

Finally, (iv) Physics-based algorithms: they are inspired by physics laws like Quantum 

mechanics, Universe theory, Newton's gravitational law, Electromagnetism, and Electro-

statics, such as Material Generation Algorithm (MGA) [18,19], cyber-physical systems 

(CPS) [20], Archimedes optimization algorithm (AOA) [21], Lichtenberg Algorithm (LA) 

[22], Thermal Exchange Optimization algorithm (TEOA) [23], Charged System Search 

(CSS) [24,25], and Atomic Orbital Search (AOS) [26,27].  

Building Information Modelling (BIM) is a management culture based on the digital 

construction of the project, and by involving all stakeholders and team members in the 

design phase, take a big step to reduce rework during the project and finally calculate the 

exact volume of work and project materials, provides accurate financial and time esti-

mates for a construction project. In the 1970s, the introduction of 2D CAD revolutionized 

the drawing process by enabling information to be copied, electronically shared, and, in 

some situations, automated, which the drawing board was replaced by a computer in this 

evolutionary shift [28]. Eastman pioneered the use of virtual models in buildings in the 

1970s, while van Nederveen and Tolman introduced the term Building Information Mod-

elling (BIM) in 1992 for the first time [29]. Over the last two or three decades, the regular 

design practice in Architecture, Engineering, and Construction (AEC) sector has changed 

to BIM because of its ability to spend to project planning, execution, and maintenance 

throughout the entire value chain from planning to demolition phases. An exciting op-

portunity for project management could be provided via the integration of BIM through 

the early design phase in every project [30,31]. In comparison with a set of CAD drawings, 

BIM is a "richer repository"; some storing multi-disciplinary can build as construct infor-

mation and the characteristics of buildings BIM model digitally and graphically. BIM al-

lows the use of information in the architectural model by sharing and exporting the infor-

mation demanded by the project team, saving time to re-create the model and speeding 

up the design while allowing more repetition [32]. So, a range of public policies aimed at 

improving the adequacy of the construction industry back up the BIM usage [33]. In other 

words, BIM is a faster and more profitable way to manage construction, increases design 

and construction quality, and reduces project execution time and cost [34]. The NBIMS 

defines BIM as "creating an electronic model of a facility for visualization, engineering analysis, 

conflict analysis, code criteria checking, cost engineering, as-built product, budgeting, and many 

other purposes" [35]. However, the main privileges of utilizing BIM in construction are ame-

liorated design quality and lifecycle management, effectively maintenance, accurate cost 

estimation, integrating workflow, efficient collaboration and interoperability between 
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stakeholders and project team, streamlining information, and reducing energy consump-

tion [36]. Moreover, the BIM-assisted estimate outperformed standard estimation ap-

proaches for the entry-level user. The more complicated the estimating processes, the 

more pronounced the benefits of BIM-based estimating tools over conventional estimating 

approaches became [37].  

2. Literature Review 

2.1. Studies of resource trade-offs 

Various metaheuristic algorithms have been used to solve TCT problems recently. 

Feng, et al. [38] applied genetic algorithms (GAs) for TCT problems in construction. Van 

Eynde and Vanhoucke [39] offered a precise algorithm to provide the project's whole 

curve of non-dominated time-cost options. Sonmez and Bettemir [40] proposed a hybrid 

methodology developed utilizing simulated annealing (SA), genetic algorithms (GAs), 

and quantum simulated annealing techniques for the discrete TCT problems; the authors 

claimed that the hybrid method could ameliorate convergence of GA and provide some 

alternatives to TCT. Babu and Suresh [41] proposed that quality should add to the prob-

lems of TCT. The authors proposed a linear programming model for time-cost-quality 

trade-off (TCQT) problems; Khang and Myint [42] implemented the model at a cement 

factory in Bangkok, Thailand, to confirm the proposed model. Ndamlabin Mboula, et al. 

[43] introduced a novel scheduling technique called Cost-Time Trade-off efficient work-

flow scheduling, which consists of four basic steps: activity selection, assessment of the 

Implicit Requested Instance Types Range, evaluation of the spare budget, and selection of 

the VM. Hu and He [44] presented a time-cost-quality optimization model using a genetic 

algorithm. Afruzi, et al. [45] proposed a multi-objective imperialist competitive algorithm 

(MOICA) to solve the discrete TCQ tradeoff problem (DTCQTP). Sharma and Trivedi [46] 

developed a non-dominated sorting genetic algorithm II-based TCQT optimization model 

for project scheduling. Nonetheless, some researchers have considered other factors such 

as risk, CO2 emission, and resource utilization. Ozcan-Deniz, et al. [47] evaluated environ-

mental effect by considering total greenhouse gas emissions connected with a project and 

used NSGA-II to tradeoff time, cost, and environmental impact. Tran, et al. [48] created 

the opposition multiple objective symbiotic organisms search strategy, which could be 

useful way to address challenges including trade-offs between time, cost, quality, and task 

continuity. Luong, et al. [49] solved the TCQT problem using the opposition-based multi-

ple objective differential evolution (OMODE) algorithm, which uses an opposition-based 

learning method for early population onset and generational jump. However, a few re-

search has been carried out concerning time-cost-quality-risk trade-off problems. Moham-

madipour and Sadjadi [50] considered risk in the TCQ trade-off. The authors provided 

proper linear programming to minimize the total additional cost of the project, the overall 

risk of the project, as well as the overall quality reduction in the project. Amoozad Mah-

diraji, et al. [51] proposed a new technique for identifying the best implementation situa-

tion for each activity in a project by optimizing and balancing time, cost, quality, and risk. 

Tran and Long [52] proposed a multi-objective project scheduling optimization model us-

ing the DE method. By leveraging the existing data and resources, the authors stated that 

the suggested model could help project managers and decision-makers finish the project 

on schedule and with less risk. Sharma and Trivedi [53] presented a multimode resource-

constrained time–cost–quality–safety trade-off optimization model using NSGA III algo-

rithm. Keshavarz and Shoul [54] formulated a three-objective programming problem as-

sociated with the time-cost-quality trade-off problem using a fuzzy decision-making 

methodology. 

2.2. Applications of building information modelling 

In order to create a five-dimensional construction time-cost optimization model with 

the benefits of optimization and simulation, He, et al. [55] integrated the BIM process with 

GA.  Rahmani Asl, et al. [56] proposed an integrated framework for BIM-based perfor-

mance optimization to minimize the energy consumption while maximizing the efficient 
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daylighting level for a residential dwellings.  Sekhar and Maheswari [57] aimed to study 

the impact of BIM on managing and reducing change orders in off-site construction by 

optimizing design via visualization throughout the planning phase. Kim, et al. [58] inves-

tigated the 6–9 percentage quantity discrepancy in quantities obtained from diverse build-

ing interior components to increase the accuracy of cost estimates using BIM. ElMen-

shawy and Marzouk [59] proposed a framework for automated schedule generation using 

the BIM process and NSGA-II algorithm to solve the TCT problems; in which the authors 

claimed that the proposed model could choose a near-optimum scenario for the project. 

Mashayekhi and Heravi [60] introduced an integrated framework based on BIM, MIS and 

simulation tools for TCT problems. Yongge and Ya [61] proposed a model based on GA 

and BIM to solve time-cost-quality tradeoff problems in construction. For large-span spa-

tial steel structure projects, Yu, et al. [62] proposed an integrated framework taking into 

account BIM and a time-cost optimization model to optimize construction costs and du-

ration. Gelisen and Griffis [63] modelled a three-story Systems Engineering Facility III of 

Hanscom Air Force Base based on the BIM process to elucidate the effects of time and 

cost-based stochastic productivity. Khosakitchalert, et al. [64] suggested a technique for 

improving the accuracy of extracted quantities of compound components from incom-

plete or incorrect BIM models by eliminating excess quantities and adding missing quan-

tities using information from BIM-based clash detection.  Ma and Zhang [65] combined 

the 4D BIM with GA to solve the concurrency-based TCT problem; the authors asserted 

that the project manager could create a more exact construction schedule using the sug-

gested optimization model without exceeding the contract's specified duration. Shadram 

and Mukkavaara [66] provided a methodology for determining acceptable design choices 

by integrating a multi-objective optimization technique with a BIM-driven design process 

to solve the trade-off problem between embodied and operational energy. Sandberg, et al. 

[67] proposed a framework for neutral BIM-based multi-disciplinary optimization of 

lifecycle energy and cost. Baghalzadeh Shishehgarkhaneh, et al. [68] employed the BIM 

process in time and cost management of dam construction projects in Iran.  

Table 1 summarizes previous research works that are related to time, cost, quality, 

risk, and CO2 tradeoff in construction projects. 

Table 1. Summary of previous related research works. 

Authors Time Cost Quality Risk CO2 
Other param-

eters 
BIM 

Hajiagha, et al. [70] × × ×     

Tran and Long [52] × ×  ×    

Zheng [71] × × ×  ×   

Al Haj and El-Sayegh [72] × ×      

Khalili-Damghani, et al. [73] × × ×     

Moghadam, et al. [74] × × ×     

Zahraie and Tavakolan [75] × ×    ×  

Huynh, et al. [76] × × ×  ×   

Banihashemi and Khalilzadeh [77] × × ×  ×   

Ghoddousi, et al. [78] × ×    ×  

Mahmoudi and Feylizadeh [79] × × × ×  ×  

Ebrahimnezhad, et al. [80] × × ×     

Mungle, et al. [81] × × ×     

Koo, et al. [82] × ×      

Heravi and Moridi [83] × ×      

Mohammadipour and Sadjadi [50]  × × ×    

Jeunet and Bou Orm [84] × × ×   ×  

Hamta, et al. [85] × × ×     

Kosztyán and Szalkai [86] × × ×     

Current Study × × × × ×  × 
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The current research work uses the Fire Hawk Optimizer (FHO), an unique metaheu-

ristic algorithm inspired by the foraging behaviour of whistling kites, black kites, and 

brown falcons, which was developed by Azizi, et al. [69]. The key novelty in this study is 

the application and use of a novel metaheuristic optimization algorithm to the time-cost-

quality-risk-CO2 trade-off (TCQRCT) issue in a real building project based on the Building 

Information Modeling (BIM) procedure. The required number of objective function eval-

uations, the mean, the worst, and the standard deviation are all determined statistically 

via the use of 30 separate optimization runs. Based on a maximum of 5000 objective func-

tion evaluations, a predetermined stopping condition is also taken into consideration. 

However, being parameter-free, fast convergence behaviour, and the lowest possible ob-

jective function evaluation could be deemed the privileges of the FHO algorithm. On the 

other hand, the FHO method, like other metaheuristic algorithms, can only approximate 

problems; it cannot supply accurate answers. 

3. Framework for resource tradeoff  

The framework is made up of three primary parts: (1) the BIM module, (2) the me-

taheuristic optimization algorithm (Fire Hawk Optimizer (FHO)) module, and (3) the ini-

tialization and decision variables module.  

3.1. BIM Module  

A numerical case study is deemed to elucidate the efficiency of the FHO optimization 

algorithms in dealing with TCT problems. The case study is a five-floor residential build-

ing and a basement with a total floor area of 930 m2 that is used to validate the FHO 

algorithm with five objectives: time, cost, quality, risk, and CO2 emissions. As shown in 

Table A1, all activity information is elicited by the BIM process, project data, and experts' 

judgments in planning and designing steps. The activity logic is finish to start for all ac-

tivities. For modelling, the building was modelled in three different disciplines, including 

architecture, structure, mechanical, electrical, and pipeline (MEP) with Autodesk Revit 

2022; meanwhile, all elements were modelled with Level of Development (LOD) 350 

based on BIMFourm 2019 specification [87]. Subsequently, dynamo visual programming 

was used to generate parametric modelling in Revit. In the following stage, Navisworks 

software was employed for the project's soft and hard clash detection. Finally, MATLAB 

is used for programming and trade-off of objective functions. The framework of this paper 

is shown in Fig. 1.  
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Figure 1. Framework of BIM-based modelling for resource trade-off. 

3.2. Fire Hawk Optimizer (FHO) 

3.2.1. Inspiration 

Native Australians have long used fire to manage and preserve the balance of the 

surrounding ecology and terrain, and it has been a part of their cultural and ethnic tradi-

tions. People and other factors may spread intentionally started or naturally occurring 

fires caused by lightning, escalating the vulnerability of the native ecosystem and biodi-

versity. Furthermore, it was recently determined that black kites, whistling kites, and 

brown falcons are able to cause spreading fires throughout the region. The mentioned 

birds, known as Fire Hawks, strive to spread fire on purpose by carrying blazing sticks in 
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their beaks and talons, a behaviour characterized as a natural catastrophe. The behaviour 

of these birds towards fires is seen in Fig. 2. The birds pick up burning sticks and deposit 

them in other unburned spots to make little fires to control and capture their prey. These 

little flames frighten the prey, such as snakes, rodents, and other animals, causing them 

to escape in a fast and panicked manner, making it much simpler for the hawks to capture 

them.  

 

Figure 2. Photos of Fire Hawks’ behaviour across the fires [69]. 

3.2.2. Mathematical Model 

The FHO algorithm imitates the fire hawks' foraging behaviour, taking into consid-

eration the procedure of starting and spreading flames as well as capturing prey. Initially, 

a set of possible solutions (X) are determined based on the fire hawks and prey's position 

vectors. A random initialization mechanism is used to establish the initial positions of 

these vectors in the search space. 
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i = 1,2, … , N.
j = 1,2, … , d.

                                                                                  (2) 

where  N  elucidates the total number of solution candidates in the search space;  X� 

shows the ith solution candidate in the search space; d is the considered problem's dimen-

sion; x�
�
(0) represents the initial position of the solution candidates; x�

�
 is the jth decision 

variable of the ith solution candidate; rand is a uniformly distributed random number in 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2022                   doi:10.20944/preprints202208.0303.v1

https://doi.org/10.20944/preprints202208.0303.v1


the range of [0,1]; and x�,���
�

 and x�,���
�

 are the minimum and maximum bounds of the 

jth decision variable for the ith solution candidate. 

The specified optimization problem is taken into account during the objective func-

tion evaluation of solution candidates so as to identify the Fire Hawks in the search space. 

Predators and prey may be distinguished from one other by the greater objective function 

values of certain solution candidates. The selected Fire Hawks are employed to spread 

flames around the prey in the search zone, making hunting easier for the hunter. The main 

fire, which is originally employed by the Fire Hawks to spread flames over the search 

region, is also assumed to be the best global solution. These features are shown schemati-

cally in Figures 3a and 3b, and are mathematically represented as follows:  
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,           l = 1,2, … , n.                                                                                                                                         (4) 

where FH� explains the lth fire hawk in a complete search space of n fire hawks; and PR� 

reveals the kth prey in the search space depending the whole number of m preys. 

 

Figure 3. Schematic representation of identifying fire hawks and prey in the search space [69]. 
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The distance among the Fire Hawks and their prey is determined in the following 

step of the algorithm. These principles are shown graphically in Figure 4(a), where D�
�  is 

shown using the following equation: 

D�
� = �(x� − x�)� + (y� − y�)� ,               �

l = 1,2, … , n.
k = 1,2, … , m.

                                                                                            (5) 

Where m and n demonstrate the overall number of preys and fire hawks in the search 

space, respectively; D�
�  shows the total distance between the lth fire hawk and the kth prey; 

and (x�, y�) and (x�, y�) represent the coordinates of the Fire Hawks and prey in the search 

space. 

The territory of these birds is recognized using the nearest prey in the vicinity, using 

the method described above to determine the overall distance among Fire Hawks and 

prey. Fig. 4(b) depicts graphically the process of establishing the Fire Hawks' territorial 

boundaries in the search area. 

After that, the Fire Hawks collect hot coals from the primary fire to start a fire at the 

designated spot. These two behaviours may be employed as location updating processes 

in FHO's main search loop since some birds are willing to utilize burning sticks from other 

Fire Hawks' territories, as illustrated in the equation below: 

FH�
��� = FH� + (r� × GB − r� × FH����),           l = 1,2, … , n.                                                                                   (6) 

where GB demonstrates the global best solution in the search space considered as the pri-

mary fire; FH�
��� shows the novel position vector of the lth Fire Hawk (FH�); and r� and 

r� are uniformly distributed random numbers in the range of (0, 1) for illustrating Fire 

Hawks' movements towards the vital fire and the other Fire Hawks’ territories; and 

FH���� shows one of the Fire Hawks in the search space. 

Prey movement throughout each Fire For the algorithm's following stage, which in-

volves updating positions, the hawk's territory is seen as a crucial aspect of animal behav-

iour. The following equation could be employed to take these activities into account while 

updating a position: 

PR�
��� = PR� + (r� × FH� − r� × SP�) ,           �

l = 1,2, … , n.
q = 1,2, … , r.

                                                                                      (7) 

where GB is the global best solution in the search space considered as the main fire; 

PR�
��� is the novel position vector of the qth prey (PR�) surrounded by the lth Fire Hawk 

(FH�); SP� is a safe place under the lth Fire Hawk territory; and to ascertain the motions of 

prey in the direction of the Fire Hawks and the safe location, r� and r� are uniformly 

distributed random integers in the range of (0, 1).  

Furthermore, the prey may move into the territory of other Fire Hawks. At the same 

time, there is a chance that the prey may approach the Fire Hawks that are trapped by 

neighbouring Fire Hawks may even try to hide in a more secure region beyond the Fire 

Hawk's territory. The following equation could be employed to account for these activities 

throughout the position updating process (Fig. 4(e)): 

PR�
��� = PR� + (r� × FH����� − r� × SP),           �

l = 1,2, … , n.
q = 1,2, … , r.

                                                                                (8) 

where PR�
��� shows the new position vector of the qth prey (PR�) flanked by the lth fire 

hawk (FH�); SP elucidates a safe place outside the lth Fire Hawk’s territory; FH����� is one 

of the fire hawks in the search space; r� and r� indicate uniformly distributed random 

numbers in the range of (0, 1) to determine the movements of preys towards the other Fire 

Hawks and the safe region outside the territory.  

The mathematical presentation of SP�  and SP is stated as follows, taking into ac-

count the fact that the safe place in nature is a location where the majority of animals 

assemble to collect so as to be safe and sound during a hazard: 

SP� =
∑ PR�

�
���

r
,           �

q = 1,2, … , r.
l = 1,2, … , n.

                                                                                                                                (9) 
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SP =
∑ PR�

�
���

m
,           k = 1,2, … , m.                                                                                                                               (10) 

where PR� shows the qth prey surrounded by the lth fire hawk (FH�); PR� is the kth prey 

in the search space. 
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Figure 4. Schematic representation for measuring the total distance between the Fire Hawks and the 

prey (a). Schematic representation of illustrating territory of Fire Hawks in the search space (b). 

Schematic representation of the Fire Hawks’ position updating procedure in the search space (c). 

Schematic representation of the preys’ position updating process inside the fire hawks’ territory (d). 

Schematic representation of the preys’ position updating process outside the fire hawks’ territory 

(e) [69]. 

The FHO algorithm's pseudo-code is shown in Fig. 5, and the algorithm's flowchart 

is shown in Fig. 6. A Gaussian distribution is the most common distributions used in ran-

domization techniques, and it is used to calculate the number of preys in each search loop, 

which is equal to the overall number of solution candidates minus the number of fire 

hawks. 

 

Figure 5. Pseudo-code of FHO. 
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Figure 6. Flowchart of FHO. 

3.3. Initialization and decision variables  

Finding the best answer from among all feasible alternatives is the goal of an optimi-

zation problem. A common optimization problem is as follows: 

A function   : B  Rf  from some set B to the real numbers. 

An element 0   Bx  such that 0( )  ( )f x f x for all   Bx   (minimization prob-

lem) or 0( )  ( )f x f x  for all   Bx   (maximization problem). 

where B represents a portion of Euclidean space and is often defined by a set of con-

straints, equality requirements, or inequalities that B members must satisfy. Candidate 

solutions or feasible solutions signify the components of B, while the domain B denotes 

the search space or option set of f. Function f is referred to as the "objective function". A 

potential solution that minimizes (or maximizes, if that is the goal) the objective function 

is known as an optimal solution [87]. The BIM model is utilized in this research to import 

all of the project's data for all 38 activities listed in Table 1. A construction project's activ-

ity-on-node (AON) diagram is made up of M nodes and the relationships between the 
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activities. Each activity has a number of execution options, each with its own time, cost, 

quality, risk, and carbon dioxide emissions associated with it, all of which are depending 

on the amount of resources, technology, and equipment used. The TCRQC tradeoff prob-

lem optimization approach tries to minimize project time, cost, risk, and carbon dioxide 

emissions while simultaneously maximizing project quality by picking the best execution 

option for all activities. Consequently, the first objective function is to minimize the time 

of the project in Eq.11: 

 

T� = min(max(ST� + D�)) = min(max(FT�)) ;   i = 1, … , M                                    (11) 

Where D� shows the duration of each activity in the project; ST� and FT� are the start and 

finish times of activity, respectively; M demonstrates the total number of nodes in the 

project scheduling [2]. Furthermore, a project's total cost comprises direct costs (DC), in-

direct costs (IC), and tardiness costs (TC). There are other techniques for calculating the 

entire cost of a project; for theoretical reasons, this study simply considers direct costs, 

indirect costs, and tardiness costs. The following objective function is to minimize cost of 

the project as indicated in Eq.12: 

min C = D��

�
+ I��

�
+ TC                               (12) 

D��

�
= � C�

�
                                          (13)

�

���

 

I��

�
= C�� × T                 (14) 

TC = �

C�(T� − T)                                  if T ≤ T�

�e
����

�� − 1� �D��

�
+ I��

�
�            if T > T�

                     (15) 

Where TC� is total project’s cost; D��

�
 and I��

�
 are the direct and indirect cost associated 

with the jth execution mode of ith activity, respectively; TC is the tardiness cost; T� eluci-

dates contractual planned duration of the project; C� shows reward for completing the 

task early;  and T is total project duration [88,89]. Due to the fact that a project's re-

sources may include a range of materials, equipment, and labour, the overall project's 

quality is calculated as the sum of the quality of each activity. Increasing the length of 

activities improves the quality level; nevertheless, extending the time beyond a certain 

point decreases the quality somewhat. Hence, The quality of each activity is indicated by 

the quality performance index (QPIi) which is given by Eq.16 [89].  

QPI� = a�t�
� + b�t� + c�                                    (16) 

Where t� is duration of activity i; a�, b�, and c� are coefficients decided by the quadratic 

function regarding BD (Fig. 7). LD, BD, and SD are the longest, best, and shortest duration, 

respectively. However, BD is calculated by Eq.17. Finally, the objective function for qual-

ity is formulated in Eq. 18 as follows: 

BD = SD + 0.613(LD − SD)                                      (17) 

max Q = �
QPI�

M
                                            (18)

�

���
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Figure 7. Quality performance index (QPI). 

However, some resources might have a negative impact on the environment during 

the development phase of a project by generating CO2. CO2 emissions can occur in two 

ways during the on-site construction process: directly from electricity consumption and 

fuel combustion, and indirectly from the manufacturing of building materials and their 

transportation. CO2 emissions can be reduced by not only selecting environmentally 

friendly materials, but also by ensuring that materials are transported in the shortest pos-

sible manner. So, the objective function to minimize the total amount of CO2 in the project 

can be calculated by Eq.19. 

min CE = � E��� + � E���� = (� Q�� × F� + Q�� × F�) + (� Q� × F� + Q�� × F� + Q�� × F�)        (19)

�

���

�

���

�

���

�

���

 

Where CE is the total CO2 emission in the project; E��� and E���� are the direct and indi-

rect CO2 emission in the project, respectively; Q�� shows activity's electricity consump-

tion; Q�� elucidates activity's diesel consumption; Q�� shows consumption of material k 

in activity; Q�� indicates electricity consumption for transportation of material k for activ-

ity; Q�� shows diesel consumption for transportation of material k for activity; F�, F�, 

and F� are carbon emission factor (CEF) per electricity unit, diesel unit consumption, and 

per unit production of material k, respectively. Concerning the project's risk, the actual 

project risk is mostly determined by the project's circumstances, delivery systems, and 

contract terms. A “risk value" is described as a function that combines the two compo-

nents: (i) the project's overall float; (ii) resource volatility. When noncritical operations 

have a high degree of temporal uncertainty, the usage of float may result in increased 

project risk and schedule overruns. Thus, construction managers are required to execute 

schedule adjustments to minimize unplanned changes in resource use throughout the du-

ration of the project's execution. Allowing noncritical operations to float may result in 

more effective resource use [90-92]. Consequently, the fifth objective function for risk can 

be formulated as Eq.20: 

min R = w� × �1 −
TF� + 1

TF��� + 1
� + w� × �

∑ (R� − R�)���
���

P�(R�)�
� + w� × �1 −

R�

max(R�)
�                                   (20) 

Where TF� and TF��� show total current float and total flexible scheduling float of the 

project; R� elucidates uniform resource level; R�  is resource required on day t; and wi  

demonstrates the weights. 
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Finally, to assess the capability of the FHO algorithm to the time-cost-quality-risk-

CO2 (All) trade-off simultaneously, Eq. 21 is used for this purpose: 

F(x) =
T − T���

T��� − T���

+
C − C���

C��� − C���

+
R − R���

R��� − R���

+
CO� − CO�(���)

CO�(���) − CO�(���)
+

Q��� − Q

Q��� − Q���

               (21) 

 

4. Optimization Results 

Five different metaheuristic algorithms were chosen to compare the efficacy of the 

FHO algorithm in solving resource trade-off problems in construction projects, including 

Firefly Algorithm (FA) [93], Multi-Verse Optimizer (MVO) [94], Particle Swarm Optimi-

zation (PSO) [95], Symbiotic Organisms Search (SOS) algorithm [96], and Teaching-learn-

ing-based Optimization (TLBO) [97]. All optimization processes have been conducted via 

MATLAB programming software using a PC with 8 GM RAM, CORE i7, and 2.8 GHz 

frequency. Table 2 shows the best findings of the FHO alongside other alternative algo-

rithms for each scenario. However, for statistical purposes, 30 independent optimization 

runs are carried out for determining the statistical measurements as the mean, worst, 

standard deviation, and computational time. A predefined stopping criterion is also con-

sidered based on a maximum number of 5000 objective function evaluations while the 

number of populations for each algorithm is determined by the maximum number of ob-

jective function evaluations and the maximum number of iterations. Fig. 8 illustrates the 

convergence history of FHO and alternative algorithms in dealing with the mentioned 

trade-off problems. 

Table 2. The best outcomes of the FHO and alternative algorithms for the case study. 

 FA MVO PSO SOS TLBO 
FHO (cur-

rent study) 

Time 261 258 321 258 281 258 

Cost 118230 117056 119564.8 117104.6 117512 116783 

Quality 94.35 94.16 93.82 94.41 93.89 87.81 

Risk 5.78 5.94 6.53 5.78 5.93 5.78 

CO2 76.35 76.74 103.35 76.35 79.60 76.35 

All 0.74 0.76 0.99 0.74 0.77 0.74 
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Figure 8. Convergence history of 30 independent optimization runs of FHO and alternative algo-

rithms. 

Table 3 demonstrates the statistical results of time optimization in the case study. As 

can be seen, the FHO algorithm could dominate most of the alternative metaheuristic al-

gorithms in the first scenario of time optimization in the case study, which calculates 258 

days as the best and optimum time, like MVO and SOS algorithms. Regarding standard 

deviation (Std), the FA algorithm delivers the most minimal result, followed by the FHO 

algorithm, accounting for 0.18. In comparison, the PSO algorithm provides the most sig-

nificant value of Std, registered at about 35.07. Moreover, the SOS algorithm could con-

duct the time optimization process in the smallest feasible time (1.40 s); on the other hand, 

the longest computing time is acquired by FHO and PSO algorithms, needing significantly 

more time to conduct the optimization process in this case.  

Table 3. Statistical outcomes for the time optimization for the case study. 

 FA MVO PSO SOS TLBO 
FHO (cur-

rent study) 

Best 261 258 321 258 281 258 

Mean 261 258.9 392.7 260.76 300.6 258.03 

Worst 261 261 453 266 316 259 

Std 0 1.21 35.07 1.71 9.04 0.18 

Computa-

tional time 

(s) 

2.19 1.61 2.35 1.40 1.44 8.66 

 

Table 4 summarizes the vital information concerning the statistical analysis used in 

the cost optimization in the case study. Evident is the fact that the FHO algorithm outper-

forms other alternative metaheuristic algorithms in the case study's second scenario (cost 

optimization); in other words, the FHO algorithm can compute the project's lowest cost, 

in contrast to the PSO algorithm's maximum optimal value of cost. However, the FHO 

algorithm took the most computational time in this case, followed by the FA; on the con-

trary, the SOS algorithm took the least computing time for cost optimization in the project 

mentioned above. Additionally, the FHO algorithm supplied the smallest feasible Std 

value, which the FA follows. Meanwhile, the PSO achieved the greatest standard 
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deviation of all algorithms studied in this case. As a result, the FHO algorithm could be 

an acceptable metaheuristic for project and construction management cost optimisation. 

Table 4. Statistical results for the cost optimization for the case study. 

 FA MVO PSO SOS TLBO 
FHO (cur-

rent study) 

Best 118230 117056 119564.8 117104.6 117512 116783 

Mean 118558.6 117511.9 135480.6 117498.3 118322.9 116839.7 

Worst 118780 118284.6 155151.7 117920 119070 117011 

Std 148.09 271.58 9952.33 222.75 397.19 59.57 

Computa-

tional time 

(s) 

2.16 1.57 2.13 1.39 1.44 9.66 

 

Table 5 shows the statistical outcomes of the case study's quality optimization, indi-

cating that the FHO method can deliver acceptable quality. Simultaneously, the SOS algo-

rithm achieved the most outstanding quality value, about 94.41, followed by the FA algo-

rithm. Additionally, the SOS algorithm could provide the smallest standard deviation, in 

this case, roughly 0.04. In sharp contrast, the FHO has set the highest standard. However, 

in terms of computing time for quality optimization, the SOS algorithm required the least 

time, in this case, contrasted to the FHO approach, which required around 0.78 seconds 

(s). As a consequence, although the FHO algorithm can provide an acceptable level of 

quality, the SOS method could be a preferred choice for project managers in this circum-

stance. 

Table 5. Statistical results for the quality optimization for the case study. 

 FA MVO PSO SOS TLBO 
FHO (cur-

rent study) 

Best 94.35 94.16 93.82 94.41 93.89 87.81 

Mean 94.46 94.24 93.89 94.54 94.01 89.63 

Worst 94.56 94.40 94.12 94.62 94.27 91.46 

Std 0.04 0.05 0.06 0.04 0.08 0.78 

Computa-

tional time 

(s) 

9.05 1.44 2.11 1.40 1.44 2.03 

 

The statistical analysis findings for risk optimization are indicated in Table 6. None-

theless, similar to FA and SOS algorithms, the FHO could calculate the lowest value for 

risk in the case study, accounting for nearly 5.78. Furthermore, the SOS algorithm required 

as little as possible computational time in this scenario, followed by the TLBO algorithm. 

Hence, the FHO algorithm could be a well-suited algorithm for risk optimization in pro-

ject scheduling. Meanwhile, the FHO algorithm could calculate the lowest value for Std 

in this scenario. 
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Table 6. Statistical results for the risk optimization for the case study. 

 FA MVO PSO SOS TLBO 
FHO (cur-

rent study) 

Best 5.78 5.94 6.53 5.78 5.93 5.78 

Mean 5.78 6.07 7.13 5.79 6.03 5.78 

Worst 5.78 6.28 7.46 5.82 6.20 5.78 

Std 9.03E-16 8.45E-02 2.47E-01 0.01 6.99E-02 9.03E-16 

Computa-

tional time 

(s) 

2.27 1.56 2.05 1.39 1.43 8.67 

 
Table 7 illustrates the case study's statistical analysis for CO2 emission optimization. 

Considering sustainability in construction, the FHO could be an ideal algorithm for pro-

ject engineers to reduce the carbon footprint since it could calculate the lowest CO2 in the 

case study, thereby reaching environmentally-friendly construction. Contrastingly, the 

PSO algorithm provided the highest value for CO2 in this scenario, indicating its unfa-

vourable performance in achieving the project with the lowest carbon footprint. However, 

the SOS algorithm gave the lowest computational time, registered at 1.38 (s), followed by 

TLBO. As a result, considering the average computational time, the FHO algorithm could 

be considered an appropriate alternative to optimize the amount of carbon dioxide in con-

struction projects.  

Table 7. Statistical results for the CO2 optimization for the case study. 

 FA MVO PSO SOS TLBO 
FHO (cur-

rent study) 

Best 76.35 76.44 103.35 76.35 79.60 76.35 

Mean 76.35 77.87 116.23 76.68 88.24 76.40 

Worst 76.35 80.41 129.54 77.20 94.47 76.59 

Std 1.45E-14 0.92 6.20 0.24 4.19E+00 0.06 

Computa-

tional time 

(s) 

1.93 1.59 2.29 1.38 1.42 12.52 

 

Finally, Table 8 illustrates the statistical analysis for all trade-off in the considered 

project. As can be seen, the FHO algorithm could outperform other metaheuristic algo-

rithms in dealing with the TCQRCT problem by considering a residential dwelling as a 

case study, followed by the FA and SOS algorithms. Regarding Std. value, the FHO and 

FA algorithms gave the lowest value, indicating its superior performance. However, the 

SOS algorithm required the lowest computational time to conduct TCQRCT in the case 

study, followed by the TLBO with nearly 1.43 (s). The FHO algorithm could be unique for 

TCQRCT problems in construction projects without considering computational time.  
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Table 8. Statistical results for all optimization for the case study. 

 FA MVO PSO SOS TLBO 
FHO (cur-

rent study) 

Best 0.74 0.76 0.99 0.74 0.77 0.74 

Mean 0.74 0.84 1.42 0.75 0.86 0.74 

Worst 0.74 0.95 1.67 0.78 0.94 0.74 

Std 2.26E-16 0.04 0.21 0.01 0.04 2.26E-16 

Computa-

tional time 

(s) 

1.98 1.70 2.42 1.38 1.43 10.96 

5. Conclusion 

This paper established a unique framework that involves building information mod-

elling (BIM) and a novel metaheuristic algorithm to solve the resources trade-off problem 

in construction projects. For this purpose, Fire Hawk Optimizer (FHO) is used as a novel 

metaheuristic algorithm. A 3D BIM-based modelling of the case study was created using 

different software, including Revit, Navisworks, Lumion, and also dynamo was utilized 

to make parametric modelling. The key results and main outcomes of this research work 

are summarized as follows: 

Based on the outcomes of best optimization runs conducted by different methods in 

dealing with time optimization, the FHO algorithm could reach the lowest time for case 

study, accounting for 258 days. 

The FHO can provide 116783($) for the cost of the case study, which is the best among 

other approaches. 

Regarding quality optimization, the FHO is capable of providing reasonable quality 

value, but the SOS algorithm gave the best results. 

The FHO algorithm is able to provide the best results for both risk and CO2 optimi-

zation in the case study than other alternative algorithms. 

Based on the best results of the TCQRCT problem, the FHO algorithm can provide 

0.74, which is much better than other algorithms. 

Based on the results and conducted analysis, the main reason for the superiority of 

the FHO algorithm comparing other mentioned metaheuristics algorithms is threefold, 

namely fast convergence behavior, being parameter-free, and the lowest possible objective 

function evaluation. The FHO algorithm should be tested for future studies utilizing in-

tricate optimization problems in miscellaneous fields, such as real-size engineering design 

problems like truss structures.  
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Appendix 

Table 1A - Project data of case study 
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94.0

35 

1.6583

33 

166.89 11 148

0 
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45 
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8 
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0 

79.9
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2.45 98.6
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8 
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83 
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15 
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cal in-

stalla-

tions of 

ground 

17FS

+2 

10 130

0 

95.3

55 

8.3166

67 
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27 

8 122

0 

94.5 6.5 101.

98 

6 135

2 

96.2

1 

7.4 84.5

2 

4 148

0 

82.1

4 

7.65 24.6

5 
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6 

78.03

3 

9.0651

67 
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5 
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installa-

tions of 
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17FS

+2 

15 125

0 

95.5

4 
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47 
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0 

95.3 4.9 121.

07 
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0 

95.7

8 
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4 

6 135

0 
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2 

5 1512 85.16

75 
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2 

20 Brick-

works of 

1st floor 

6FS+

1 

14 180

0 

92.2

1 

5.1493

33 

125.95

27 
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0 

90.7 3.54 114.

06 

9 187

0 

93.7
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5.89 101.

5 

8 194

2 

80.4

5 

6 45.6

5 

7 2175.

04 

76.42

75 

5.6127

73 

50.21

5 

21 Mechani-

cal in-

stalla-

tions of 

1st floor 

20FS

+2 

10 160

0 

97.5

25 
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22 Electrical 

installa-

tions of 

1st floor 

20FS

+2 

9 142

0 

97.6
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3.7863

33 
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7 135

0 

96.4 2.87 151.
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5 142

0 

98.9 3.61 134.
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4 150
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03 
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72 
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1 

14 180
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6.0458

67 

107.2

72 

24 Mechani-

cal in-

stalla-

tions of 

2nd floor 
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+2 

10 168

0 

94.9
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47 
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8 
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8 
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6 
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94 
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+2 
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93.3
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95 2.91 134.

29 

8 194

2 

85.6

5 

3.2 98.4

2 

7 2175.

04 
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27 Mechani-

cal in-
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+2 
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2.866 178.68

77 
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36 

6 174
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7 
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6 
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15 
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4 

82.24

7 
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installa-
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+2 

9 142

0 
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35 
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0 

90 6.45 156.
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0 
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7 
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2 
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+1 

14 180

0 

96.1

55 
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67 
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4 

11 162

0 

94.9

8 

10.3

2 

142.

36 
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0 
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3 
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02 
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2 
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1 
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04 

82.08

95 

14.120

59 
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58 
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cal in-

stalla-

tions of 
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+2 
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5 

93.3

75 
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3 1680 83.04

9 
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33 Mechani-
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5th floor 

32FS
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5 142
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5 
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53 

136.0
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+2 

17 240
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05 
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1 
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36 
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3.12 189.

32 

37 512

0 

92 4.63 142.

62 

29 598

0 

79 4.97 75.6

3 

25 6697.

6 

75.05 4.7429

53 

83.19

3 

38 Out-

doors 
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3 
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2 
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