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Abstract: Project managers should balance a variety of resource elements in building projects while
taking into account many major concerns, including time, cost, quality, risk, and the environment.
This study presents a framework for resource trade-offs in project scheduling based on the Building
Information Modeling (BIM) methodology and metaheuristic algorithms. First, a new metaheuristic
algorithm called Fire Hawk Optimizer (FHO) is used. Using project management software and the
BIM process, a 3D model of the construction is created. In order to maximize quality while mini-
mizing time, cost, risk, and COz in the project under consideration, an optimization problem is cre-
ated, and the FHO's capability for solving it is assessed. A predefined stopping condition is taken
into account while doing 30 independent optimization runs to obtain the statistical metrics, such as
the mean, standard deviation, and the required number of objective function evaluations. The re-
sults show that the FHO algorithm is capable of producing competitive and exceptional outcomes
when it comes to trade-off various resource options in projects.
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1. Introduction

Understanding the trade-off between the project's primary aims is one of the most
critical components of planning and controlling construction projects. The time-cost trade-
off (TCT) problem has triggered many studies so far. Regardless of overhead costs, re-
duced project activity time will increase project costs due to the increased resources given
to speed activity implementation. In other words, shorter project durations are frequently
linked with higher construction costs, necessitating TCT to minimize the cost of schedule
compression [1]. Consequently, Schedulers should do a TCT study to find the most cost-
effective duration for a project; some research has been done using optimization algo-
rithms to tackle TCT problems in the building and construction industry. Furthermore, in
recent years, most construction projects have considered some other factors in TCT prob-
lems like risk, quality, energy, and environmental factors. The construction sector is ulti-
mately accountable for a wide variety of environmental problems caused by the construc-
tion and operation of structures. Construction processes contribute significantly to air pol-
lution and greenhouse gas emissions, and building materials production emits more car-
bon dioxide (COz) than any other kind of industrial production. Delivering a project in the
intended time, at the desired cost, with the appropriate quality, and with the least amount
of risk or uncertainty is an essential success factor for project assessment. However, envi-
ronmental issues have received a lot of attention lately [2].

The two kinds of optimization algorithms are exact and approximation optimization
techniques; the best solution could be identified using exact algorithms. However, in the
case of complicated optimization problems, they are insufficiently efficient, and their com-
puting time grows exponentially concerning the problem's dimensions. As a result, given
the limitations of exact methods and the need for precision and speed in identifying
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appropriate answers, approximate algorithms, such as metaheuristics, can find suitable
solutions close to the optimal solution in a shorter amount of time could be utilized to
solve complicated problems. In fact, the Greek prefix "meta," shown within the title, is
utilized to demonstrate that these algorithms are "higher-level" heuristic algorithms dif-
ferentiating with problem-specific heuristics [3]. Despite the fact that metaheuristic algo-
rithms provide acceptable results, they do not deliver optimal solutions. In general, me-
taheuristics could be divided into four categories depending on the source of their inspi-
ration, (i) Evolutionary Algorithms (EAs): They are effective heuristic search techniques
based on Darwinian evolution that capture global solutions to complicated optimization
problems while maintaining robustness and flexibility [4]; such as rat swarm optimizer
(RSO) [5]; the wisdom of artificial crowds (WoAC) [6]; tuna swarm optimization (TSO)
[7]; and artificial bee colony (ABC) [8]. (ii) Swarm Intelligence (SI): they are a computa-
tional intelligence approach for solving intricate problems. SI comprises a group study of
how people in a population interact with one another on a local level. Nature is frequently
a source of inspiration, especially for biological systems [9]. Furthermore, SI may be de-
veloped by the collective behaviour of artificial agents like robots in foraging robots [10];
(iif) Human and animal behaviour-based algorithms: they are inspired by some specific
behaviour of individuals in society or animals in nature, such as Search Algorithm
(CapSA) [11], Golden Tortoise Beetle Optimizer (GTBO) [12], Battle Royale Optimization
(BRO) [13], passing vehicle search (PVS) [14], Dynamic Virtual Bats Algorithm (DVBA)
[15], crow search algorithm (CSA) [16], and Tribe-Charged System Search (T-CSS) [17].
Finally, (iv) Physics-based algorithms: they are inspired by physics laws like Quantum
mechanics, Universe theory, Newton's gravitational law, Electromagnetism, and Electro-
statics, such as Material Generation Algorithm (MGA) [18,19], cyber-physical systems
(CPS) [20], Archimedes optimization algorithm (AOA) [21], Lichtenberg Algorithm (LA)
[22], Thermal Exchange Optimization algorithm (TEOA) [23], Charged System Search
(CSS) [24,25], and Atomic Orbital Search (AOS) [26,27].

Building Information Modelling (BIM) is a management culture based on the digital
construction of the project, and by involving all stakeholders and team members in the
design phase, take a big step to reduce rework during the project and finally calculate the
exact volume of work and project materials, provides accurate financial and time esti-
mates for a construction project. In the 1970s, the introduction of 2D CAD revolutionized
the drawing process by enabling information to be copied, electronically shared, and, in
some situations, automated, which the drawing board was replaced by a computer in this
evolutionary shift [28]. Eastman pioneered the use of virtual models in buildings in the
1970s, while van Nederveen and Tolman introduced the term Building Information Mod-
elling (BIM) in 1992 for the first time [29]. Over the last two or three decades, the regular
design practice in Architecture, Engineering, and Construction (AEC) sector has changed
to BIM because of its ability to spend to project planning, execution, and maintenance
throughout the entire value chain from planning to demolition phases. An exciting op-
portunity for project management could be provided via the integration of BIM through
the early design phase in every project [30,31]. In comparison with a set of CAD drawings,
BIM is a "richer repository"; some storing multi-disciplinary can build as construct infor-
mation and the characteristics of buildings BIM model digitally and graphically. BIM al-
lows the use of information in the architectural model by sharing and exporting the infor-
mation demanded by the project team, saving time to re-create the model and speeding
up the design while allowing more repetition [32]. So, a range of public policies aimed at
improving the adequacy of the construction industry back up the BIM usage [33]. In other
words, BIM is a faster and more profitable way to manage construction, increases design
and construction quality, and reduces project execution time and cost [34]. The NBIMS
defines BIM as "creating an electronic model of a facility for visualization, engineering analysis,
conflict analysis, code criteria checking, cost engineering, as-built product, budgeting, and many
other purposes" [35]. However, the main privileges of utilizing BIM in construction are ame-
liorated design quality and lifecycle management, effectively maintenance, accurate cost
estimation, integrating workflow, efficient collaboration and interoperability between
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stakeholders and project team, streamlining information, and reducing energy consump-
tion [36]. Moreover, the BIM-assisted estimate outperformed standard estimation ap-
proaches for the entry-level user. The more complicated the estimating processes, the
more pronounced the benefits of BIM-based estimating tools over conventional estimating
approaches became [37].

2. Literature Review
2.1. Studies of resource trade-offs

Various metaheuristic algorithms have been used to solve TCT problems recently.
Feng, et al. [38] applied genetic algorithms (GAs) for TCT problems in construction. Van
Eynde and Vanhoucke [39] offered a precise algorithm to provide the project's whole
curve of non-dominated time-cost options. Sonmez and Bettemir [40] proposed a hybrid
methodology developed utilizing simulated annealing (SA), genetic algorithms (GAs),
and quantum simulated annealing techniques for the discrete TCT problems; the authors
claimed that the hybrid method could ameliorate convergence of GA and provide some
alternatives to TCT. Babu and Suresh [41] proposed that quality should add to the prob-
lems of TCT. The authors proposed a linear programming model for time-cost-quality
trade-off (TCQT) problems; Khang and Myint [42] implemented the model at a cement
factory in Bangkok, Thailand, to confirm the proposed model. Ndamlabin Mboula, et al.
[43] introduced a novel scheduling technique called Cost-Time Trade-off efficient work-
flow scheduling, which consists of four basic steps: activity selection, assessment of the
Implicit Requested Instance Types Range, evaluation of the spare budget, and selection of
the VM. Hu and He [44] presented a time-cost-quality optimization model using a genetic
algorithm. Afruzi, et al. [45] proposed a multi-objective imperialist competitive algorithm
(MOICA) to solve the discrete TCQ tradeoff problem (DTCQTP). Sharma and Trivedi [46]
developed a non-dominated sorting genetic algorithm II-based TCQT optimization model
for project scheduling. Nonetheless, some researchers have considered other factors such
as risk, CO2 emission, and resource utilization. Ozcan-Deniz, et al. [47] evaluated environ-
mental effect by considering total greenhouse gas emissions connected with a project and
used NSGA-II to tradeoff time, cost, and environmental impact. Tran, et al. [48] created
the opposition multiple objective symbiotic organisms search strategy, which could be
useful way to address challenges including trade-offs between time, cost, quality, and task
continuity. Luong, et al. [49] solved the TCQT problem using the opposition-based multi-
ple objective differential evolution (OMODE) algorithm, which uses an opposition-based
learning method for early population onset and generational jump. However, a few re-
search has been carried out concerning time-cost-quality-risk trade-off problems. Moham-
madipour and Sadjadi [50] considered risk in the TCQ trade-off. The authors provided
proper linear programming to minimize the total additional cost of the project, the overall
risk of the project, as well as the overall quality reduction in the project. Amoozad Mah-
diraji, et al. [51] proposed a new technique for identifying the best implementation situa-
tion for each activity in a project by optimizing and balancing time, cost, quality, and risk.
Tran and Long [52] proposed a multi-objective project scheduling optimization model us-
ing the DE method. By leveraging the existing data and resources, the authors stated that
the suggested model could help project managers and decision-makers finish the project
on schedule and with less risk. Sharma and Trivedi [53] presented a multimode resource-
constrained time-cost—quality—safety trade-off optimization model using NSGA III algo-
rithm. Keshavarz and Shoul [54] formulated a three-objective programming problem as-
sociated with the time-cost-quality trade-off problem using a fuzzy decision-making
methodology.

2.2. Applications of building information modelling

In order to create a five-dimensional construction time-cost optimization model with
the benefits of optimization and simulation, He, et al. [55] integrated the BIM process with
GA. Rahmani Asl], et al. [56] proposed an integrated framework for BIM-based perfor-
mance optimization to minimize the energy consumption while maximizing the efficient
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daylighting level for a residential dwellings. Sekhar and Maheswari [57] aimed to study
the impact of BIM on managing and reducing change orders in off-site construction by
optimizing design via visualization throughout the planning phase. Kim, et al. [58] inves-
tigated the 6-9 percentage quantity discrepancy in quantities obtained from diverse build-
ing interior components to increase the accuracy of cost estimates using BIM. ElMen-
shawy and Marzouk [59] proposed a framework for automated schedule generation using
the BIM process and NSGA-II algorithm to solve the TCT problems; in which the authors
claimed that the proposed model could choose a near-optimum scenario for the project.
Mashayekhi and Heravi [60] introduced an integrated framework based on BIM, MIS and
simulation tools for TCT problems. Yongge and Ya [61] proposed a model based on GA
and BIM to solve time-cost-quality tradeoff problems in construction. For large-span spa-
tial steel structure projects, Yu, et al. [62] proposed an integrated framework taking into
account BIM and a time-cost optimization model to optimize construction costs and du-
ration. Gelisen and Griffis [63] modelled a three-story Systems Engineering Facility III of
Hanscom Air Force Base based on the BIM process to elucidate the effects of time and
cost-based stochastic productivity. Khosakitchalert, et al. [64] suggested a technique for
improving the accuracy of extracted quantities of compound components from incom-
plete or incorrect BIM models by eliminating excess quantities and adding missing quan-
tities using information from BIM-based clash detection. Ma and Zhang [65] combined
the 4D BIM with GA to solve the concurrency-based TCT problem; the authors asserted
that the project manager could create a more exact construction schedule using the sug-
gested optimization model without exceeding the contract's specified duration. Shadram
and Mukkavaara [66] provided a methodology for determining acceptable design choices
by integrating a multi-objective optimization technique with a BIM-driven design process
to solve the trade-off problem between embodied and operational energy. Sandberg, et al.
[67] proposed a framework for neutral BIM-based multi-disciplinary optimization of
lifecycle energy and cost. Baghalzadeh Shishehgarkhaneh, et al. [68] employed the BIM
process in time and cost management of dam construction projects in Iran.

Table 1 summarizes previous research works that are related to time, cost, quality,
risk, and CO2 tradeoff in construction projects.

Table 1. Summary of previous related research works.

Authors Time Cost Quality Risk CcO2 Othe;tgiram- BIM
Hajiagha, et al. [70] X X X
Tran and Long [52] X X X
Zheng [71] X X X X
Al Haj and El-Sayegh [72] X X
Khalili-Damghani, et al. [73] X X X
Moghadam, et al. [74] X X X
Zahraie and Tavakolan [75] X X X
Huynbh, et al. [76] X X X X
Banihashemi and Khalilzadeh [77] X X X X
Ghoddousi, et al. [78] X X X
Mahmoudi and Feylizadeh [79] X X X X X
Ebrahimnezhad, et al. [80] X X X
Mungle, et al. [81] X X X
Koo, et al. [82] X X
Heravi and Moridi [83] X X
Mohammadipour and Sadjadi [50] X X X
Jeunet and Bou Orm [84] X X X X
Hamta, et al. [85] X X X
Kosztyan and Szalkai [86] X X X
Current Study X X X X X X
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The current research work uses the Fire Hawk Optimizer (FHO), an unique metaheu-
ristic algorithm inspired by the foraging behaviour of whistling kites, black kites, and
brown falcons, which was developed by Azizi, et al. [69]. The key novelty in this study is
the application and use of a novel metaheuristic optimization algorithm to the time-cost-
quality-risk-CO: trade-off (TCQRCT) issue in a real building project based on the Building
Information Modeling (BIM) procedure. The required number of objective function eval-
uations, the mean, the worst, and the standard deviation are all determined statistically
via the use of 30 separate optimization runs. Based on a maximum of 5000 objective func-
tion evaluations, a predetermined stopping condition is also taken into consideration.
However, being parameter-free, fast convergence behaviour, and the lowest possible ob-
jective function evaluation could be deemed the privileges of the FHO algorithm. On the
other hand, the FHO method, like other metaheuristic algorithms, can only approximate
problems; it cannot supply accurate answers.

3. Framework for resource tradeoff

The framework is made up of three primary parts: (1) the BIM module, (2) the me-
taheuristic optimization algorithm (Fire Hawk Optimizer (FHO)) module, and (3) the ini-
tialization and decision variables module.

3.1. BIM Module

A numerical case study is deemed to elucidate the efficiency of the FHO optimization
algorithms in dealing with TCT problems. The case study is a five-floor residential build-
ing and a basement with a total floor area of 930 m?2 that is used to validate the FHO
algorithm with five objectives: time, cost, quality, risk, and CO: emissions. As shown in
Table Al, all activity information is elicited by the BIM process, project data, and experts'
judgments in planning and designing steps. The activity logic is finish to start for all ac-
tivities. For modelling, the building was modelled in three different disciplines, including
architecture, structure, mechanical, electrical, and pipeline (MEP) with Autodesk Revit
2022; meanwhile, all elements were modelled with Level of Development (LOD) 350
based on BIMFourm 2019 specification [87]. Subsequently, dynamo visual programming
was used to generate parametric modelling in Revit. In the following stage, Navisworks
software was employed for the project's soft and hard clash detection. Finally, MATLAB
is used for programming and trade-off of objective functions. The framework of this paper
is shown in Fig. 1.
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Figure 1. Framework of BIM-based modelling for resource trade-off.

3.2. Fire Hawk Optimizer (FHO)
3.2.1. Inspiration

Native Australians have long used fire to manage and preserve the balance of the
surrounding ecology and terrain, and it has been a part of their cultural and ethnic tradi-
tions. People and other factors may spread intentionally started or naturally occurring
fires caused by lightning, escalating the vulnerability of the native ecosystem and biodi-
versity. Furthermore, it was recently determined that black kites, whistling kites, and
brown falcons are able to cause spreading fires throughout the region. The mentioned
birds, known as Fire Hawks, strive to spread fire on purpose by carrying blazing sticks in
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their beaks and talons, a behaviour characterized as a natural catastrophe. The behaviour
of these birds towards fires is seen in Fig. 2. The birds pick up burning sticks and deposit
them in other unburned spots to make little fires to control and capture their prey. These
little flames frighten the prey, such as snakes, rodents, and other animals, causing them
to escape in a fast and panicked manner, making it much simpler for the hawks to capture
them.

Figure 2. Photos of Fire Hawks’ behaviour across the fires [69].

3.2.2. Mathematical Model

The FHO algorithm imitates the fire hawks' foraging behaviour, taking into consid-
eration the procedure of starting and spreading flames as well as capturing prey. Initially,
a set of possible solutions (X) are determined based on the fire hawks and prey's position
vectors. A random initialization mechanism is used to establish the initial positions of
these vectors in the search space.

Xl _X% X% e X] e Xf )
X, X3 x% - < .. Xg
: : : P i=12..,N

X — — . . . . . . , {. ) ) ) 1
X; k2w e xd j=12,..,d €y
XN _Xll\I Xﬁ cee X]N oo ch\ll-

J _ j j i=12,..,N
Xi(o) = Ximin + rand. (Xi,max - Xi,min)' {] =1.2,..,d 2

where N elucidates the total number of solution candidates in the search space; X;
shows the ith solution candidate in the search space; d is the considered problem's dimen-
sion; x];(O) represents the initial position of the solution candidates; x] is the jth decision
variable of the ith solution candidate; rand is a uniformly distributed random number in
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{min and xi_max are the minimum and maximum bounds of the
jth decision variable for the ith solution candidate.

The specified optimization problem is taken into account during the objective func-
tion evaluation of solution candidates so as to identify the Fire Hawks in the search space.
Predators and prey may be distinguished from one other by the greater objective function
values of certain solution candidates. The selected Fire Hawks are employed to spread
flames around the prey in the search zone, making hunting easier for the hunter. The main
fire, which is originally employed by the Fire Hawks to spread flames over the search
region, is also assumed to be the best global solution. These features are shown schemati-
cally in Figures 3a and 3b, and are mathematically represented as follows:

the range of [0,1]; and x

PR, 1
PR,

PR=pp | k=12.,m (3)
PR, |
FH; 1
FH,

FH = FH, | 1=12,..,n. 4

FH,,]

where FH; explains the I/th fire hawk in a complete search space of # fire hawks; and PRy
reveals the kth prey in the search space depending the whole number of m preys.

¥
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Figure 3. Schematic representation of identifying fire hawks and prey in the search space [69].
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The distance among the Fire Hawks and their prey is determined in the following
step of the algorithm. These principles are shown graphically in Figure 4(a), where D}, is
shown using the following equation:

1=1,2,..,n.
{k =12,..,m ®)

Dy =/ (x2 = %)% + (y2 — y1)?,

Where m and n demonstrate the overall number of preys and fire hawks in the search
space, respectively; D} shows the total distance between the Ith fire hawk and the kth prey;
and (x4, y1) and (X, y,) represent the coordinates of the Fire Hawks and prey in the search
space.

The territory of these birds is recognized using the nearest prey in the vicinity, using
the method described above to determine the overall distance among Fire Hawks and
prey. Fig. 4(b) depicts graphically the process of establishing the Fire Hawks' territorial
boundaries in the search area.

After that, the Fire Hawks collect hot coals from the primary fire to start a fire at the
designated spot. These two behaviours may be employed as location updating processes
in FHO's main search loop since some birds are willing to utilize burning sticks from other
Fire Hawks' territories, as illustrated in the equation below:

FH]neW = FH] + (rl X GB - Ir; X FHNear)' 1= 12, ..,n (6)

where GB demonstrates the global best solution in the search space considered as the pri-
mary fire; FH'*" shows the novel position vector of the /th Fire Hawk (FH,); and r; and
r, are uniformly distributed random numbers in the range of (0, 1) for illustrating Fire
Hawks' movements towards the vital fire and the other Fire Hawks’ territories; and
FHyear shows one of the Fire Hawks in the search space.

Prey movement throughout each Fire For the algorithm's following stage, which in-
volves updating positions, the hawk's territory is seen as a crucial aspect of animal behav-
iour. The following equation could be employed to take these activities into account while
updating a position:

PRISW = PR, + (r3 X FH, — 14 X SR),

{1 =12,..,n. 7

q=12,..,r.

where GB is the global best solution in the search space considered as the main fire;
PRG®Y is the novel position vector of the gth prey (PR,) surrounded by the Ith Fire Hawk
(FH,); SP, is a safe place under the /th Fire Hawk territory; and to ascertain the motions of
prey in the direction of the Fire Hawks and the safe location, r; and r, are uniformly
distributed random integers in the range of (0, 1).

Furthermore, the prey may move into the territory of other Fire Hawks. At the same
time, there is a chance that the prey may approach the Fire Hawks that are trapped by
neighbouring Fire Hawks may even try to hide in a more secure region beyond the Fire
Hawk's territory. The following equation could be employed to account for these activities
throughout the position updating process (Fig. 4(e)):

{l =1,2,..,n

PRI&EW = PRq + (I‘5 X FHAlter - I‘6 X SP), q — 1’2’ o, T. (8)

where PRG®" shows the new position vector of the gth prey (PR,) flanked by the Ith fire
hawk (FH)); SP elucidates a safe place outside the Ith Fire Hawk's territory; FHypyer is one
of the fire hawks in the search space; r5 and ry indicate uniformly distributed random
numbers in the range of (0, 1) to determine the movements of preys towards the other Fire
Hawks and the safe region outside the territory.

The mathematical presentation of SP, and SP is stated as follows, taking into ac-
count the fact that the safe place in nature is a location where the majority of animals
assemble to collect so as to be safe and sound during a hazard:

r-1PR =12
_ 4g=1 q q yhy oy It
Sh = r ’ {1 =12, ..,n ©)
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sp=2kl X k=12,..,m (10)

where PRy shows the gth prey surrounded by the Ith fire hawk (FH;); PRy is the kth prey
in the search space.

Dln |
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Figure 4. Schematic representation for measuring the total distance between the Fire Hawks and the
prey (a). Schematic representation of illustrating territory of Fire Hawks in the search space (b).
Schematic representation of the Fire Hawks” position updating procedure in the search space (c).
Schematic representation of the preys’ position updating process inside the fire hawks’ territory (d).
Schematic representation of the preys’ position updating process outside the fire hawks’ territory

(e) [69]-

The FHO algorithm's pseudo-code is shown in Fig. 5, and the algorithm's flowchart
is shown in Fig. 6. A Gaussian distribution is the most common distributions used in ran-
domization techniques, and it is used to calculate the number of preys in each search loop,
which is equal to the overall number of solution candidates minus the number of fire
hawks.

procedure Fire Hawk Optimizer (FHO)
Determine initial positions of solution candidates (X,) in the search space with N candidates
Evaluate fitness values for initial solution candidates
Determine the Global Best (GB) solution as the main fire
while Iteration < Maximum number of iterations
Generate n as a random integer number for determining the number of Fire Hawks
Determine Fire Hawks (FH) and Preys (PR) in the search space
Calculate the total distance between the Fire Hawks and the preys
Determine the territory of the Fire Hawks by dispersing the preys
Jori=I:n
Determine the new position of the Fire Hawks by Eq. 6.
Jorqg=1:r
Calculate the safe place under Ith Fire Hawk territory by Eq. 9.
Determine the new position of the preys by Eq. 7.
Calculate the safe place outside the Ith Fire Hawk territory by Eq. 10.
Determine the new position of the preys by Eq. 8.
end
end
Evaluate fitness values for the newly created Fire Hawks and preys
Determine the Global Best (GB) solution as the main fire
end while
return GB
end procedure

Figure 5. Pseudo-code of FHO.
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Figure 6. Flowchart of FHO.

3.3. Initialization and decision variables

Finding the best answer from among all feasible alternatives is the goal of an optimi-
zation problem. A common optimization problem is as follows:
A function f :B — R from some set B to the real numbers.

Anelement X, € Bsuchthat f(x,) < f(x)forall x € B (minimization prob-

lem)or f (x,) = f(x) forall x € B (maximization problem).

where B represents a portion of Euclidean space and is often defined by a set of con-
straints, equality requirements, or inequalities that B members must satisfy. Candidate
solutions or feasible solutions signify the components of B, while the domain B denotes
the search space or option set of f. Function f is referred to as the "objective function". A
potential solution that minimizes (or maximizes, if that is the goal) the objective function
is known as an optimal solution [87]. The BIM model is utilized in this research to import
all of the project's data for all 38 activities listed in Table 1. A construction project's activ-
ity-on-node (AON) diagram is made up of M nodes and the relationships between the
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activities. Each activity has a number of execution options, each with its own time, cost,
quality, risk, and carbon dioxide emissions associated with it, all of which are depending
on the amount of resources, technology, and equipment used. The TCRQC tradeoff prob-
lem optimization approach tries to minimize project time, cost, risk, and carbon dioxide
emissions while simultaneously maximizing project quality by picking the best execution
option for all activities. Consequently, the first objective function is to minimize the time
of the project in Eq.11:

Tp, = min(max(ST; + D;)) = min(max(FT})); i=1,..,M (11)

Where D; shows the duration of each activity in the project; ST; and FT; are the start and
finish times of activity, respectively; M demonstrates the total number of nodes in the
project scheduling [2]. Furthermore, a project's total cost comprises direct costs (DC), in-
direct costs (IC), and tardiness costs (TC). There are other techniques for calculating the
entire cost of a project; for theoretical reasons, this study simply considers direct costs,
indirect costs, and tardiness costs. The following objective function is to minimize cost of
the project as indicated in Eq.12:

min C = D, + I, + TC (12)
n
D, = > (13)
i=1
It = Cie X T (14)
- T-To . .
Te (e Ty — 1> (D, +15)  #T>T, (15)

Where TC,, is total project’s cost; chi and chi are the direct and indirect cost associated
with the jth execution mode of ith activity, respectively; TC is the tardiness cost; T, eluci-
dates contractual planned duration of the project; C; shows reward for completing the
task early; and T is total project duration [88,89]. Due to the fact that a project's re-
sources may include a range of materials, equipment, and labour, the overall project's
quality is calculated as the sum of the quality of each activity. Increasing the length of
activities improves the quality level; nevertheless, extending the time beyond a certain
point decreases the quality somewhat. Hence, The quality of each activity is indicated by
the quality performance index (QPIi) which is given by Eq.16 [89].

QPI1 = aitiz + biti + ¢ (16)

Where t; is duration of activity i; a;, b;, and c; are coefficients decided by the quadratic
function regarding BD (Fig. 7). LD, BD, and SD are the longest, best, and shortest duration,
respectively. However, BD is calculated by Eq.17. Finally, the objective function for qual-
ity is formulated in Eq. 18 as follows:

BD = SD + 0.613(LD — SD) (17)

M
QPI;
maxQ= ) — (18)
2.
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Figure 7. Quality performance index (QPI).

However, some resources might have a negative impact on the environment during
the development phase of a project by generating COz. CO: emissions can occur in two
ways during the on-site construction process: directly from electricity consumption and
fuel combustion, and indirectly from the manufacturing of building materials and their
transportation. CO2 emissions can be reduced by not only selecting environmentally
friendly materials, but also by ensuring that materials are transported in the shortest pos-
sible manner. So, the objective function to minimize the total amount of CO: in the project
can be calculated by Eq.19.

M M M M
min CE = z Egj + z Einjj = (z Qed X Fe +Qqq X Fg) + (Z Qx X Fj+ Qek X Fe + Qae X Fg)  (19)
=1 =1 =1 =1

Where CE is the total CO:2 emission in the project; Eg;; and Ejy;; are the direct and indi-
rect CO2 emission in the project, respectively; Q¢q shows activity's electricity consump-
tion; Qqq elucidates activity's diesel consumption; Q;; shows consumption of material k
in activity; Qex indicates electricity consumption for transportation of material k for activ-
ity; Qqx shows diesel consumption for transportation of material k for activity; F,, Fq,
and F;j are carbon emission factor (CEF) per electricity unit, diesel unit consumption, and
per unit production of material k, respectively. Concerning the project's risk, the actual
project risk is mostly determined by the project's circumstances, delivery systems, and
contract terms. A “risk value" is described as a function that combines the two compo-
nents: (i) the project's overall float; (ii) resource volatility. When noncritical operations
have a high degree of temporal uncertainty, the usage of float may result in increased
project risk and schedule overruns. Thus, construction managers are required to execute
schedule adjustments to minimize unplanned changes in resource use throughout the du-
ration of the project's execution. Allowing noncritical operations to float may result in
more effective resource use [90-92]. Consequently, the fifth objective function for risk can

be formulated as Eq.20:
inR = ><<1 TE+1 )+ x (R~ R)? +wsx (1 R 20
iR = wa TR+ 1) T 2 Py (R)2 Ws max(R,) (20)

Where TF. and TF ., show total current float and total flexible scheduling float of the
project; R elucidates uniform resource level; R, is resource required on day # and wi
demonstrates the weights.
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Finally, to assess the capability of the FHO algorithm to the time-cost-quality-risk-
CO: (All) trade-off simultaneously, Eq. 21 is used for this purpose:

T- Tmin C- Cmin

R - Rmin

COZ - Coz(min) Qmin - Q

Tmax - Tmin Cmax - Cmin

Rmax - Rmin

21

Coz(max) - Coz(min) Qmax - Qmin

4. Optimization Results

Five different metaheuristic algorithms were chosen to compare the efficacy of the
FHO algorithm in solving resource trade-off problems in construction projects, including
Firefly Algorithm (FA) [93], Multi-Verse Optimizer (MVO) [94], Particle Swarm Optimi-
zation (PSO) [95], Symbiotic Organisms Search (SOS) algorithm [96], and Teaching-learn-
ing-based Optimization (TLBO) [97]. All optimization processes have been conducted via
MATLAB programming software using a PC with 8 GM RAM, CORE i7, and 2.8 GHz
frequency. Table 2 shows the best findings of the FHO alongside other alternative algo-
rithms for each scenario. However, for statistical purposes, 30 independent optimization
runs are carried out for determining the statistical measurements as the mean, worst,
standard deviation, and computational time. A predefined stopping criterion is also con-
sidered based on a maximum number of 5000 objective function evaluations while the
number of populations for each algorithm is determined by the maximum number of ob-
jective function evaluations and the maximum number of iterations. Fig. 8 illustrates the
convergence history of FHO and alternative algorithms in dealing with the mentioned

trade-off problems.

Table 2. The best outcomes of the FHO and alternative algorithms for the case study.

FA

FHO (cur-

Y
MVO rent study)

PSO SOS TLBO

261
118230
94.35
5.78
76.35
0.74

Time
Cost
Quality
Risk
CO2
All

258
117056
94.16
5.94
76.74
0.76

321
119564.8
93.82
6.53
103.35
0.99

258
117104.6
94.41
5.78
76.35
0.74

281
117512
93.89
5.93
79.60
0.77

258
116783
87.81
5.78
76.35
0.74

Time

Optimization
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Figure 8. Convergence history of 30 independent optimization runs of FHO and alternative algo-
rithms.

Table 3 demonstrates the statistical results of time optimization in the case study. As
can be seen, the FHO algorithm could dominate most of the alternative metaheuristic al-
gorithms in the first scenario of time optimization in the case study, which calculates 258
days as the best and optimum time, like MVO and SOS algorithms. Regarding standard
deviation (Std), the FA algorithm delivers the most minimal result, followed by the FHO
algorithm, accounting for 0.18. In comparison, the PSO algorithm provides the most sig-
nificant value of Std, registered at about 35.07. Moreover, the SOS algorithm could con-
duct the time optimization process in the smallest feasible time (1.40 s); on the other hand,
the longest computing time is acquired by FHO and PSO algorithms, needing significantly
more time to conduct the optimization process in this case.

Table 3. Statistical outcomes for the time optimization for the case study.

FA MVO PSO S0S TLpo  HO (cur-
rent study)
Best 261 258 321 258 281 258
Mean 261 258.9 392.7 260.76 300.6 258.03
Worst 261 261 453 266 316 259
Std 0 1.21 35.07 1.71 9.04 0.18
Computa-
tional ime ~ 2.19 1.61 2.35 1.40 1.44 8.66
(s)

Table 4 summarizes the vital information concerning the statistical analysis used in
the cost optimization in the case study. Evident is the fact that the FHO algorithm outper-
forms other alternative metaheuristic algorithms in the case study's second scenario (cost
optimization); in other words, the FHO algorithm can compute the project's lowest cost,
in contrast to the PSO algorithm's maximum optimal value of cost. However, the FHO
algorithm took the most computational time in this case, followed by the FA; on the con-
trary, the SOS algorithm took the least computing time for cost optimization in the project
mentioned above. Additionally, the FHO algorithm supplied the smallest feasible Std
value, which the FA follows. Meanwhile, the PSO achieved the greatest standard
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deviation of all algorithms studied in this case. As a result, the FHO algorithm could be
an acceptable metaheuristic for project and construction management cost optimisation.

Table 4. Statistical results for the cost optimization for the case study.

FA MVO PSO S0S TLpo  LHO(eur
rent study)
Best 118230 117056 1195648 1171046 117512 116783
Mean  118558.6 1175119  135480.6 1174983 1183229  116839.7
Worst 118780 1182846 1551517 117920 119070 117011
Std 148.09 27158 995233  222.75 397.19 59.57
Computa-
tional time  2.16 1.57 2.13 1.39 1.44 9.66
(s)

Table 5 shows the statistical outcomes of the case study's quality optimization, indi-
cating that the FHO method can deliver acceptable quality. Simultaneously, the SOS algo-
rithm achieved the most outstanding quality value, about 94.41, followed by the FA algo-
rithm. Additionally, the SOS algorithm could provide the smallest standard deviation, in
this case, roughly 0.04. In sharp contrast, the FHO has set the highest standard. However,
in terms of computing time for quality optimization, the SOS algorithm required the least
time, in this case, contrasted to the FHO approach, which required around 0.78 seconds
(s). As a consequence, although the FHO algorithm can provide an acceptable level of
quality, the SOS method could be a preferred choice for project managers in this circum-
stance.

Table 5. Statistical results for the quality optimization for the case study.

FA MVO PSO SOS TLgo  HO(eur

rent study)
Best 94.35 94.16 93.82 94.41 93.89 87.81
Mean 94.46 94.24 93.89 94.54 94.01 89.63
Worst 94.56 94.40 94.12 94.62 94.27 91.46
Std 0.04 0.05 0.06 0.04 0.08 0.78

Computa-
tional time 9.05 1.44 211 1.40 1.44 2.03
(s)

The statistical analysis findings for risk optimization are indicated in Table 6. None-
theless, similar to FA and SOS algorithms, the FHO could calculate the lowest value for
risk in the case study, accounting for nearly 5.78. Furthermore, the SOS algorithm required
as little as possible computational time in this scenario, followed by the TLBO algorithm.
Hence, the FHO algorithm could be a well-suited algorithm for risk optimization in pro-
ject scheduling. Meanwhile, the FHO algorithm could calculate the lowest value for Std
in this scenario.
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Table 6. Statistical results for the risk optimization for the case study.

FA MVO PSO SOS TLgo  HO(eur
rent study)
Best 5.78 5.94 6.53 5.78 5.93 5.78
Mean 5.78 6.07 7.13 5.79 6.03 5.78
Worst 5.78 6.28 7.46 5.82 6.20 5.78
Std 9.03E-16  845E-02  2.47E-01 0.01 6.99E-02  9.03E-16
Computa-
tional time ~ 2.27 1.56 2.05 1.39 1.43 8.67
(s)

Table 7 illustrates the case study's statistical analysis for COz emission optimization.
Considering sustainability in construction, the FHO could be an ideal algorithm for pro-
ject engineers to reduce the carbon footprint since it could calculate the lowest CO: in the
case study, thereby reaching environmentally-friendly construction. Contrastingly, the
PSO algorithm provided the highest value for COz in this scenario, indicating its unfa-
vourable performance in achieving the project with the lowest carbon footprint. However,
the SOS algorithm gave the lowest computational time, registered at 1.38 (s), followed by
TLBO. As a result, considering the average computational time, the FHO algorithm could
be considered an appropriate alternative to optimize the amount of carbon dioxide in con-
struction projects.

Table 7. Statistical results for the CO:2 optimization for the case study.

FA MVO PSO SOS Lo HO (cur-

rent study)
Best 76.35 76.44 103.35 76.35 79.60 76.35
Mean 76.35 77.87 116.23 76.68 88.24 76.40
Worst 76.35 80.41 129.54 77.20 94.47 76.59
Std 1.45E-14 0.92 6.20 0.24 4.19E+00 0.06

Computa-
tional time 1.93 1.59 2.29 1.38 1.42 12.52
©)

Finally, Table 8 illustrates the statistical analysis for all trade-off in the considered
project. As can be seen, the FHO algorithm could outperform other metaheuristic algo-
rithms in dealing with the TCQRCT problem by considering a residential dwelling as a
case study, followed by the FA and SOS algorithms. Regarding Std. value, the FHO and
FA algorithms gave the lowest value, indicating its superior performance. However, the
SOS algorithm required the lowest computational time to conduct TCQRCT in the case
study, followed by the TLBO with nearly 1.43 (s). The FHO algorithm could be unique for
TCQRCT problems in construction projects without considering computational time.
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Table 8. Statistical results for all optimization for the case study.

FA MVO PSO SOS TLgo  HO(eur
rent study)
Best 0.74 0.76 0.99 0.74 0.77 0.74
Mean 0.74 0.84 1.42 0.75 0.86 0.74
Worst 0.74 0.95 1.67 0.78 0.94 0.74
Std 2.26E-16 0.04 0.21 0.01 0.04 2.26E-16
Computa-
tional time ~ 1.98 1.70 242 1.38 1.43 10.96
(s)

5. Conclusion

This paper established a unique framework that involves building information mod-
elling (BIM) and a novel metaheuristic algorithm to solve the resources trade-off problem
in construction projects. For this purpose, Fire Hawk Optimizer (FHO) is used as a novel
metaheuristic algorithm. A 3D BIM-based modelling of the case study was created using
different software, including Revit, Navisworks, Lumion, and also dynamo was utilized
to make parametric modelling. The key results and main outcomes of this research work
are summarized as follows:

Based on the outcomes of best optimization runs conducted by different methods in
dealing with time optimization, the FHO algorithm could reach the lowest time for case
study, accounting for 258 days.

The FHO can provide 116783($) for the cost of the case study, which is the best among
other approaches.

Regarding quality optimization, the FHO is capable of providing reasonable quality
value, but the SOS algorithm gave the best results.

The FHO algorithm is able to provide the best results for both risk and CO2 optimi-
zation in the case study than other alternative algorithms.

Based on the best results of the TCQRCT problem, the FHO algorithm can provide
0.74, which is much better than other algorithms.

Based on the results and conducted analysis, the main reason for the superiority of
the FHO algorithm comparing other mentioned metaheuristics algorithms is threefold,
namely fast convergence behavior, being parameter-free, and the lowest possible objective
function evaluation. The FHO algorithm should be tested for future studies utilizing in-
tricate optimization problems in miscellaneous fields, such as real-size engineering design
problems like truss structures.
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Appendix

Table 1A - Project data of case study

N | Activity | Logi- Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
O cal
Tim Co Qua Risk CO2 |Tim Co Qua Ris CO2 |[Tim Co Qua Ris CO2 | Tim Co Qua Ris CO2 | Tim Cost Qual- Risk CcO2
e st$ lity e st$ lity k e st$ lity k e st$ lity k e $ ity %
% % % %
1 | Founda- - 26 810 90.6 14966 22533 | 24 785 892 12 198. | 20 812 921 125 187. | 15 840 789 129 983 | 13 9408 7495 16.313 108.1
tion 0 5 67 13 0 45 0 52 0 2 5 67 52
2 Retain- 1FS+ | 15 225 949 13216 13797 | 13 215 945 105 125. 11 222 953 113 111. 9 241 871 115 542 8 2699. 8274 14406 59.67
ing wall 1 2 05 67 07 0 1 08 0 04 0 4 5 2 5 17 5
3 | Columns | 2FS 13 201 91.1 10333 11631 | 10 198 90.2 8 101. 7 204 921 94 98 6 210 854 95 363 5 2352 81.17 11.263 39.95
of 5 55 33 33 0 1 3 2 0 5 2 75 33 2
ground
4 Beam 3FS+ | 10 432 919 11951 188.28 8 365 914 9.65 169. 6 392 925 98 152 4 415 864 103 111. 3 4648 82.08 13.027 1223
and roof 1 5 8 67 33 2 91 0 6 36 0 1 25 95 32 75
of
ground
5 | Columns | 4FS+ | 13 155 93.6 5.58 19087 | 10 120 926 42 178. 7 135 945 54 148 6 142 893 6 128. 5 1590. 84.89 6.0822 141.4
of 1st 2 0 05 67 0 5 35 6 6 0 6 6 4 2 6
floor
6 Beam 5FS+ | 10 360 956 1282 177.76 8 320 948 103 177. 6 341 964 10.6 125. 4 354 854 110 452 3 3964. 81.17 13973 49.77
and roof 1 0 25 53 0 88 0 5 5 36 0 5 2 5 8 75 8 5
of 1st
floor
7 | Columns | 6FS+ | 13 155 920 8.038 15851 | 10 120 913 6.32 143. 7 135 927 7.05 127. 6 142 841 7.8 359 5 1590. 7991 8.7614 39.57
of 2nd 2 0 4 37 0 65 6 8 63 0 2 8 4 4 2 8
floor
8 Beam 7ES+ | 10 360 975 9.275 183.85 8 320 965 725 169. 6 341 986 825 145. 4 354 888 85 895 3 3964. 84.44 10.109 98.49
and roof 1 0 75 83 0 25 0 5 25 0 9 4 8 55 75 4
of 2nd
floor
9 | Columns | 8FS+ | 13 155 939 69033 150.19 | 10 120 934 53  145. 7 135 945 64 111. 6 142 784 645 74.6 5 1590. 7452 7.5246 82.09
of 3rd 2 0 9 33 17 0 25 6 8 25 0 5 3 4 75 33 3
floor
10 Beam 9FS+ | 10 360 914 35416 167.46 8 320 905 265 151. 6 341 924 347 134. 4 354 821 39 125 3 3964. 7799 3.8604 137.7
and roof 1 0 75 67 97 0 72 0 5 89 0 25 8 5 17 75
of 3rd
floor
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11 | Columns | 10FS | 13 155 928 6.3166 11452 | 10 120 914 45 106. 7 135 942 68 892 6 142 864 7 65.3 5 1590. 82.12 6.8851 71.85
of 4th +2 0 25 67 3 0 58 6 5 5 0 5 2 4 75 67 2
floor
12 Beam 11FS | 10 360 963 15.298 156.73 8 320 953 11.8 143. 6 341 974 139 124 4 354 912 142 435 3 3964. 86.64 16.675 4791
and roof +1 0 75 33 13 0 5 56 0 5 58 0 6 8 18 6
of 4th
floor
13 | Columns | 12FS | 13 155 953 11.845 163.64 | 10 120 94.6 9.45 144. 7 135 960 10.0 135. 6 142 864 113 972 5 1590. 82.08 12911 106.9
of 5th +2 0 15 73 0 2 32 6 1 2 98 0 1 4 95 05 2
floor
14 Beam 13FS | 10 360 985 4.689 139.11 8 320 974 321 126. 6 341 99.7 54 111 4 354 91.0 552 569 3 3964. 8646 51110 62.67
and roof +1 0 7 07 0 98 0 4 04 0 2 8 8 9 1 8
of 5th
floor
15 | Columns | 14FS 5 420 91.8 5.8516 124.31 3 356 91.6 425 114. 2 411 92.0 6.08 984 1 580 832 6.85 759 1 649.6 79.08 6.3783 83.57
of ridge +1 15 67 25 3 5 8 75 17 8
roof
16 Beam 15FS 6 111 929 3.3423 168.63 4 980 924 251 156. 3 995 934 325 132 2 102 879 3.65 100. 2 1142. 83.58 3.6431 110.3
and roof +1 0 6 33 17 5 32 7 07 0 8 36 4 1 43 96
of ridge
floor
17 Brick- 4FS+ | 14 162 940 1.6583 166.89 | 11 148 93 1.05 157. 9 162 950 214 127. 8 174 799 245 98.6 7 1948. 7599 1.8075 108.5
works of 1 0 35 33 0 45 0 7 8 0 9 5 8 05 83 15
ground
18 | Mechani- | 17FS | 10 130 953 8.3166 109.08 8 122 945 65 101 6 135 962 74 845 4 148 821 7.65 246 3 1657. 78.03 9.0651 27.11
cal in- +2 0 55 67 27 0 98 2 1 2 0 4 5 6 3 67 5
stalla-
tions of
ground
19 | Electrical | 17FS | 15 125 955 6.08 12876 | 13 110 953 49 121. 9 126 957 501 99.0 6 135 89.6 563 684 5 1512 85.16 6.6272 75.26
installa- +2 0 4 47 0 07 0 8 4 0 5 2 75 2
tions of
ground
20 Brick- 6FS+ | 14 180 922 51493 12595 | 11 162 90.7 3.54 114. 9 187 937 5.89 101. 8 194 804 6 45.6 7 2175. 7642 5.6127 50.21
works of 1 0 1 33 27 0 06 0 2 5 2 5 5 04 75 73 5
1st floor
21 | Mechani- | 20FS | 10 160 975 59346 13091 8 152 97 422 125. 6 171 980 6.41 97.6 4 178 914 6.54 826 3 1993. 86.87 6.4687 90.89
cal in- +2 0 25 67 7 0 97 0 5 5 0 5 3 6 75 87 3
stalla-
tions of
1st floor
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22 | Electrical | 20FS 9 142 97.6 3.7863 167.22 7 135 964 2.87 151. 5 142 989 3.61 134. 4 150 872 3.75 111. 3 1680 82.89 4.1271 122.6
installa- +2 0 5 33 77 0 26 0 95 0 6 52 7 03 72
tions of
1st floor

23 Brick- 8FS+ 14 180 934 5.5466 193.39 11 162 923 4.2 178. 9 187 946 53 152. 8 194 834 55 97.5 7 2175.  79.27 6.0458 107.2
works of 1 0 95 67 17 0 32 0 9 47 2 5 2 04 75 67 72

2nd floor

24 | Mechani- | 23FS 10 168 949 12.066 138.66 8 153 941 9.34 126. 6 175 957 109 110. 4 178 88.9 113 645 3 1993. 84.53 13.151 7097

cal in- +2 0 3 87 2 5 47 0 1 8 8 0 8 6 2 6 1 94 2
stalla-
tions of
2nd floor

25 | Electrical | 23FS 9 142 925 10.741 181.74 7 135 904 845 175. 5 142 946 941 134. 4 150 783 95 86.5 3 1680 7440 11.708 95.17
installa- +2 0 5 67 27 0 7 65 0 3 74 0 2 2 4 42 2
tions of

2nd floor

26 Brick- 10FS 14 180 94.1 2.455 165.54 11 162 933 1.65 149. 9 187 95 291 134. 8 194 856 32 98.4 7 2175. 81.36 2.6759 108.2
works of +1 0 6 57 0 2 08 0 29 2 5 2 04 75 5 62
3rd floor

27 | Mechani- | 26FS 10 168 91.8 2.866 178.68 8 153 912 2.04 170. 6 174 924 3.09 134. 4 178 869 52 74.7 3 1993. 82.62 3.1239 82.24

cal in- +2 0 2 77 0 4 36 0 95 0 7 7 6 15 4 7
stalla-

tions of

3rd floor

28 | Electrical | 26FS 9 142 904 8.185 159.03 7 135 90 6.45 156. 142 908 7.14 114. 4 150 824 7.65 645 3 1680 7829 8.9216 70.97
installa- +2 0 35 2 0 65 0 7 78 0 2 2 9 5 2
tions of
3rd floor

29 Brick- 12FS 14 180 96.1 12954 159.09 11 162 949 103 142. 9 187 973 11 130. 8 194 864 114 111. 7 2175.  82.08 14.120 1229
works of +1 0 55 67 4 0 8 2 36 0 3 02 2 1 78 04 95 59 58
4th floor

30 | Mechani- | 29FS | 10 169 933 8.26 163.87 8 157 926 64  153. 6 176 941 75 126. 4 178 863 7.7 426 3 1993. 82.03 9.0034 46.89

cal in- +2 5 75 57 0 3 21 0 2 97 0 5 3 6 25 3
stalla-

tions of

4th floor

31 | Electrical | 29FS 9 142 946 6.6486 158.88 7 135 941 4.98 147. 5 142 950 6.5 124. 4 150 874 6.52 355 3 1680 83.04 7.2470 39.14
installa- +2 0 3 67 67 0 7 36 0 9 36 0 2 9 9 47 9
tions of
4th floor

32 Brick- 14FS 14 180 93.0 4.885 128.85 11 162 928 3.45 120. 9 187 932 534 999 8 194 882 598 654 7 2175. 83.79 53246 71.96
works of +1 0 2 3 0 3 32 0 1 9 2 2 04 5 2
5th floor
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