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Abstract

Deep learning models are highly effective at identifying features that facilitate the precise
interpretation of complex patterns. This study introduces a deep learning-based approach using
MobileNetV3 and long short-term memory (LSTM) for the automated classification of skin diseases.
The MobileNetV3 model, which is compatible with mobile computing devices, has demonstrated
both efficiency and reliability. The proposed model excels in maintaining stateful data for accurate
weather forecasting. A grey-level co-occurrence matrix was employed to evaluate the progression of
abnormal growth. The model’s performance was compared with other advanced models, including
convolutional neural networks (CNN), very deep convolutional networks for large-scale image
recognition developed by the Visual Geometry Group (VGG), and fine-tuned neural networks
(FTNN). For this study, we utilized the DERMNET dataset. Its minimal computational demand is
attributed to its robustness in detecting the affected area, achieving this significantly faster than the
standard MobileNet model with approximately two fewer calculations. The findings indicate that the
proposed method can aid general practitioners in accurately diagnosing skin disorders, thereby
reducing the risk of subsequent complications and morbidity in patients.

Keywords: deep learning; convolutional neural network (CNN); long short-term memory (LSTM);
MobileNetV3; grey-level correlation

1. Introduction

The skin is the most important organ in the human body and is composed of the epidermis,
dermis, subcutaneous tissues, blood vessels, lymphatic vessels, nerves, and muscles[1]. The skin can
enhance the function of its skin barrier by preventing the breakdown of lipids in the epidermis. Skin
disorders can be caused by bacteria that alter the skin texture, fungi that develop on the skin,
unknown germs, allergic reactions, or microorganisms that produce pigments[2]. Prolonged skin
conditions may potentially lead to tissue cancer in the human body [3-5]. Skin disorders must be
treated immediately to prevent future growth and spread. Currently, research is primarily focused
on the use of imaging technology to assess the impact of different skin disorders on the skin.

Inadequate data and a focus on standardised procedures, such as dermoscopy (the inspection of
the epidermis using skin surface microscopy), have made it difficult for medical practitioners to

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0242.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202508.0242.v1

2 of 18

generalise the findings from prior work in dermatological computer-assisted grouping. Skin-related
disorders can be quickly and precisely classified using computer-aided diagnostics to offer therapies
based on patient complaints [6]. This study provides a trustworthy approach for accurately
diagnosing skin conditions by employing supervision techniques that reduce the cost of diagnosis. A
grey-level co-occurrence matrix was used to track the development of ill growth. The accuracy of the
diagnosis is crucial for a full examination of the anomaly, better therapy, and reduced drug costs.

Data-driven diagnosis is crucial because of the complexity of skin illnesses, lack of qualified
dermatologists, and ineffective distribution of dermatologists. The identification of skin diseases is
now easier and faster because of the development of lasers and photonics-based treatments for skin
diseases. However, such diagnoses are expensive and scarce. Deep learning models are
comparatively productive when used to perform classification processes using images and data. The
precise determination of abnormalities and classification of disease categories from X-ray, MRI, CT,
PET, and signal data, such as electrocardiogram (ECG) images, have become necessities in the field
of medical diagnosis [7]. Accurate illness categorisation will enable a more effective course of therapy.
Deep learning models can solve complex problems by automatically identifying input data
properties. They are also adaptable enough to evolve as the problem under consideration develops.
Deep learning models can gather inferred data to locate and study features in unexposed data
patterns, providing enormous efficiency even with simple computational models. Therefore,
scientists have considered using deep learning models to classify skin infections based on images of
the affected area.

The primary goal of this study is to provide a state-of-the-art method for reliably classifying skin
illnesses from input photos, specifically MobileNetV3with an LSTM component [8,9]. The
MobileNetV3 model is computationally effective for use with portable computing devices and low-
resolution images, and LSTM is efficient in handling gradient fading over iterations in neural
networks, facilitating faster model training. The proposed methodology would aid in the efficient
and unobtrusive diagnosis of diseases in patients with the least amount of work and expenditure.

1.2. Related Works

Skin diseases are recognised and categorised using various automated technologies. Epidermal
diagnosis of these skin illnesses does not involve radiological imaging technologies, in contrast to
most other diagnostic techniques. By using image processing techniques, such as image alteration,
equalisation, enhancement, edge detection, and segmentation, the state can be ascertained based on
standard images [10,11].

The most commonly used approaches for artificial neural networks detecting and diagnosing
anomalies in radiological imaging data are artificial neural networks and convolutional neural
networks (CNN) [12,13]. The CNN approach for identifying skin disorders has yielded promising
results [14]. Working with images captured using a smartphone or digital camera presents challenges
because CNN models are neither scale-nor rotation-invariant. To achieve high model performance,
both neural network approaches require enormous amounts of training data, which require
substantial computational effort [15]. Because neural network-based models are more abstract, they
cannot be modified to meet specific requirements. Moreover, the number of trainable parameters in
the ANN increases with improved image quality, requiring substantial training efforts to yield
accurate results. The ANN model has problems because of the contraction and expansion of
gradients. Data obtained by CNN do not accurately describe the size and magnitude of an object
[16,17].

MobileNetV2 is a CNN model that has various advantages over previous CNN models,
including lower computing costs, smaller network size, and interoperability with mobile devices [18].
MobileNetV2 features were assigned a timestamp as they were stored in the LSTM network [4]. When
MobileNetV2 was paired with LSTM, the accuracy improved by up to 85.34 percent [14,16,17,19-21].

Histogram equalisation is a simple and effective method for enhancing images. The equalizing
approach has never been employed in a video system since it has the ability to substantially modify
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the brightness of a picture in certain conditions; this is why the technology has never been
implemented. This study proposes a unique histogram equalisation approach termed equal-area
dualistic sub-image histogram equalisation. Deep Learning (DL) is an Artificial Intelligence (AI)
discipline in which a computer program analyses raw data and automatically learns the

discriminating characteristics required for finding hidden patterns in it. Over the past decade, this

discipline has seen significant breakthroughs in the capacity of
DL-based algorithms can be used to analyse many forms of data, particularly images [22] and

natural language.

Table 1. A review of prior research focusing on the application of machine and deep learning methods in the

classification of skin diseases.

Methodology

Findings

Drawbacks

Ref No

Integrating the
LSTM with the
MobileNet V2

Deep learning

Hybrid Deep CNN

Transfer learning

Machine learning

Transfer learning

DKCNN

Transfer learning

Biomarker-based
features, eHealth
security, user-friendly
apps.

The performance of
the model may be
further enhanced by
using the bidirectional
LSTM.

To deploy and
evaluate the system in
real-world IoT
environments to
assess its performance
and scalability.
Can be further
enhanced by
ensembling different
deep learning models
Using metaheuristic
algorithm to further
improve classification
rate.

In future, various skin
diseases such as
chickenpox, smallpox,
lumpy skin disease
etc., will be targeted.
Enhancing precision
even more for
particular categories
of skin diseases such
as melanoma,
melanocytic nevi, and
benign keratosis-like
lesions

Improving skin
disease detection
using advanced

The model’s precision is
dramatically decreased to
just below 80 percent

If weight optimizations were
used to include information
about the present state, the
model would be more
robust.

The proposed system is more
complex to implement and
manage than traditional IDS
systems.

Minimal dataset

Limited generalization to
diverse skin types and
conditions due to potential
bias in training data.

Only 4 pre-trained models
are applied and small
dataset.

Limited ability to handle
highly diverse or rare skin
lesion types due to the focus
on lightweight and dynamic
kernel-based architecture.

The limited size and data
imbalance of publicly
available skin lesion
datasets.

[23]

[24]

[25]

[10]

[26]

[24]

[27]
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DCNNs and transfer
learning.

To make it compatible

with Jetson Nano and

The major limitation of the
system is that specificity and

Squeeze algorithm the Google Coral sensitivity are still lower [28]
Board. than accuracy.
Use of hybrid
Computer-aided methodologies of Yields a high computational
dIi)a Nnosis CNNs with gcos’c F [29]
& handcrafted feature ’
extraction approaches
Refine preprocessing Comparing skin cancer
Transfer Learning techniql.les to improve classifi.cation studies i.s [30]
skin cancer challenging due to varying
classification. datasets and class numbers.
Test 'dlverse d.eep— Lack of dimensionality
learning techniques .
. reduction methods to select
Deep Learning and datasets to [3]
. o the best features among all
improve skin disorder
e extracted features
classification.
Detailed evaluation of
th 1
€ prop.osefl mode The proposed approach
for skin disease .
. . demonstrated a high
Deep Learning detection and . e . [31]
e .. misclassification rate for the
classification in Malienant
adversarial ghant.
environments.
Explore Al’s ability to
use non-visual Inadequate standardized
Artificial metadata like medical ~dermatology datasets hinder
. . . . . [12]
Intelligence history for improved Al-based diagnosis
dermatology reliability and practicality.
diagnostics.
Devel lightweight
evelop atig w<.31'g Proposed model had high
model for versatility training resource demands
i
Model Fusion and evaluate it using & [22]

diverse skin disease
benchmark datasets.

and relatively slow training

speed.

1.3. Dataset Description

The DermNet dataset offers an extensive collection of high-resolution images showcasing a
diverse array of dermatological conditions, including melanoma, psoriasis, and dermatitis. Its
inclusiveness, which features various skin tones, ages, and ethnic backgrounds, simplifies the
training of machine learning algorithms. High-quality images support in-depth analysis and precise
diagnostic model development, benefiting automated dermatological diagnosis and expanding our
understanding of skin diseases.

The dataset comprised images of 23 different skin disorders. There are approximately 19,500
photos in total, of which 15,500 are divided into the training and test sets. The photos were in JPEG
format and had three RGB channels. Although the resolutions vary from image to image and from
category to category, this imagery is not often of very high resolution.The classifications include
vascular tumors, melanoma, eczema, seborrheic keratoses, ringworm, bullous illness, poison ivy, and
acne.
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Table 2. Dataset Description.
No. of Sub-
Class Label Abbreviation Super-Class Name No. of Images
Classes
0 ACROS Acne and Rosacea 912 21
Actinic Keratosis, Basal Cell
1 AKBCC Carcinoma, and  other 1437 60
Malignant Lesions
2 ATO Atopic Dermatitis 807 11
3 BUL Bullous Diseases 561 12

Cellulitis, Impetigo, and
4 CEL 361 25
other Bacterial Infections

5 ECZ Eczema Photos 1950 47

Exanthems and Drug
6 WXA 497 18
Eruptions

Alopecia and other Hair
7 ALO 195 23
Diseases

Herpes, Genital Warts and
8 HER 554 15
other STIs

9 PIG Pigmentation Disorder 711 20

Lupus and other
10 LUPUS 517 20
Connective Tissue diseases

Melanoma and Melanocytic
11 MEL 635 15
Nevi

Nail Fungus and other Nail
12 NAIL 1541 48
Disease

Poison Ivy and other
13 POI 373 12
Contact Dermatitis
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No. of Sub-
Class Label Abbreviation Super-Class Name No. of Images
Classes

Psoriasis Lichen Planus and
14 PSO 2112 39
related diseases

Scabies Lyme Disease and
15 SCA 611 25
other Infestations and Bites

Seborrheic Keratoses and
16 SEB 2397 50
other Benign Tumors

17 S5YS Systemic Disease 816 43

Tinea Candidiasis and other
18 TIN 1871 19
Fungal Infections

19 URT Urticaria 603 18
20 VASC Vascular Tumors 569 17

Vascular Tumors, Mollusca
21 VASCP 1549 26
Contagiosa and other

Total 21844 622

2. Materials and Methods

The current study used the integration of LSTM with MobileNetV3, along with an associated
architectural diagram. In this configuration, MobileNetV3 was used to categorise different forms of
skin diseases, and LSTM was used to enhance the model performance by keeping track of the context
of the characteristics encountered in the earlier stages of image classification [32].

2.1. The MobileNet Model Architecture Designed for Image Classification

The model MobileNetV3, based on a CNN, is frequently used to classify photographs. Adopting
the MobileNet design has several advantages, chief among them being that the model requires far
less computing effort than a conventional CNN model, making it suitable for use with PCs with low
processing capacities [33]. The MobileNet model is a reduced convolution layer structure that can be
used to differentiate between minute details that depend on two customisable characteristics that
efficiently flip between the parameter accuracy and latency [34]. The advantage of the MobileNet
strategy is that it reduces the number of networks required. The MobileNet architecture is equally
successful, with only a few features, such as recognition. A depth-first design underpins MobileNet,
and the main framework relies on several abstraction layers and appears to be a quantised setup that
accurately assesses the complexity of typical problems. Point-wise complexity describes the difficulty
of 1 x 1. In-depth platforms are constructed using in-depth structures, abstraction layers, and
standard rectified linear units (ReLU) [35].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In computer vision, the creation of embedded device models is a new field of deep learning
research that was essentially launched with the release of MobileNet V1 in 2017 [36]. Numerous
significant advancements, including MNasNet, EffNet, ShuffleNet (V1 and V2), and CondenseNet,
were the result of this. Approximately the middle of the last year, the second generation of MobileNet
emerged. Presently, the latest version of MobileNet is MobileNetV3, the third edition.

1 [,

input > Expansion uncompress Depthwise fikter the data Projection compress |output
tensor

|ayer the data |ayer layer the data tensor

~ e

Figure 1. The structure of MobileNetV3 Model.

The resolution multiplier variable reduces both the dimensionality of the input image and the
internal representation of every layer. The input variable is called a, and the output variable is called
b. The feature vector map has dimensions Ms x Ms and the filter has dimensions Fs x Fs. The
multiplier value was considered to be between 1 and n for the experimental study on the classification
of dermatological illnesses [37]. The circumstances determine the multiplier value. The symbol for
the arbitrary resolution multiplier in Equation (1) uses the variable cost as a measure of the
computational effort, which can be evaluated using V_cost.

V cost = Fs' Fs: w-p -aMs aMs )

The value Xe indicates the overall computing effort for the fundamental abstract layers of the
design and can be evaluated using Equation (2):

Xe =Fs - Fs w-aMs- aMs + o' p:aMs- aMs @

The value of a was assumed to be 1. Equation (2) now becomes

V cost =Fs* Fs: w- p- Ms-Ms 3)

The suggested method integrates depth-wise and point-wise convolutions that are bound by the

depletion variable P, which is computed using Equation 4:
Fs -Fs -w-aMs -aMs + ﬂ)‘p‘thS -aMs
P= “4)
Fs -Fs -w-p- Ms- Ms
The two hyper-feature resolution multipliers and width multipliers enable context-dependent

customisation of a suitably sized window for effective prediction [23]. The recommended model
requires an image with input dimensions of 224 x 224 x 3 pixels. The first two values (224, 224)
represent the image height and width. These integers should always exceed 32. There were three
input channels, as indicated by the third value.

As shown in Figure 2, the MobileNet architectures operate on the idea of replacing complex
convolutional layers, where each layer is composed of a convolutional layer of size 3 that buffers the
input data and a convolutional layer of size 1 pointwise that incorporates these filtered parameters
to generate a new component. The goal of the aforementioned strategy is to speed up and simplify
the model compared with the traditional convolutional model.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 2. The design of the model that combines MobileNetV3 and Squeeze-and-Excite.

2.2. LSTM Model

An LSTM is a specific type of RNN designed to learn long-term dependency. Since Hochreiter
and Schmidhuber (1997) originally presented LSTMs, several designs for these units have been
created[23,38]. In brief, LSTM is a crucial component that is often employed in recurrent neural
network architectures. It is particularly helpful in situations that require pattern estimation and excels
at learning sequences. Memory blocks are supervised by memory cells, which in the LSTM structure
are made up of an input gate, an output gate, a forget gate, and a link called a “window connection.”
The abstract LSTM layer module is composed of the following components:

The computations within the LSTM module control the activation function of the persistent
abstract LSTM memory. This module maintains the Pt state at time t while effectively managing
memory. The input hidden state vector ht and the internal operations of the LSTM affect this state.

Long Short-Term Memory (LSTM) networks have emerged as a significant advancement in the
domain of neural networks, particularly when used with sequential inputs. Owing to their capacity
to recognise and analyse long-range relationships in sequential data, these networks have been
widely used in several applications, including time-series forecasting, speech recognition, and
natural language processing. The complicated workings of LSTM networks, along with their design,
training procedures, and practical applications, were explored in depth in this study[39].

oy o\
- \’_‘/ & G, |
r

|
Clanb
. ‘/ xl -V\“\

= he

Figure 3. The design of the LSTM module.
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2.3. The Design of the Model That Combines MobileNet V3 and LSTM

Long short-term memory (LSTM) is a critical component of recurrent neural network topologies
[24]. It excels in learning sequences and is especially valuable for pattern estimation. Memory blocks
are supervised by memory cells, which in the LSTM structure consist of an input gate, an output gate,
a forget gate, and a link known as a “window connection.” Together, these elements comprise an
abstract LSTM layer module.

The activation function of the persistent abstract LSTM memory module is controlled by
calculations performed across the LSTM modules. This module maintains the Pt state at time t, while
efficiently managing memory. This state is determined by both the hidden state vector (vt) of the
input and the internal operations of the LSTM.

Input Gate: Qg = O (ik Wia +0:.Wha + o Weq + ,,,.) ®)
Output Gate : §; =0 (ikmB +hk.1Wyﬁ + CchB B (6)
Forget Gate : fy =0 (ikWif why W+ acWer + ) @)
Cell State Gate: Ci = fir * €y + A * tanh({¥Wig +h Wi +C,.) (8)
Cell State Gate : Ry = B, * +tanh(C,,) )

The variable i is the input to the LSTM block at time ‘k’. The weights Wia, Wig, Wit and Wic are
are related to the input gate, output gate, forget gate, and cell stated gate, respectively. Wha, Whg, and
W are the weights correlated with the hidden recurrent layer.

4W*4H*3 Post-processing
4W*4H*nf/2 block

4W*4H*3

W*H*nf/2

4W*4H*3

Flatten

a
P11
L LN

Figure 4. The structure of the suggested model involving MobileNet V3 and LSTM.

Dense

Classification

2.3.1. Grey Level Correlation Matrix

For texture analysis, the grey-level co-occurrence matrix (GLCM) was used. We simultaneously
considered the reference pixel and the nearby pixel at the same time[40]. Prior to computing the
GLCM, we established a particular spatial relationship between the reference and neighbouring
pixels. The definition of a neighbour may be, for example, one pixel to the right of the current pixel,
three pixels above, or two pixels diagonally (one of NE, NW, SE, or SW) from the reference. As soon
as a spatial relationship was established, we generated a GLCM of size (Range of Intensities x Range
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of Intensities) with all parameters set to 0. A 256x256 GLCM, for example, will be included in an 8-
bit single-channel image. Next, we raise that matrix cell for each pair of intensities we find for the
designated spatial link as we proceed through the image.

o 1 0 2 2 1 3 0 0.16 | 0.08 025 | O
)
o | 2| 1 1 / > | 1 o | o 016 |oos | o 0
311 |(0 E o|1]0l1 o |oos| o |oos
(o [oyt2 [ 3sy}y—— |o|[1]|]o0]o o |oos| o | o
4 x 4 image GLCM Nomalized GLCM

Figure 5. Grey Level Correlation Matrix.

2.3.2. Gray Level Co-Occurrence Matrix

The Grey-Level Co-occurrence Matrix (GLCM) method, coupled with the iterative sequence of
the localized intensity coefficient, serves as a technique for extracting texture attributes. By analysing
the distribution of intensity levels within a defined window, the GLCM captures the spatial
distribution structure of the pixel colour and intensity. The primary objective of GLCM is to tabulate
the intensity histogram to observe variations in pixel intensity values across an image. Equation (10)
plays a crucial role in establishing the relationship between the reference and neighbouring pixels
within the GLCM model. Here, the variable Oc,, represents the occurrence matrix with dimensions
m x m, where m corresponds to the number of gray levels in the image.

Ocpli,j] = pij (10)

The variable m;; in Equation (10) represents the histogram of the intensity value (i, j) at
dimension m of the image. Equation (11) normalises the constituent parts of the occurrence matrix.

N oli,jl
M) = gy (1)

The normalisation of the matrix components rescales their dimensions to fall within the range
of 0 to 1, which can be further adjusted based on probability considerations. Equation (12) offers a
method to calculate both the number of elements and dimensions of the feature vector, denoted by
the variable (I, m).

fam) = ¥t i @=)MILj] (12)

The GLCM technique was used to approximate the progression of disease development based
on the gathered texture-based information. This model evaluates skin condition using the GLCM
method.

3. Results and Discussion

The results and analysis of the recommended approach for diagnosing skin conditions are
covered in more detail in this section. We evaluated the effectiveness of our technique by combining
MobileNet V3 with LSTM, considering variables such as training, accuracy, and validation loss. As
shown below, the effectiveness of our method is contrasted with that of other existing models in
terms of Specificity, Sensitivity, Accuracy, and Jaccard Similarity Index (JSI).

3.1. Performance Evaluation of the Approach

The DermNet dataset, which is briefly explained in Section 3, was used to apply the suggested
approach. The frequency with which the proposed model accurately categorises skin ailments is
determined by the recommended MobileNet V3 model, the implementation results of the LSTM
model, and statistical analysis utilising numerous performance evolution indicators, including but
not limited to accuracy metrics.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 6. Images of various image classes from the DermNet dataset. Images of various diseases are as follows:
(A) bullous, (B) exanthem, (C) Skin Acne, (D) Cellulitis Impetigo,(E) molluscum, (F) vascular, (G) eczema, (H)

scabies, and (I) normal skin.

Table 3. Hyper parameters configuration.

MODEL Torch vision,

MobileNet V3
BASE LEARNING RATE 0.1
LEARNING RATE-POLICY Step-wise
WIEGHT DECAY 0.0001
CYCLIC LENGTH 10
PCT-START 0.9
MOMENTUM 0.95
BATCH SIZE 50
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Figure 7. Confusion Matrix for Different Classes of Images and its Accuracy.

3.2. Past Study Analogy

The approach’s performance is compared to that of a Fine-Tuned Neural Network (FTNN), a
Convolutional Neural Network (CNN), a VGC model, and several MobileNet models.

To evaluate the model’s performance, experiments were performed on a supplementary
computer with repeated executions of the model. The ratings are based on how frequently the
proposed model correctly categorises the True Positive skin disease and correctly identifies that the
image is not of that specific skin category as the True Negative. The number of times the proposed
model correctly detects the condition is sometimes addressed as a False Positive. The assumed False
Negative is the number of times the recommended model erroneously evaluated the skin ailment.

The recommended model was evaluated for sensitivity, specificity, and accuracy using metrics
such as True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). The
Jaccard Similarity Index, Specificity, Sensitivity, and Accuracy were examined. The symbols for
specificity, sensitivity, accuracy, and the Jaccard Similarity Index are represented as Sn, Sp, A, and Ji,

respectively.
The equations represent the metrics respectively,
ipe .. TN
Specificity = PPN (13)
Sensitivity = TP (14)
Accuracy ==——————— (15)
TP +FP+TN +FN -
Jaccard Similarity Index = ———>—— (16)

Tp+Tn+Fn
The table shows how well our recommended technique performs in terms of JSI, Sensitivity,
Specificity, and Accuracy compared to other pertinent approaches.
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Figure 8. (a) shows the Specificity of MobileNetV3-LSTM with respect to total number of iterations (b) illustrates
the Sensitivity of MobileNetV3-LSTM with respect to number of iterations. (c) shows the MobileNetV3-LSTM's

accuracy in terms of iterations. (d) showcases the JSI of MobileNetV3-LSTM in terms of iterations.

Table 4. The evaluation criteria used to measure the effectiveness of different methods.

Algorithms Sensitivity(%) Specificity(%) Accuracy(%) JSI(%)
MobileNet V3-LSTM 89.46 93.00 86.00 92.14
FTNN 78.52 83.00 77.00 83.51

CNN 79.54 84.00 79.00 84.49
VGG19 81.49 86.00 80.00 85.48
MobileNet V1 83.49 88.00 81.00 87.46
MobileNet V2 85.49 89.00 83.00 88.41

The Results Achieved by Comparing Existing Models with MobileNetV3-LSTM illustrates in
Figure 9. The performance of the proposed model was compared with that of several approaches,
including the Lesion Index Calculation Unit (LICU) approach, Fuzzy Support Vector Machine with
Probabilistic Boosting for Segmentation, the Compact Deep Neural Network, the SegNet model, U-
Net model, Decision Tree and Random Forest approaches.
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Figure 9. Comparing existing models with MobileNetV3-LSTM.
Table 5. The progress of the disease’s growth of different methods.
. Sensitivity Specificity Accuracy
Algorith
gorme (%) (%) (%)

SegNet 78.52 83.00 77.00
U-Net 79.54 84.00 79.00
Yuan (CDNN) 81.49 86.00 80.00
MobileNet V3-LSTM 89.46 93.00 86.00

Figure 10. shows the results obtained by comparing existing models with MobileNetV3-LSTM
for monitoring the progression of disease growth.
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Figure 10. Comparison of existing models with MobileNetV3-LSTM.
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4. Conclusion

In this study, we present MobileNet V3-LSTM, a unique technique for automated skin disease
classification that combines MobileNet V3 and Long Short-Term Memory (LSTM) networks. This
novel solution uses the computational efficiency of MobileNet V3 for lightweight computing devices
and LSTM'’s sequence modelling capabilities of LSTM to extract critical contextual information from
picture characteristics.

The application of the grey-level co-occurrence matrix, which enabled us to monitor the
progression of skin conditions, was one of the key advancements of our method. This matrix provides
vital insights into the progression of skin disorders, considerably improving diagnostic accuracy and
speed. By including this matrix in our model, we not only increased its capacity to diagnose and
categorise skin illnesses but also opened the door for more complete disease knowledge.

MobileNet V3-LSTM outperformed other state-of-the-art models, such as convolutional neural
networks (CNN) and very deep convolutional networks (VGG), according to our experimental
results on the Dermnet dataset. The model’s remarkable sensitivity, specificity, accuracy, and Jaccard
Similarity Index (JSI) proved its utility in precisely classifying illnesses.

The invention of the MobileNet V3-LSTM method represents a major advancement in computer-
assisted dermatological diagnosis, and we have created a reliable and effective approach for the
automated classification of skin illnesses by combining deep learning, sequence modelling, and the
grey-level co-occurrence matrix. This technology has the potential to significantly improve patient
outcomes and reduce healthcare costs by assisting medical practitioners in making early and accurate
diagnoses. Our strategy acts as a stepping stone for the creation of more advanced and useful
technologies in dermatology and other fields as we continue to improve in the fields of medical
imaging and artificial intelligence.

5. Future Directions

Future studies on computerised skin disease classification should focus on integrating various
data sources, creating real-time diagnostics for portable devices, enhancing model interpretability,
and diversifying datasets for improved generalisation. Other crucial research topics include
scalability, continuous learning, clinical validation and privacy-preserving Al These initiatives show
the potential for developing dermatology and other healthcare-related fields.
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The following abbreviations are used in this manuscript:

Al Artificial Intelligence

ANN Artificial Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

DL Deep Learning

ECG Electrocardiogram

EffNet EfficientNet

FTNN Fine-Tuned Neural Network

GLCM Grey-Level Co-Occurrence Matrix

IoT Internet of Things

Js1 Jaccard Similarity Index

LICU Lesion Index Calculation Unit

LSTM Long Short-Term Memory

MN MnasNet

ReLU Rectified Linear Unit

RGB Red Green Blue

SVM Support Vector Machine

SqueezeNet A smaller neural network architecture designed for efficient use

U-Net A type of convolutional neural network for image segmentation

V1/V2/V3 MobileNet Versions 1, 2, and 3

VGG Visual Geometry Group
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