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Abstract 

Deep learning models are highly effective at identifying features that facilitate the precise 
interpretation of complex patterns. This study introduces a deep learning-based approach using 
MobileNetV3 and long short-term memory (LSTM) for the automated classification of skin diseases. 
The MobileNetV3 model, which is compatible with mobile computing devices, has demonstrated 
both efficiency and reliability. The proposed model excels in maintaining stateful data for accurate 
weather forecasting. A grey-level co-occurrence matrix was employed to evaluate the progression of 
abnormal growth. The model’s performance was compared with other advanced models, including 
convolutional neural networks (CNN), very deep convolutional networks for large-scale image 
recognition developed by the Visual Geometry Group (VGG), and fine-tuned neural networks 
(FTNN). For this study, we utilized the DERMNET dataset. Its minimal computational demand is 
attributed to its robustness in detecting the affected area, achieving this significantly faster than the 
standard MobileNet model with approximately two fewer calculations. The findings indicate that the 
proposed method can aid general practitioners in accurately diagnosing skin disorders, thereby 
reducing the risk of subsequent complications and morbidity in patients. 

Keywords: deep learning; convolutional neural network (CNN); long short-term memory (LSTM); 
MobileNetV3; grey-level correlation 

1. Introduction

The skin is the most important organ in the human body and is composed of the epidermis,
dermis, subcutaneous tissues, blood vessels, lymphatic vessels, nerves, and muscles[1]. The skin can 
enhance the function of its skin barrier by preventing the breakdown of lipids in the epidermis. Skin 
disorders can be caused by bacteria that alter the skin texture, fungi that develop on the skin, 
unknown germs, allergic reactions, or microorganisms that produce pigments[2]. Prolonged skin 
conditions may potentially lead to tissue cancer in the human body [3–5]. Skin disorders must be 
treated immediately to prevent future growth and spread. Currently, research is primarily focused 
on the use of imaging technology to assess the impact of different skin disorders on the skin. 

Inadequate data and a focus on standardised procedures, such as dermoscopy (the inspection of 
the epidermis using skin surface microscopy), have made it difficult for medical practitioners to 
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generalise the findings from prior work in dermatological computer-assisted grouping. Skin-related 
disorders can be quickly and precisely classified using computer-aided diagnostics to offer therapies 
based on patient complaints [6]. This study provides a trustworthy approach for accurately 
diagnosing skin conditions by employing supervision techniques that reduce the cost of diagnosis. A 
grey-level co-occurrence matrix was used to track the development of ill growth. The accuracy of the 
diagnosis is crucial for a full examination of the anomaly, better therapy, and reduced drug costs. 

Data-driven diagnosis is crucial because of the complexity of skin illnesses, lack of qualified 
dermatologists, and ineffective distribution of dermatologists. The identification of skin diseases is 
now easier and faster because of the development of lasers and photonics-based treatments for skin 
diseases. However, such diagnoses are expensive and scarce. Deep learning models are 
comparatively productive when used to perform classification processes using images and data. The 
precise determination of abnormalities and classification of disease categories from X-ray, MRI, CT, 
PET, and signal data, such as electrocardiogram (ECG) images, have become necessities in the field 
of medical diagnosis [7]. Accurate illness categorisation will enable a more effective course of therapy. 
Deep learning models can solve complex problems by automatically identifying input data 
properties. They are also adaptable enough to evolve as the problem under consideration develops. 
Deep learning models can gather inferred data to locate and study features in unexposed data 
patterns, providing enormous efficiency even with simple computational models. Therefore, 
scientists have considered using deep learning models to classify skin infections based on images of 
the affected area. 

The primary goal of this study is to provide a state-of-the-art method for reliably classifying skin 
illnesses from input photos, specifically MobileNetV3with an LSTM component [8,9]. The 
MobileNetV3 model is computationally effective for use with portable computing devices and low-
resolution images, and LSTM is efficient in handling gradient fading over iterations in neural 
networks, facilitating faster model training. The proposed methodology would aid in the efficient 
and unobtrusive diagnosis of diseases in patients with the least amount of work and expenditure. 

1.2. Related Works 

Skin diseases are recognised and categorised using various automated technologies. Epidermal 
diagnosis of these skin illnesses does not involve radiological imaging technologies, in contrast to 
most other diagnostic techniques. By using image processing techniques, such as image alteration, 
equalisation, enhancement, edge detection, and segmentation, the state can be ascertained based on 
standard images [10,11]. 

The most commonly used approaches for artificial neural networks detecting and diagnosing 
anomalies in radiological imaging data are artificial neural networks and convolutional neural 
networks (CNN) [12,13]. The CNN approach for identifying skin disorders has yielded promising 
results [14]. Working with images captured using a smartphone or digital camera presents challenges 
because CNN models are neither scale-nor rotation-invariant. To achieve high model performance, 
both neural network approaches require enormous amounts of training data, which require 
substantial computational effort [15]. Because neural network-based models are more abstract, they 
cannot be modified to meet specific requirements. Moreover, the number of trainable parameters in 
the ANN increases with improved image quality, requiring substantial training efforts to yield 
accurate results. The ANN model has problems because of the contraction and expansion of 
gradients. Data obtained by CNN do not accurately describe the size and magnitude of an object 
[16,17]. 

MobileNetV2 is a CNN model that has various advantages over previous CNN models, 
including lower computing costs, smaller network size, and interoperability with mobile devices [18]. 
MobileNetV2 features were assigned a timestamp as they were stored in the LSTM network [4]. When 
MobileNetV2 was paired with LSTM, the accuracy improved by up to 85.34 percent [14,16,17,19–21]. 

Histogram equalisation is a simple and effective method for enhancing images. The equalizing 
approach has never been employed in a video system since it has the ability to substantially modify 
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the brightness of a picture in certain conditions; this is why the technology has never been 
implemented. This study proposes a unique histogram equalisation approach termed equal-area 
dualistic sub-image histogram equalisation. Deep Learning (DL) is an Artificial Intelligence (AI) 
discipline in which a computer program analyses raw data and automatically learns the 
discriminating characteristics required for finding hidden patterns in it. Over the past decade, this 
discipline has seen significant breakthroughs in the capacity of 

DL-based algorithms can be used to analyse many forms of data, particularly images [22] and 
natural language. 

Table 1. A review of prior research focusing on the application of machine and deep learning methods in the 
classification of skin diseases. 

Methodology Findings Drawbacks Ref No 

Integrating the 
LSTM with the 
MobileNet V2 

Biomarker-based 
features, eHealth 

security, user-friendly 
apps. 

The model’s precision is 
dramatically decreased to 

just below 80 percent 
[23] 

Deep learning 

The performance of 
the model may be 

further enhanced by 
using the bidirectional 

LSTM. 

If weight optimizations were 
used to include information 
about the present state, the 

model would be more 
robust. 

[24] 

Hybrid Deep CNN 

To deploy and 
evaluate the system in 

real-world IoT 
environments to 

assess its performance 
and scalability. 

The proposed system is more 
complex to implement and 

manage than traditional IDS 
systems. 

[25] 

Transfer learning 

Can be further 
enhanced by 

ensembling different 
deep learning models 

Minimal dataset [10] 

Machine learning 

Using metaheuristic 
algorithm to further 

improve classification 
rate. 

Limited generalization to 
diverse skin types and 

conditions due to potential 
bias in training data. 

[26] 

Transfer learning 

In future, various skin 
diseases such as 

chickenpox, smallpox, 
lumpy skin disease 

etc., will be targeted. 

Only 4 pre-trained models 
are applied and small 

dataset. 
[4] 

DKCNN 

Enhancing precision 
even more for 

particular categories 
of skin diseases such 

as melanoma, 
melanocytic nevi, and 
benign keratosis-like 

lesions 

Limited ability to handle 
highly diverse or rare skin 

lesion types due to the focus 
on lightweight and dynamic 

kernel-based architecture. 

[24] 

Transfer learning 
Improving skin 

disease detection 
using advanced 

The limited size and data 
imbalance of publicly 
available skin lesion 

datasets. 

[27] 
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DCNNs and transfer 
learning. 

Squeeze algorithm 

To make it compatible 
with Jetson Nano and 

the Google Coral 
Board. 

The major limitation of the 
system is that specificity and 

sensitivity are still lower 
than accuracy. 

[28] 

Computer-aided 
diagnosis 

Use of hybrid 
methodologies of 

CNNs with 
handcrafted feature 

extraction approaches 

Yields a high computational 
cost. 

[29] 

Transfer Learning 

Refine preprocessing 
techniques to improve 

skin cancer 
classification. 

Comparing skin cancer 
classification studies is 

challenging due to varying 
datasets and class numbers. 

[30] 

Deep Learning 

Test diverse deep-
learning techniques 

and datasets to 
improve skin disorder 

classification. 

 Lack of dimensionality 
reduction methods to select 
the best features among all 

extracted features 

[3] 

Deep Learning 

Detailed evaluation of 
the proposed model 

for skin disease 
detection and 

classification in 
adversarial 

environments. 

The proposed approach 
demonstrated a high 

misclassification rate for the 
Malignant. 

[31] 

Artificial 
Intelligence 

Explore AI’s ability to 
use non-visual 

metadata like medical 
history for improved 

dermatology 
diagnostics. 

Inadequate standardized 
dermatology datasets hinder 

AI-based diagnosis 
reliability and practicality. 

[12] 

Model Fusion 

Develop a lightweight 
model for versatility 
and evaluate it using 
diverse skin disease 
benchmark datasets. 

Proposed model had high 
training resource demands 
and relatively slow training 

speed. 

[22] 

1.3. Dataset Description 

The DermNet dataset offers an extensive collection of high-resolution images showcasing a 
diverse array of dermatological conditions, including melanoma, psoriasis, and dermatitis. Its 
inclusiveness, which features various skin tones, ages, and ethnic backgrounds, simplifies the 
training of machine learning algorithms. High-quality images support in-depth analysis and precise 
diagnostic model development, benefiting automated dermatological diagnosis and expanding our 
understanding of skin diseases. 

The dataset comprised images of 23 different skin disorders. There are approximately 19,500 
photos in total, of which 15,500 are divided into the training and test sets. The photos were in JPEG 
format and had three RGB channels. Although the resolutions vary from image to image and from 
category to category, this imagery is not often of very high resolution.The classifications include 
vascular tumors, melanoma, eczema, seborrheic keratoses, ringworm, bullous illness, poison ivy, and 
acne.  
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Table 2. Dataset Description. 

Class Label Abbreviation Super-Class Name No. of Images 
No. of Sub-

Classes 

0 ACROS Acne and Rosacea 912 21 

1 AKBCC 

Actinic Keratosis, Basal Cell 

Carcinoma, and other 

Malignant Lesions 

1437 60 

2 ATO Atopic Dermatitis 807 11 

3 BUL Bullous Diseases 561 12 

4 CEL 
Cellulitis, Impetigo, and 

other Bacterial Infections 
361 25 

5 ECZ Eczema Photos 1950 47 

6 WXA 
Exanthems and Drug 

Eruptions 
497 18 

7 ALO 
Alopecia and other Hair 

Diseases 
195 23 

8 HER 
Herpes, Genital Warts and 

other STIs 
554 15 

9 PIG Pigmentation Disorder 711 20 

10 LUPUS 
Lupus and other 

Connective Tissue diseases 
517 20 

11 MEL 
Melanoma and Melanocytic 

Nevi 
635 15 

12 NAIL 
Nail Fungus and other Nail 

Disease 
1541 48 

13 POI 
Poison Ivy and other 

Contact Dermatitis 
373 12 
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Class Label Abbreviation Super-Class Name No. of Images 
No. of Sub-

Classes 

14 PSO 
Psoriasis Lichen Planus and 

related diseases 
2112 39 

15 SCA 
Scabies Lyme Disease and 

other Infestations and Bites 
611 25 

16 SEB 
Seborrheic Keratoses and 

other Benign Tumors 
2397 50 

17 SYS Systemic Disease 816 43 

18 TIN 
Tinea Candidiasis and other 

Fungal Infections 
1871 19 

19 URT Urticaria 603 18 

20 VASC Vascular Tumors 569 17 

21 VASCP 
Vascular Tumors, Mollusca 

Contagiosa and other 
1549 26 

Total   21844 622 

2. Materials and Methods 

The current study used the integration of LSTM with MobileNetV3, along with an associated 
architectural diagram. In this configuration, MobileNetV3 was used to categorise different forms of 
skin diseases, and LSTM was used to enhance the model performance by keeping track of the context 
of the characteristics encountered in the earlier stages of image classification [32]. 

2.1. The MobileNet Model Architecture Designed for Image Classification 

The model MobileNetV3, based on a CNN, is frequently used to classify photographs. Adopting 
the MobileNet design has several advantages, chief among them being that the model requires far 
less computing effort than a conventional CNN model, making it suitable for use with PCs with low 
processing capacities [33]. The MobileNet model is a reduced convolution layer structure that can be 
used to differentiate between minute details that depend on two customisable characteristics that 
efficiently flip between the parameter accuracy and latency [34]. The advantage of the MobileNet 
strategy is that it reduces the number of networks required. The MobileNet architecture is equally 
successful, with only a few features, such as recognition. A depth-first design underpins MobileNet, 
and the main framework relies on several abstraction layers and appears to be a quantised setup that 
accurately assesses the complexity of typical problems. Point-wise complexity describes the difficulty 
of 1 × 1. In-depth platforms are constructed using in-depth structures, abstraction layers, and 
standard rectified linear units (ReLU) [35]. 
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In computer vision, the creation of embedded device models is a new field of deep learning 
research that was essentially launched with the release of MobileNet V1 in 2017 [36]. Numerous 
significant advancements, including MNasNet, EffNet, ShuffleNet (V1 and V2), and CondenseNet, 
were the result of this. Approximately the middle of the last year, the second generation of MobileNet 
emerged. Presently, the latest version of MobileNet is MobileNetV3, the third edition. 

 
Figure 1. The structure of MobileNetV3 Model. 

The resolution multiplier variable reduces both the dimensionality of the input image and the 
internal representation of every layer. The input variable is called a, and the output variable is called 
b. The feature vector map has dimensions Ms × Ms and the filter has dimensions Fs × Fs. The 
multiplier value was considered to be between 1 and n for the experimental study on the classification 
of dermatological illnesses [37]. The circumstances determine the multiplier value. The symbol for 
the arbitrary resolution multiplier in Equation (1) uses the variable cost as a measure of the 
computational effort, which can be evaluated using V_cost. 

MsMs·· · Fs· Fs· =V_cost     (1) 
The value Xe indicates the overall computing effort for the fundamental abstract layers of the 

design and can be evaluated using Equation (2): 
Ms Ms··· + Ms Ms··· Fs · Fs = Xe    (2) 

The value of 𝛼 was assumed to be 1. Equation (2) now becomes 
Ms·Ms · · Fs· Fs· =V_cost        (3) 

The suggested method integrates depth-wise and point-wise convolutions that are bound by the 
depletion variable P, which is computed using Equation 4: 

P= ி௦ ·ி௦ ·ఠ·ఈெ௦ ·ఈெ௦ ା ఠ·ఘ·ఈெ௦ ·ఈெ௦ 

ி௦ ·ி௦ ·ఠ·ఘ· ெ௦· ெ௦
       (4) 

The two hyper-feature resolution multipliers and width multipliers enable context-dependent 
customisation of a suitably sized window for effective prediction [23]. The recommended model 
requires an image with input dimensions of 224 × 224 × 3 pixels. The first two values (224, 224) 
represent the image height and width. These integers should always exceed 32. There were three 
input channels, as indicated by the third value. 

As shown in Figure 2, the MobileNet architectures operate on the idea of replacing complex 
convolutional layers, where each layer is composed of a convolutional layer of size 3 that buffers the 
input data and a convolutional layer of size 1 pointwise that incorporates these filtered parameters 
to generate a new component. The goal of the aforementioned strategy is to speed up and simplify 
the model compared with the traditional convolutional model. 
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Figure 2. The design of the model that combines MobileNetV3 and Squeeze-and-Excite. 

2.2. LSTM Model 

An LSTM is a specific type of RNN designed to learn long-term dependency. Since Hochreiter 
and Schmidhuber (1997) originally presented LSTMs, several designs for these units have been 
created[23,38]. In brief, LSTM is a crucial component that is often employed in recurrent neural 
network architectures. It is particularly helpful in situations that require pattern estimation and excels 
at learning sequences. Memory blocks are supervised by memory cells, which in the LSTM structure 
are made up of an input gate, an output gate, a forget gate, and a link called a “window connection.” 
The abstract LSTM layer module is composed of the following components: 

The computations within the LSTM module control the activation function of the persistent 
abstract LSTM memory. This module maintains the Pt state at time t while effectively managing 
memory. The input hidden state vector ht and the internal operations of the LSTM affect this state. 

Long Short-Term Memory (LSTM) networks have emerged as a significant advancement in the 
domain of neural networks, particularly when used with sequential inputs. Owing to their capacity 
to recognise and analyse long-range relationships in sequential data, these networks have been 
widely used in several applications, including time-series forecasting, speech recognition, and 
natural language processing. The complicated workings of LSTM networks, along with their design, 
training procedures, and practical applications, were explored in depth in this study[39]. 

 
Figure 3. The design of the LSTM module. 
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2.3. The Design of the Model That Combines MobileNet V3 and LSTM 

Long short-term memory (LSTM) is a critical component of recurrent neural network topologies 
[24]. It excels in learning sequences and is especially valuable for pattern estimation. Memory blocks 
are supervised by memory cells, which in the LSTM structure consist of an input gate, an output gate, 
a forget gate, and a link known as a “window connection.” Together, these elements comprise an 
abstract LSTM layer module. 

The activation function of the persistent abstract LSTM memory module is controlled by 
calculations performed across the LSTM modules. This module maintains the Pt state at time t, while 
efficiently managing memory. This state is determined by both the hidden state vector (vt) of the 
input and the internal operations of the LSTM. 

Input Gate : 𝛼௧  = 𝜎 (𝑖௞𝑊௜ఈ  + hk-1𝑊௛ఈ  + ck-1𝑊௖ఈ  + 𝛼bias)    (5) 
Output Gate : 𝛽௧  = 𝜎 (𝑖௞𝑊௜ఉ  + hk-1𝑊ఊఉ  + c௞𝑊௖ఉ  + 𝛽bias)    (6) 

Forget Gate : 𝑓௧  = 𝜎 (𝑖௞𝑊௜௙  + hk-1𝑊௛௙  + c௞𝑊௖௙  + 𝑓bias)    (7) 

Cell State Gate : 𝑐௞  = 𝑓௞  ⋅ 𝑐k-1 + 𝛼௞ ⋅ tan h(𝑖௞𝑊௜௖  + hk-1𝑊௛௖  + 𝑐bias)  (8) 
Cell State Gate : ℎ௞  = 𝛽௞  ⋅ +tan h(𝑐k-1)      (9) 
The variable ik is the input to the LSTM block at time ‘k’. The weights Wiα, Wiβ, Wif and Wic are 

are related to the input gate, output gate, forget gate, and cell stated gate, respectively. Whα, Whβ, and 
Wγf are the weights correlated with the hidden recurrent layer. 

 
Figure 4. The structure of the suggested model involving MobileNet V3 and LSTM. 

2.3.1. Grey Level Correlation Matrix 

For texture analysis, the grey-level co-occurrence matrix (GLCM) was used. We simultaneously 
considered the reference pixel and the nearby pixel at the same time[40]. Prior to computing the 
GLCM, we established a particular spatial relationship between the reference and neighbouring 
pixels. The definition of a neighbour may be, for example, one pixel to the right of the current pixel, 
three pixels above, or two pixels diagonally (one of NE, NW, SE, or SW) from the reference. As soon 
as a spatial relationship was established, we generated a GLCM of size (Range of Intensities × Range 
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of Intensities) with all parameters set to 0. A 256x256 GLCM, for example, will be included in an 8-
bit single-channel image. Next, we raise that matrix cell for each pair of intensities we find for the 
designated spatial link as we proceed through the image. 

 
Figure 5. Grey Level Correlation Matrix. 

2.3.2. Gray Level Co-Occurrence Matrix 

The Grey-Level Co-occurrence Matrix (GLCM) method, coupled with the iterative sequence of 
the localized intensity coefficient, serves as a technique for extracting texture attributes. By analysing 
the distribution of intensity levels within a defined window, the GLCM captures the spatial 
distribution structure of the pixel colour and intensity. The primary objective of GLCM is to tabulate 
the intensity histogram to observe variations in pixel intensity values across an image. Equation (10) 
plays a crucial role in establishing the relationship between the reference and neighbouring pixels 
within the GLCM model. Here, the variable 𝑂𝑐௠  represents the occurrence matrix with dimensions 
m × m, where m corresponds to the number of gray levels in the image. 

𝑂𝑐௠[𝑖, 𝑗] =  𝑝௜௝ (10) 
The variable 𝑚௜௝  in Equation (10) represents the histogram of the intensity value (i, j) at 

dimension m of the image. Equation (11) normalises the constituent parts of the occurrence matrix. 
𝑀(𝑖𝑗) =  

ை[௜,௝]

∑೘షభ
೔సబ ∑೘షభ

ೕసబ ை[௜,௝]
 (11) 

The normalisation of the matrix components rescales their dimensions to fall within the range 
of 0 to 1, which can be further adjusted based on probability considerations. Equation (12) offers a 
method to calculate both the number of elements and dimensions of the feature vector, denoted by 
the variable (l, m). 

𝑓(𝑙, 𝑚) =  ∑௠ିଵ
௜ୀ଴ ∑௠ିଵ

௝ୀ଴ (𝑖 − 𝑗)ଶ𝑀[𝑖, 𝑗] (12) 
The GLCM technique was used to approximate the progression of disease development based 

on the gathered texture-based information. This model evaluates skin condition using the GLCM 
method. 

3. Results and Discussion 

The results and analysis of the recommended approach for diagnosing skin conditions are 
covered in more detail in this section. We evaluated the effectiveness of our technique by combining 
MobileNet V3 with LSTM, considering variables such as training, accuracy, and validation loss. As 
shown below, the effectiveness of our method is contrasted with that of other existing models in 
terms of Specificity, Sensitivity, Accuracy, and Jaccard Similarity Index (JSI). 

3.1. Performance Evaluation of the Approach 

The DermNet dataset, which is briefly explained in Section 3, was used to apply the suggested 
approach. The frequency with which the proposed model accurately categorises skin ailments is 
determined by the recommended MobileNet V3 model, the implementation results of the LSTM 
model, and statistical analysis utilising numerous performance evolution indicators, including but 
not limited to accuracy metrics. 
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Figure 6. Images of various image classes from the DermNet dataset. Images of various diseases are as follows: 
(A) bullous, (B) exanthem, (C) Skin Acne, (D) Cellulitis Impetigo,(E) molluscum, (F) vascular, (G) eczema, (H) 
scabies, and (I) normal skin. 

Table 3. Hyper parameters configuration. 

MODEL 
Torch vision, 

MobileNet V3 
BASE LEARNING RATE  0.1 

LEARNING RATE-POLICY Step-wise 
WIEGHT DECAY 0.0001 
CYCLIC LENGTH 10 

PCT-START 0.9 
MOMENTUM 0.95 
BATCH SIZE 50 
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Figure 7. Confusion Matrix for Different Classes of Images and its Accuracy. 

3.2. Past Study Analogy 

The approach’s performance is compared to that of a Fine-Tuned Neural Network (FTNN), a 
Convolutional Neural Network (CNN), a VGC model, and several MobileNet models. 

To evaluate the model’s performance, experiments were performed on a supplementary 
computer with repeated executions of the model. The ratings are based on how frequently the 
proposed model correctly categorises the True Positive skin disease and correctly identifies that the 
image is not of that specific skin category as the True Negative. The number of times the proposed 
model correctly detects the condition is sometimes addressed as a False Positive. The assumed False 
Negative is the number of times the recommended model erroneously evaluated the skin ailment. 

The recommended model was evaluated for sensitivity, specificity, and accuracy using metrics 
such as True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). The 
Jaccard Similarity Index, Specificity, Sensitivity, and Accuracy were examined. The symbols for 
specificity, sensitivity, accuracy, and the Jaccard Similarity Index are represented as Sn, Sp, A, and Ji, 
respectively. 

The equations represent the metrics respectively, 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

்ே

ி௉ ା ்ே
     (13) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
்௉

்௉ ା ிே
     (14) 

Accuracy = ்௉ ା ்ே

்௉ ା ி௉ା ்ே ା ிே
    (15) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =
்௣

்௣ ା ்௡ ା ி௡
  (16) 

The table shows how well our recommended technique performs in terms of JSI, Sensitivity, 
Specificity, and Accuracy compared to other pertinent approaches. 
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Figure 8. (a) shows the Specificity of MobileNetV3-LSTM with respect to total number of iterations (b) illustrates 
the Sensitivity of MobileNetV3-LSTM with respect to number of iterations. (c) shows the MobileNetV3-LSTM’s 
accuracy in terms of iterations. (d) showcases the JSI of MobileNetV3-LSTM in terms of iterations. 

Table 4. The evaluation criteria used to measure the effectiveness of different methods. 

Algorithms Sensitivity(%) Specificity(%) Accuracy(%) JSI(%) 

MobileNet V3-LSTM 89.46 93.00 86.00 92.14 

FTNN 78.52 83.00 77.00 83.51 

CNN 79.54 84.00 79.00 84.49 

VGG19 81.49 86.00 80.00 85.48 

MobileNet V1 83.49 88.00 81.00 87.46 

MobileNet V2 85.49 89.00 83.00 88.41 

The Results Achieved by Comparing Existing Models with MobileNetV3-LSTM illustrates in 
Figure 9. The performance of the proposed model was compared with that of several approaches, 
including the Lesion Index Calculation Unit (LICU) approach, Fuzzy Support Vector Machine with 
Probabilistic Boosting for Segmentation, the Compact Deep Neural Network, the SegNet model, U-
Net model, Decision Tree and Random Forest approaches. 
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Figure 9. Comparing existing models with MobileNetV3-LSTM. 

Table 5. The progress of the disease’s growth of different methods. 

Algorithms 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 
SegNet 78.52 83.00 77.00 
U-Net 79.54 84.00 79.00 

Yuan (CDNN) 81.49 86.00 80.00 
MobileNet V3-LSTM 89.46 93.00 86.00 

Figure 10. shows the results obtained by comparing existing models with MobileNetV3-LSTM 
for monitoring the progression of disease growth. 

 
Figure 10. Comparison of existing models with MobileNetV3-LSTM. 
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4. Conclusion 

In this study, we present MobileNet V3-LSTM, a unique technique for automated skin disease 
classification that combines MobileNet V3 and Long Short-Term Memory (LSTM) networks. This 
novel solution uses the computational efficiency of MobileNet V3 for lightweight computing devices 
and LSTM’s sequence modelling capabilities of LSTM to extract critical contextual information from 
picture characteristics. 

The application of the grey-level co-occurrence matrix, which enabled us to monitor the 
progression of skin conditions, was one of the key advancements of our method. This matrix provides 
vital insights into the progression of skin disorders, considerably improving diagnostic accuracy and 
speed. By including this matrix in our model, we not only increased its capacity to diagnose and 
categorise skin illnesses but also opened the door for more complete disease knowledge. 

MobileNet V3-LSTM outperformed other state-of-the-art models, such as convolutional neural 
networks (CNN) and very deep convolutional networks (VGG), according to our experimental 
results on the Dermnet dataset. The model’s remarkable sensitivity, specificity, accuracy, and Jaccard 
Similarity Index (JSI) proved its utility in precisely classifying illnesses. 

The invention of the MobileNet V3-LSTM method represents a major advancement in computer-
assisted dermatological diagnosis, and we have created a reliable and effective approach for the 
automated classification of skin illnesses by combining deep learning, sequence modelling, and the 
grey-level co-occurrence matrix. This technology has the potential to significantly improve patient 
outcomes and reduce healthcare costs by assisting medical practitioners in making early and accurate 
diagnoses. Our strategy acts as a stepping stone for the creation of more advanced and useful 
technologies in dermatology and other fields as we continue to improve in the fields of medical 
imaging and artificial intelligence. 

5. Future Directions 

Future studies on computerised skin disease classification should focus on integrating various 
data sources, creating real-time diagnostics for portable devices, enhancing model interpretability, 
and diversifying datasets for improved generalisation. Other crucial research topics include 
scalability, continuous learning, clinical validation and privacy-preserving AI. These initiatives show 
the potential for developing dermatology and other healthcare-related fields. 
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The following abbreviations are used in this manuscript: 

AI  Artificial Intelligence 

ANN Artificial Neural Network 

CNN Convolutional Neural Network 

DNN Deep Neural Network 

DL Deep Learning 

ECG Electrocardiogram 

EffNet EfficientNet 

FTNN Fine-Tuned Neural Network 

GLCM Grey-Level Co-Occurrence Matrix 

IoT Internet of Things 

JSI Jaccard Similarity Index 

LICU Lesion Index Calculation Unit 

LSTM Long Short-Term Memory 

MN MnasNet 

ReLU Rectified Linear Unit 

RGB Red Green Blue 

SVM Support Vector Machine 

SqueezeNet A smaller neural network architecture designed for efficient use 

U-Net A type of convolutional neural network for image segmentation 

V1/V2/V3  MobileNet Versions 1, 2, and 3 

VGG Visual Geometry Group 
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