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Abstract: The development of virtual models has recently been generalized in the field of complex mechatronic 

product design. Virtual models have various advantages such as: the systemic design approach, most often 

parametric, the implementation of extreme, expensive, and perhaps risky scenarios for the operation of the 

designed product, the testing of a large number of variants, etc. The main contribution of the paper consists of 

the development of an interface family called DeSeRoI (Dedicated Serial Robot Interface). Each member of the 

interface family integrates Simulink libraries and is created by the programmer in accordance with user 

requests. It follows that the interfaces composing the DeSeRoI family can have different levels of complexity 

depending on user needs and constraints. We are implementing a MATLAB-based application with user-

provided configuration for serial robots in order to automatically visualize the kinematics data and simulation. 

Within MATLAB, two scripts are created responsible for generating Simulink models that compute the 

kinematics problem. One of the scripts (Main) saves information about the configuration of the robot and the 

other one (Generates_Simulink_Models) computes the kinematics problem. Different types of functions 

(software module) have been developed. Using these functions, the Simulink models result as modular entities. 

The automated approach eases user’s interaction and understanding of serial robots’ kinematics by performing 

the simulation procedure in a shorter amount of time and with higher efficiency, assuring a precise outcome 

despite the chosen parameters. 

Keywords: serial robots; kinematics; simulation model; interchangeable configuration; virtual models  

 

1. Introduction 

In the field of manufacturing, there is an ongoing quest for efficiency, flexibility and 

productivity, which is shaping industry practices and driving innovation and competitiveness. With 

the intention of achieving all of the above, manufacturers and engineers are implementing innovative 

technologies and methodologies to enhance productivity in their operations. These technologies and 

methods that are currently employed include automation [1], collaborative robots [2], lean 

manufacturing [3], additive manufacturing (3D printing) [4], IoT [5], and simulation [6] among 

others.  

Each of them have a different benefit and contribute to innovation in their unique way. 

Automation and collaborative robotics contribute to the enhancement of efficiency [7,8], additive 

manufacturing and collaborative robots improve the flexibility [9,10], IoT and lean manufacturing 

contribute to sustainability and cost reduction, and IoT, additive manufacturing and simulation boost 

the productivity [11]. 

In addition to these widely adopted methods, the manufacturing industry regularly employs 

serial robots (SR). They perform various operations such as assembling compo-nents, welding, 

quality control, machining, and handling materials. To ensure the func-tionality and seamless 

integration of SR into systems, several steps must be followed, in-cluding: design, simulation, 

hardware and software integration, staff training, monitoring, and maintenance. 

Simulation refers to the process of designing and modelling a real or hypothetical physical 

system, running the model (replicating the real-world use of the physical system in a dynamic virtual 
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environment), and then analyzing the results with respect to a predetermined set of goals that the 

system has to meet. It is considered a very important tool not only in robotics but in numerous other 

fields, due to its many positives [18]. A great benefit of using simulation models is the capacity to 

optimize production processes by introducing a virtual (and thus more cost-effective) feedback loop 

meant to find errors and oversights made in previous development steps. 

It can be observed that simulation is a very common activity in recent years, used across many 

sciences and disciplines to highlight aspects or demonstrate hypotheses. Concrete uses of simulation 

include product design, process optimization, medical training, traffic flow analysis, and flight 

simulators, among others. In the manufacturing industry, simulation is essential for the optimization 

of processes and refining of the product design. In robotics, simulation plays an important role in 

development and testing, ensuring that they are efficient and safe. 

Scientists from various fields presented the importance of simulation in education [12], 

manufacturing [13], nursing education [14], robotics [15,16,17], and many others. Hereafter, 

simulation will be discussed, with a focus on the simulation of serial robots. 

To ensure optimal performance, SR are extensively simulated for various behaviors. These 

simulations include path planning for optimal routing, task execution for jobs like assembly or 

welding, and kinematics and dynamics to validate motion and forces. They can also cover error 

handling, force control, and sensor integration. Such comprehensive simulations validate that SR are 

accurate and safe to use in industrial operations [19,20,21]. 

The main contribution of the paper consists of the development of an interface family called 

DeSeRoI (Dedicated Serial Robot Interface) (Figure 1). Each member of the interface integrates 

Simulink libraries and is created by the programmer in accordance with user requests. It follows that 

the interfaces composing the DeSeRoI family can have different levels of complexity depending on 

user needs and constraints. DeSeRoI is characterized by the following: 

a) Adaptability to constraints imposed by the user. Therefore, being able to have various complexity 

levels implemented by the programmer. 

b) It is necessary to preinstall MATLAB but it is not necessary for the user to have MATLAB 

knowledge 

c) Depending on its complexity, any serial robot configuration can be simulated. 

The rest of the paper is organized as follows: Section 2, applications used for simula-tion, Section 

3, the structure of the proposed application is presented and all of the compo-nent parts are described 

in detail. In Section 4, an example is provided for validation reasons and to emphasize the importance 

of the application. 

 

Figure 1. DeSeRoI general template. 
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2. Related Work 

Building on the presented concepts, researchers have conducted significant work to enhance the 

capabilities and applications of serial robots. Nam et al. propose a vehicle crash simulator [22] that, 

unlike most simulators, which focus on a single vehicle, simulates both vehicles and their 

environments. Their simulator integrates Simpy-based vehicle collision simulations with Unity-

based animation for comprehensive visualization of crash scenarios. Vehicle and environment 

models are previously stored. The model adjusts the characteristics of the vehicle model according to 

the discrete events sent by the Simpy engine and identifies the collisions that might occur on the road. 

However, there are some potential limitations that could arise, for instance, the simulator’s 

dependence on the model repository means that any inaccuracies in the stored models could lead to 

unreliable simulation outcomes. Additionally, the reliance on JSON files for communication between 

the simulation and animation components introduces potential transmission issues, which could lead 

to incorrect animations.  

Another utility of simulation is that it can assist in the practical implementation of swarm 

robotics, enclosing the gap between concept and real-world application. Different multi-robot 

simulators were developed for simulation of swarm robotics as presented in [23]. Each of them has 

specific characteristics depending on the aspects to be simulated such as the capability to simulate 

multiple mobile robots (Stage), high-level modeling language for analyzing the swarm robotics 

systems (Bio-PEPA), built-in collision detection system (Open Dynamics Engine), the generation of 

consistent interaction between ob-jects (Gazebo). Additionally, a simulation using OOP (Object-

Oriented Programming) is presented in [24]. 

A simulation model was developed by Bencak et al. for the determination of an ob-ject’s optimal 

pick-point due to its complexity [25]. The simulation model is based on ADAMS/MATLAB 

cosimulation, with the mechanical model created in ADAMS and the force controller, support 

functions and user interface developed in MATLAB/Simulink, respectively MATLAB/App Designer. 

The proposed model is capable of simulating a va-riety of objects and of suggesting new 

configurations for the existing robotic gripper. The main disadvantage of the model is the reliance on 

exact values for contact and other pa-rameters, which are challenging to verify without highly 

accurate sensors. Moreover, the simulation achieves less accuracy than simulations conducted using 

alternative methods.  

Similar computer applications were developed to teach forward and inverse kine-matics. 

Gonzalez-Garcia et al. used an experimental platform based on MATLAB’s Sim-scape Multibody 

library in order to validate that computer simulations are very effective in teaching robotics to 

undergraduates [26]. The approach involves creating 3D robot models in Solidworks, converting 

them to STL and XML files using Simscape Multibody library tools, and importing these files into 

Matlab/Simulink to create a mechanical model. The virtual model is afterwards configured in three 

sections. In the input parameters section users adjust the joint positions. The forward kinematics 

section is where D-H parameters are set, the reference systems are defined, and transformation 

matrices are calculated. Fi-nally, in the results display section, users can visualize the positions and 

orientations of each joint. When the model is first loaded, the reference systems are at the robot’s 

base, so the user must redefine each of them according to the D-H method.  

Arnay et al. developed a software suite made of two applications based on Python and Unity3D 

[27] in which, after a file containing the configuration of the robot is pro-cessed, students are 

presented with a 2D schematic and a 3D model of the robot, achieving comprehensive learning 

experience. The first application, implemented as a Python script, extracts the configuration of the 

robot, and generates its visual schematic. A user interface was created using Unity3D in which the 

students have to define joint reference systems. In contrast, the second application, developed using 

Unity3D, creates an interac-tive 3D model of the robot that allows the manipulation of joint 

movements and facilitates the derivation of D-H parameters. 

Another educational simulation tool was developed by Sanguino and Márquez [28]. They 

created a simulation tool that helps with teaching and learning 3D kinematics workspac-es without 
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the need of programming knowledge. The graphical interface allows for the definition of D-H 

parameters and the geometry of a serial robotic arm with up to 5 DOF. 

Currently, there is a lot of simulation software available for robot systems. Among the most 

utilized platforms for modeling and simulation is MATLAB. Some benefits of using MATLAB 

include: the possibility of real time simulation, powerful visualization tools for analyzing and 

interpreting simulation results, and the ability to handle complex simulations. 

3. Materials and Methods 

All the applications mentioned above require the user to create a simulation model for 

conducting simulations. However, creating a 3D model or a simulation model in MATLAB, for 

example, can be very time-consuming.  

The goal was to develop an application that can help ease the process of simulating the 

kinematics problem for a serial robot with a desired configuration. The forward kinematics is very 

important in robotics, mainly for simulations issues, while the inverse kinematics is used for 

implementation of real-life applications. 

The forward kinematics problem involves determining the absolute position and the orientation 

of the end-effector (EE) when the joint variables are known, whereas the inverse kinematics implies 

determining the generalized coordinates necessary to achieve a given EE position. 

In an effort to make the simulation process easier for the user, the authors propose a MATLAB 

based application, using Simulink’s Simscape library for modelling purposes. The application 

provides the simulation of a robotic manipulator based on information provided by the user. In 

contrast to the standard method, the proposed approach does not require any prior knowledge of 

MATLAB Simulink, and moreover, it offers the capability to generate simulation models for multiple 

configurations.  

3.1. Generating a Simulation in MATLAB 

The following terms are going to be used in the next sections: 

User – refers to the end-user interacting with the system. 

Programmer – denotes the individual responsible for writing the code, in this case the author. 

GUI – stands for Graphical User Interface and represents the interface between User and the 

application. 

Main – refers to the MATLAB script associated with the GUI. 

Generates_Simulink_Models – refers to the MATLAB script that creates the Simulink models for 

the simulation.  

RobotStructure - refers to the Simulink model created using Simscape library that contains the 

links and joints of the robot. 

SimulationModel – refers to the Simulink model that computes the requested problem. 

For comparison purposes, Table 1 presents a description of generating a kinematics simulation 

using each of the methods, standard and proposed. 

Table 1. Comparison of the two methods. 

Standard Method Proposed Method 

User must build a Simulink Model using 

the Simscape library that contains the 

structure of the robot (RobotStructure) 

Programmer creates the application that 

contains a GUI 

RobotStructure model has to contain blocks 

representing the links and joints of the 

robot, connected by coordinate systems, 

some solver blocks, and the global 

coordinate system 

User runs the main Script (Main) and the 

graphical interface is open 
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User has to create a MATLAB script where 

they import the Rigid Body Tree of the 

robot 

User fills in the information about the 

structure of the robot (name of the robot, 

type of joints, base parameters, link length, 

etc.) 

After the script is run, User has to create a 

second Simulink model (SimulationModel) 

User presses the push button called 

“Simulation" 

SimulationModel is going to contain blocks 

with the values of the joint variables, blocks 

that convert the measurement unit and are 

connected to the joints, the structure of the 

robot, and blocks that solve the kinematics 

problem 

The scripts are going to be run creating two 

Simulink models: RobotStructure and 

SimulationModel. SimulationModel going 

to be run automatically  

User has to configure the parameters for all 

of the blocks and make the connections 

between them 

Simulation of the robot can be visualized in 

MATLAB 

When finished, SimulationModel must be 

run 
 

Simulation of the robot can be visualized in 

MATLAB 
 

An example of a Simulink model containing the structure of a 3DOF serial robot is provided in 

Figure 2. 1, 2, 3, and 4 represent the links, while J1, J2, and J3 represent the joints. 

 

Figure 2. DOF serial robot a) Configuration of the robot b) Simulink model of the robot’s structure. 

In the next paragraph, the process of creating a Simulink model for the structure of a robot will 

be explained, and some important abbreviations will be clarified so the thought process behind the 

application can be understood better. 

When creating the structure of the robotic arm the user must follow basic Simulink 

representation rules, for example every movement is around or along the Z axis. The model must 

contain some mandatory blocks (“Solver Configuration”, “Mechanism Configuration” and “World 

Frame” - WF) followed by the links and the joints of the robotic arm, and “Rigid Transform” (RT) 

blocks that make the connection between links and joints. Whenever a link or a joint is added to the 

model it needs a coordinate system associated to it, that is relative to the previous link or joint. The 

system, represented by the RT block, is supposed to be in the mass center of the element, and it can 

be translated and rotated in order to get to a new position. Additionally, if the rotation of a joint is 

around X axis (in relation to the global reference WF) or the length of a link is along X axis, for 

example, the RT associated has to be rotated so that its Z axis corresponds to the global reference’s X 
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axis. In Figure 2, RT blocks Z1, Z2, Z3 were added to position links on the right axis, and the other 

RT blocks WF2Base, Base2Joint1 and so on were added in order to position the following joint or link. 

Considering all of the above mentioned, it is obvious that the proposed application is a helpful 

tool for the user. 

3.2. Application Overview 

With the purpose of involving the user as little as possible a GUI was created, where the user 

fills in the data regarding the configuration of the robotic arm and by pressing a button they are 

provided with the simulation of the desired robot. The overview of the application is presented in 

Figure 1. The steps that must be followed in the creation of the application are mentioned below and 

explained in the following subsections. 

Step 1: The programmer creates the GUI. 

Step 2: The GUI generates its callback script (Main). 

Step 3: The programmer makes changes or adds code to Main. 

Step 4: The programmer writes the Generates_Simulink_Models script that creates the robot’s 

Simulink model. 

Step 5: The user introduces the information needed for the simulation. 

Step 6: Information entered by the user is assigned to specific variables found in Main script. 

Step 7: Generates_Simulink_Models generates the Simulink model of the robotic arm. 

Step 8: The simulation is provided to the user. 

DeSeRoI offers configurable complexity levels customized to user requirements. The application 

is capable of performing a range of computations, including forward kinematics, inverse kinematics, 

dynamics problems, and additional functionalities, each of these computations being a member of 

the DeSeRoI family. This flexibility ensures that varying levels of computational demands and user 

expertise can be met by the application. 

3.3. Graphical User Interface 

A GUI is a digital interface in which a user can operate graphical components such as menus, 

buttons, and text inputs. Through a GUI the user can interact with electronic devices or computer 

systems. GUIs are used in various types of applications such as software for smartphones, video 

games, and industrial applications, all because of the intuitiveness and ease that they offer in 

controlling systems. 

The interface was created interactively using a drag-and-drop environment [32]. To open the 

environment, type “guide” in the Command Window. On the left side of the Editor can be found a 

menu that contains all the components that can be added as shown in Figure 3. 

 

Figure 3. The components menu in the GUI Editor. 
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In order to place the components, they have to be dragged and dropped. The size of the interface 

can be adjusted by dragging the right bottom corner. After that, by double clicking a component, an 

Inspector opens where all parameters can be modified. Figure 4 shows the parameter list for a Push 

Button and an Edit Text. 

 

Figure 4. Push Button (left) and Edit Text (right) parameter lists. 

For the components used, parameters “String” and “FontSize” were changed to match the 

characteristics of the robotic arm. The “Tag” parameter value is the value that is used in the callback 

functions in order to identify the component that one is working with. After configuring the 

parameters, the final design of the interface can be seen in Figure 5. The information required in the 

GUI refers to the name of the robot, type of the joints, link sizes and joint variables. 

 

Figure 5. The user interface. 
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The components are going to be reffered to as boxes preceded by their name. The proposed GUI 

has a total of 35 boxes. 

With the aim of creating an intuitive and user-friendly GUI, various types of boxes available 

were used. For example, to enhance usability and clarity a significant number of “Static Text” boxes 

were incorporated, which provide explanations for user input fields. For efficient selection of joint 

types, “Pop-up Menu” boxes were employed, while “Edit” boxes were used for filling-in sizes of the 

links, values for joint variables, and the name of the robot. Additionally, a “Push button” box 

responsible for running the simulation was included to streamline the user’s navigation through the 

process. 

Once saved, a MATLAB Script (Main), containing the callback functions is generated based on 

the actions that took place in the GUI editor. The script has the same name as the figure and is saved 

in the same folder. 

3.4. MATLAB Scripts 

The application contains two scripts: Main – the script containing the GUI callbacks and 

Generates_Simulink_Models – the script that creates the Simulink model for the simulation. 

3.4.1. Main Script 

Main is the script containing the GUI callbacks that are generated with the creation of the GUI. 

The script is structured as follows: first, there are the functions that deal with the setup and 

initialization of the GUI and that manage the GUI’s state and output (Main, Main_OpeningFcn and 

Main_OutputFcn). Following those, there is a function associated with each box in the interface 

adding up to a total of 40 functions. Some of the functions in Main are “edit3”, “popupmenu1”, and 

“pushbutton1”. 

For every box in the GUI that is going to contain a value or some information necessary for the 

simulation model, a variable is created in their respective callback function from Main, responsible 

with storing the value. As an example, Figure 6 represents the callback function edit3, associated to 

the “Edit Text” box where the user fills in the name of the robot. The command that stores the value 

is highlighted in a rectangle. 

 

Figure 6. Function for edit3 - the "Edit Text" box reserved for the name of the robot. 

The functions for the other boxes are similar to the one shown above, except for the “Push 

Button” function that is responsible for running the Generates_Simulink_Models Script. The function 

is shown in Figure 7. 
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Figure 7. Function callback for "Push Button". 

The variables are declared as global, each in their own callback function but also in the callback 

function of the “Push Button” so they can be used in Generates_Simulink_Models. Once run, Main 

saves all of the data provided by User in GUI and runs Generates_Simulink_Models. 

3.4.2. Generates_Simulink_Models Script 

The main objective of Generates_Simulink_Models Script is to create the Simulink model of the 

robotic arm and run its simulation.  

The Generates_Simulink_Models Script is structured as shown in Figure 8. 

 

Figure 8. Structure of Generates_Simulink_Models script. 

First, the Simulink model containing the configuration of the robot (RobotStructure) was created 

and saved in order to obtain the Rigid Body Tree, then a new Simulink model was created, tasked 

with conducting the forward kinematics process (SimulationModel). Following that, there is the 

command for running the simulation of the model and some useful functions created specifically for 

this application. 

The RobotStructure model only contains the configuration of the robot as seen in Figure 2. It was 

created using the open_system(new_system()) command. After the model is saved, the 
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corresponding Rigid Body Tree is obtained with the help of importrobot() function [33]. 

SimulationModel is created just like RobotStructure and it is named according to the user’s input in 

the GUI plus the current date and time. This model contains “Constant” blocks with the values of the 

joint variables followed by “Gain” blocks that transform the measurement unit from degrees to 

radians. The configuration of the robot is also represented here so the outputs from the “Gain” blocks 

are then provided as inputs for the “Revolute Joint” blocks. This is done by using a “Simulink-PS 

Converter” for each of the joints, that converts the Simulink input signal to a Physical Signal. 

Each one of the joints has an output associated with the position by checking the “Position” box 

under “Sensing” in the Block parameter. The outputs are connected to a “Mux”, through “PS-

Simulink Converter” blocks, which is then connected to a “Get Transform” block. The “Get 

Transform” block has a parameter called “Rigid Body Tree” where the Rigid Body Tree obtained with 

the help of the GetRBT function is used. Other parameters that have to be configured are “Source 

Body” and “Target Body” where the last and the first element of the robot need to be selected. The 

next block is the “Coordinate Transformation Conversion” that has a homogenous transformation as 

input and converts it to a translation vector.  

To configure parameters for the blocks, the “set_param” command is used, and to establish 

connections between blocks, the “add_line” command is used. 

Because before every link or joint in the structure of the robot a RT has to be added and 

configured in relation to the previous one (as explained in subsection 3.1), there would be many 

variations of the RT. With the great number of orientations of the coordinate system, there is a great 

amount of work to generate diverse configurations. One of the proposed features of the application 

is to reduce the number of possible orientations for the RT down to three, each of them corresponding 

to a rotation around one of the axes of the global coordinate system as shown in Figure 9.  

 

Figure 9. The three types of Rigid Transform that are proposed. a) Associated with rotation around Z 

or link length along Z – corresponds to World Frame orientation; b) Associated with rotation around 

Y or link length along Y; c) Associated with rotation around X or link length along X. All movements 

are related to WF orientation. 

To be able to only use the three coordinate systems presented above, it is required to add an 

additional RT after every link or joint. The additional RT is going to reorient the coordinate system 

to ensure that it consistently maintains alignment with the WF, the global reference frame of the 

model [31]. To identify the type of Rigid Transform a variable called varSist is defined. For Figure 9 

a) varSist = 3, for Figure 9 b) varSist = 2, and for Figure 9 c) varSist = 1. The necessary transformations 

to reorient the coordinate system to WF orientation are presented in Figure 10.  
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Figure 10. The necessary transformations to reorient the coordinate system. 

Figure 11 presents the structure of a 3DOF robot created using the proposed method. 

 

Figure 11. Structure of a 3DOF using an intermidiate Rigid Transform. 

Based on the grouping of elements in Figure 11, three of the functions in Figure 8 were created: 

a) Convert_to_WF_Orientation - coresponds to all of the blocks that contain “2WF” in their names, 

b) AddJoint - coresponds to the blocks in rectangles, c) AddLink - coresponds to the blocks in 

capsules. 

Convert_to_WF_Orientation is the function that adds an intermediate RT block that converts the 

orientation back to WF orientation as explained previously. The function is called using the name of 

the last added link or joint, it checks its orientation, transforms it accordingly, and resets varSist to 3, 

the value specific to WF orientation. The function is presented in Figure 12. 
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Figure 12. Convert_to_WF_Orientation function. 

Functions AddJoint and AddLink were created in order to be able to add joints and links in an 

easier manner. As seen in Figure 12, each joint and link is preceded by an associated RT, with 

parameters set according to the specific element.  

AddJoint = RT block + Joint block 

The function adds the RT block, checks for the type of joint, sets the parameters and resets varSist 

accordingly, then adds the joint block, sets its parameters and makes the connections between blocks. 

Its input parametres are: 1. SimName – the name of the model that the blocks are added to, 2. C – the 

variable that saves the joint type selected, 3. numeCupla – the name of the joint block in the model, 4. 

elemAnterior – the name of the previous link block, 5. cuplaUrmatoare – the abbreviated name of the 

joint, 6. lx – the length of the previous link on X axis, 7. ly - the length of the previous link on Y axis, 

8. lz - the length of the previous link on Z axis. 

AddLink = RT block + Link block 

AddLink function adds both the RT and the link block, verifies on which axis the link’s length is 

on, sets the parameters, and makes the connections between the blocks. The input parameters for this 

function are: 1. SimName – the name of the model that the blocks are added to, 2. numeElem – the 

name of the link block in the model, 3. cuplaAnterioara – the name of the previous joint block, 4. 

elemUrmator – the abbreviated name of the link, 5. lx – link length on X axis, 6. ly – link length on Y 

axis, 7. lz – link length on z axis. 

The last function defined in Generates_Simulink_Models is Obtain_Rigid_Body-Tree function 

containing the importrobot command for obtaining the rigid body tree from RobotStructure model. 

4. Validation and Results 

To ensure the functionality and effectiveness of the proposed application, a comprehensive 

validation process was conducted. The validation process is conducted through the following 

approaches: 

1. Accuracy verification: The objective is to demonstrate that the simulations generated using the 

proposed method are equivalent to those obtained using standard theoretical methods (D-H or 

direction cosines). The coordinate matrix of the origin of system T3 (fourth column in matrix H1, 

respectively H2) complies with the geometrical values, therefore validating the calculations 

performed. 

2. Efficiency analysis: The number of operations performed by the user to complete simulations, 

was considered as a factor that characterizes efficiency.. The steps involved in both the standard 

method and the proposed application will be enumerated, demonstrating a significant reduction 

in user operations with the application.  

The application was tested on a system with the following specifications: 

• Operating system: Windows 11 
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• Processor Intel Core i5 

• RAM: 8GB 

• MATLAB Version: MATLAB R2023a 

In the following, a simplified version of DeSeRoI is considered, namely 

DeSeRoI_Forward_Kinematics (Figure 13), the member of DeSeRoI family that computes the forward 

kinematics problem. To reduce complexity while maintaining relevancy, it was decided to use a serial 

robot with 3DOF with only revolute joints. The validation of the developed application was 

conducted by performing a series of simulations with various configurations of serial robots. The 

application was configured to perform simulations based on user – defined inputs, being able to 

handle various input parameters such as: joint types, joint angles, link sizes. 

 

Figure 13. The scheme of the proposed application that computes forward kinematics. 

4.1. Accuracy Verification 

To validate the accuracy of the application, two serial robots with different configurations were 

simulated and an H matrix was provided for each of them. The matrix describes the absolute 

orientation of Link3 and the absolute position of the origin of the coordinate system T3, fixed to Link3 

and positioned at the center of Joint3.  

The first example is a 3DOF serial robot with the configuration RzRyRz (Figure 14). Its input 

data can be found in Figure 15. 
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Figure 14. Configuration of the first serial robot: RzRyRz. 

 

Figure 15. Input values used for simulating the forward kinematics of the first example. 

The simulated position, based on the values in Figure 15, is presented in Figure 16 alongside the 

H1 matrix mentioned at the beginning of the subsection. 

 

Figure 16. Simulation results of the RzRyRz serial robot a) Computed position, b) Matrix H1 where 

the values on column 4 have the following corespondents: 3 – length on X axis (Link2), 0 – length on 

Y axis, 6 – length on Z axis (Base + Link 1). 
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The second example consists of a 3DOF serial robot (Figure 17) with the following configuration: 

RzRxRy. The input data of the robot can be found in Figure 18. 

 

Figure 17. Configuration of the second serial robot: RzRxRy. 

 

Figure 18. Input values used for simulating the forward kinematics of the second example. 

The simulated position, based on the values in Figure 18, is presented in Figure 19 alongside the 

H2 matrix mentioned at the beginning of the subsection. 
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Figure 19. Simulation results of the RzRxRy serial robot a) Computed position, b) Matrix H2 where 

the values on column 4 have the following corespondents: 3 – length on X axis (Link2), 0 – length on 

Y axis, 6 – length on Z axis (Base + Link 1). 

4.2. Efficiency Analysis 

Moreover, the number of operations performed by the user for developing the simulation model 

using the standard method, as well as the proposed method, is considered and objective parameter 

in assesing the efficiency of the proposed method. The operations performed by the user to obtain 

the simulation of the 3DOF robot in Figure 14 using the standard method are enumerated below and 

their sum is assigned to the variable Ns, where s stands for standard. 

- Creating the Simulink model RobotStructure 

- Adding the blocks:  

o 3 x mandatory blocks (Solver Configuration, Mechanism Configuration, World Frame) 

o 4 x elements 

o 3 x Revolute Joint 

o 7 x Rigid Transform 

- Adding lines between blocks of RobotStructure model 

- Setting parameteres 

- Creating a MATLAB script to obtain the Rigid Body Tree 

- Creating the Simulink model SimulationModel 

- Adding blocks 

o 3 x Constant 

o 3 x Gain 

o 3 x Simulink-PS Converter 

o 3 x PS-Simulink Converter 

o 1 x Mux 

o 1 x Get Transform 

o 1 x Coordinate Transformation Conversion 

- Adding the RobotStructure model 

- Adding lines between blocks of SimulationModel model 

- Setting parameters 

Once the models are done, User needs to run the script and the models and the simulation is 

provided resulting in 𝑁𝑠 = 20 operations, excluding multiple blocks of the same kind. 

To obtain a simulation for the same robot using the proposed method User must perform the 

following operations: 

- Run Main script 

- Complete the name of the robot 

- Fill in the desired type of joints  

- Fill in the sizes of the elements 

- Provide the joint variables 

- Press the Simulation button 

The operations performed by the user add up to a total of 𝑁𝑝 = 6 operations where p stands for 

proposed as in proposed application. 

By comparing the results, it is found that 𝑁𝑠 > 𝑁𝑝 . In accordance with this approach, the 

proposed method is an efficient one. 

4. Discussion 

The findings of the paper align with previous studies that emphasize the advantages of 

automated tools in robotic simulations proposing a new application. 

The paper has demonstrated that using the Simulink library, an efficient application can be 

created to facilitate simulation processes. The study has shown the effectiveness and efficiency of 

DeSeRoI for simulating a 3DOF serial robot with revolute joints. The results demonstrate that the 
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application creates outcomes equivalent to those obtained through traditional methods while 

significantly reducing the number of operations. The application streamlines the simulation process 

and reduces potential errors, therefore supporting the hypothesis that it can accurately replicate 

traditional simulation results with reduced user effort. 

The application’s capability to handle various input parameters and configurations makes it a 

versatile tool for diverse robotic simulations. 

Future research could focus on extending the application to support more complex robotic 

configurations, including various joint types and robots with higher degrees of freedom, and the 

developing of the other members of the DeSeRoI family. 

In conclusion, the MATLAB-based application presents a valuable tool for robotic simulations, 

offering significant improvements in efficiency and user-friendliness. The paper confirms that the 

application can achieve identical results to traditional methods with fewer user operations, making 

it an effective solution.  
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