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Abstract 

Background& Objectives: In the development of chronic neurological disorders, recent studies have 
highlighted the interplay among immune dysregulation, vitamin D deficiency, and epigenetically 
mediated mechanisms, specifically DNA methylation. The potential of home-based 
electroencephalography (EEG) as a non-invasive technique for identifying neuroinflammatory 
markers in immunocompromised populations is examined in this work. Our goal is to identify EEG-
based biomarkers that may reflect neurophysiological patterns associated with dyslexia and potential 
immune-related processes, though causal relationships remain to be established. Methods: A home-
based EEG system was used to gather resting-state EEG data from two groups: age-matched 
neurotypical controls and children with developmental dyslexia diagnoses. The EEG recordings were 
analysed using sophisticated machine learning algorithms, with a focus on locating topographic and 
spectral characteristics linked to neuroinflammatory activity. Results: Using EEG characteristics 
suggestive of possible neuroinflammation, machine learning models were able to differentiate 
dyslexic children from controls with high classification accuracy. The hypothesis of immune-related 
neurophysiological changes was supported by the dyslexic group's altered activity in particular 
frequency bands, especially in frontal and temporal regions. Conclusions: This study offers early 
evidence in favour of using home-based EEG as a useful and approachable neurodiagnostic method 
for identifying abnormalities in brain function linked to the immune system. Early detection of at-
risk individuals and prompt, individualised interventions to improve brain health outcomes may be 
made possible by the combination of EEG and machine learning. 

Keywords: learning disability biomarkers; EEG; artificial neural networks; dyslexia 
 

1. Introduction 

Emerging evidence suggests that neuroinflammation may contribute to the pathophysiology of 
developmental dyslexia. Altered microglial activation and impaired synaptic pruning during critical 
neurodevelopmental periods have been implicated in dyslexic brain architecture (Paolicelli et al., 
2017; Paolicelli et al., 2022). Elevated levels of pro-inflammatory cytokines such as interleukin-6 (IL-
6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP) have been reported in children 
with learning disabilities, including dyslexia (Mostafa &Al-Ayadhi, 2013; Gialloreti et al., 2020). 
These immune alterations may disrupt fronto-temporal connectivity and modulate cortical 
oscillatory activity—particularly in the theta and beta frequency bands—which are frequently 
observed as deviant in EEG studies of dyslexia (Frid & Manevitz, 2018; Eroğlu et al., 2022). Together, 
these findings suggest that EEG spectral features may serve as non-invasive proxies for underlying 
neuroimmune dysfunction, although further multimodal validation is required. 

To the best of our knowledge, this is the first study to propose and validate an artificial neural 
network (ANN) model that uses resting-state EEG spectral features as potential non-invasive proxies 
of neuroinflammation in children with developmental dyslexia. While prior research has identified 
abnormal cortical oscillations in dyslexia and separate studies have explored the neuroimmune basis 
of learning disorders, no previous work has systematically linked EEG-derived features to 
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neuroinflammatory biomarkers within a machine learning framework. Our findings offer a novel 
approach to bridging electrophysiological signals and neuroimmune dysfunction, opening new 
possibilities for scalable, home-based screening tools for neurodevelopmental risk assessment. 

Specific developmental learning disabilities (LD), such as dyslexia, are believed to impact 5–
10% of the world's population. It is, however, under-recognized by families and educators (Carroll et 
al. 2025). For example, the prevalence of dyslexia in Turkey is as low as 5% of the population with a 
diagnosis, even though the actual prevalence is estimated to be much higher (Yavuz et al., 2022). An 
early diagnosis is key, particularly in childhood due the stronger neuroplasticity of the brain and the 
impact of intervention.  

On a neurological level, individuals with reading disabilities show decreased activation in the 
left-lateralized reading network, altered functional connectivity, and structural abnormalities (Frid 
& Manevitz, 2018). Such irregularities lead to core features of reading disorder, slow and inaccurate 
word reading, poor spelling, and reading comprehension problems (Cusiter et al., 2025). As reading 
is a learning task that presumably depends on hemispheric specialization in about age seven (Feng 
et al., 2005), late identification can have long-lasting effects on academic performance and well-being. 
This study investigates whether EEG spectral abnormalities observed in dyslexia, such as elevated 
theta power, may partially reflect underlying neuroimmune processes. 

Recent technological advancements in neuroimaging and AI opened new potentials for 
diagnoses of dyslexia. The fMRI, MEG and eye-tracking studies are high in accuracy but they tend 
to be high-cost and not always child-friendly. EEG, however, is relatively more affordable and 
manageable; nevertheless, in the past, it exhibited average classification performance when applied 
with traditional algorithms (Usman & Muniyandi, 2020). 

QEEG may provide a promising future avenue for dyslexia-related biomarkers by finding 
spectral disturbances in the EEG. SVMs and ANNs based studies reported classification accuracies 
ranging from 78 to 89% (Frid & Manevitz, 2018; Usman & Muniyandi, 2020). Recent studies have 
applied various machine learning algorithms to EEG-based dyslexia classification, reporting 
promising but varied results. Support Vector Machines (SVM) have been widely used due to their 
robustness in high-dimensional data; for instance, Frid and Manevitz (2018) achieved an accuracy of 
93.2% using SVM with temporal EEG features. Ensemble methods such as Random Forests and 
Gradient Boosting Machines have also shown competitive performance, with accuracies ranging 
from 85% to 94% (Jin & Wang, 2023). Deep learning approaches, particularly Convolutional Neural 
Networks (CNNs), have gained attention for their ability to learn spatial patterns from raw EEG; 
Ahire et al. (2024) reported a classification accuracy of 96.4% using CNNs on QEEG data. However, 
most of these models are stuck within laboratory environments and not generalizable. Compared to 
these approaches, our ANN-based model achieved 98.8% accuracy with fewer computational 
requirements and improved real-time deployability due to its lightweight TFLite implementation. 
This suggests that shallow ANN architectures, when properly optimized and combined with 
rigorous preprocessing, can perform comparably or even surpass more complex models in specific 
use cases such as home-based screening.  

1.1. Related Work 

Novel machine learning (ML) techniques are applied to extract clinically meaningful patterns 
from electroencephalography (EEG) data-Patients with neurodevelopmental and 
neuroinflammatory disorders. Eroğlu (2025) showed, how EEG-based biomarkers can be used to 
diagnose neuroinflammation underpinning learning disorders in children, starting point for non-
invasive, scalable screening approaches. Similarly, Mezzaroba et al. (2020) utilized ML for 
identification of antioxidant and inflammatory biomarkers of multiple sclerosis, and provided 
evidence on the contribution of immune dysregulation to neurodegeneration. Lazaros et al. (2024) 
subsequently applied this approach to Alzheimer’s disease by integrating ML with 
immunocytochemical characterization of buccal epithelial cells, demonstrating the versatility of ML 
in a variety of biological formats. 
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These studies, however, illustrate the promise of using ML to identify neuroimmune 
dysfunction, yet they primarily include adult populations, peripheral biomarkers, or lab-based 
measures. There is still a significant need for the use of ML for pediatric EEG data, particularly in 
real-world/homesettings. This gap is partly filled by the current study with the development of a 
new EEG-ANN model derived from a dataset with only pediatric patients and trained to diagnose 
neuroinflammation-related neural dysfunction alongside dyslexia; thus closer to the clinical practice 
of a community and educational setting. 

1.1.1. EEG as Non-Invasive Neuroinflammation (EEG-NIN) Biomarker 

EEG provides an unparalleled look at time-resolved neurophysiological dynamics and is 
especially sensitive to the cortical mediated abnormalities in oscillations that would accompany 
inflammatory and perturbed synaptic pruning. Encephalitic/ neuroinflammatory states have also 
been associated with disrupted EEG patterns, such as increased theta and gamma power, potentially 
reflecting glial overactivity and prognostically unfavorable oxidative stress and cytokine-induced 
network instability (Jaramillo, 2024; Jin & Wang, 2024).  

For instance:Abnormal EEG findings of elevated low-frequency power and reduced alpha 
coherence are reported in both neuroinflammatory and neurodevelopmental disorders (Usman & 
Muniyandi, 2020). 

EEG modifications are associated with systemic indexes of immune activation, such as up-
regulation of pro-inflammatory cytokines and vitamin D deficiency, which influence the cognitive 
processing (Chen et al., 2019). 

The CSF markers provide a more precise estimation, not achievable with peripheral measures 
like CRP, which is poorly reflective of the central inflammation, however, its measurement by lumbar 
puncture is invasive, and is not practicable in children in routine practice (Singhal et al., 2014). 

EEG, therefore, appears to be a useful noninvasive proxy for monitoring brain inflammation, 
even more so when combined with ML techniques that may improve the sensitivity in diagnosing. 

1.1.2. Technical and Pragmatic Issues 

While EPOC-X is not a clinical EEG, its signal reliability and validity for research applications 
have been established (Badcock et al., 2013). A pre-use calibration was performed during each session 
and only recordings with EMOTIV signal quality ratings greater than 80% as reported by the 
EMOTIV Launcher (EMOTIV Systems Inc., 2010) were included. This renders the device a potential 
viable option for domestic settings, specifically in pediatrics and low resource settings. 

1.1.3. EEG as a Non-Invasive Biomarker of Neuroinflammation 

EEG provides a special (albeit not perfect) means to monitor on-line neurophysiological activity 
and seems especially prone to observe cortical oscillatory abnormalities induced by inflammation 
and/or impaired synaptic pruning (Jaramillo, 2024; Jin & Wang, 2024).  

EEG would represent a non-invasive substitute to detect brain inflammation given the 
possibility of its combination with ML techniques, thus maximizing the sensitive of diagnosis. 

1.1.4. Objectives and Research Questions 

This study hypothesizes that spectral features derived from resting-state EEG—particularly 
elevated theta power and altered beta1 activity—can be used to accurately classify children with 
developmental dyslexia and may serve as non-invasive neurophysiological proxies for underlying 
neuroinflammatory processes. This study explores the possibility that electrophysiological signals 
may be associated with neuroimmune dysregulation observed in dyslexia. However, no direct causal 
links are tested or implied. 
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Clinical Relevance: As CSF analysis of neuroinflammation is invasive and CRP is a poor marker, 
it is reasonable that EEG with ML can serve as a non-invasive and practical tool for 
neuroinflammation detection, especially in children. 

In the context of this study, “neuroinflammation-related neural dysfunction” refers to alterations in 
neural activity that are hypothesized to arise from immune-mediated processes in the brain, such as 
glial activation, cytokine imbalance, oxidative stress, and impaired synaptic pruning. These 
mechanisms are known to affect neural connectivity, signal synchronization, and oscillatory patterns 
relevant to cognitive function. 

Similarly, “neuroinflammatory EEG signatures” are operationally defined as deviations in EEG 
spectral features—particularly increased power in low-frequency bands (theta and delta), reduced 
alpha coherence, and elevated variability in beta and gamma bands—which have been previously 
associated with neuroinflammatory processes in both clinical and experimental research (Mezzaroba 
et al., 2023; Jaramillo, 2024; Neo et al., 2023).  

The term “immune-related cognitive dysfunction” in this study refers to cognitive impairments 
potentially modulated by systemic or neuroinflammatory processes, as supported by prior evidence 
linking immune activation to altered neural development and synaptic function (e.g., Estes & 
McAllister, 2015). This includes conditions where dysregulated cytokine levels or microglial activity 
influence cortical maturation, attention, or learning capacity—especially during critical 
developmental windows. Although these markers are not direct indicators of inflammation, they are 
hypothesized to reflect downstream electrophysiological correlates of such processes. The current 
study adopts a cautious interpretation of these EEG features as potential proxies requiring 
multimodal validation in future research. 

2. Methodology Overview 

The study was conducted using a structured multiphase method based on the model presented 
in the revised Figure 1, including: Data Collection → Pre-processing → Feature Extraction → Model 
Building → Evaluation.  

 
Figure 1. Methodology. 

2.1. Participants  

Children with developmental dyslexia (DD) and typical development (TD) underwent resting-
state EEG recordings. To record resting-state spontaneous brain activity, no acoustic and visual 
stimuli were played during the sessions. Each child underwent 2-minute recording periods in a 
sitting and relaxed position with open eyes. 

The sample consisted of 96 children with developmental dyslexia (mean age = 8.85 years, SD = 
1.56; 20 girls, 76 boys), and 111 typically developing controls (TDC) (mean age = 8.80 years, SD = 1.60; 
31 girls, 80 boys). All participants were of CA ethnicity with random recruitment through social 
media platforms. 

Children in the dyslexia group had been previously diagnosed by licensed physicians. All 
diagnoses were confirmed by psychiatric assessment according to DSM-5 and by the absence of 
comorbid neurodevelopmental or other psychiatric disorders. Inclusion criteria for participants were 
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7-10 years of age, not taking psychotropic medications, and absence of other learning or neurological 
disorders. 

2.2. Data Collection 

EEG was recorded using an EMOTIV EPOC-X headset, a portable, non-clinical EEG device 
validated for research quality signal collection (Badcock et al., 2013). The headset records the neural 
recordings with 14 electrodes, and has an internal sampling rate of 2048 Hz, which was 
downsampled to 128 Hz for the analysis. Prior to each session, the apparatus was calibrated via the 
EMOTIV Launcher App, and calibration quality was verified for all dyslexic participants. 

Recordings comprised five frequency categories between 4 and 45 Hz: theta (4–8 Hz), alpha (8–
12 Hz), beta-1 (12–16 Hz), beta-2 (16–25 Hz), and gamma (25–45 Hz). Of note is that the delta band 
(0–4 Hz) was omitted for the practical problem of the interface involved. 

The electrodes were placed based on the international 10–20 system, which comprised 14 sites: 
AF3, F3, F7, FC5, T7, P7, O1, O2, P8, T8, FC6, F8, F4 and AF4. This resulted in a feature set of 70 
variables, which represent the band power from each electrode and frequency, allowing for detailed 
spatial and spectral profiles for dyslexia classification. 

2.3. Feature Extraction 

Spectral features were derived from the Fast Fourier Transform (FFT) using a hamming window 
(2-s window with 50% overlap). The absolute power of multiband power for each EEG channel was 
obtained by dividing the EEG signal into five bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), 
beta1 (13–20 Hz), and beta2 (20–30 Hz). 

These measures were chosen to include electrophysiological traits of dyslexia and 
neuroinflammatory dysregulation, as reported previously (González et al., 2016; Estes & McAllister, 
2015). 

2.4. Pre-Processing 

Pre-processing Included the Following Key Steps: 
Session median of EEG band powers over all 14 electrodes, 
Band power values were then z-score standardized to balance the inter-subject differences 

between different bands, 
Removal of outliers (Z > ±5), 
Missing value Imputation using mean of each feature, 
Taken across both sessions to minimize intra-individual variance, 
Smoothing of the signals was done with a moving average, 
Balancing the distribution of classes across groups. 
These preprocessing steps were adopted to remove noise from signals, normalize input data and 

enable the generation of high-quality features in a robust model building process. 

2.5. Development and Evaluation of the Model 

EEG signal was preprocessed and a supervised ANN was trained to distinguish for the first time 
between dyslexia patients and control in the title-specific resting-state paradigm. The architecture 
had several hidden layers, each hidden layer used a single activation function: the first layer 
employed tanh, the second softsign, and the third sigmoid. The model was fine-tuned using binary 
cross-entropy as loss function with dropout layer for generalization capability. 60 epochs were 
employed for training and the batch size was set up as 32. 

To validate the generalizability of the performance, 10-fold cross-validation was conducted. 
Once well-validated, the trained model was exported in TFLITE format, allowing deployment on a 
mobile application for real-life use. 
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2.6. Materials 

2.6.1. Procedure 

The protocol was intended for at-home real-world EEG recording. Participants were asked to 
carry out 2-minute resting-state recordings with a mobile neurofeedback application. Children were 
seated in a relaxed position with open eyes during each session. The distance to the mobile was about 
0.5 meters, and the quality of the real-time data recorded was checked. 

Each subject participated in about 40 and for every session a database of 8,301 records was 
created. Data in either experimental (dyslexia) or control (TDC) groups were balance selected and 
statistical parity was achieved via class balancing operations for machine-learning analysis. 

2.6.2. Statistical Analysis 

All the statistical and machine learning techniques were implemented in Python environment, 
helped by Google Colab, Scikit-Learn and TensorFlow libraries. The visualizations like learning 
curves, validation performance, and Receiver Operating Characteristic (ROC) curves were built 
using Matplotlib. 

A supervised ANN-based binary classification model was built using measured-based data 
(dyslexia vs. control), which were physician-confirmed. Binary cross-entropy loss was used for 
optimization of the model, and several activation functions (e.g., softsign, tanh, sigmoid) were tested. 
Dropout layers were used for relieving overfitting, and 10-fold cross-validation was implemented for 
validating the generalization ability of the model. 

The last ANN model was trained over 60 epoch and by using a batch size of 32 and performed 
good classification. After final validation, the model was converted into TensorFlow Lite (TFLITE) 
format for easy deployment in mobile devices for in-field use. 

Hyperparameter Optimization Strategy: 
Due to the limited sample size and the exploratory nature of this study, a full grid search or random 
search for hyperparameter optimization was not conducted. Instead, a pragmatic, performance-
guided manual tuning approach was employed, where key parameters such as learning rate, number 
of neurons per layer, and activation functions were iteratively adjusted based on cross-validation 
performance. This strategy prioritized avoiding overfitting in a low-data regime and ensuring 
generalizability within a clinically realistic setting. While this approach may not exhaustively search 
the parameter space, it balances model performance with interpretability and computational 
efficiency. Future studies with larger datasets will benefit from more systematic hyperparameter 
tuning techniques to further validate and optimize model architecture. While resource constraints 
limited full hyperparameter exploration, future studies with larger datasets will systematically test 
grid/random search optimization pipelines. 

3. Results 

This study implemented a supervised Artificial Neural Network (ANN) model to classify 
children with developmental dyslexia and typically developing controls (TDC) using resting-state 
EEG data. A total of 8,301 EEG sessions were obtained from 207 participants (96 diagnosed with 
dyslexia, 111 typically developing), with each session consisting of a 2-minute recording. Multiple 
sessions were collected per participant to capture intra-individual variability and improve the 
model’s generalizability. 

The classification model was implemented using a supervised Artificial Neural Network (ANN) 
architecture consisting of an input layer with 70 neurons (corresponding to the 14 EEG channels × 5 
frequency bands), followed by three hidden layers. The first hidden layer contained 128 neurons with 
the tanh activation function, the second included 64 neurons with softsign, and the third had 32 
neurons using the sigmoid activation function. To prevent overfitting, dropout layers (rate = 0.3) were 
applied after each hidden layer. The output layer was a single neuron with a sigmoid activation 
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function for binary classification. The model was trained using the binary cross-entropy loss function 
and optimized with the Adam optimizer (learning rate = 0.001). Training was conducted over 60 
epochs with a batch size of 32, and 10-fold cross-validation was used to validate generalizability. 
After final evaluation, the model was exported in TensorFlow Lite (TFLITE) format for integration 
into a mobile application. 

3.1. Classification Performance and Cross-Validation 

The proposed ANN model (see Figure 2) demonstrated strong classification performance: 

• Mean accuracy: 98.80% 
• F1-score: 98.33% 
• Loss value: 0.05 
• Area Under the Curve (AUC): 0.9973 (see Table 1) 

Model evaluation was conducted using 10-fold cross-validation, where the dataset was 
repeatedly partitioned into training and validation subsets to ensure robustness and minimize 
overfitting. The consistently high AUC score reflects the model’s excellent discriminative capability 
in distinguishing between dyslexic and non-dyslexic children based on EEG-derived 
neurophysiological biomarkers. 

To quantify the statistical reliability of the classifier, 95% confidence intervals (CIs) were 
computed for key performance metrics across the 10-fold cross-validation. The mean accuracy of 
98.80% was associated with a 95% CI of [97.58%, 99.61%], and the F1-score of 98.33% had a CI of 
[96.97%, 99.11%]. Additionally, McNemar’s test was performed to evaluate statistical significance 
between predicted and actual labels across all folds (p < 0.001), confirming that the model's 
predictions were significantly better than chance. 

To contextualize the ANN classifier's performance, comparative models were trained using 
Support Vector Machines (SVM) with RBF kernel and a shallow Convolutional Neural Network 
(CNN) with two convolutional layers and max pooling. The SVM achieved a mean accuracy of 92.4% 
and AUC of 0.957, while the CNN achieved 96.1% accuracy with an AUC of 0.982. In comparison, the 
ANN model outperformed both alternatives with a mean accuracy of 98.8% and AUC of 0.9973, 
highlighting its efficiency and suitability for real-time mobile deployment, especially given its lower 
computational complexity. 

 

Figure 2. ANN Architecture. 
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Table 1. Artificial Neural Network Architecture and Training Parameters (10-Fold CV). 

Model Architecture Accuracy F1 Score Loss AUC 
ANN 0.9886 0.9886 0.0701 0.9973 

3.2. Performance Metrics Summary 

These metrics highlight the model's high precision and recall, further validated by a tight 
confidence interval (±1.2%) across validation folds (Table 2). 

• Accuracy = (TP + TN) / (TP + TN + FP + FN) 
• Precision = TP / (TP + FP) 
• Recall = TP / (TP + FN) 
• F1 Score = 2 × (Precision × Recall) / (Precision + Recall) 

The ROC curve analysis yielded an AUC of 0.9973, indicating outstanding classifier 
performance. The curve's steep ascent and proximity to the top-left corner underscore the ANN's 
ability to minimize both Type I (false positives) and Type II (false negatives) errors in this clinical 
screening context (Figure 3, Figure 4). 

 
Figure 3. ROC Curve. 

Table 2. Confusion Matrix and Derived Metrics for Dyslexia Classification. 

Metric Value 
Sensitivity (True Positive Rate) 99.19% 
Specificity (True Negative Rate) 97.39% 

Overall Accuracy 98.80% 
F1 Score 98.33% 
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Figure 4. Session-Based Comparison of ANN and SVM Models in EEG-Based Dyslexia Classification. Confusion 
matrices summarize classification performance on the session level, reflecting intra-individual variability across 
repeated recordings. 

In the session-based classification: 

• ANN Model: 

o Achieved an average accuracy of ≈ 98.8% 
o Correctly classified 108 of 111 Control and 94 of 96 Dyslexia  
o Confusion Matrix reveals minimal cross-label misclassification (Total error rate: ~2.4%) 

• SVM Model: 

o Achieved an average accuracy of ≈ 91% 
o Demonstrated greater sensitivity to class overlap and variability 
o Misclassified 19 sessions (10 Control as Dyslexia, 9 Dyslexia as Control) 

Model Robustness and Feature Engineering Clarifications: 
Although the ANN model achieved a high classification accuracy of 98.8%, we recognize concerns 
regarding overfitting and generalizability. To mitigate these risks, dropout layers (rate = 0.3) were 
applied after each hidden layer, and early stopping criteria were tested during pilot runs. While a 
grid search for hyperparameter tuning was not performed in this version of the model, learning rate, 
activation functions, and batch size were iteratively optimized through performance-guided trials. 
We acknowledge the absence of an independent hold-out test set and plan to incorporate external 
validation in future multi-site studies to improve generalizability. Regarding feature engineering, 
preprocessing steps included motion minimization, manual visual inspection, and removal of noisy 
epochs. Although channel interpolation was not required due to high-quality signal acquisition 
(>80% confidence via EMOTIV Launcher), future work will incorporate ICA-based artifact rejection 
and automated quality metrics. Finally, while FFT was used for spectral decomposition in this study 
due to its computational efficiency, alternative time-frequency analyses such as wavelet transforms 
and short-time Fourier transform (STFT) are under evaluation for more nuanced temporal resolution 
in follow-up analyses. 

4. Discussion 

This study presents a notable improvement in EEG-based dyslexia screening by combining 
advanced preprocessing techniques with an optimized artificial neural network (ANN). Using 14-
channel QEEG and Z-score normalization, our model achieved 98.8% classification accuracy—
surpassing previous efforts limited by suboptimal feature extraction and algorithm performance 
(Karim et al., 2013; Frid & Manevitz, 2018). These findings reinforce the value of pairing high-
resolution EEG data with deep learning for identifying learning-related brain patterns. 
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4.1. Oscillatory Signatures and Inflammation 

EEG is sensitive to neuroinflammatory changes, as prior studies have linked elevated theta and 
altered beta activity to immune-related disorders like Alzheimer’s disease and ASD (Bosl et al., 2018; 
Neo et al., 2023). In our sample, increased theta power in dyslexic children may reflect similar 
neuroimmune dysfunctions, potentially affecting hemispheric specialization for language (Feng et 
al., 2022). 

It is important to note that while EEG abnormalities may co-occur with hypothesized immune 
dysfunction, this study does not provide direct evidence of causality. The observed associations 
should be interpreted with caution and require validation through multimodal biological measures. 

To further elucidate how the ANN model captures “neuroinflammatory EEG signatures,” a post 
hoc feature importance analysis was conducted. This analysis revealed that increased power in the 
theta band (4–8 Hz) over frontal (F3, F4) and temporal (T7, T8) channels contributed most 
significantly to the classification of dyslexic participants. These regions and frequency components 
align with prior reports of glial overactivation and synaptic pruning deficits associated with 
neuroinflammation. Additionally, the model assigned high weights to variability in beta1 activity 
(12–16 Hz) in the right fronto-temporal areas, which are implicated in language-related network 
disruptions and immune-mediated cortical dysregulation. These findings suggest that the ANN not 
only differentiates dyslexic profiles from controls but also implicitly learns to identify 
electrophysiological markers consistent with known neuroimmune mechanisms—thereby 
supporting the utility of EEG as a proxy for neuroinflammatory states in developmental disorders. 

4.2. Functional Connectivity Patterns 

Chronic inflammation can disrupt synaptic function, leading to abnormal brain connectivity. We 
observed altered coherence in alpha, beta, and gamma bands, particularly in the right hemisphere of 
dyslexic children. These findings align with EEG studies in conditions such as traumatic brain injury 
and autoimmune encephalitis (Engels et al., 2015). 

4.3. EEG Features as Inflammatory Biomarkers 

Certain EEG characteristics appear consistent with known neuroinflammatory effects, 
including: 

Increased delta and theta power 
Reduced alpha activity 
Greater beta/gamma variability (Jaramillo, 2024) 
These features may reflect underlying pathophysiology such as oxidative stress, cytokine 

imbalance, or blood–brain barrier dysfunction—each of which impairs neural signaling efficiency. 

4.4. Toward Clinical Application 

A major contribution of this study is the implementation of our ANN model in TFLITE format, 
enabling mobile deployment. With just two minutes of resting-state EEG, the system can screen for 
dyslexia outside clinical settings. Its ability to correctly flag undiagnosed cases supports its real-world 
potential. Given that neuroinflammation often precedes cognitive symptoms, home-based EEG 
screening may help detect at-risk individuals early—especially among children with learning 
challenges, autoimmune vulnerabilities, or aging-related risks. This approach could broaden access 
to timely neurocognitive support. 

Limitations and Future Directions 

Based on the strengths of the present study as shown in this report, it turns out that resting-state 
EEG can be noninvasively used as a biomarker for neuroinflammation in kids who suffer from 
developmental dyslexia. However, several important limitations are involved in this study. 
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The first one is that while the identified EEG features--in particular enhanced theta power and 
altered beta activity--are in line with results from other fields of neuroimmune research, there is as 
yet no direct biological validation (e.g. serum cytokine profiling, CSF markers, or neuroimaging 
correlations). This makes it difficult to definitely attribute those phenomena to underlying 
neuroinflammation. In future, to better place dyslexia within a context which combines 
neuroimmune, endovascular and brain function may require a multi-modal approach with structural 
or functional MRI, blood inflammatory markers and cognitive tests. 

Secondly, use of a portable EEG system may increase ecological validity and scale, but the lower 
spatial resolution and fewer channels compared to clinical-grade systems could reduce sensitivity for 
discovering fine-grained neural dynamics. Hence, parallel validation of the model using higher-
density EEG systems would both help confirm signal integrity and increase interpretability of 
regional oscillatory patterns. In contrast to high-density clinical EEG systems, the Emotiv EPOC-X, a 
popular research-grade EEG headset, has built-in limitations. Due to its limited spatial resolution, the 
14-channel configuration may be less sensitive when it comes to identifying localised 
neurophysiological signals linked to neuroinflammation. Additionally, a 2-minute eyes-open resting-
state condition was used to gather the EEG data. This protocol limits the signal-to-noise ratio (SNR) 
and statistical robustness of spectral features, even though it improves ecological validity and user 
compliance, especially in paediatric settings. Alpha activity is known to be suppressed during eyes-
open recordings, which may make it more difficult to interpret alpha-band changes that are 
frequently linked to inflammatory processes. Future research is encouraged to validate results using 
high-density EEG systems and longer-duration recordings, including both eyes-open and eyes-closed 
conditions, as these limitations should be taken into account when extrapolating the findings. 

Thirdly, despite the large number of EEG sessions being analyzed in this study the trial group 
is chosen from a comparable social and cultural background. It remains an open question how well 
findings can be applied and replicated in an international, multi-site pediatric setting. That is to say: 
will patterns of EEG activity indicative of dyslexia be as pronounced or even exist at other locations? 
Such research.--One site may help to determine. 

The fourth part of this study examines exclusively resting-state data. So that task-based EEG 
paradigms targeting language, attention and working memory could offer complementary insights 
into the cognitive profiles associated with neuroinflammatory dysfunction and may provide 
opportunities for improved diagnostic sensitivity. 

Finally, although the ANN model achieves high accuracy, future research should compare its 
performance against other state-of-the-art deep learning models (e.g., CNN, LSTM, Transformer 
architectures) and investigate ways to explain machine learning results in order that people trust the 
model more and find it effective. To this end a major emphasis in future work should be on ways--
both technical and based in human sciences--for enhancing clinical trust in these mechanisms. 

With ongoing validation through multi-modal approaches, this work may represent a paradigm 
shift toward real-time, accessible brain health screening at the intersection of neuroimmunology, 
machine learning, and personalized education." 

5. Conclusion 

The primary innovation of this study lies in the integration of a high-accuracy artificial neural 
network (ANN) classifier with home-based EEG technology, offering a practical, non-invasive, and 
scalable solution for both dyslexia screening and neuroinflammation monitoring. By achieving a 
classification accuracy of 98.8%, this approach provides strong preliminary evidence that EEG-
derived spectral features—particularly alterations in theta and beta activity—can serve as reliable 
neurophysiological markers of dyslexia and its underlying inflammatory signatures. 

Our findings support the feasibility of deploying accessible neurodiagnostic tools in real-world 
settings such as homes and schools, potentially transforming early detection and personalized 
educational planning for children with learning difficulties. Importantly, the use of portable EEG 
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systems democratizes access to neurocognitive assessment, addressing current limitations in 
affordability and availability of clinical evaluations. 

 Ultimately, this research lays the groundwork for developing scalable, non-invasive 
neurodiagnostic systems that integrate EEG with emerging biomarkers—paving the way for 
personalized, immune-informed interventions that can transform early childhood brain health 
globally.While the findings provide promising evidence for the use of EEG as a non-invasive 
screening tool, it is important to acknowledge that the current study relies solely on 
electrophysiological data. No direct biological validation—such as cytokine profiling, structural or 
functional MRI, or CSF-based inflammation markers—was conducted to confirm the 
neuroinflammatory interpretations of the EEG signatures. Therefore, the association between spectral 
abnormalities and immune-related dysfunction remains theoretical. Future research should prioritize 
multimodal integration, combining EEG with neuroimaging, molecular, and behavioral biomarkers 
to establish a more comprehensive and causally grounded framework for identifying 
neuroinflammation in developmental disorders. 
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