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Abstract: The development of virtual models has recently been generalized in the field of complex mechatronic
product design. Virtual models have various advantages such as: the systemic design approach, most often
parametric, the implementation of extreme, expensive, and perhaps risky scenarios for the operation of the
designed product, the testing of a large number of variants, etc. The main contribution of the paper consists of
the development of an interface family called DeSeRol (Dedicated Serial Robot Interface). Each member of the
interface family integrates Simulink libraries and is created by the programmer in accordance with user
requests. It follows that the interfaces composing the DeSeRol family can have different levels of complexity
depending on user needs and constraints. We are implementing a MATLAB-based application with user-
provided configuration for serial robots in order to automatically visualize the kinematics data and simulation.
Within MATLAB, two scripts are created responsible for generating Simulink models that compute the
kinematics problem. One of the scripts (Main) saves information about the configuration of the robot and the
other one (Generates_Simulink_Models) computes the kinematics problem. Different types of functions
(software module) have been developed. Using these functions, the Simulink models result as modular entities.
The automated approach eases user’s interaction and understanding of serial robots” kinematics by performing
the simulation procedure in a shorter amount of time and with higher efficiency, assuring a precise outcome
despite the chosen parameters.

Keywords: serial robots; kinematics; simulation model; interchangeable configuration; virtual models

1. Introduction

In the field of manufacturing, there is an ongoing quest for efficiency, flexibility and
productivity, which is shaping industry practices and driving innovation and competitiveness. With
the intention of achieving all of the above, manufacturers and engineers are implementing innovative
technologies and methodologies to enhance productivity in their operations. These technologies and
methods that are currently employed include automation [1], collaborative robots [2], lean
manufacturing [3], additive manufacturing (3D printing) [4], IoT [5], and simulation [6] among
others.

Each of them have a different benefit and contribute to innovation in their unique way.
Automation and collaborative robotics contribute to the enhancement of efficiency [7,8], additive
manufacturing and collaborative robots improve the flexibility [9,10], IoT and lean manufacturing
contribute to sustainability and cost reduction, and IoT, additive manufacturing and simulation boost
the productivity [11].

In addition to these widely adopted methods, the manufacturing industry regularly employs
serial robots (SR). They perform various operations such as assembling compo-nents, welding,
quality control, machining, and handling materials. To ensure the func-tionality and seamless
integration of SR into systems, several steps must be followed, in-cluding: design, simulation,
hardware and software integration, staff training, monitoring, and maintenance.

Simulation refers to the process of designing and modelling a real or hypothetical physical
system, running the model (replicating the real-world use of the physical system in a dynamic virtual

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202406.1962.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 June 2024 d0i:10.20944/preprints202406.1962.v1

environment), and then analyzing the results with respect to a predetermined set of goals that the
system has to meet. It is considered a very important tool not only in robotics but in numerous other
fields, due to its many positives [18]. A great benefit of using simulation models is the capacity to
optimize production processes by introducing a virtual (and thus more cost-effective) feedback loop
meant to find errors and oversights made in previous development steps.

It can be observed that simulation is a very common activity in recent years, used across many
sciences and disciplines to highlight aspects or demonstrate hypotheses. Concrete uses of simulation
include product design, process optimization, medical training, traffic flow analysis, and flight
simulators, among others. In the manufacturing industry, simulation is essential for the optimization
of processes and refining of the product design. In robotics, simulation plays an important role in
development and testing, ensuring that they are efficient and safe.

Scientists from various fields presented the importance of simulation in education [12],
manufacturing [13], nursing education [14], robotics [15,16,17], and many others. Hereafter,
simulation will be discussed, with a focus on the simulation of serial robots.

To ensure optimal performance, SR are extensively simulated for various behaviors. These
simulations include path planning for optimal routing, task execution for jobs like assembly or
welding, and kinematics and dynamics to validate motion and forces. They can also cover error
handling, force control, and sensor integration. Such comprehensive simulations validate that SR are
accurate and safe to use in industrial operations [19,20,21].

The main contribution of the paper consists of the development of an interface family called
DeSeRol (Dedicated Serial Robot Interface) (Figure 1). Each member of the interface integrates
Simulink libraries and is created by the programmer in accordance with user requests. It follows that
the interfaces composing the DeSeRol family can have different levels of complexity depending on
user needs and constraints. DeSeRol is characterized by the following:

a) Adaptability to constraints imposed by the user. Therefore, being able to have various complexity
levels implemented by the programmer.

b) It is necessary to preinstall MATLAB but it is not necessary for the user to have MATLAB
knowledge

c) Depending on its complexity, any serial robot configuration can be simulated.

The rest of the paper is organized as follows: Section 2, applications used for simula-tion, Section
3, the structure of the proposed application is presented and all of the compo-nent parts are described
in detail. In Section 4, an example is provided for validation reasons and to emphasize the importance
of the application.

USER

DeSeRol
—_—

le——

PROGRAMMER [— —| GuUI

4

Generates_Simulink_Models [e—————— J

|
|

!

SIMSCAPE MODEL 3 SIMULATION

Figure 1. DeSeRol general template.
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2. Related Work

Building on the presented concepts, researchers have conducted significant work to enhance the
capabilities and applications of serial robots. Nam et al. propose a vehicle crash simulator [22] that,
unlike most simulators, which focus on a single vehicle, simulates both vehicles and their
environments. Their simulator integrates Simpy-based vehicle collision simulations with Unity-
based animation for comprehensive visualization of crash scenarios. Vehicle and environment
models are previously stored. The model adjusts the characteristics of the vehicle model according to
the discrete events sent by the Simpy engine and identifies the collisions that might occur on the road.
However, there are some potential limitations that could arise, for instance, the simulator’s
dependence on the model repository means that any inaccuracies in the stored models could lead to
unreliable simulation outcomes. Additionally, the reliance on JSON files for communication between
the simulation and animation components introduces potential transmission issues, which could lead
to incorrect animations.

Another utility of simulation is that it can assist in the practical implementation of swarm
robotics, enclosing the gap between concept and real-world application. Different multi-robot
simulators were developed for simulation of swarm robotics as presented in [23]. Each of them has
specific characteristics depending on the aspects to be simulated such as the capability to simulate
multiple mobile robots (Stage), high-level modeling language for analyzing the swarm robotics
systems (Bio-PEPA), built-in collision detection system (Open Dynamics Engine), the generation of
consistent interaction between ob-jects (Gazebo). Additionally, a simulation using OOP (Object-
Oriented Programming) is presented in [24].

A simulation model was developed by Bencak et al. for the determination of an ob-ject’s optimal
pick-point due to its complexity [25]. The simulation model is based on ADAMS/MATLAB
cosimulation, with the mechanical model created in ADAMS and the force controller, support
functions and user interface developed in MATLAB/Simulink, respectively MATLAB/App Designer.
The proposed model is capable of simulating a va-riety of objects and of suggesting new
configurations for the existing robotic gripper. The main disadvantage of the model is the reliance on
exact values for contact and other pa-rameters, which are challenging to verify without highly
accurate sensors. Moreover, the simulation achieves less accuracy than simulations conducted using
alternative methods.

Similar computer applications were developed to teach forward and inverse kine-matics.
Gonzalez-Garcia et al. used an experimental platform based on MATLAB’s Sim-scape Multibody
library in order to validate that computer simulations are very effective in teaching robotics to
undergraduates [26]. The approach involves creating 3D robot models in Solidworks, converting
them to STL and XML files using Simscape Multibody library tools, and importing these files into
Matlab/Simulink to create a mechanical model. The virtual model is afterwards configured in three
sections. In the input parameters section users adjust the joint positions. The forward kinematics
section is where D-H parameters are set, the reference systems are defined, and transformation
matrices are calculated. Fi-nally, in the results display section, users can visualize the positions and
orientations of each joint. When the model is first loaded, the reference systems are at the robot’s
base, so the user must redefine each of them according to the D-H method.

Arnay et al. developed a software suite made of two applications based on Python and Unity3D
[27] in which, after a file containing the configuration of the robot is pro-cessed, students are
presented with a 2D schematic and a 3D model of the robot, achieving comprehensive learning
experience. The first application, implemented as a Python script, extracts the configuration of the
robot, and generates its visual schematic. A user interface was created using Unity3D in which the
students have to define joint reference systems. In contrast, the second application, developed using
Unity3D, creates an interac-tive 3D model of the robot that allows the manipulation of joint
movements and facilitates the derivation of D-H parameters.

Another educational simulation tool was developed by Sanguino and Marquez [28]. They
created a simulation tool that helps with teaching and learning 3D kinematics workspac-es without
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the need of programming knowledge. The graphical interface allows for the definition of D-H
parameters and the geometry of a serial robotic arm with up to 5 DOF.

Currently, there is a lot of simulation software available for robot systems. Among the most
utilized platforms for modeling and simulation is MATLAB. Some benefits of using MATLAB
include: the possibility of real time simulation, powerful visualization tools for analyzing and
interpreting simulation results, and the ability to handle complex simulations.

3. Materials and Methods

All the applications mentioned above require the user to create a simulation model for
conducting simulations. However, creating a 3D model or a simulation model in MATLAB, for
example, can be very time-consuming.

The goal was to develop an application that can help ease the process of simulating the
kinematics problem for a serial robot with a desired configuration. The forward kinematics is very
important in robotics, mainly for simulations issues, while the inverse kinematics is used for
implementation of real-life applications.

The forward kinematics problem involves determining the absolute position and the orientation
of the end-effector (EE) when the joint variables are known, whereas the inverse kinematics implies
determining the generalized coordinates necessary to achieve a given EE position.

In an effort to make the simulation process easier for the user, the authors propose a MATLAB
based application, using Simulink’s Simscape library for modelling purposes. The application
provides the simulation of a robotic manipulator based on information provided by the user. In
contrast to the standard method, the proposed approach does not require any prior knowledge of
MATLAB Simulink, and moreover, it offers the capability to generate simulation models for multiple
configurations.

3.1. Generating a Simulation in MATLAB

The following terms are going to be used in the next sections:

User — refers to the end-user interacting with the system.

Programmer — denotes the individual responsible for writing the code, in this case the author.

GUI - stands for Graphical User Interface and represents the interface between User and the
application.

Main - refers to the MATLAB script associated with the GUIL

Generates_Simulink_Models — refers to the MATLAB script that creates the Simulink models for
the simulation.

RobotStructure - refers to the Simulink model created using Simscape library that contains the
links and joints of the robot.

SimulationModel - refers to the Simulink model that computes the requested problem.

For comparison purposes, Table 1 presents a description of generating a kinematics simulation
using each of the methods, standard and proposed.

Table 1. Comparison of the two methods.

Standard Method Proposed Method
User must build a Simulink Model using
the Simscape library that contains the
structure of the robot (RobotStructure)

Programmer creates the application that
contains a GUI

RobotStructure model has to contain blocks
representing the links and joints of the
robot, connected by coordinate systems,
some solver blocks, and the global
coordinate system

User runs the main Script (Main) and the
graphical interface is open
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User fills in the information about the
structure of the robot (name of the robot,
type of joints, base parameters, link length,
etc.)

User has to create a MATLAB script where
they import the Rigid Body Tree of the
robot

After the script is run, User has to create a  User presses the push button called
second Simulink model (SimulationModel) “Simulation”

SimulationModel is going to contain blocks

with the values of the joint variables, blocks The scripts are going to be run creating two
that convert the measurement unit and are Simulink models: RobotStructure and
connected to the joints, the structure of the SimulationModel. SimulationModel going
robot, and blocks that solve the kinematics to be run automatically

problem

User has to configure the parameters for all
of the blocks and make the connections
between them

When finished, SimulationModel must be
run

Simulation of the robot can be visualized in
MATLAB

Simulation of the robot can be visualized in
MATLAB

An example of a Simulink model containing the structure of a 3DOF serial robot is provided in
Figure 2.1, 2, 3, and 4 represent the links, while J1, J2, and J3 represent the joints.
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Figure 2. DOF serial robot a) Configuration of the robot b) Simulink model of the robot’s structure.

In the next paragraph, the process of creating a Simulink model for the structure of a robot will
be explained, and some important abbreviations will be clarified so the thought process behind the
application can be understood better.

When creating the structure of the robotic arm the user must follow basic Simulink
representation rules, for example every movement is around or along the Z axis. The model must
contain some mandatory blocks (“Solver Configuration”, “Mechanism Configuration” and “World
Frame” - WF) followed by the links and the joints of the robotic arm, and “Rigid Transform” (RT)
blocks that make the connection between links and joints. Whenever a link or a joint is added to the
model it needs a coordinate system associated to it, that is relative to the previous link or joint. The
system, represented by the RT block, is supposed to be in the mass center of the element, and it can
be translated and rotated in order to get to a new position. Additionally, if the rotation of a joint is
around X axis (in relation to the global reference WF) or the length of a link is along X axis, for
example, the RT associated has to be rotated so that its Z axis corresponds to the global reference’s X
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axis. In Figure 2, RT blocks Z1, Z2, Z3 were added to position links on the right axis, and the other
RT blocks WF2Base, Base2Joint1 and so on were added in order to position the following joint or link.

Considering all of the above mentioned, it is obvious that the proposed application is a helpful
tool for the user.

3.2. Application Overview

With the purpose of involving the user as little as possible a GUI was created, where the user
fills in the data regarding the configuration of the robotic arm and by pressing a button they are
provided with the simulation of the desired robot. The overview of the application is presented in
Figure 1. The steps that must be followed in the creation of the application are mentioned below and
explained in the following subsections.

Step 1: The programmer creates the GUL

Step 2: The GUI generates its callback script (Main).

Step 3: The programmer makes changes or adds code to Main.

Step 4: The programmer writes the Generates_Simulink_Models script that creates the robot’s
Simulink model.

Step 5: The user introduces the information needed for the simulation.

Step 6: Information entered by the user is assigned to specific variables found in Main script.

Step 7: Generates_Simulink_Models generates the Simulink model of the robotic arm.

Step 8: The simulation is provided to the user.

DeSeRol offers configurable complexity levels customized to user requirements. The application
is capable of performing a range of computations, including forward kinematics, inverse kinematics,
dynamics problems, and additional functionalities, each of these computations being a member of
the DeSeRol family. This flexibility ensures that varying levels of computational demands and user
expertise can be met by the application.

3.3. Graphical User Interface

A GUL is a digital interface in which a user can operate graphical components such as menus,
buttons, and text inputs. Through a GUI the user can interact with electronic devices or computer
systems. GUIs are used in various types of applications such as software for smartphones, video
games, and industrial applications, all because of the intuitiveness and ease that they offer in
controlling systems.

The interface was created interactively using a drag-and-drop environment [32]. To open the
environment, type “guide” in the Command Window. On the left side of the Editor can be found a
menu that contains all the components that can be added as shown in Figure 3.

File Est iew Layewt Tools  Help

[N £ BB~ aMhd AN >

GUIDE Will be Removed in a Future Release - When GUIDE is removed, apps will continue o . [5]

Tage figurel Curment Peint: [8 220] Percitices [520, 67E, 360, 4200

Figure 3. The components menu in the GUI Editor.
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In order to place the components, they have to be dragged and dropped. The size of the interface
can be adjusted by dragging the right bottom corner. After that, by double clicking a component, an
Inspector opens where all parameters can be modified. Figure 4 shows the parameter list for a Push
Button and an Edit Text.

Es Inspector: matlabwi.control.UIiControl

Ba a4 w1 = B LS
il BackgroundColor =] ¥ BackgroundColor =]
BeingDeleted Off BeingDeleted oft
BusyAction queue B BusyAction queus B
ButtonDownFcn @ 2| ButtonDownFen o 2
CData H 2 CData 551 2
Callback @ %automatic 2 Callback 2| automatic 2
ContextMenu <Mone> = ContextMenu <None> B
Crestefen 4 s CreateFen @/ %automatic 2
DeleteFen @ 2 DeleteFen | 2
Enable on = Enable on -1
* Extent 00124 1.462) [ Extent [009 1.462]
FontAngle normal - FentAngle nermal -
FontName MS Sans Serif & FentName MS Sans Serif 4
FontSize 80 & FentSize 80 L4
FontUnits points - FentUnits points -]
FontWeight normal - FontWeight nermal -
¥ ForegroundColor B [ ForegroundCelor &‘ -
HandleVisibility on - HandleVisibility on |
HerizontalAlignment center - HorizontalAlignment center -
& InnerPositien [26 26.692 13.8 1.692] [® InnerPesition [29.8 22.846 10.21.692]
Interruptible Bon Interruptible @on
KeyPressFen @ & KeyPressFcn | Fl
KeyReleaseFcn <& 2| KeyReleaseFcn 3| &
ListboxTop 10 Ed ListboxTop 10 &
Max 10 Fd Max 10 &
Min 0.0 F Min 00 &
# QuterPosition [26 26.692 13.8 1.692] [#l OuterPosition (208 22.24610.21.692]
# Position [2626.692 13.8 1.692] [ Position [29.8 22846 10.2 1.692])
SliderStep | 1x2 double array] @ SliderStep E‘ [1x2 double array] L4
String E| Push Button 2 String E| EditTet L4
Style pushbutton - Style edit -
Teg pushbutton] Ed Tag edit! 2
Tooltip E| 2 Tooltip E| z
Units characters Units characters =
UserData B @ UserData B L4
Value H oo 2| Value B o0 z
Visible Bon Visible @on

Figure 4. Push Button (left) and Edit Text (right) parameter lists.

For the components used, parameters “String” and “FontSize” were changed to match the
characteristics of the robotic arm. The “Tag” parameter value is the value that is used in the callback
functions in order to identify the component that one is working with. After configuring the
parameters, the final design of the interface can be seen in Figure 5. The information required in the
GUI refers to the name of the robot, type of the joints, link sizes and joint variables.

Main

MName of the Robat

Fill in the name of the robot Base height Base radius
Joint 1
Rotation around X axis ~ I Iy Iz
Joint 2 Link 1 length
Rotation around X axis ~ ~
Link 2 length
Joint 3
Rotation around X axis v Link 3 length

af @ @ Simulation

Joint variables

Figure 5. The user interface.
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The components are going to be reffered to as boxes preceded by their name. The proposed GUI
has a total of 35 boxes.

With the aim of creating an intuitive and user-friendly GUI, various types of boxes available
were used. For example, to enhance usability and clarity a significant number of “Static Text” boxes
were incorporated, which provide explanations for user input fields. For efficient selection of joint
types, “Pop-up Menu” boxes were employed, while “Edit” boxes were used for filling-in sizes of the
links, values for joint variables, and the name of the robot. Additionally, a “Push button” box
responsible for running the simulation was included to streamline the user’s navigation through the
process.

Once saved, a MATLAB Script (Main), containing the callback functions is generated based on
the actions that took place in the GUI editor. The script has the same name as the figure and is saved
in the same folder.

3.4. MATLAB Scripts

The application contains two scripts: Main — the script containing the GUI callbacks and
Generates_Simulink_Models — the script that creates the Simulink model for the simulation.

3.4.1. Main Script

Main is the script containing the GUI callbacks that are generated with the creation of the GUI.
The script is structured as follows: first, there are the functions that deal with the setup and
initialization of the GUI and that manage the GUI's state and output (Main, Main_OpeningFcn and
Main_OutputFcn). Following those, there is a function associated with each box in the interface
adding up to a total of 40 functions. Some of the functions in Main are “edit3”, “popupmenul”, and
“pushbutton1”.

For every box in the GUI that is going to contain a value or some information necessary for the
simulation model, a variable is created in their respective callback function from Main, responsible
with storing the value. As an example, Figure 6 represents the callback function edit3, associated to
the “Edit Text” box where the user fills in the name of the robot. The command that stores the value
is highlighted in a rectangle.

function edit3_Callback(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

t(handles.edit3, 'String’);
= - UBject, Fing ) recurns contents of edit3 as text
% str2double(get(hObject, 'String')) returns contents of edit3 as a double

% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'), get(®, 'defaultUicontrolBackgroundColor'))
set(hObject, 'BackgroundColor', ‘white');

end

Figure 6. Function for edit3 - the "Edit Text" box reserved for the name of the robot.

The functions for the other boxes are similar to the one shown above, except for the “Push
Button” function that is responsible for running the Generates_Simulink_Models Script. The function
is shown in Figure 7.
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function pushbuttonl Callback(hObject, eventdata, handles)

global C1;
global C2;
global C3;
global 11 x;
global 12 x;
global 13 x;
global 11 vy;
global 12 y;
global 13 y;
global 11 z;
global 12 z;
global 13_z;
global givenhame;
global rBase;
global hBase;
global ql;
global g2;
global q3;

run Generates_Simulink_Models.m;
Figure 7. Function callback for "Push Button".

The variables are declared as global, each in their own callback function but also in the callback
function of the “Push Button” so they can be used in Generates_Simulink_Models. Once run, Main
saves all of the data provided by User in GUI and runs Generates_Simulink_Models.

3.4.2. Generates_Simulink_Models Script

The main objective of Generates_Simulink_Models Script is to create the Simulink model of the
robotic arm and run its simulation.
The Generates_Simulink_Models Script is structured as shown in Figure 8.

Create RobotStructure > Save RobotStructure P  Obtain the Rigid Body Tree

N

Define function Obtain_Rigid_Body_Tree

Save & Run SimulationModel Create SimulationModel

v

Define function > Define function AddJoint Define function AddLink

Convert_to_WF_Orientation

v

Figure 8. Structure of Generates_Simulink_Models script.

First, the Simulink model containing the configuration of the robot (RobotStructure) was created
and saved in order to obtain the Rigid Body Tree, then a new Simulink model was created, tasked
with conducting the forward kinematics process (SimulationModel). Following that, there is the
command for running the simulation of the model and some useful functions created specifically for
this application.

The RobotStructure model only contains the configuration of the robot as seen in Figure 2. It was
created using the open_system(new_system()) command. After the model is saved, the
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corresponding Rigid Body Tree is obtained with the help of importrobot() function [33].
SimulationModel is created just like RobotStructure and it is named according to the user’s input in
the GUI plus the current date and time. This model contains “Constant” blocks with the values of the
joint variables followed by “Gain” blocks that transform the measurement unit from degrees to
radians. The configuration of the robot is also represented here so the outputs from the “Gain” blocks
are then provided as inputs for the “Revolute Joint” blocks. This is done by using a “Simulink-PS
Converter” for each of the joints, that converts the Simulink input signal to a Physical Signal.

Each one of the joints has an output associated with the position by checking the “Position” box
under “Sensing” in the Block parameter. The outputs are connected to a “Mux”, through “PS-
Simulink Converter” blocks, which is then connected to a “Get Transform” block. The “Get
Transform” block has a parameter called “Rigid Body Tree” where the Rigid Body Tree obtained with
the help of the GetRBT function is used. Other parameters that have to be configured are “Source
Body” and “Target Body” where the last and the first element of the robot need to be selected. The
next block is the “Coordinate Transformation Conversion” that has a homogenous transformation as
input and converts it to a translation vector.

To configure parameters for the blocks, the “set_param” command is used, and to establish
connections between blocks, the “add_line” command is used.

Because before every link or joint in the structure of the robot a RT has to be added and
configured in relation to the previous one (as explained in subsection 3.1), there would be many
variations of the RT. With the great number of orientations of the coordinate system, there is a great
amount of work to generate diverse configurations. One of the proposed features of the application
is to reduce the number of possible orientations for the RT down to three, each of them corresponding
to a rotation around one of the axes of the global coordinate system as shown in Figure 9.

z Y -X

a) b) c)

Figure 9. The three types of Rigid Transform that are proposed. a) Associated with rotation around Z
or link length along Z — corresponds to World Frame orientation; b) Associated with rotation around
Y or link length along Y; c) Associated with rotation around X or link length along X. All movements
are related to WF orientation.

To be able to only use the three coordinate systems presented above, it is required to add an
additional RT after every link or joint. The additional RT is going to reorient the coordinate system
to ensure that it consistently maintains alignment with the WEF, the global reference frame of the
model [31]. To identify the type of Rigid Transform a variable called varSist is defined. For Figure 9
a) varSist = 3, for Figure 9 b) varSist = 2, and for Figure 9 c) varSist = 1. The necessary transformations
to reorient the coordinate system to WF orientation are presented in Figure 10.
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z v z Y
al Rz - i Rotation around +Z with 360deg
X X
RV 5 z v
bl Ry i —_— i B
Rotation around +X with 90deg
X X
-¥ v Z Y
¢ Rx i I Retation around +Y with 270deg
z X

Figure 10. The necessary transformations to reorient the coordinate system.

Figure 11 presents the structure of a 3DOF robot created using the proposed method.

AddJoint3

bl -'f Aol

AddJoint2 e | e w |awe | mma
AddJointl pA A f
> b, / “f, Yoot ol .
-] o L] ) o AddLink4
1 o —t AddLink3
L B
AddLink2
[ |
AddLinkl

Figure 11. Structure of a 3DOF using an intermidiate Rigid Transform.

Based on the grouping of elements in Figure 11, three of the functions in Figure 8 were created:
a) Convert_to_WEF_Orientation - coresponds to all of the blocks that contain “2WEF” in their names,
b) AddJoint - coresponds to the blocks in rectangles, c) AddLink - coresponds to the blocks in
capsules.

Convert_to_WF_Orientation is the function that adds an intermediate RT block that converts the
orientation back to WF orientation as explained previously. The function is called using the name of
the last added link or joint, it checks its orientation, transforms it accordingly, and resets varSist to 3,
the value specific to WF orientation. The function is presented in Figure 12.
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function Convert_to WF Orientation (SimName, elem)

global wvarSist;

add_block("sm_lib/Frames and Transforms/Rigid Transform”,strcat(SimMName, "/, elem, '2WF));
if varSist ==

I

set_param(strcat(SimMame, '/", elem, '2WF"), 'RotationMethod', 'Standardixis', ...
'RotationStandardfxis’, '+Y', 'Rotationdngls ', num2str(270));
elseif varSist ==
set_param(strcat(SimMame, '/", elem, 'ZWF'), 'RotationMethod', 'Standardixis', ...
'RotationStandardAxis ', '+X', 'Rotationfngls’,num2str{98));
elseif varSist ==
set_param(strcat(SimMame, /', elem, "2WF'), 'RotationMethod', 'Standardfxis’', ...
'RotationStandardfAxis’', '+Z', 'Rotationdngle ', num2str({360));
end
varSist = 3;
add_line(SimName, strcat(elem, '/RConnl’), strcat(elem, "2WF/LConnl'}};
end

Figure 12. Convert_to_WF_Orientation function.

Functions AddJoint and AddLink were created in order to be able to add joints and links in an
easier manner. As seen in Figure 12, each joint and link is preceded by an associated RT, with
parameters set according to the specific element.

AddJoint = RT block + Joint block

The function adds the RT block, checks for the type of joint, sets the parameters and resets varSist
accordingly, then adds the joint block, sets its parameters and makes the connections between blocks.
Its input parametres are: 1. SimName — the name of the model that the blocks are added to, 2. C - the
variable that saves the joint type selected, 3. numeCupla — the name of the joint block in the model, 4.
elemAnterior — the name of the previous link block, 5. cuplaUrmatoare — the abbreviated name of the
joint, 6. Ix — the length of the previous link on X axis, 7. ly - the length of the previous link on Y axis,
8.1z - the length of the previous link on Z axis.

AddLink = RT block + Link block

AddLink function adds both the RT and the link block, verifies on which axis the link’s length is
on, sets the parameters, and makes the connections between the blocks. The input parameters for this
function are: 1. SimName — the name of the model that the blocks are added to, 2. numeElem — the
name of the link block in the model, 3. cuplaAnterioara — the name of the previous joint block, 4.
elemUrmator — the abbreviated name of the link, 5. Ix — link length on X axis, 6. ly — link length on Y
axis, 7. 1z - link length on z axis.

The last function defined in Generates_Simulink_Models is Obtain_Rigid_Body-Tree function
containing the importrobot command for obtaining the rigid body tree from RobotStructure model.

4. Validation and Results

To ensure the functionality and effectiveness of the proposed application, a comprehensive
validation process was conducted. The validation process is conducted through the following
approaches:

1. Accuracy verification: The objective is to demonstrate that the simulations generated using the
proposed method are equivalent to those obtained using standard theoretical methods (D-H or
direction cosines). The coordinate matrix of the origin of system T3 (fourth column in matrix H1,
respectively H2) complies with the geometrical values, therefore validating the calculations
performed.

2. Efficiency analysis: The number of operations performed by the user to complete simulations,
was considered as a factor that characterizes efficiency.. The steps involved in both the standard
method and the proposed application will be enumerated, demonstrating a significant reduction
in user operations with the application.

The application was tested on a system with the following specifications:
e Operating system: Windows 11
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e Processor Intel Core i5
e RAM:8GB
e MATLAB Version: MATLAB R2023a

In the following, a simplified version of DeSeRol is considered, namely
DeSeRol_Forward_Kinematics (Figure 13), the member of DeSeRol family that computes the forward
kinematics problem. To reduce complexity while maintaining relevancy, it was decided to use a serial
robot with 3DOF with only revolute joints. The validation of the developed application was
conducted by performing a series of simulations with various configurations of serial robots. The
application was configured to perform simulations based on user — defined inputs, being able to
handle various input parameters such as: joint types, joint angles, link sizes.

USER
|
— |
4

PROGRAMMER = -3 GUI_Forward_Kinematics

I—t Main_Forward_Kinematics

Generates_Simulink_Models_| I
Forward_Kinematics

|

!

SIMSCAPE MODEL SIMULATION
Forward Kinematics

DeSeRol_Forward_Kinematics

Forward Kinematics

Figure 13. The scheme of the proposed application that computes forward kinematics.

4.1. Accuracy Verification

To validate the accuracy of the application, two serial robots with different configurations were
simulated and an H matrix was provided for each of them. The matrix describes the absolute
orientation of Link3 and the absolute position of the origin of the coordinate system T3, fixed to Link3
and positioned at the center of Joint3.

The first example is a 3DOF serial robot with the configuration RzRyRz (Figure 14). Its input
data can be found in Figure 15.
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Figure 14. Configuration of the first serial robot: RzZRyRz.

MName of the Robot
Examplel Base height

Joint 1
Rotation around Z axis -~

Joint 2 Link 1 length

E
Joint 3

Base radius| 1

ly

RRE
-Jl-J

Link 2 length

i @ @ Simulation

Joint variables lIl lIl

Figure 15. Input values used for simulating the forward kinematics of the first example.

The simulated position, based on the values in Figure 15, is presented in Figure 16 alongside the
H1 matrix mentioned at the beginning of the subsection.

[ 6.123e-17|| Al ol| 3]

| 1 6.123e17)| o 0

| o] o] 1| g

| of of of 1
a) b)

Figure 16. Simulation results of the RzRyRz serial robot a) Computed position, b) Matrix H1 where
the values on column 4 have the following corespondents: 3 — length on X axis (Link2), 0 — length on
Y axis, 6 —length on Z axis (Base + Link 1).
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The second example consists of a 3DOF serial robot (Figure 17) with the following configuration:
RzRxRy. The input data of the robot can be found in Figure 18.

-

L2 L3
JLHY LA
ity N
T J2 I3
L1

]k
[ | |
RN A

y

A

Figure 17. Configuration of the second serial robot: RZRxRy.

Name of the Robot

Joint 2
Rotation around X axis ~ ~

Joint 3

Rotation around ¥ axis -~

Example2 Base height Base radius
Joint 1
v

Link 1 length

Link 2 length

Link 3 length

Joint variables

- J[-}{-)

[ o]
KRR KN
EEH

q1 q3

[o ] [=] [a]

-Jl-)

Simulation

Figure 18. Input values used for simulating the forward kinematics of the second example.

The simulated position, based on the values in Figure 18, is presented in Figure 19 alongside the
H2 matrix mentioned at the beginning of the subsection.

1|[ 6.123e-17|[  -6.123e-17] 4
6.123e-17 1 0] 0)
6.123e-17|[  -3.749e-33 1 7]

0] of| a|[ 1

b)
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Figure 19. Simulation results of the RzRxRy serial robot a) Computed position, b) Matrix H2 where
the values on column 4 have the following corespondents: 3 — length on X axis (Link2), 0 — length on
Y axis, 6 — length on Z axis (Base + Link 1).

4.2. Efficiency Analysis

Moreover, the number of operations performed by the user for developing the simulation model
using the standard method, as well as the proposed method, is considered and objective parameter
in assesing the efficiency of the proposed method. The operations performed by the user to obtain
the simulation of the 3DOF robot in Figure 14 using the standard method are enumerated below and
their sum is assigned to the variable Ns, where s stands for standard.

- Creating the Simulink model RobotStructure

- Adding the blocks:

3 x mandatory blocks (Solver Configuration, Mechanism Configuration, World Frame)
4 x elements

3 x Revolute Joint

7 x Rigid Transform

- Adding lines between blocks of RobotStructure model

- Setting parameteres

- Creating a MATLAB script to obtain the Rigid Body Tree
- Creating the Simulink model SimulationModel

- Adding blocks

3 x Constant

3 x Gain

3 x Simulink-PS Converter

O
O
O
O

3 x PS-Simulink Converter
1 x Mux
1 x Get Transform

O O O O O O O

1 x Coordinate Transformation Conversion
- Adding the RobotStructure model
- Adding lines between blocks of SimulationModel model
- Setting parameters
Once the models are done, User needs to run the script and the models and the simulation is
provided resulting in Ny = 20 operations, excluding multiple blocks of the same kind.
To obtain a simulation for the same robot using the proposed method User must perform the
following operations:
- Run Main script
- Complete the name of the robot
- Fill in the desired type of joints
- Fill in the sizes of the elements
- Provide the joint variables
- Press the Simulation button
The operations performed by the user add up to a total of N, = 6 operations where p stands for
proposed as in proposed application.
By comparing the results, it is found that N; > N,. In accordance with this approach, the
proposed method is an efficient one.

4. Discussion

The findings of the paper align with previous studies that emphasize the advantages of
automated tools in robotic simulations proposing a new application.

The paper has demonstrated that using the Simulink library, an efficient application can be
created to facilitate simulation processes. The study has shown the effectiveness and efficiency of
DeSeRol for simulating a 3DOF serial robot with revolute joints. The results demonstrate that the
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application creates outcomes equivalent to those obtained through traditional methods while
significantly reducing the number of operations. The application streamlines the simulation process
and reduces potential errors, therefore supporting the hypothesis that it can accurately replicate
traditional simulation results with reduced user effort.

The application’s capability to handle various input parameters and configurations makes it a
versatile tool for diverse robotic simulations.

Future research could focus on extending the application to support more complex robotic
configurations, including various joint types and robots with higher degrees of freedom, and the
developing of the other members of the DeSeRol family.

In conclusion, the MATLAB-based application presents a valuable tool for robotic simulations,
offering significant improvements in efficiency and user-friendliness. The paper confirms that the
application can achieve identical results to traditional methods with fewer user operations, making
it an effective solution.
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