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Abstract

Background& Objectives: In the development of chronic neurological disorders, recent studies have
highlighted the interplay among immune dysregulation, vitamin D deficiency, and epigenetically
mediated mechanisms, specifically DNA methylation. The potential of home-based
electroencephalography (EEG) as a non-invasive technique for identifying neuroinflammatory
markers in immunocompromised populations is examined in this work. Our goal is to identify EEG-
based biomarkers that may reflect neurophysiological patterns associated with dyslexia and potential
immune-related processes, though causal relationships remain to be established. Methods: A home-
based EEG system was used to gather resting-state EEG data from two groups: age-matched
neurotypical controls and children with developmental dyslexia diagnoses. The EEG recordings were
analysed using sophisticated machine learning algorithms, with a focus on locating topographic and
spectral characteristics linked to neuroinflammatory activity. Results: Using EEG characteristics
suggestive of possible neuroinflammation, machine learning models were able to differentiate
dyslexic children from controls with high classification accuracy. The hypothesis of immune-related
neurophysiological changes was supported by the dyslexic group's altered activity in particular
frequency bands, especially in frontal and temporal regions. Conclusions: This study offers early
evidence in favour of using home-based EEG as a useful and approachable neurodiagnostic method
for identifying abnormalities in brain function linked to the immune system. Early detection of at-
risk individuals and prompt, individualised interventions to improve brain health outcomes may be
made possible by the combination of EEG and machine learning.

Keywords: learning disability biomarkers; EEG; artificial neural networks; dyslexia

1. Introduction

Emerging evidence suggests that neuroinflammation may contribute to the pathophysiology of
developmental dyslexia. Altered microglial activation and impaired synaptic pruning during critical
neurodevelopmental periods have been implicated in dyslexic brain architecture (Paolicelli et al.,
2017; Paolicelli et al., 2022). Elevated levels of pro-inflammatory cytokines such as interleukin-6 (IL-
6), tumor necrosis factor-alpha (TNF-at), and C-reactive protein (CRP) have been reported in children
with learning disabilities, including dyslexia (Mostafa &Al-Ayadhi, 2013; Gialloreti et al., 2020).
These immune alterations may disrupt fronto-temporal connectivity and modulate cortical
oscillatory activity —particularly in the theta and beta frequency bands—which are frequently
observed as deviant in EEG studies of dyslexia (Frid & Manevitz, 2018; Eroglu et al., 2022). Together,
these findings suggest that EEG spectral features may serve as non-invasive proxies for underlying
neuroimmune dysfunction, although further multimodal validation is required.

To the best of our knowledge, this is the first study to propose and validate an artificial neural
network (ANN) model that uses resting-state EEG spectral features as potential non-invasive proxies
of neuroinflammation in children with developmental dyslexia. While prior research has identified
abnormal cortical oscillations in dyslexia and separate studies have explored the neuroimmune basis
of learning disorders, no previous work has systematically linked EEG-derived features to
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neuroinflammatory biomarkers within a machine learning framework. Our findings offer a novel
approach to bridging electrophysiological signals and neuroimmune dysfunction, opening new
possibilities for scalable, home-based screening tools for neurodevelopmental risk assessment.

Specific developmental learning disabilities (LD), such as dyslexia, are believed to impact 5-
10% of the world's population. It is, however, under-recognized by families and educators (Carroll et
al. 2025). For example, the prevalence of dyslexia in Turkey is as low as 5% of the population with a
diagnosis, even though the actual prevalence is estimated to be much higher (Yavuz et al., 2022). An
early diagnosis is key, particularly in childhood due the stronger neuroplasticity of the brain and the
impact of intervention.

On a neurological level, individuals with reading disabilities show decreased activation in the
left-lateralized reading network, altered functional connectivity, and structural abnormalities (Frid
& Manevitz, 2018). Such irregularities lead to core features of reading disorder, slow and inaccurate
word reading, poor spelling, and reading comprehension problems (Cusiter et al., 2025). As reading
is a learning task that presumably depends on hemispheric specialization in about age seven (Feng
etal., 2005), late identification can have long-lasting effects on academic performance and well-being.
This study investigates whether EEG spectral abnormalities observed in dyslexia, such as elevated
theta power, may partially reflect underlying neuroimmune processes.

Recent technological advancements in neuroimaging and Al opened new potentials for
diagnoses of dyslexia. The fMRI, MEG and eye-tracking studies are high in accuracy but they tend
to be high-cost and not always child-friendly. EEG, however, is relatively more affordable and
manageable; nevertheless, in the past, it exhibited average classification performance when applied
with traditional algorithms (Usman & Muniyandi, 2020).

QEEG may provide a promising future avenue for dyslexia-related biomarkers by finding
spectral disturbances in the EEG. SVMs and ANNs based studies reported classification accuracies
ranging from 78 to 89% (Frid & Manevitz, 2018; Usman & Muniyandi, 2020). Recent studies have
applied various machine learning algorithms to EEG-based dyslexia classification, reporting
promising but varied results. Support Vector Machines (SVM) have been widely used due to their
robustness in high-dimensional data; for instance, Frid and Manevitz (2018) achieved an accuracy of
93.2% using SVM with temporal EEG features. Ensemble methods such as Random Forests and
Gradient Boosting Machines have also shown competitive performance, with accuracies ranging
from 85% to 94% (Jin & Wang, 2023). Deep learning approaches, particularly Convolutional Neural
Networks (CNNs), have gained attention for their ability to learn spatial patterns from raw EEG;
Abhire et al. (2024) reported a classification accuracy of 96.4% using CNNs on QEEG data. However,
most of these models are stuck within laboratory environments and not generalizable. Compared to
these approaches, our ANN-based model achieved 98.8% accuracy with fewer computational
requirements and improved real-time deployability due to its lightweight TFLite implementation.
This suggests that shallow ANN architectures, when properly optimized and combined with
rigorous preprocessing, can perform comparably or even surpass more complex models in specific
use cases such as home-based screening.

1.1. Related Work

Novel machine learning (ML) techniques are applied to extract clinically meaningful patterns
from  electroencephalography = (EEG) data-Patients  with  neurodevelopmental and
neuroinflammatory disorders. Eroglu (2025) showed, how EEG-based biomarkers can be used to
diagnose neuroinflammation underpinning learning disorders in children, starting point for non-
invasive, scalable screening approaches. Similarly, Mezzaroba et al. (2020) utilized ML for
identification of antioxidant and inflammatory biomarkers of multiple sclerosis, and provided
evidence on the contribution of immune dysregulation to neurodegeneration. Lazaros et al. (2024)
subsequently applied this approach to Alzheimer’s disease by integrating ML with
immunocytochemical characterization of buccal epithelial cells, demonstrating the versatility of ML
in a variety of biological formats.
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These studies, however, illustrate the promise of using ML to identify neuroimmune
dysfunction, yet they primarily include adult populations, peripheral biomarkers, or lab-based
measures. There is still a significant need for the use of ML for pediatric EEG data, particularly in
real-world/homesettings. This gap is partly filled by the current study with the development of a
new EEG-ANN model derived from a dataset with only pediatric patients and trained to diagnose
neuroinflammation-related neural dysfunction alongside dyslexia; thus closer to the clinical practice
of a community and educational setting.

1.1.1. EEG as Non-Invasive Neuroinflammation (EEG-NIN) Biomarker

EEG provides an unparalleled look at time-resolved neurophysiological dynamics and is
especially sensitive to the cortical mediated abnormalities in oscillations that would accompany
inflammatory and perturbed synaptic pruning. Encephalitic/ neuroinflammatory states have also
been associated with disrupted EEG patterns, such as increased theta and gamma power, potentially
reflecting glial overactivity and prognostically unfavorable oxidative stress and cytokine-induced
network instability (Jaramillo, 2024; Jin & Wang, 2024).

For instance:Abnormal EEG findings of elevated low-frequency power and reduced alpha
coherence are reported in both neuroinflammatory and neurodevelopmental disorders (Usman &
Muniyandji, 2020).

EEG modifications are associated with systemic indexes of immune activation, such as up-
regulation of pro-inflammatory cytokines and vitamin D deficiency, which influence the cognitive
processing (Chen et al., 2019).

The CSF markers provide a more precise estimation, not achievable with peripheral measures
like CRP, which is poorly reflective of the central inflammation, however, its measurement by lumbar
puncture is invasive, and is not practicable in children in routine practice (Singhal et al., 2014).

EEG, therefore, appears to be a useful noninvasive proxy for monitoring brain inflammation,
even more so when combined with ML techniques that may improve the sensitivity in diagnosing.

1.1.2. Technical and Pragmatic Issues

While EPOC-X is not a clinical EEG, its signal reliability and validity for research applications
have been established (Badcock et al., 2013). A pre-use calibration was performed during each session
and only recordings with EMOTIV signal quality ratings greater than 80% as reported by the
EMOTIV Launcher (EMOTIV Systems Inc., 2010) were included. This renders the device a potential
viable option for domestic settings, specifically in pediatrics and low resource settings.

1.1.3. EEG as a Non-Invasive Biomarker of Neuroinflammation

EEG provides a special (albeit not perfect) means to monitor on-line neurophysiological activity
and seems especially prone to observe cortical oscillatory abnormalities induced by inflammation
and/or impaired synaptic pruning (Jaramillo, 2024; Jin & Wang, 2024).

EEG would represent a non-invasive substitute to detect brain inflammation given the
possibility of its combination with ML techniques, thus maximizing the sensitive of diagnosis.

1.1.4. Objectives and Research Questions

This study hypothesizes that spectral features derived from resting-state EEG—particularly
elevated theta power and altered betal activity—can be used to accurately classify children with
developmental dyslexia and may serve as non-invasive neurophysiological proxies for underlying
neuroinflammatory processes. This study explores the possibility that electrophysiological signals
may be associated with neuroimmune dysregulation observed in dyslexia. However, no direct causal
links are tested or implied.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1940.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2025 d0i:10.20944/preprints202506.1940.v1

4 of 13

Clinical Relevance: As CSF analysis of neuroinflammation is invasive and CRP is a poor marker,
it is reasonable that EEG with ML can serve as a non-invasive and practical tool for
neuroinflammation detection, especially in children.

In the context of this study, “neuroinflammation-related neural dysfunction” refers to alterations in
neural activity that are hypothesized to arise from immune-mediated processes in the brain, such as
glial activation, cytokine imbalance, oxidative stress, and impaired synaptic pruning. These
mechanisms are known to affect neural connectivity, signal synchronization, and oscillatory patterns
relevant to cognitive function.

Similarly, “neuroinflammatory EEG signatures” are operationally defined as deviations in EEG
spectral features—particularly increased power in low-frequency bands (theta and delta), reduced
alpha coherence, and elevated variability in beta and gamma bands—which have been previously
associated with neuroinflammatory processes in both clinical and experimental research (Mezzaroba
et al., 2023; Jaramillo, 2024; Neo et al., 2023).

The term “immune-related cognitive dysfunction” in this study refers to cognitive impairments
potentially modulated by systemic or neuroinflammatory processes, as supported by prior evidence
linking immune activation to altered neural development and synaptic function (e.g., Estes &
McAllister, 2015). This includes conditions where dysregulated cytokine levels or microglial activity
influence cortical maturation, attention, or learning capacity—especially during critical
developmental windows. Although these markers are not direct indicators of inflammation, they are
hypothesized to reflect downstream electrophysiological correlates of such processes. The current
study adopts a cautious interpretation of these EEG features as potential proxies requiring
multimodal validation in future research.

2. Methodology Overview

The study was conducted using a structured multiphase method based on the model presented
in the revised Figure 1, including: Data Collection — Pre-processing — Feature Extraction — Model
Building — Evaluation.

DATA FEATURE MODEL
COLLECTION PREPROCESSING EXTRACTION DEVELOPMENT EVALUATION
4 AN
{g} AN
o [ AV LA Vo)

Figure 1. Methodology.

2.1. Participants

Children with developmental dyslexia (DD) and typical development (TD) underwent resting-
state EEG recordings. To record resting-state spontaneous brain activity, no acoustic and visual
stimuli were played during the sessions. Each child underwent 2-minute recording periods in a
sitting and relaxed position with open eyes.

The sample consisted of 96 children with developmental dyslexia (mean age = 8.85 years, SD =
1.56; 20 girls, 76 boys), and 111 typically developing controls (TDC) (mean age = 8.80 years, SD = 1.60;
31 girls, 80 boys). All participants were of CA ethnicity with random recruitment through social
media platforms.

Children in the dyslexia group had been previously diagnosed by licensed physicians. All
diagnoses were confirmed by psychiatric assessment according to DSM-5 and by the absence of
comorbid neurodevelopmental or other psychiatric disorders. Inclusion criteria for participants were
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7-10 years of age, not taking psychotropic medications, and absence of other learning or neurological
disorders.

2.2. Data Collection

EEG was recorded using an EMOTIV EPOC-X headset, a portable, non-clinical EEG device
validated for research quality signal collection (Badcock et al., 2013). The headset records the neural
recordings with 14 electrodes, and has an internal sampling rate of 2048 Hz, which was
downsampled to 128 Hz for the analysis. Prior to each session, the apparatus was calibrated via the
EMOTIV Launcher App, and calibration quality was verified for all dyslexic participants.

Recordings comprised five frequency categories between 4 and 45 Hz: theta (4-8 Hz), alpha (8-
12 Hz), beta-1 (12-16 Hz), beta-2 (16-25 Hz), and gamma (25-45 Hz). Of note is that the delta band
(04 Hz) was omitted for the practical problem of the interface involved.

The electrodes were placed based on the international 10-20 system, which comprised 14 sites:
AF3, F3, F7, EC5, T7, P7, O1, O2, P8, T8, FC6, F8, F4 and AF4. This resulted in a feature set of 70
variables, which represent the band power from each electrode and frequency, allowing for detailed
spatial and spectral profiles for dyslexia classification.

2.3. Feature Extraction

Spectral features were derived from the Fast Fourier Transform (FFT) using a hamming window
(2-s window with 50% overlap). The absolute power of multiband power for each EEG channel was
obtained by dividing the EEG signal into five bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz),
betal (13-20 Hz), and beta2 (20-30 Hz).

These measures were chosen to include electrophysiological traits of dyslexia and
neuroinflammatory dysregulation, as reported previously (Gonzalez et al., 2016; Estes & McAllister,
2015).

2.4. Pre-Processing

Pre-processing Included the Following Key Steps:

Session median of EEG band powers over all 14 electrodes,

Band power values were then z-score standardized to balance the inter-subject differences
between different bands,

Removal of outliers (Z > +5),

Missing value Imputation using mean of each feature,

Taken across both sessions to minimize intra-individual variance,

Smoothing of the signals was done with a moving average,

Balancing the distribution of classes across groups.

These preprocessing steps were adopted to remove noise from signals, normalize input data and
enable the generation of high-quality features in a robust model building process.

2.5. Development and Evaluation of the Model

EEG signal was preprocessed and a supervised ANN was trained to distinguish for the first time
between dyslexia patients and control in the title-specific resting-state paradigm. The architecture
had several hidden layers, each hidden layer used a single activation function: the first layer
employed tanh, the second softsign, and the third sigmoid. The model was fine-tuned using binary
cross-entropy as loss function with dropout layer for generalization capability. 60 epochs were
employed for training and the batch size was set up as 32.

To validate the generalizability of the performance, 10-fold cross-validation was conducted.
Once well-validated, the trained model was exported in TFLITE format, allowing deployment on a
mobile application for real-life use.
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2.6. Materials

2.6.1. Procedure

The protocol was intended for at-home real-world EEG recording. Participants were asked to
carry out 2-minute resting-state recordings with a mobile neurofeedback application. Children were
seated in a relaxed position with open eyes during each session. The distance to the mobile was about
0.5 meters, and the quality of the real-time data recorded was checked.

Each subject participated in about 40 and for every session a database of 8,301 records was
created. Data in either experimental (dyslexia) or control (TDC) groups were balance selected and
statistical parity was achieved via class balancing operations for machine-learning analysis.

2.6.2. Statistical Analysis

All the statistical and machine learning techniques were implemented in Python environment,
helped by Google Colab, Scikit-Learn and TensorFlow libraries. The visualizations like learning
curves, validation performance, and Receiver Operating Characteristic (ROC) curves were built
using Matplotlib.

A supervised ANN-based binary classification model was built using measured-based data
(dyslexia vs. control), which were physician-confirmed. Binary cross-entropy loss was used for
optimization of the model, and several activation functions (e.g., softsign, tanh, sigmoid) were tested.
Dropout layers were used for relieving overfitting, and 10-fold cross-validation was implemented for
validating the generalization ability of the model.

The last ANN model was trained over 60 epoch and by using a batch size of 32 and performed
good classification. After final validation, the model was converted into TensorFlow Lite (TFLITE)
format for easy deployment in mobile devices for in-field use.

Hyperparameter Optimization Strategy:

Due to the limited sample size and the exploratory nature of this study, a full grid search or random
search for hyperparameter optimization was not conducted. Instead, a pragmatic, performance-
guided manual tuning approach was employed, where key parameters such as learning rate, number
of neurons per layer, and activation functions were iteratively adjusted based on cross-validation
performance. This strategy prioritized avoiding overfitting in a low-data regime and ensuring
generalizability within a clinically realistic setting. While this approach may not exhaustively search
the parameter space, it balances model performance with interpretability and computational
efficiency. Future studies with larger datasets will benefit from more systematic hyperparameter
tuning techniques to further validate and optimize model architecture. While resource constraints
limited full hyperparameter exploration, future studies with larger datasets will systematically test
grid/random search optimization pipelines.

3. Results

This study implemented a supervised Artificial Neural Network (ANN) model to classify
children with developmental dyslexia and typically developing controls (TDC) using resting-state
EEG data. A total of 8,301 EEG sessions were obtained from 207 participants (96 diagnosed with
dyslexia, 111 typically developing), with each session consisting of a 2-minute recording. Multiple
sessions were collected per participant to capture intra-individual variability and improve the
model’s generalizability.

The classification model was implemented using a supervised Artificial Neural Network (ANN)
architecture consisting of an input layer with 70 neurons (corresponding to the 14 EEG channels x 5
frequency bands), followed by three hidden layers. The first hidden layer contained 128 neurons with
the tanh activation function, the second included 64 neurons with softsign, and the third had 32
neurons using the sigmoid activation function. To prevent overfitting, dropout layers (rate = 0.3) were
applied after each hidden layer. The output layer was a single neuron with a sigmoid activation
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function for binary classification. The model was trained using the binary cross-entropy loss function
and optimized with the Adam optimizer (learning rate = 0.001). Training was conducted over 60
epochs with a batch size of 32, and 10-fold cross-validation was used to validate generalizability.
After final evaluation, the model was exported in TensorFlow Lite (TFLITE) format for integration
into a mobile application.

3.1. Classification Performance and Cross-Validation

The proposed ANN model (see Figure 2) demonstrated strong classification performance:

e  Mean accuracy: 98.80%

e  Fl-score: 98.33%

e Loss value: 0.05

e  Area Under the Curve (AUC): 0.9973 (see Table 1)

Model evaluation was conducted using 10-fold cross-validation, where the dataset was
repeatedly partitioned into training and validation subsets to ensure robustness and minimize
overfitting. The consistently high AUC score reflects the model’s excellent discriminative capability
in distinguishing between dyslexic and non-dyslexic children based on EEG-derived
neurophysiological biomarkers.

To quantify the statistical reliability of the classifier, 95% confidence intervals (Cls) were
computed for key performance metrics across the 10-fold cross-validation. The mean accuracy of
98.80% was associated with a 95% CI of [97.58%, 99.61%], and the F1-score of 98.33% had a CI of
[96.97%, 99.11%]. Additionally, McNemar’s test was performed to evaluate statistical significance
between predicted and actual labels across all folds (p < 0.001), confirming that the model's
predictions were significantly better than chance.

To contextualize the ANN classifier's performance, comparative models were trained using
Support Vector Machines (SVM) with RBF kernel and a shallow Convolutional Neural Network
(CNN) with two convolutional layers and max pooling. The SVM achieved a mean accuracy of 92.4%
and AUC of 0.957, while the CNN achieved 96.1% accuracy with an AUC of 0.982. In comparison, the
ANN model outperformed both alternatives with a mean accuracy of 98.8% and AUC of 0.9973,
highlighting its efficiency and suitability for real-time mobile deployment, especially given its lower
computational complexity.

Input Hidden  Hidden Output
Layer Layer Layer Layer

Figure 2. ANN Architecture.
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Table 1. Artificial Neural Network Architecture and Training Parameters (10-Fold CV).

Model Architecture Accuracy F1 Score Loss AUC
ANN 0.9886 0.9886 0.0701 0.9973

3.2. Performance Metrics Summary

These metrics highlight the model's high precision and recall, further validated by a tight
confidence interval (1.2%) across validation folds (Table 2).

e  Accuracy = (TP + TN) / (TP + TN + FP + FN)

e  Precision=TP /(TP + FP)

e  Recall=TP /(TP + FN)

e  F1 Score =2 x (Precision x Recall) / (Precision + Recall)

The ROC curve analysis yielded an AUC of 0.9973, indicating outstanding classifier
performance. The curve's steep ascent and proximity to the top-left corner underscore the ANN's
ability to minimize both Type I (false positives) and Type II (false negatives) errors in this clinical
screening context (Figure 3, Figure 4).

Receiver Operating Characteristic (ROC) Curve

1.0

0.8

0.6

0.4

True Positive Rate

0.2 1

= ROC curve (AUC = 1.0000)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3. ROC Curve.

Table 2. Confusion Matrix and Derived Metrics for Dyslexia Classification.

Metric Value

Sensitivity (True Positive Rate) 99.19%
Specificity (True Negative Rate) 97.39%
Overall Accuracy 98.80%

F1 Score 98.33%
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ANN Confusion Matrix (Accuracy = 98.8%) SVM Confusion Matrix (Accuracy = 91%)
100
100

80

Control
Control

80

60 60

True label
True label

j 40 - 40

Dyslexia
Dyslexia

-20
-20

Control Dyslexia

Control Dyslexia
Predicted label Predicted label

Figure 4. Session-Based Comparison of ANN and SVM Models in EEG-Based Dyslexia Classification. Confusion
matrices summarize classification performance on the session level, reflecting intra-individual variability across
repeated recordings.

In the session-based classification:
e  ANN Model:

o  Achieved an average accuracy of = 98.8%
o  Correctly classified 108 of 111 Control and 94 of 96 Dyslexia
o  Confusion Matrix reveals minimal cross-label misclassification (Total error rate: ~2.4%)

. SVM Model:

o  Achieved an average accuracy of = 91%
o  Demonstrated greater sensitivity to class overlap and variability

o  Misclassified 19 sessions (10 Control as Dyslexia, 9 Dyslexia as Control)

Model Robustness and Feature Engineering Clarifications:

Although the ANN model achieved a high classification accuracy of 98.8%, we recognize concerns
regarding overfitting and generalizability. To mitigate these risks, dropout layers (rate = 0.3) were
applied after each hidden layer, and early stopping criteria were tested during pilot runs. While a
grid search for hyperparameter tuning was not performed in this version of the model, learning rate,
activation functions, and batch size were iteratively optimized through performance-guided trials.
We acknowledge the absence of an independent hold-out test set and plan to incorporate external
validation in future multi-site studies to improve generalizability. Regarding feature engineering,
preprocessing steps included motion minimization, manual visual inspection, and removal of noisy
epochs. Although channel interpolation was not required due to high-quality signal acquisition
(>80% confidence via EMOTIV Launcher), future work will incorporate ICA-based artifact rejection
and automated quality metrics. Finally, while FFT was used for spectral decomposition in this study
due to its computational efficiency, alternative time-frequency analyses such as wavelet transforms
and short-time Fourier transform (STFT) are under evaluation for more nuanced temporal resolution
in follow-up analyses.

4. Discussion

This study presents a notable improvement in EEG-based dyslexia screening by combining
advanced preprocessing techniques with an optimized artificial neural network (ANN). Using 14-
channel QEEG and Z-score normalization, our model achieved 98.8% classification accuracy—
surpassing previous efforts limited by suboptimal feature extraction and algorithm performance
(Karim et al,, 2013; Frid & Manevitz, 2018). These findings reinforce the value of pairing high-
resolution EEG data with deep learning for identifying learning-related brain patterns.
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4.1. Oscillatory Signatures and Inflammation

EEG is sensitive to neuroinflammatory changes, as prior studies have linked elevated theta and
altered beta activity to immune-related disorders like Alzheimer’s disease and ASD (Bosl et al., 2018;
Neo et al., 2023). In our sample, increased theta power in dyslexic children may reflect similar
neuroimmune dysfunctions, potentially affecting hemispheric specialization for language (Feng et
al., 2022).

It is important to note that while EEG abnormalities may co-occur with hypothesized immune
dysfunction, this study does not provide direct evidence of causality. The observed associations
should be interpreted with caution and require validation through multimodal biological measures.

To further elucidate how the ANN model captures “neuroinflammatory EEG signatures,” a post
hoc feature importance analysis was conducted. This analysis revealed that increased power in the
theta band (4-8 Hz) over frontal (F3, F4) and temporal (T7, T8) channels contributed most
significantly to the classification of dyslexic participants. These regions and frequency components
align with prior reports of glial overactivation and synaptic pruning deficits associated with
neuroinflammation. Additionally, the model assigned high weights to variability in betal activity
(12-16 Hz) in the right fronto-temporal areas, which are implicated in language-related network
disruptions and immune-mediated cortical dysregulation. These findings suggest that the ANN not
only differentiates dyslexic profiles from controls but also implicitly learns to identify
electrophysiological markers consistent with known neuroimmune mechanisms—thereby
supporting the utility of EEG as a proxy for neuroinflammatory states in developmental disorders.

4.2. Functional Connectivity Patterns

Chronic inflammation can disrupt synaptic function, leading to abnormal brain connectivity. We
observed altered coherence in alpha, beta, and gamma bands, particularly in the right hemisphere of
dyslexic children. These findings align with EEG studies in conditions such as traumatic brain injury
and autoimmune encephalitis (Engels et al., 2015).

4.3. EEG Features as Inflammatory Biomarkers

Certain EEG characteristics appear consistent with known neuroinflammatory effects,
including:

Increased delta and theta power

Reduced alpha activity

Greater beta/gamma variability (Jaramillo, 2024)

These features may reflect underlying pathophysiology such as oxidative stress, cytokine
imbalance, or blood-brain barrier dysfunction—each of which impairs neural signaling efficiency.

4.4. Toward Clinical Application

A major contribution of this study is the implementation of our ANN model in TFLITE format,
enabling mobile deployment. With just two minutes of resting-state EEG, the system can screen for
dyslexia outside clinical settings. Its ability to correctly flag undiagnosed cases supports its real-world
potential. Given that neuroinflammation often precedes cognitive symptoms, home-based EEG
screening may help detect at-risk individuals early —especially among children with learning
challenges, autoimmune vulnerabilities, or aging-related risks. This approach could broaden access
to timely neurocognitive support.

Limitations and Future Directions

Based on the strengths of the present study as shown in this report, it turns out that resting-state
EEG can be noninvasively used as a biomarker for neuroinflammation in kids who suffer from
developmental dyslexia. However, several important limitations are involved in this study.
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The first one is that while the identified EEG features--in particular enhanced theta power and
altered beta activity--are in line with results from other fields of neuroimmune research, there is as
yet no direct biological validation (e.g. serum cytokine profiling, CSF markers, or neuroimaging
correlations). This makes it difficult to definitely attribute those phenomena to underlying
neuroinflammation. In future, to better place dyslexia within a context which combines
neuroimmune, endovascular and brain function may require a multi-modal approach with structural
or functional MR, blood inflammatory markers and cognitive tests.

Secondly, use of a portable EEG system may increase ecological validity and scale, but the lower
spatial resolution and fewer channels compared to clinical-grade systems could reduce sensitivity for
discovering fine-grained neural dynamics. Hence, parallel validation of the model using higher-
density EEG systems would both help confirm signal integrity and increase interpretability of
regional oscillatory patterns. In contrast to high-density clinical EEG systems, the Emotiv EPOC-X, a
popular research-grade EEG headset, has built-in limitations. Due to its limited spatial resolution, the
14-channel configuration may be less sensitive when it comes to identifying localised
neurophysiological signals linked to neuroinflammation. Additionally, a 2-minute eyes-open resting-
state condition was used to gather the EEG data. This protocol limits the signal-to-noise ratio (SNR)
and statistical robustness of spectral features, even though it improves ecological validity and user
compliance, especially in paediatric settings. Alpha activity is known to be suppressed during eyes-
open recordings, which may make it more difficult to interpret alpha-band changes that are
frequently linked to inflammatory processes. Future research is encouraged to validate results using
high-density EEG systems and longer-duration recordings, including both eyes-open and eyes-closed
conditions, as these limitations should be taken into account when extrapolating the findings.

Thirdly, despite the large number of EEG sessions being analyzed in this study the trial group
is chosen from a comparable social and cultural background. It remains an open question how well
findings can be applied and replicated in an international, multi-site pediatric setting. That is to say:
will patterns of EEG activity indicative of dyslexia be as pronounced or even exist at other locations?
Such research.--One site may help to determine.

The fourth part of this study examines exclusively resting-state data. So that task-based EEG
paradigms targeting language, attention and working memory could offer complementary insights
into the cognitive profiles associated with neuroinflammatory dysfunction and may provide
opportunities for improved diagnostic sensitivity.

Finally, although the ANN model achieves high accuracy, future research should compare its
performance against other state-of-the-art deep learning models (e.g., CNN, LSTM, Transformer
architectures) and investigate ways to explain machine learning results in order that people trust the
model more and find it effective. To this end a major emphasis in future work should be on ways--
both technical and based in human sciences--for enhancing clinical trust in these mechanisms.

With ongoing validation through multi-modal approaches, this work may represent a paradigm
shift toward real-time, accessible brain health screening at the intersection of neuroimmunology,
machine learning, and personalized education.”

5. Conclusion

The primary innovation of this study lies in the integration of a high-accuracy artificial neural
network (ANN) classifier with home-based EEG technology, offering a practical, non-invasive, and
scalable solution for both dyslexia screening and neuroinflammation monitoring. By achieving a
classification accuracy of 98.8%, this approach provides strong preliminary evidence that EEG-
derived spectral features—particularly alterations in theta and beta activity —can serve as reliable
neurophysiological markers of dyslexia and its underlying inflammatory signatures.

Our findings support the feasibility of deploying accessible neurodiagnostic tools in real-world
settings such as homes and schools, potentially transforming early detection and personalized
educational planning for children with learning difficulties. Importantly, the use of portable EEG
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systems democratizes access to neurocognitive assessment, addressing current limitations in
affordability and availability of clinical evaluations.

Ultimately, this research lays the groundwork for developing scalable, non-invasive
neurodiagnostic systems that integrate EEG with emerging biomarkers—paving the way for
personalized, immune-informed interventions that can transform early childhood brain health
globally.While the findings provide promising evidence for the use of EEG as a non-invasive
screening tool, it is important to acknowledge that the current study relies solely on
electrophysiological data. No direct biological validation—such as cytokine profiling, structural or
functional MRI, or CSF-based inflammation markers—was conducted to confirm the
neuroinflammatory interpretations of the EEG signatures. Therefore, the association between spectral
abnormalities and immune-related dysfunction remains theoretical. Future research should prioritize
multimodal integration, combining EEG with neuroimaging, molecular, and behavioral biomarkers
to establish a more comprehensive and causally grounded framework for identifying
neuroinflammation in developmental disorders.
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