

Review

Not peer-reviewed version

Markers of Occult Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma (HNSCC): A Systematic Review

<u>Piero Giuseppe Meliante</u>, <u>Sofia Pizzolante</u>, Luca Perna, Chiara Filippi, Giorgio Bandiera, <u>Christian Barbato</u>, <u>Antonio Minni</u>, <u>Marco de Vincentiis</u>, <u>Edoardo Covelli</u>*

Posted Date: 26 April 2024

doi: 10.20944/preprints202404.1712.v1

Keywords: Head and neck squamous cell carcinoma; Meastasis; Lymp Node; Regional Metastasis; Cancer Marker; Occult Metastasis

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Systematic Review

Markers of Occult Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma (HNSCC): A Systematic Review

Piero Giuseppe Meliante ¹, Sofia Pizzolante ¹, Luca Perna ², Chiara Filippi ¹, Giorgio Bandiera ¹, Christian Barbato ³, Antonio Minni ^{4,5}, Marco de Vincentiis ⁴ and Edoardo Covelli ^{1,*}

- ¹ Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), "Sapienza" University of Rome, "Sant' Andrea" Hospital, in via di Grottarossa 1035-1039, 00189, Rome (RM), Italy
- ² "San Leonardo" Hospital, Viale Europa 73, 80053, Castellammare di Stabia (NA), Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy.
- Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
- * Correspondence: edoardo.covelli@uniroma1.it

Abstract: Background: The accurate diagnosis of regional lymph node metastasis is critical for guiding treatment decisions in head and neck cancer patients. Despite advances in imaging techniques, detecting nodal metastasis using remains challenging, leading to potential undertreatment or overtreatment. This systematic review aims to identify molecular markers associated with occult metastasis in Head and Neck Squamous Cell Carcinoma (HNSCC) patients. Methods: The present research was conducted following PRISMA guidelines. Prospero registration nr. CRD42024522985. Results: Through a comprehensive literature search and review process, 634 articles were considered, 103 of them were finally included. Conclusions: Several promising markers were identified, including miR-205, DSG3, pan-CK AE1/AE3, HPV-16, Activin-A, Cyclin D1, and NPL that demonstrated effectiveness across multiple studies. Future research should focus on exploring combination scoring systems to improve diagnostic precision and optimize treatment selection in HNSCC patients.

Keywords: head and neck squamous cell carcinoma; meastasis; lymp node; regional metastasis; cancer marker; occult metastasis

1. Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) has an annual incidence of 600,000 new cases globally. [1] Lymph node metastasis profoundly impacts patient outcomes, drastically reducing 5-year overall survival (OS) rates from 63-86% to 20-36%, making it the paramount prognostic indicator. [2–5] Regrettably, existing imaging techniques often fail to detect occult nodal metastasis smaller than 2 mm, complicating accurate diagnosis and treatment planning. [6,7]

Therapeutic approaches for HNSCC typically involve prophylactic neck dissection followed by radiotherapy with or without chemotherapy for clinically positive lymph nodes. [8,9] However, 15-20% of cases present with occult metastasis in clinically negative (cN0) lymph nodes, challenging treatment decisions. [10] Failure to detect such metastases may lead to suboptimal therapeutic strategies, potentially resulting in cancer recurrence and compromised patient outcomes. [11]

The National Comprehensive Cancer Network (NCCN) Guidelines underscore the importance of neck dissection for high-risk or clinically positive nodal metastasis. Moreover, histological confirmation of nodal metastasis warrants adjuvant therapy. [12] Detection of occult metastasis is

2

pivotal, as it informs tailored treatment strategies, sparing patients unnecessary systemic chemotherapy while ensuring adequate management of distal metastases. [12]

Identifying occult metastasis remains a daunting task, with significant implications for treatment decisions and patient prognosis. This systematic review aims to comprehensively survey the literature to identify molecular markers associated with occult metastasis in HNSCC patients. By elucidating these markers, we aim to enhance diagnostic precision, optimize therapeutic selection, and ultimately improve patient outcomes in this challenging clinical scenario.

2. Materials and Methods

The systematic review adhered to the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure methodological rigor and transparency. A comprehensive search of PubMed, Embase, Google Scholar, and Scopus databases was performed to identify relevant articles pertaining to occult metastasis markers in Head and Neck Squamous Cell Carcinoma (HNSCC). Only randomized and non-randomized clinical trials, encompassing both prospective and retrospective designs, were included in the review, with no restrictions on publication dates. The search was confined to English-language articles. In vitro and animal-based studies were excluded. Duplicate articles were initially identified and removed using the Mendeley platform, which also facilitated bibliographic management. Subsequently, the remaining articles underwent screening based on title and abstract by the authors collectively. Full-text analysis was conducted for selected manuscripts, with exclusion criteria applied to trials not involving human subjects or lacking assessment of secondary primary carcinomas among their outcomes. The selected articles were summarized within the manuscript and presented in Table 1. The article screening and selection process is depicted in a PRISMA flow chart (Figure 1), providing a visual representation of the review process. Furthermore, the literature analysis, including final review considerations, informed the discussion section of the manuscript. Critical issues pertaining to the identified markers were deliberated by the research team and synthesized within the article's discussion. The PRISMA checklist was completed post-manuscript composition.

The review protocol was registered in the PROSPERO International prospective register of systematic reviews (CRD42024522985) to enhance transparency and facilitate reproducibility of the study methodology.

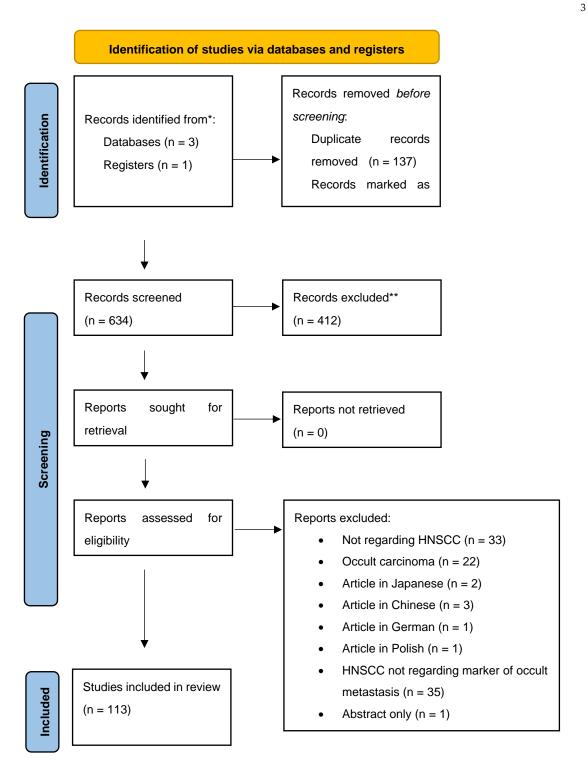


Figure 1. PRISMA Flow diagram.

Table 1. Articles considered for review.

Title	Year	Authors	Journal	Doi	Population	Subsites	Material	Results	P Value
								Analysis of the	
F 1 .: 6								percentage of	
Evaluation of								occult	
cytokeratin								metastases	
tissue marker in					F1 6	Laryngeal cases of and		cases detected	
detection of		H 1MC ' M						by cytokeratin	
metastatic	1996	Hamed M, Samir M,	Cancer Molecular Biology		laryngeal and hypopharyngea l carcinoma.	hypopharyn	Nodal specimens	immunostainin	p > 0.001
lymph nodes in		Hamid O et al.				geal carcinoma		g and missed	
cases of								by	
laryngeal and								Haematoxilin	
hypopharyngea								and Eosin gave	
l carcinoma								significant	
								value	
Charing of hand								MET- encoded	
Staging of head and neck								sequences were	
								found in 61 of	
squamous cell								151 nodes	
carcinoma using the MET				10.1002/1097-				(40%), of which	
	2000	Cortesina G, Martone	International journal	of 0215(20000520)89:3<286	20 patients with	HNSCC	No dal anasimona	24 (16%) were	
oncogene	2000	2000 T, Galeazzi E et al.	cancer	::AID-IJC12>3.0.CO;2-	HNSCC	пиэсс	Nodal specimens	found	
product as marker of				U				metastatic by	
tumor cells in								in-depth	
								histopathology	
lymph node								. Western blot	
metastases.								analysis	

						demonstrated
						the presence of
						the full-size
						MET receptor
						in primary
						tumors and
						lymph node
						metastases:
						immunohistoc
						hemistry
						showed
						receptor
						localization in
						tumor cells.
						Four of these
Detection and						patients with
quantitation of						HPV-positive
human						tumors later
papillomavirus						developed
(HPV) DNA in		70 pc	atients with			distant
the sera of 2000	Capone R, Pai S, Koch Clinical cancer research	70 pa		HNSCC	Serum DNA extracts	metastases,
patients with	W et al.	11110	cc			suggesting that
HPV-associated						HPV DNA in
head and neck						serum may
squamous cell						represent
carcinoma.						occult
						hematogenous

spread

of

								· r
								cancer cells in
								this subset of
								patients.
					32 HNSCC			
					patients with			
					clinically and			
					radiologically			
Cyclin D1					negative lymph			
expression is					nodes in whom			C II D1
predictive of					metastatic			Cyclin D1
occult					involvement			expression
metastases in				10.1002/(SICI)1097-	was			significantly
head and neck	2000	accio P, Pruneri	Head and Neck	0347(200005)22:3<234::	subsequently	HNSCC	Biopsy samples of	correlated with p =0 .0007
cancer patients	G, Car	boni N et al.		AID-HED5>3.0.CO;2-3	demonstrated at		lymph nodes	the presence of
with clinically				,	histologic			occult lymph
negative					examination			node
cervical lymph					(pN+);			metastases
nodes					Group of 64			
nodes					head and neck			
					cancer patients			
					with			
					histologically			
					negative			

Of

vascularity

the

lymph nodes (pN0) was used as control

patterns, 57 patients spotted or Detection of without wide peripheral occult echogenic Findings of pattern had the hilum on GSUS metastatic pathologically highest lymph nodes in Wang Q, Takashima 10.1080/0284185011273 that measured HNSCC accuracy (80%) 2001 Acta radiologica verified cervical the neck with S, Takayama F et al. 46701 less than 10 mm nodes (38 benign, 31 with 61% gray-scale and in minimal axial malignant) sensitivity and power diameter were 93% specificity. Doppler US. prospectively A combined studied criterion of the minimal axial diameter larger

				than 8 mm and
				spotted or
				peripheral
				pattern
				increased the
				accuracy to
				82% and
				sensitivity to
				77% but
				specificity
				decreased to
				86%.
				Occult
The significance				micrometastas
of			10 patients with	es were found
immunohistoch			squamous cell	in the lymph
emically			carcinoma of the	nodes 5 of 10
demonstrated			head and neck	patients
nodal	Rhee D, Wenig B,	10.1097/00005537-	without	examined.
micrometastase	2002 Laryngoscope Smith R	200211000-00011	HNSCC Nodal specimens conventional	There was no
s in patients			histological	association
with squamous			evidence of	between the
cell carcinoma			nodal	site of primary
of the head and			metastases	tumor, or T
neck				stage, and the
				presence of
				presence of

								occult metastases.	
Expression of E-cadherin in squamous cell carcinomas of the supraglottic larynx with correlations to clinicopatholog ical features	2002	Rodrigo J, Domínguez F, Alvarez C et al.	European Journal of Cancer	10.1016/S0959- 8049(01)00399-9	101 primary carcinomas	Squamous cell carcinomas of the supraglottic larynx	Tissue samples	There was a significant correlation between decreased E-cadherin expression and the presence of nodal metastases	P=0.007
Clinical and histopathologic al correlates of the proliferative activity in squamous cell laryngeal carcinoma.	2002	Bayazit Y, Bakir K, Ucak R et al.	Revue de laryngologie - otologie - rhinologie		28 patients who were treated for LSCC	Laryngeal squamous cell carcinoma	Tissue samples	There was no association between the mean values of the proliferative markers, and N stage and T stage of the patients as well as laryngeal	p > 0.05

								site involvement H&E-staine and cytokeratin	ed
Detection of occult cervical micrometastase s in patients with head and neck squamous cell cancer	2003	Barrera J, Miller M, Said S et al.	Laryngoscope	10.1097/00005537- 200305000-00022	50 patients treated between H 1992 and 2001	INSCC	1012 lymph nodes	Overall,	stas 6 of 8 of ases. 26 stas were in N1 8 of tents f N1

Multivariate Predictors of Occult Neck Metastasis in Early Oral Tongue Cancer	2004	Sparano A, Weinstein G, Chalian A et al.	Otolaryngology - Head and Neck Surgery	10.1016/j.otohns.2004.0 4.008	45 clinically determined N0 patients (T1/T2)	Oral tongue cancer	Tissue samples	Independent correlates of positive occult neck metastasis included greater tumor thickness, greater depth of muscle invasion, T2 stage, poorly differentiated tumors, infiltrating- type invasion front, presence of perineural invasion, and presence of angiolymphati c invasion. Single CK19-	Greater tumor thickness ($P = 0.01$) Depth of muscle invasion ($P = 0.01$) T2 stage ($P = 0.01$) Poorly differentiated tumors ($P = 0.007$), Infiltrating-type invasion front ($P = 0.03$) Presence of perineural invasion ($P = 0.001$) Presence of angiolymphatic invasion ($P = 0.005$)
relevance of circulating tumour cells in the bone marrow of	2004	Wollenberg B, Walz A, Kolbow K et al.	Onkologie	10.1159/000079088	176 patients suffering from SCCHN	HNSCC	Bone marrow aspirates	expressing tumour cells could be detected in the bone marrow	

patients with								of 30.7% of the
SCCHN								patients.
								Of 35 HNSCCs,
								33 expressed
								CK 14 RNA,
								and 15 lymph
								nodes with
								routine
								pathologically
Clinical								positive
evaluation of a								metastasis
new molecular								were also
method for								positive for CK
detection of	2004	Shores C, Yin X,	Archives of Otolaryngology -	10.1001/archotol.130.8.	35 consecutive	HNSCC	153 cervical lymph	14 RNA. 4
	2004	Funkhouser W et al.	Head and Neck Surgery	937	patients	TINSCC	nodes	lymph nodes
micrometastase s in head and								that were
								pathologically
neck squamous								negative nodes
cell carcinoma								were positive
								for CK 14 RT-
								PCR, with 2
								containing
								metastases
								detected by
								semi-step
								sectioning.

Basic and clinical studies on quantitative analysis of 2004 lymph node micrometastasi s in oral cancer.	Oncology reports	Oral 10 patients with squamous oral cancer cell carcinoma	115 lymph nodes using real-time quantitative polymerase chain reaction (PCR) based on the expression of squamous cell carcinoma antigen (SCCA) and cytokeratin 13 (CK13)	SCCA mRNA levels higher than the cut-off value. CK13 mRNA is not a suitable marker for the real-time PCR since it was detected frequently even in the control LNs
Cyclin D1 gene numerical		45 patients with previously	Fluorescence in situ	CCND1 numerical
aberration is a		untreated TNM Oral	(FISH), using a BAC	
predictive Myo K, Uzawa N,		Stage I and II squamous	clone specific for	were observed
2005 marker for Miyamoto R et al.	Cancer 10.1002/cncr.21491	(T1-2N0M0) cell	CCND1, was	P < 0.001 in 15 of the 45
occult cervical		disease who had carcinoma	performed on OSCC	patients and
lymph node		not undergone	specimens obtained	were
metastasis in		elective cervical	by fine-needle	significantly

TNM Stage I	lymph node	aspiration (FNA)	associated with
and II	dissection	biopsy	the presence
squamous cell			of occult lymph
carcinoma of			node
the oral cavity			metastases
Amplification of Cyclin L1 is associated with lymph node Sticht C, Hofele C, metastases in 2005 Flechtenmacher C et British journal of cancer 10.1038/sj.bjc.6602400	cell carci (OSC 96 280 primary phar paraffin- squa	amous Cinomas HNSCCs biopsies CC); mounted on a tissue microarray were analysed for copy number changes of	A significant association of CCNL1 gains and the presence of lymph node metastases was P=0.049
head and neck al. squamous cell carcinoma (HNSCC).	(PSC 60 la squa cell	cinomas PIK3CA and TP73L by fluorescence in laryngeal situ hybridisation amous (FISH).	found, which was independent of anatomical site and T-stage of the primary tumour.

										Although
										tumor
										differentiation
										and tumor size
										were
Predictive										significantly
value of p53									n52 or proliferating	correlated with
and PCNA									p53 or proliferating cell nuclear antigen	occult neck
expression for			37 clinically N0	(PCNA)	metastases of					
occult neck	2006	Voum V. Chung E	Otolaryngology-head ar	nd	10.1016/j.otohns.2006.0	patients	who	Oral tongue	immunoreactivities	oral tongue P = 0.03
metastases in	2006	Keum K, Chung E, Koom W et al.	neck surgery 2.0	2.011 u	underwent neck cancer		cancer by			
patients with		Koom w et al.				dissection	on deparaffinized	univariate		
clinically node-									sections of the	analysis, no
negative oral									primary tumor	correlation was
tongue cancer										found between
										p53 or PCNA
										and the
										presence of
										occult neck
										metastasis

										The ce	ervical	
								A total of 1	328 lymph	lymph	node	
								nodes	were	metastatio	c rates	
								prospectiv	rely	determine	ed by	
								evaluated	by routine	routine	HES	
								haematoxy	ylin-eosin-	staining	and	
Detection of								safran	(HES)	real-time	RT-	
occult								staining,		PCR	assay	
carcinomatous								immunohi	stochemis	were 16.3	3 and	
diffusion in								try (IHC)	and real-	36.0%,		
lymph nodes								time	Taqman	respective	ely,	
from head and	nd Tao I Jofàvro N	Tao L, Lefèvre M,		31 p	oatients		reverse-tra	nscriptase	Moreover	·,		
neck squamous 2	2006	Ricci S et al.	British Journal of Cancer	10.1038/sj.bjc.6603073	treated be	etween	HNSCC	polymeras	se chain	CK19 m	nRNA	P<0.0001
cell carcinoma		Ricci 5 et al.			2004 and	2005		reaction	(real-time	expression	n	
using real-time								RT-PCR)	assay.	values	in	
RT-PCR								Amplifica	tion of	histologic	ally	
detection of								cytokerati	n 19	positive 1	ymph	
cytokeratin 19								(CK19)	mRNA	nodes	were	
mRNA								transcripts	s using	significan	tly	
								real-time	RT-PCR	higher	than	
								was used	to quantify	those obs	served	
								cervical		in		
								micrometa	static	histologic	ally	
								burden		negative		
										lymph no	des.	

							Cyclin B1	
							overexpression	
							was positively	
							correlated with	
Cyclin B1 is							occult cervical	
useful to							lymph node	
					Oral	immunohistochemic	metastases and	
predict occult	Handa H. Onner V	•		40 oral tongue	tongue	al expression of cyclin B1 in a series of tissue samples	the number of	
	Harada H, Omura K, 2006 Nakajima Y et al.			squamous cell carcinomas	squamous		mitotic cells. In	
node	Nakajima i et ai.	clinical cancer research			cell carcinomas		addition, there	
metastases in							was a positive	
tongue							relationship	
carcinoma.							between	
							labeling	
							indices of	
							cyclin B1 and	
							Ki-67.	
What is							Fifty-two of	
important for				60 patients with			144 lymph	
ultrasound				laryngeal			nodes were	
evaluation of				squamous cell	Laryngeal		involved with	
occult	Cvorović L,	ORL; journal for oto-rhino-		carcinoma	squamous		metastasis on	
2007 metastatic	Milutinović Z, Strbac	laryngology and its related	10.1159/000099227	without	cell	144 lymph nodes	histopathologi	
lymph nodes in	M et al.	specialties		enlarged neck			cal	
laryngeal				nodes on CT			examination.	
cancer: size,				scan.			Respective	
shape,				Jean.			values for	
оттре,							101	

guided fine findings? Final Fina	vascularity or					ultrasound-
Second S	cytological					guided fine
Continue	findings?					needle
FABP FABP						aspiration
Second Process Sec						cytology (USg
Sensitivity						FNAC)
Second Content of the content of t						showed high
Positive Positiv						sensitivity,
Repair R						specificity,
Primary Land Pri						positive and
National Control Con						negative
Metastasis of squamous cell						predictive
Metastasis of squamous cell						values and
Metastasis of squamous cell squamous cell squamous cell squamous cell squamous cell carcinoma of the oral tongue is associated with down of protein (E- true of the conditions						accuracy
Squamous cell carcinoma of carc						Gene FABP5,
carcinoma of the oral tongue is associated with down-regulation of epidermal fatty acid binding rotein (E-FABP). Fig. 1. The sequence of the oral tongue is associated with down-regulation of the protein (E-FABP). Fig. 1. The sequence of the oral tongue is associated with down-regulation of the protein (E-FABP). Fig. 2. The sequence of the oral tongue is associated and a sequence of the oral tongue; and the oral tongue; arctinoma is a sequence of the oral tongue; arctinoma is a sequence or the oral ton	Metastasis of					coding for
the oral tongue is associated with down 2007 Portura A et al. Oral oncology acid binding for the protein (E-FABP). FABP). Squamous for the oral tongue is associated with down 2007 Portura A et al. Oral oncology acid binding is associated binding is associated with down 2007 Portura A et al. Oral oncology acid binding is a significant acid binding in the protein (E-FABP). FABP). Squamous for the oral acid squamous acid binding is associated acid binding is associated associ	squamous cell				About 100 mg of	Epidermal
the oral tongue is associated with down 2007 regulation of epidermal fatty acid binding [E-FABP). FABP). Fabruary (E-FABP). Fabruary as binding squamorral fatty associated by the oral tongue is associated associated associated by the oral tongue is associated asso	carcinoma of			54 cases of	fresh tissue from the	fatty acid
is associated With down- regulation of epidermal fatty acid binding protein (E- FABP). Uma R, Naresh K, Oral oncology D'Cruz A et al. Oral oncology D'Cruz A et al. 10.1016/j.oraloncology. 2005.12.024 2005.12.0	the oral tongue				primary tumour, a	binding
with down- 2007 Oral oncology D'Cruz A et al. regulation of epidermal fatty acid binding protein (E- FABP). Oral oncology D'Cruz A et al. 2005.12.024 Oral tongue; carcinoma stages: T1, T2 or lymph node and a FABP) T3 Iymph node and a FABP) non-metastatic expression was lymph node were up to 4-fold collected from each higher in the surgical procedure. FABP).	is associated	IJma R. Naresh K.	10 1016/i oraloncology		grossly metastatic	protein (E-
regulation of stages: T1, T2 or epidermal fatty acid binding protein (E-FABP). T3	with down-	2007 Oral oncology	-		lymph node and a	FABP)
epidermal fatty acid binding protein (E- FABP). T3 lymph node were up to 4-fold	regulation of	2 (142.14)	_0001121021	_	non-metastatic	expression was
acid binding protein (E- FABP). collected from each higher in the surgical procedure. primary tumours (67%)	epidermal fatty				lymph node were	up to 4-fold
FABP).	acid binding			10	collected from each	higher in the
	protein (E-				surgical procedure.	primary
as compared to	FABP).					tumours (67%)
						as compared to

Determination of lymph node micrometastase s in patients 2007 with supraglottic carcinoma	Y, Zhao X, Guan M A l.	Acta Oto-Laryngologica	10.1080/0001648070120 0327	20 patients with supraglottic cancer	Supraglottic	Twenty samples from supraglottic cancer and 182 lymph nodes from neck dissections were examined by LOH comparing immunohistochemic al (IHC) staining using cytokeratin 19 (CK19), and hematoxylin and eosin (H&E) staining.	The frequency of LOH was 37.4% of lymph nodes and all of the primary tumors. Occult micrometastas es were present in 9 of 20 cases; 23.6% of lymph nodes were positive for CK19 by IHC; 16.5% of lymph nodes were positive by H&E.
---	------------------------------	------------------------	-------------------------------	--	--------------	---	--

							Regarding	
							nodal status,	
							Ki-67	
							expression was	
							a significant	
							risk factor for	
							N+ in all	Ki-67 expression in all
Vascular							tumors,	tumors (P< 0,009);
endothelial							whereas	Ki-67 expression
growth factor a							VEGF-A	alone in oral and
and			A 1 C 145	0.1			expression was	pharyngeal SCC
proliferation			A total of 147	Oral cavity			related to N+ in	(P=0.009);
marker in Boonkitticharoen V,	Boonkitticharoen V,	10.1001/archotol.134.12 .1305	previously				oral and	VEGF-A expression
prediction of 2008 Kulapaditharom B,	Archives of Otolaryngology -			Pharyngeal	Lymph	nodes	pharyngeal	was related to N+ in
lymph node Leopairut J et al.	Head and Neck Surgery			patients with SCC;	samples		SCC only.	oral and pharyngeal
metastasis in			different stages	Laryngeal			Analytically,	SCC only (P<0.03);
oral and			of HNSCC	SCC			Ki-67	Ki-67 associated with
pharyngeal							expression	VEGF-A expression
squamous cell							alone in oral	in oral and
carcinoma							and	pharyngeal SCC
							pharyngeal	(P<0,001)
							SCC was	
							associated with	
							a relative risk	
							of N+ of	
							3.83,and	
							additional	

Histologic identification of				93 cases of SCC metastatic to the			expression of VEGF-A raised the value to 6.12. Moreover, the combined expression of both markers was 3.25 times more effective in predicting N+ for T1,2 tumor compared with T3,4 tumor. Twenty-three cases were	
identification of human papillomavirus (HPV)-related squamous cell carcinoma in 2000 cervical lymph nodes: A reliable predictor of the site of an occult head and neck	El-Mofty S, Zhang M, 8 Davila R	Head and Neck Pathology	10.1007/s12105-008- 0066-1	metastatic to the neck from known primary tumors were classified morphologicall y into conventional keratinizing SCC (KSCC) and non-	oropharyng eal, 35 oral, and 26 arose in the laryx/hypop harynx	In situ hybridization (ISH) for high risk HPV as well as immunostaining for p16 were performed on all metastsatic and primary tumors	found to be HPV+ by ISH, of which 22/23 had oropharyngeal origin, with 95.7% sensitivity and 85.7% specificity. Twenty-one of	P<0.0001

primary	keratinizing	these HPV+
carcinoma	SCC (NKCa)	oropharyngeal
		tumors were
		NKCa. The
		remaining case
		showed
		overlapping
		NKCa/KSCC
		hybrid
		morphology.
		All NKCa were
		HPV+ and
		stained
		diffusely and
		strongly with
		p16 antibodies.
Expression of	87 patients with	Independently
vascular	primary OSCC	of VEGF-C
endothelial	arising in the	expression,
growth factor-C	Occult lymph-node tongue or floor Oral	lymph-node
does not predict Faustino S, Oliveira D, International journal of oral 10.1016/j.ijom.2007.11.0	of mouth, squamous metastases were	
2008 occult lymph- Nonogaki S et al. and maxillofacial surgery 21	analyzed for VEGF- clinically cell	_
node metastasis	C expression by T1N0M0 or carcinoma	
in early oral	malignant cells T2N0M0, with	significant
squamous cell	(pN+) and	prognostic
carcinoma.	without (pN0)	factor for
		overall

			occult lymph- node metastases			survival of patients with OSCC	
Expression of MAGE-A12 in 2008 oral squamous cell carcinoma.	Mollaoglu N, Vairaktaris E, Nkenke Disease markers E et al.	10.1155/2008/359840	Total of 57 specimens from OSCC	Oral squamous cell carcinoma	Total of 57 tissue samples obtained from patients with OSCC and 20 normal oral mucosal (NOM) probes of otherwise healthy volunteers	No expression of MAGE-A12 was observed in the non-neoplasticNO M tissues. MAGE-A12 was expressed in 49.1% of the investigated tumor samples. The correlation between malignant lesion and MAGE-A12 detection was significant	P<0.001

26

microRNA-205 (mir- PCR to detect 205) across tissues. this biomarker

SSS upstaged

Frozen section, the disease in a 7 imprint-cytology, further Pathologic hematoxylin-eosin patients (9%). evaluation of 80 patients with staining, serial step Frozen section sentinel lymph Trivedi N, Ravindran 10.1002/hed.21345 2010 Head and Neck **HNSCC** sectioning (SSS) with detected primary nodes in oral H, Sundram S et al. HNSCC hematoxylin-eosin, macrometastas squamous cell and is in 7 of 8 cases carcinoma immunohistochemis but failed to try (IHC) detect smaller metastases

Overexpression of cornulin in histologically normal adjacent tissue predicts occult nodal metastases in head and neck	Weinberger P, Merkley M, Jackson L et al.	Cancer Research	10.1158/1538- 7445.AM10-3286	A cohort of 7 cN0 HNSCC patients who subsequently underwent HNSCC planned neck dissection as part of their treatment was selected	Snap frozen tissue was enriched for tumor and adjacent normal tissue by laser capture microdissection. Total protein was extracted and separated by saturation-labeling 2D difference in-gel electrophoresis (2D-DIGE).	There were 31 proteins underexpresse d in occult metastases patients, with the top candidate being 11.9 fold lower in the occult metastasis group. There were 29 proteins overexpressed, with the top candidate being 6.6 fold higher in the occult metastasis group. This protein was identified as Cornulin, a
---	---	-----------------	---------------------------------	---	--	--

novel HNSCC

biomarker.

Based

on

					PET/CT
					imaging the
					recurrent
Usefulness of					disease was
18F-FDG					diagnosed in 9
PET/CT					patients,
examination in	Kuźmińska M,		41 patients	45 PET/CT	cervical lymph
	Osuch-Wójcikiewicz	10.1016/S0030-	diagnosed with HNSCC	examinations were	node
O .	Otolaryngologia Polska E, Fronczewska-	6657(11)70704-1	head and neck	performed in 41	metastases - in
head and neck	Wieniawska K et al.		cancer	patients	12 patients,
cancer -					distant
Preliminary					metastases - in
results					6 patients,
					possible
					primary
					tumour
					localization - in

3 patients. In 7 cases additional foci of increased FDG uptake
additional foci of increased
of increased
FDG uptake
were revealed
outside the
head and neck.
Relationships There was a Immunohistochemic
between significant
metastasis- al analysis of 43 correlation 43 clinical N0 tonsillar neoplasm
associated Park J, Jung C, Sun D European archives of oto- 10.1007/s00405-010- Tonsillar between the
protein (MTA) et al. rhino-laryngology 1478-6 cancer expression of
tonsillar cancer performed using 1 and lymphatic MTA1 and
antibodies raised to metastasis in lymph node
tonsil cancer. MTA1. metastasis
Podoplanin
expression
correlates with 120 patients Cancer cell- revealed occult
Sentinel lymph Oral cavity with HNSCC of expressed metastasis in 45
and node metastasis the oral cavity podoplanin was patients
Huber G, Fritzsche F, International journal of oropharynx oropharynx in early 2011 $10.1002/ijc.25795$ and oropharynx determined by (37.5%). $p = 0.029$
Züllig L et al. cancer squamous squamous cell undergoing a immunohistochemis Twenty-nine of
cell SLN biopsy try using tissue 120 (24.2%)
the oral cavity carcinoma the oral cavity were enrolled microarrays primary
and HNSCC
oropharynx. showed

								podoplanin
								expression.
								Podoplanin
								expression
								correlated
								significantly
								with SLN
								metastasis and
								remained a
								significant
								predictor for
								lymph node
								status even
								after
								controlling for
								tumor stage
Muscle								Cases with
invasion in oral								muscle
								invasion had a
tongue					61 cases of oral	Owal tamasus	Tissue samples were	23.3% PPV of
squamous cell		Chandler K, Vance C,		10.1007/s12105-011-	tongue	Oral tongue	examined	occult lymph
carcinoma as a predictor of	2011		Head and neck pathology		squamous cell	squamous cell	histologically to	node
•		Budnick S et al.		0296-5	carcinoma stage	carcinoma	assess muscle	metastasis.
nodal status and local					T1	Carcinoma	invasion and DOI	Cases with DOI
and local recurrence: just								of greater than
as effective as								3 mm had a
as effective as								29.7% PPV of

depth of						occult lymph	
invasion?						node	
						metastasis.	
Human papillomavirus type 16 oropharyngeal 2011 cancers in 2011 lymph nodes as a marker of metastases	au Archives of otolaryngology- head & neck surgery	10.1001/archoto.2011.14 1	11 patients with HPV-16(+) OSCC and 3 control patients with HPV-16(-) OSCC.	Oral squamous cell carcinoma	Viral load quantification using reverse transcriptase- polymerase chain reaction was retrospectively performed in primary tumors and in cervical lymph nodes, originating from levels IIa, IIb, and III. A total of 45	The viral load value was significantly higher in metastatic lymph nodes than in tumor-free lymph nodes	P < 0.001
Down				Oral cavity	lymph node levels were analyzed.	Differentiation	
regulation of e-				SCC (n =	E-Cadherin	grade and	Differentiation grade
cadherin				110) (91.7%;	expression in	down	(p = 0.018);
Huber G, Zülliş (ECAD) - a 2011	L, BMC Cancer	10.1186/1471-2407-11-	120 patients	mostly	tumour tissue with	regulation of E-	Down regulation of E-
Soltermann A et al predictor for		217		tongue);	microarray	Cadherin	Cadherin expression
occult				Oropharyng	technique	expression	(p = 0.005)
metastatic				eal SCC		significantly	

disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and				(n=10) (8.3%).		correlate with positive lymph node status in univariate and multivariate analysis.	
Detection of occult lymph node metastasis in oral tongue squamous cell carcinoma	1 Oral Oncology	.1016/j.oraloncology. 11.06.290	44 patients (126 nodes) with oral tongue cancer	Oral tongue SCC	126 samples of lymph nodes analyzed by quantitative PCR (QPCR). The detection efficacies were compared to pathological evaluation by frozen sections, serial step sectioning (SSS) with H&E as well as cytokeratin immunohistochemis try (IHC);	An evaluation using two markers (CK14 and DSG3) further increased the efficacy, while a combined evaluation identified all the patients with occult metastasis.	Sensitivity: 0.88; specificity: 0.85; Combined evaluation sensitivity: 1.
Can a metastatic gene expression profile	1 Lohavanichbutr P, Clinical cancer research	.1158/1078- 32.CCR-10-0175	,	Oral squamous cell carcinoma	Affymetrix U133 2.0 plus arrays was used to compare the tumor genome-wide	Regression identified a four-gene model	p = 0.011

outperform						gene expression of 73	(MYO5A,	
tumor size as a						node-positive OSCC	RFN145,	
							FBXO32 and	
predictor of								
occult lymph						negative (≥18	CTONG200274	
node metastasis						months) OSCC	4) as the most	
in oral cancer							predictive of	
patients?							nodal	
							metastasis.	
				64 previously		The expression of B		
				untreated		cell-specific Moloney		
Nuclear BMI-1				patients who		murine leukemia	High cBMI-1	
expression in				underwent		virus integration site	expression	
laryngeal				surgical		1 (BMI-1) was	correlated	
carcinoma 2012	Allegra E, Puzzo L,	World Journal of Surgical	10.1186/1477-7819-10-	excision of	, 0	examined	significantly	p < 0.05
correlates with	Zuccalà V et al.	Oncology	206	laryngeal	SCC	immunohistochemic	with	•
lymph node				squamous cell		ally on formalin-	distant	
pathological				carcinoma with		fixed paraffin-	metastasis	
status				neck dissection		embedded primary	inctustusis	
				were included		tissue specimens.		
				in this study.		ussue specimens.		
LINE-1 and alu						61 lymph nodes were	LINE-1	Lower LINE-1
methylation	V:tlth N					divided into 3	methylation of	methylation levels
patterns in	Kitkumthorn N,	A : D ::: I I	10 F01 4/4 DICD 2012 12	61 lymph nodes		groups: 1) non-	both LN and	(p<0.001);
lymph node 2012	Keelawat S,	Asian Pacific Journal of		from patients	HNSCC	metastatic head and	LP was altered.	Higher percentage of
metastases of	Rattanatanyong P et	Cancer Prevention	9.4469	with HNSCC		neck cancer (NM);	The LINE-1	mCuC (p<0.01);
head and neck	al.					2) histologically	methylation	Lower percentage of
cancers						negative for tumor	changes in LN	uCmC (p<0.001);

				cells of cases with metastatic head and neck cancer (LN); 3) histologically positive for tumor cells (LP).	
					cases.
					Quantitative
Loss of NKX3-1					RT-PCR and
as a potential					immunohistoc
marker for an				6	hemistry (IHC)
increased risk			Oral	Genomic DNAs	analyses also
of occult lymph Miyaguchi K,	International journal	of	60 OSCC squamous	from 60 OSCC	showed
node 2012 Uzawa N, Mogushi K	oncology	10.3892/ijo.2012.1373	patients cell	patients using	significantly
metastasis and et al.			carcinoma	Affymetrix mapping	lower
poor prognosis				arrays	expression of
in oral					NKX3-1 in the
squamous cell					cases with
carcinoma.					occult LNM

Expression of chemokine receptor CCR7 in oral squamous cell carcinoma with and without cervical metastasis	Lourenc¸o S, Silami 2012 M, Camisasca D et al.	European Journal of Cancer	10.1016/S0959- 8049(12)71708-2	41 patients with OSCC	Oral squamous cell carcinoma	Paraffin embedded samples from both the tumor and cervical lymph nodes. Semiseriated H&Estained sections and immunohistochemic al reaction using anti-cytokeratin AE1/AE3 antibody were performed in metastasis-free cervical lymph	pathological stage and cervical metastasis. A trend for an association with CCR7 expression in tumors was noted in relation to cervical	pathological stage and cervical metastasis p = 0.00; CCR7 expression and cervical metastasis (p = 0.058) and tumor thickness (p = 0.051)
DSG3 as a biomarker for the ultrasensitive detection of occult lymph node metastasis in oral cancer	Patel V, Martin D, 2013 Malhotra R et al.	Oral Oncology	10.1016/j.oraloncology. 2012.08.001	317 HNSCC cases	HNSCC	Multiple general cancer- and HNSCC-tissue microarrays (TMAs), in negative and positive HNSCC metastatic cervical lymph nodes, and in	metastasis and tumor thickness DSG3 is highly expressed in all HNSCC lesions and their metastatic cervical lymph nodes, but absent in non-	

using nanostructured immunoarrays							a variety of HNSCC and control cell lines	invaded lymph nodes.	
Proteomic markers in early buccal mucosa squamous cell cancers	2013	Nair S, Malgundkar S, Patil A et al.	European Journal of Cancer	10.1016/S0959- 8049(13)70161-8	90 patients with early stage (T1/T2) buccal mucosa cancers	squamous	Tissue microarrays was prepared and the sectons stained with antibodies for 19 markers	Higher expression of SFN and TCTP are associated with lower risk of nodal metastasis All metastatic	p = 0.003
Oropharyngeal cancers: significance of HPV16 detection in neck lymph nodes.		Mirghani H, Ferchiou M, Moreau F et al.	Journal of clinical virology	10.1016/j.jcv.2013.02.00 9	11 patients with HPV16-positive OPSCC and 3 patients with HPV16- negative OPSCC	Oropharyng eal squamous cell carcinoma	HP16-viral load (VL) was quantified by real-time- polymerase-chain reaction in primary tumours and neck LNs	LNs from HPV16- positive OPSCC had a high VL and the viral DNA was located within tumoural cells	
E-cadherin and β -catenin expression in well-differentiated and		Rosado P, Lequerica-Fernández P, Fernández S et al.	British Journal of Oral and Maxillofacial Surgery	10.1016/j.bjoms.2012.03. 018	69 patients who had been operated on for oral SCC.	Oral squamous cell carcinoma	Tissue samples of oral squamous cell carcinomas were examined immunohistochemic ally	E-cadherin was significantly associated with histological grade and	E-cadherin with histological grade (p = 0.002) alcohol consumption (p = 0.05); β -catenin with nodal

moderately-					alcohol	stage (p = 0.02), TNM
differentiated					consumption,	stage (p = 0.009), and
oral squamous					and β-catenin	E-cadherin
cell carcinoma:					was	expression ($p = 0.01$).
Relations with					significantly	
clinical					associated with	
variables					nodal stage,	
					TNM stage,	
					and E-cadherin	
					expression.	
					The most	
					promising	
					methylation	
				Global methylation	markers will be	
Discovery of			6 oral squamous	levels on DNA	further	
DNA			cell carcinomas	extracted from 6 oral	validated on a	
methylation			(OSCC) with Oral	squamous cell	N-status	
markers that	Clausen M,	10.1016/j.oraloncology.	nodal metastas squamous	carcinomas (OSCC)	validation	
predict nodal	2013 Melchers L, De Bruin Oral Oncology	2013.03.011	es (N+) and 6 cell	with nodal metastas	cohort	
metastases in	L et al.		OSCC without carcinoma	es (N+) and 6 OSCC	containing 463	
oral squamous			nodal	without nodal	cases for which	
cell carcinoma			metastases (N0)	metastases (N0) by	complete	
				MethylCap -Seq.	clinicopatholog	
					ical and follow-	
					up data are	
					available	

Activin A								
immunoexpres							Clinicopathological	Activin A high
sion is useful to							features and	expression was
predict occult						Oral tongue	immunohistochemic	significantly
lymph node		Coletta R,		10.1007/s00428-013-	110 patients	squamous	al detection of	associated with
metastasis and	2013	Rodrigues P, Kelner N	Virchows Archiv	1444-	with primary	cell	carcinoma-	p=0.006 presence of
overall survival		et al.			TSCC	carcinoma	associated	occult lymph
in oral tongue							fibroblasts and	node
squamous cell							activin A	metastasis
carcinoma								
								Short axial
Staging of								diameter was
cervical lymph								the best size
nodes in oral								criterion for
squamous cell								detection of
carcinoma:					51 patients with	Oral	US prior to sentinel	metastases.
Adding		Norling R, Buron B,		10.1371/journal.pone.00	OSCC classified	squamous	node biopsy or	The number of
ultrasound in	2014	Therkildsen M et al.	PLoS ONE	90360	as cN0 by	1	selective neck	patients with
clinically lymph		Thereingsen wilet ai.		70300	CT/MRI	carcinoma	dissection	occult
node negative					CI/WIKI	carcinoma	dissection	metastases
patients may								decreased from
improve								16 out of 51
diagnostic								(31%) to 9 out
work-up								
D (1								of 51 (18%).
Prognostic		Ahmed R, Shawky	Pathology and Oncology	10.1007/s12253-014-	75 patients with	Laryngeal	Tumor tissue	Cyclin D1 was
significance of	2014	A, Hamed R	Research	9741-6	laryngeal	squamous	sampleswere	found to be a $p = 0.001$
cyclin D1 and E-							examined for cyclin	significant

cadherin					squamous cell	cell	D1 and E-cadherin	independent	
expression in					carcinoma	carcinoma	expression by	prognostic	
laryngeal							immunohistochemis	factor of lymph	
squamous cell							try.	node	
carcinoma								metastasis	
								An increased	
Significance of								presence of	
myofibroblast							The frequency of	myofibroblasts	
appearance in							myofibroblasts	in the tumour	
squamous cell							within the tumour	stroma was	Myofibroblasts with T
carcinoma of							stroma was assessed	significantly	stage P=0.019, occult
the oral cavity				40.404/## 2045.05.0	52 patients with	Oral	immunohistochemic	correlated with	neck metastasis
on the	2015	Luksic I, Suton P,	International journal of oral	10.1016/j.ijom.2015.05.0	cT1-T3N0	squamous	ally and compared	T stage, the	P<0.001, regional
occurrence of		Manojlovic S et al.	and maxillofacial surgery	09	OSCC	cell .	with other clinical	presence of	recurrence P=0.037,
occult regional						carcinoma	and	occult neck	and distant metastasis
metastases,							histopathological	metastasis,	P=0.008
distant							factors in surgical	regional	
metastases, and							resection specimens	recurrence, and	
survival.								distant	
								metastasis	
Does							99mTc-labelled	PL revealed 77	
SPECT/CT offer					44 11 1 11	0.1	Human Serum	hotspots with a	
incremental		Chandra D. Dhala	Indian Insural of Nuclean		44 patients with		Albumin	mean of 1.75	
benefit over	2015	Chandra P, Dhake	•		clinically node	-	Nanocolloid was	per patient and	
planar lympho-		S, Agrawal A et al.	Medicine		negative oral		injected at 2-4 sites	SPECT	
scintigraphy in					cavity SCC	carcinoma	on the edge of the	revealed 92	
sentinel node							tumour 3-6 hours	hotspots with a	

biopsies in oral cavity squamous cell carcinomas?						before surgery. Static lymphoscintigraphy in two planes followed by SPECT/CT (low mA) was done. Copy number status	patient. Additional hotpots were identified in 8 patients on SPECT/CT, including 3 patients, where PL didn't detect any nodes. In clinically	
Clinical relevance of copy number profiling in oral and oropharyngeal squamous cell carcinoma	van Kempen P, 2015 Noorlag R, Braunius W et al.	Cancer Medicine	10.1002/cam4.499	oropharyngeal squamous cell carcinomas (OPSCC) and 164 oral cavity squamous cell carcinomas (OSCC)	Oral and oropharyng eal squamous cell carcinoma	in 36 common oncogenes and tumor suppressor genes correlated with human papillomavirus (HPV) status in OPSCC, with occult lymph node status in OSCC and with patient survival.	correlated with occult lymph node metastases	Negative predictive value of 81%
Activin A regulates cell interactions in	Coletta R, Bufalino A, Sobral L et al.	Cancer Research	10.1158/1538-7445	115 OSCC patients	Oral squamous	Immunohistochemic al analysis of 115 OSCC samples	Increased activin A expression is	p=0.034

the				cell		significantly
microenvironm						correlated with
				carcinoma		
ent of oral						presence of
squamous cell						regional
carcinomas						metastasis
Activin A						Only high
immunoexpres						immunohistoc
sion as					Immunohistochemic	hemical
predictor of				Oral tongue	al detection of	expression of
occult lymph	Kelner N,		110 patients	squamous	carcinoma-	activin A was
node metastasis	2015 Rodrigues P, Bufalino Head & neck	10.1002/hed.23627	with primary	cell	associated	significantly $p = 0.006$
and overall	A et al.		oral tongue SCC		fibroblasts (CAFs)	associated with
survival in oral				carcinoma	and activin A on	presence of
tongue					tissue samples	occult lymph
squamous cell						node
carcinoma.						metastasis
Accuracy of						Seven
microRNAs as					The most	microRNAs
markers for the					differentially	highly
detection of					expressed	expressed in
neck lymph	de Carvalho A,				microRNAs were	metastatic
node	2015 Scapulatempo-Neto BMC medicine	10.1186/s12916-015-	161 patients	HNSCC	validated by qRT-	lymph nodes
metastases in	C, Maia D et al.	0350-3	with HNSCC	1111000	PCR in two	from the
	C, ividia D Ct al.				independent	discovery set
•					cohorts: i) 48 FFPE	•
head and neck					lymph node	were validated
squamous cell					samples, and ii) 113	in FFPE lymph
carcinoma.						node samples.

Prediction of occult lymph node metastasis in squamous cell carcinoma of the oral cavity and the oropharynx using peritumoral Prospero homeobox protein 1 lymphatic	Mermod D16 Bongiovanni Petrova T et al.	M, M, Head & neck	10.1002/hed.24452	Oral cavity and the oropharynx squamous cell carcinoma	Staining of the specific lymphatic endothelial cells nuclear marker, PROX1, as an indicator of lymphatic vessel density was determined by counting the number of positive cells in squamous cell carcinomas (SCCs) of the oral cavity and	MiR-203 and miR-205 identified all metastatic samples Peritumoral PROX1 lymphatic nuclear count significantly correlated with the detection of OLNM in multivariate analysis
nuclear quantification.					the oropharynx with clinically negative necks	

Determining the potential of desmoglein 3 as a sensitive and specific immunohistoch emical marker for the detection of micrometastasi s in patients with primary oral squamous cell carcinoma.	Nagvekar S, 2016 Spadigam A, Dhupar Contemporary oncology 10.5114/wo.2016.64596 A	Forty-seven lymph 10 patients who Oral underwent neck squamous dissection for cell primary OSCC carcinoma Forty-seven lymph node specimens were immunostained with DSG3	DSG3 as an immunohistoc
Detection of cervical lymph node micrometastasi s and isolated tumor cells in oral squamous cell carcinoma using	Dhawan I, Sandhu Journal of oral and 10.4103/0973- 2016 S, Bhandari R et al. maxillofacial pathology 029X.190946	133 LNs were subjected to SS at 100 10 patients Oral µm intervals. The squamous sections were stained cell with routine H&E dissection for primary OSCC. Table 133 LNs were subjected to SS at 100 pm intervals. The with routine H&E and analyzed for MM and ITC	of SS and IHC using pan-CK (AE1/AE3) revealed the presence of

immunohistoch emistry and serial sectioning. Clinical significance of three- dimensional measurement of tumour thickness on magnetic resonance imaging in patients with oral tongue squamous cell	2016	Kwon M, Moon H, Nam S et al.	European radiology	10.1007/s00330-015- 3884-z	53 patient	OTSCC	Oral tongue squamous cell carcinoma	Tumour thickness measured on axial, coronal, and sagittal views was compared to that in pathologic specimens.	as negative on routine H&E examination TT in all three planes was significantly correlated with lymph node (LN) metastasis. Occult LN metastasis was found in 15 of 39 (38.5%) patients	
Worst Pattern Of Invasion and occult cervical metastases for oral squamous carcinoma	2017	Velosa C, Shi Q, Stevens T et al.	Head and Neck	10.1002/hed.24754	323 with oral squam carcino		Oral squamous cell carcinoma	The resection specimens were examined for worst pattern of invasion, perineural invasion, and lymphocytic host responses	High-risk classification is significantly associated with decreased time to local recurrence and regional	Local recurrence (p = .0128) and regional metastasis (p = .052). WPOI-5 (p 0< .0001).

					metastasis. For patients undergoing END, 31 (20%) had occult-positive lymph nodes. WPOI-5 is significantly predictive of occult cervical metastases
2017	i Y, Kubota A, Head and neck pathology e T et al.	10.1007/s12105-017- 0814-1	48 patients with early oral squamous tongue squamous cell squamous cell carcinoma	Associations between the histopathological factors and late lymph metastasis were analyzed	High-grade tumor budding is an independent p<0.01 predictive factor for neck recurrenc

								Two patients
								(16.7%) had
								true-positive
								PET-CT
Positron								results,
emission								whereas 10
tomography-					46 clinically and		PET-CT examination	patients
CT prediction		Rosko A, Birkeland			radiographicall	Laryngeal	before salvage	(83.3%) had
of occult nodal	2017	A, Shuman A et al.	Head & neck	10.1002/hed.24719	y N0 patients	SCC	laryngectomy with	false-negative
metastasis in		11, Shaman 11 et al.			with recurrent	Sec	neck dissection	scans, 1 patient
recurrent					laryngeal cancer		neck dissection	(2.9%) had a
laryngeal								false-positive
cancer.								result and 33
								patients
								(97.1%) had a
								true-negative
								PET-CT.
								Sandwich
Molecular								ELISA
marker based								indicated the
intra-operative								best
diagnostic		James B,			24 patients with		positive (17) and	combination of
assay for	2017	Kontharaman S,	Head and Neck		HNSCC	HNSCC	negative (7) lymph	antibodies and
detection of		Kumar M et al.					nodes metastases	the Lateral
lymph node								Flow test (LFT)
metastasis in								assays
hnscc								developed
								•

		with
		combination
		for DSG-3,
		showed a
		sensitivity of
		72.5% and
		specificity of
		55.6% in
		detecting
		positive lymph
		node samples
		(11 positive & 9
		negative
		lymph nodes)
MFAP5 and		Over-
TNNC1:		expression of
Potential	Microarray in TSCC 12 patients	MFAP5 and
markers for	fresh tumor and underwent	TNNC1 were
predicting	normal tissue surgical	correlated with
Yang X, Wu K, Li S 10.18632/coccult cervical 2017 Oncotarget	oncotarget.12 Oral tongue specimens with resection for	CLNM, p < 0.001
et al. 446 lymphatic	SCC CLNM (n = 6) TSCC and	metastasis
metastasis and	compared to those selective neck	relapse-free
prognosis in	without CLNM ($n = $ dissection	survival and
early stage	6).	overall
tongue cancer		survival
wigue cancer		Survivar

Immunohistoch									A total of 1.137	7
emical									exactly mapped LNs.	micrometastas
detection of									Three	es (MM) in five
lymph node-	2017	Sproll C, Freund A,	International	Journal	of	10 1002/:: - 20/17	50 pN0-HNSCC	LINICCC	immunohistochemis	patients and 31
DTCs in	2017	Hassel A et al.	Cancer			10.1002/ijc.30617	patients	HNSCC	try (IHC) assays	disseminated
patients with									using antibodies	tumor cells
node-negative									directed against	(DTCs) in 12
HNSCC									CK5/14 and CD44v6	patients.
										Fluorescence
									Excised LN samples	imaging of
Feasibility of									evaluated on high-	panitumumab-
·									sensitivity	IRdye800
panitumumab-									fluorescence systems	predicted the
IRDye800 for									and	LN status
metastatic lymph node			Molecular	Imaging	and	10.1007/s11307-01-017-	10 patients with		histopathotologicall	correctly in all
lymph node identification in	2017	Van Den Berg N		magnig	anu	1138-y	HNSCC	HNSCC	y evaluated	cases with 164
			Biology			1136-у	HNSCC		(including	true negative
patients with head-and-neck									hematoxylin and	nodes, 8 true
									eosin (H&E) and	positive nodes,
squamous cell									EGFR staining) and	0 false-positive
carcinoma									unstained paraffin-	nodes and 0
									embedded sections)	false-negative
										nodes

Cytokeratin 19 expression in early oral squamous cell carcinoma and their metastasis: Inadequate biomarker for one-step nucleic acid amplification implementation in sentinel lymph node biopsy procedure	Noorlag R, van Es 2017 He R, de Bree R et al.	ead and Neck 10.1002/hed	207 patients d.24847 with OSCC	Oral squamous cell carcinoma	Immunohistochemic al CK19 expression was done in 65 cases of paired nodal metastases.	expressed in 65% of all OSCC and even less in early OSCC (56%), with poor correlation between primary tumor and (occult) nodal metastasis.
Clinical application of bio-markers for detection of nodal metastasis in head and neck squamous cell carcinoma	Kothandaraman S, 2017 James B, Raghavan N He et al.	ead and Neck		HNSCC	A retrospective (from tissue repository) and prospective (lymph node sample collection) validation of markers). The validation of these markers will be done by IHC	Using antibodies to desmoglein-3 (DSG-3), with 17 positive and negative lymph node samples, a sensitivity of 72.5% and specificity of

					55.6% was
					achieved for
					the detection of
					nodal
					metastasis
					using a Lateral
					Flow Test assay
					system
Amplification				Both CCND1	
and protein		158 paties	nts	amplification and	CCND1
overexpression		with ea	rly Oral	cyclin D1, FADD,	amplification
of cyclin D1:		tongue a	nd	and cortactin protein	and cyclin D1
Noorlag R, Boev Predictor of 2017	e Head and Neck 10.100	02/hed.24584 floor of mou	squamous ith	expression were	expression
K, Witjes M et al. occult nodal		(FOM)	cell	correlated with	correlated with
metastasis in		squamous c	carcinoma ell	occult nodal	occult nodal
early oral		carcinomas		metastases from	metastases.
cancer				tissue samples	
					OCLNM was
Tumor budding					significantly
is a predict					associated with
marker of		A total 1	00 Tongue		endophytic
occult node Yamana K, Sakata	I,	patients w	ith squamous		growth
2018 metastasis and Yoshida R et al.	Cancer Science	clinical T2	_	Tissue samples	pattern, depth
prognosis in		TSCC.	carcinoma		of invasion (>
patients with					3.3mm) and
cT2N0 TSCC					tumor budding
					(> 4) in
•					,

Tumor budding as a novel predictor of occult Sakata J, Yamana 2018 metastasis in Yoshida R et al. cT2N0 tongue squamous cell carcinoma	ı K, Human Pathology	10.1016/j.humpath.2017 .12.021	97 patients with cT2N0 TSCC who underwent surgical resection of their primary lesion	Tongue squamous cell carcinoma	Tumor budding using immunohistochemic al staining for cytokeratin AE1/AE3 and hematoxylin and eosin staining (HE).	univariate analysis. Multivariate analysis revealed that the tumor budding (> 4) was independently associated with the OCLNM. Tumor budding score ≥4 is a significant independent predictive factor for the occurrence of occult neck metastasis, which in turn is a significant
squamous cell				carcinoma	and eosin staining	
						factor.

Prognostic							Tissue samples	CD133,
implication of							_	•
NOTCH1 in					144 patients	Oral	analyzed for the	,
early stage oral		Wang S, Fan H, Xu J		10.1007/s00784-017-	with early stage	squamous	impact of the	NOTCH1 were CD133: $p = 0.035$;
squamous cell	2018	et al.	Clinical oral investigations	2197-9	(cT1T2N0)	cell	immunohistochemic	significantly NANOG: $p = 0.024$,
_		et ai.		2197-9	,		al expression of	associated with NOTCH1: p = 0.043
cancer with					OSCC	carcinoma	CD133, NANOG,	lymph node
occult							and NOTCH1	metastasis
metastases.								
Pre-treatment								A
Neutrophil-to-								A statistically
Lymphocyte							Tissue samples	significant
Ratio as a							analyzed for	relationship
		A11			110 1 1	0.1.	J	between high
predictor for		Abbate V,			110 patients	J	Neutrophil-to	levels of pre-
occult cervical	2018	Dell'Aversana	Surgical oncology	10.1016/j.suronc.2018.0	suffering from	squamous	lymphocyte ratio	treatment NLR $p = 0.000496$
metastasis in		Orabona G, Salzano G	0 0	6.002	early stage	cell	(NLR) in predicting	and probability
early stage (T1-		et al.			OTSCC	carcinoma	occult cervical	. ,
T2 cN0)							metastasis in stage I	rate for neck
squamous cell							and II OTSCC	occult
carcinoma of								metastases has
								been found
the oral tongue.								

Do	ownregulatio
n o	of miR-145 in
LSC	SCC, which
wa:	as negatively
cor	rrelated with
MY	YO5A
sup	ppression of
MYO5A LSC	SCC .
inhibition by pro	ogression
miR-145 acts as	nd metastasis.
a predictive Mil	iR-145
marker of Laryngeal MYO5A and miR-	rectly
occult neck Zhao X, Zhang W, Ji 132 patients squamous 145 expression was 2018 OncoTargets and Therapy 10.2147/OTT.S164597 reg	gulated
lymph node W with LSCC cell analyzed in tissue MY	YO5A
metastasis in carcinoma samples exp	pression in
human vit	tro and
laryngeal sup	ppressed
squamous cell LSC	SCC
carcinoma pro	oliferation
and	d invasion
wh	hile
pro	omoting
apc	ooptosis by
inh	hibiting
	YO5A.

	Occult primary
	tumors had a
	higher
	percentage of
Tumor	CD3+ and
Infiltrating	14 patients CD8+ TILs
Lymphocytes in	presenting with compared to
Occult Primary	initially occult tumor in Immunohistochemis
HPV+	primary HPV+ lymph nodes.
Oropharyngeal	try (IHC) was CD3+ (p = 0.006), OPSCC Oropharyng There was a
Squamous Cell Lukens J, International Journal of	performed on paired CD8+ T cells (p = managed with eal higher
Carcinoma 2019 Pustylnikov S, Radiation Oncology Biology	trans-oral squamous concentration
(OPSCC): Montone K et al. Physics	primary site and FOXP3+ TILs (p = robotic surgery cell of FOXP3+
Comparison of	involved nodes for (TORS) and carcinoma TILs in (TORS) (TORS) and carcinoma (TORS) (TO
the Primary	CD3, CD8, FOXP3, $(p = 0.09)$ neck dissection, primary
Tumor and	PD-L1, and CTLA-4 with a final tumors
Regional	TNM stage of compared to
Lymph Node	pT1 N2b nodal tumor
Metastases	and a trend
	towards a
	higher
	percentage of
	CTLA-4+ cells

							Proliferation
							markers EGFR,
							Cyclin D1 and
							Ki 67,
							individually
							and
						Samples from	collectively
Selected						patients who	were
molecular						underwent	predictive of
						laryngectomy were	extracapsular
markers as						taken and analyzed	spread and
indicators of						prospectively.	perineural
clinical profile,				72 cases of	, 0	Immunoreactivity in	spread of
tumor 2019	Iype	E, Journal of Clinical Oncology	10.1200/jco.2019.37.15_	laryngeal	squamous	tissue sections was	tumour.
characteristics	Balakrishnan L		suppl.e17522	squamous cell	cell	evaluated as	The significant
and treatment				carcinoma	carcinoma	negative when no	expression of
outcome in						positive cells were	Cox-2 was
squamous cell						observed within the	highly
carcinoma of						tumor, weak (1+) ,	
the larynx						moderate (2+), and	_
						strong or intense (3+)	positivity.
						strong of Interise (5.7)	Markers of
							aggressiveness
							were identified
							as p53, Bcl-2
							Cox-2.
							Markers of

								invasiveness were EGFR, Cyclin D1 and Ki 67. Markers predicting survival were p53, BCl-2, Cyclin D1 and Ki 67.	
Prediction of Occult Lymph Node Metastasis in Head and Neck Cancer with CD31 Vessel	2019	Mermod M, Bongiovanni M, Petrova T et al.	Otolaryngology - Head and Neck Surgery (United States)	10.1177/0194599818791 779	56 cases of squamous cell carcinoma	Oral cavity SCC (n = 50); Oropharyng eal SCC (n = 6)	Intra- and peritumoral microvascular density values	Peritumoral CD31 microvascular density was significantly associated with occult LNM in multivariate analysis	P<0.01
Immunohistoch emical quantification of partial-EMT in oral cavity squamous cell carcinoma	2019	Parikh A, Puram S, Faquin W et al.	Oral Oncology	10.1016/j.oraloncology. 2019.104458	99 OCSCC patients (47 with low volume T2 disease, 52 with high volume T4 disease, and	Oral cavity SCC	Tissue microarrays (TMA) were created using 2 mm cores from patients	There were associations of p-EMT scores with higher grade, PNI, and node positivity,	p-EMT scores with higher grade (p = 0.04), PNI (p = 0.003), and node positivity (p = 0.02), including occult node positivity (p = 0.005)

primary tumors					~50% in each			including	
is associated					group with			occult node	
with nodal					nodal			positivity	
metastasis					metastasis)				
Gene Expression Subtype Predicts Nodal Metastasis and Survival in Human Papillomavirus -Negative Head and Neck Cancer.	2019	Zevallos J, Mazul A, Walter V et al.	The Laryngoscope	10.1002/lary.27340	309 OCSCC cases and 125 LSCC	Oral cavity squamous cell carcinoma and laryngeal squamous cell carcinoma	Clinically node- negative OCSCC cases in order to test the predictive value of gene expression subtypes in detecting occult nodal metastasis	demonstrate	(RR=3.38, 95% CI 1.08–10.69)
Significance of SUV Max for Predicting Occult Lymph Node Metastasis and Prognosis in Early-Stage Tongue	2020	Xu C, Li H, Seng D et al.	Journal of oncology	10.1155/2020/6241637	120 cT1-2N0 tongue SCC patients	Tongue squamous cell carcinoma	The association between SUV max and occult lymph node metastasis was analyzed	In 60 patients with an SUV max >9.7, 13 patients had occult metastasis, and the difference was significant	p=0.041

Squamous Cell Carcinoma. Pre-operative cellular dissociation grading in biopsies is highly predictive of post-operative tumour stage and patient outcome in head and neck squamous cell carcinoma.	2020	Jesinghaus M, Steiger K, Stögbauer F et al.	British journal of cancer		10.1038/s41416-019- 0719-8	160 patients with HNSCC	HNSCC	CDG in n=160 pre- therapeutic biopsies from patients who received standardised treatment following German guidelines	Pre-operative CDG was highly predictive of post-operative tumour stage, including the prediction of occult lymph node metastasis.	p < 0.001
EVI1 as a marker for lymph node metastasis in HNSCC	2020	Idel C, Ribbat-Idel J, Kuppler P et al.	International Journal Molecular Sciences	of	10.3390/ijms21030854	Anonymized retrospective cohort of 389 patients suffering from HNSCC	Oral HNSCC n = 97; Oropharyng eal HNSCC n = 133; Hypophary ngeal HNSCC n =	Tissue samples of Primary Tumors, Lymph nodes Metastasis, Distant Metastasis, and Local Recurrences	expression in PTs that had at least one cervical lymph node metastasis (LM) was significantly	p < 0.05.

						48; Laryngeal HNSCC n= 111;		higher than in those PTs that had not formed LMs yet. At the time of the first diagnosis, EVI1 expression in PT tissue could discriminate between nodal positive and nodal negative patients.	
One-step nucleic acid amplification for detecting lymph node metastasis of head and neck squamous cell carcinoma	2020	Peigné L, Godey F, Le Gallo M et al.	Oral Oncology	10.1016/j.oraloncology. 2019.104553	26 cN0 HNSCC patients	HNSCC	prospectively analyzed. Each node was cut into 4 equal pieces alternatively sent to pathological analysis and OSNA technique. IHC CK19 was performed on the primary tumor biopsy and RT-qPCR of CK19, PVA and EPCAM on the LN	21 metastases. There were 139 concordant LN	After elimination of allocation bias, false negative rate was 1.3%, sensitivity and specificity were 90% and 95.6%, PPV and NPV were 75% and 98.5%.

lysate of discordant cases.

There was a statistically significant Peripheral difference blood samples between CHC were obtained and it was levels of cN0 Circulating 20 cN0 OCSCCa performed patients who Hybrid Cells as patients immunohistochemis remained pN0, a Marker of undergoing Oral try on the samples to and those that International Journal of Anderson Y, Wong Nodal 10.1016/j.ijrobp.2019.11. resection of the squamous identify cells coconverted to 2020 Radiation Oncology Biology p = 0.005; 0.002; 0.0001M, Clayburgh D Metastases in 347 primary tumor cell expressing both pN1+. The level Physics cytokeratin (tumor of CHCs in the Oral Cavity and neck carcinoma peripheral Squamous Cell dissection for cell marker) and Carcinoma staging. CD45 (macrophage blood correlated with marker), indicating a circulating hybrid the presence of cell both overt and pathologically identified occult cervical

				nodal metastases Significant
Pretreatment Blood Markers in the Prediction of Occult Neck Metastasis: A 10-Year Retrospective Study.	Ventura E, Barros J, 2021 Cureus 10.7759/cureus.16641 Salgado I et al.	Oral 102 patients squamous with early-stage OSCC of the tongue Carcinoma of the tongue	Role of pretreatment inflammatory blood markers in predicting occult neck metastasis. We also evaluated neutrophillymphocyte ratio (NLR) association with the depth of invasion (DOI) of the primary tumor	association of NLR and monocyte- lymphocyte ratio with neck status on univariate analysis. Multivariate p=0.001; 0.011; 0.02 analysis showed that only NLR was an independent risk factor for occult metastasis among

inflammatory blood markers.

Pre-treatment surgically treated by a lost of patients of patients affected by LSCC, were found neutrophil-to-	ıd
Pre-treatment who had been positive for	
neutrophil-to-	r
	le
lymphocyte means of metastasis (the	ıe
and platelet-to-	·),
lymphocyte END between while 78/108)8
ratios as Laryngeal January 2006 and (72.3%)	
predictors of Salzano G, Perri F, Journal of Personalized 387 patients squamous January 2021, were patients were	æ
2021 10.3390/jpm11121252 10.3390/jpm11121252 20cult cervical Maglitto F et al. Medicine with LSCC cell retrospectively found to be	Эe
metastasis in carcinoma reviewed, using negative for the	ıe
clinically information presence of	of
negative neck retrieved from a neck metastasis	is
supraglottic database dedicated (the pNG	10
and glottic to such procedures group). High	,h
cancer in a single tertiary values of NLR	R ,
care referral but not PLR	₹,
institute. significantly	
correlated with	:h

								the probability	
								of OM, and an	
								NLR value of	
								2.26	
								corresponds to	
								a probability of	
								OM of 20%.	
						All studies		The occult	
The occult						enrolled T1		nodal	
nodal						and T2 oral		metastasis rate	
metastasis rate						tongue		was not	
of early tongue					19 enrolled	cancer		significantly	
cancer (T1–T2):	2021	Choi K, Park S, Kim J	Medicine	10.1097/MD.000000000	studies with a	patients	Tissue samples	affected by	P = 0.426 and 0.921
A protocol for a		et al.		0024327	total of 1567	(with	-	neither T2 ratio	
systematic					cases included.	clinically		among T1–T2	
review and						negative for		nor reported	
meta-analysis						lymph node		year of the	
						metastasis)		studies.	
Metastatic and					27 patients with		Patients were		
sentinel lymph					oral squamous		infused	The median	
node mapping		Krishnan G, van			cell carcinoma	Oral	intravenously with		
using	2021	den Berg N, Nishio N	Theranostics	10.7150/THNO.59196	(OSCC), 18 of	squamous	50mg of	metastatic LNs	•
intravenously		et al.			whom were	cell	Panitumumab-	was	0.05
delivered					clinically node	carcinoma	IRDye800CW prior	significantly	
Panitumumab-					negative (cN0).		to surgical resection	higher than the	
					<u>-</u>		-		

						of their primary tumour with neck dissection and/or SLNB. Lymphadenectomy specimens underwent fluorescence molecular imaging to evaluate tracer distribution to LNs.		
Detecting head and neck lymph node metastases with white light reflectance spectroscopy; a pilot study.	Bugter O, Aaboubout Y, Algoe M et al.	Oral oncology	10.1016/j.oraloncology. 2021.105627	9 patients with a total of nineteen LNs were included.	HNSCC	Intraoperative SFR spectroscopy measurements of LNs with and without malignancies.	fraction (BVF), microvascular saturation (StO(2)), and Rayleigh	o = 0,0006

Deregulation of extracellular matrix modeling with molecular prognostic markers revealed by transcriptome sequencing and validations in Oral Tongue squamous cell carcinoma.	Thangaraj S, 2021 Shyamsundar V, Scientific reports Krishnamurthy A et al.	10.1038/s41598-020- 78624-4	100 patients with Oral Oral Tongue Tongue Squamous Squamous Cell Cell Carcinoma Carcinoma (OTSCC),	Transcriptome analysis of OTSCC patients identified the key genes and deregulated pathways. A panel of 26 marker genes was shortlisted and validated using real- time PCR	parameter 'delta', using discriminant analysis. Delta was significantly decreased in positive LNs. Up-regulation of Tenacin C (TNC) and Podoplanin (PDPN) was significantly correlated with occult node positivity.
Circulating hybrid cells predict presence of occult nodal	Henn T, Anderson 2021 Head and Neck A, Hollett Y et al.	10.1002/hed.26692	Oral 22 patients with squamous cN0 OCSCC cell carcinoma	Peripheral blood samples for CHCs with co-expression of cytokeratin (tumor) and CD45	exceeded CTCs and correlated $p = 0.002; 0.006$ with the

								Late Program
metastases in							(leukocyte) using	•
oral cavity							immunofluorescence	overt and
carcinoma							microscopy, then	occult nodal
							correlated levels	metastases
							with pathologic	
							lymph node status.	
								NLM
Tumor-stroma								correlated with
ratio can								the
predict lymph-							D.O. J. MOD	pathological
node metastasis							BG and TSR were	depth of
in cT1/2N0 oral						Oral Tongue	evaluated using	invasion $p < 0.001, p = 0.008, p$
tongue	2022	Sakai T, Saito Y, International Journa		10.1007/s10147-022-	70 patients with	-	hematoxylin-eosin	(pDOI), TBG < 0.001 , p = 0.01, p =
squamous cell		Tateishi Y et al. Clinical Oncology		02249-у	cT1/2N0 OTSCC	cell	staining and	and TSR in 0.02
carcinoma						carcinoma	cytokeratin AE1/AE3	univariate
independent of							immunostaining.	analysis and
tumor budding								pDOI and TSR
grade								in multivariate
grade								analysis.
The prognostic								A DOI greater
role of the pre-							Tissue samples	than 5.4 mm
_		Calanna			110 patients	O1 T	analyzed for pre-	
treatment		Salzano G,	1	10.1007/.1000/.001	affected by	Oral Tongue	treatment neutrophil	and a NLR
neutrophil to	2022	Dell'Aversana Oral and maxill		10.1007/s10006-021-	early-stage	squamous	to lymphocyte ratio	greater than
lymphocyte		Orabona G, Abbate V surgery		00969-5	(cT1-T2 cN0)	cell	(NLR) and tumor	2.93 are
ratio (NLR) and		et al.			OTSCC	carcinoma	depth of invasion	associated with
tumor depth of							(DOI)	an increased
invasion (DOI)							· /	risk of

in early-stage							presentin	.~
							occult ce	_
squamous cell								
carcinomas of							metastase	2S
the oral tongue.							D.C.	211
							Patients	
							occult l	ymph
							node	
							metastase	
							(cN0/pN+	
							significan	-
Semaphorin-							lower SE	
3F/Neuropilin-							expressio	
2							values	than
Transcriptional					Tissue	samples	patients	
Expression as a Meler-Claramonte		10.3390/cancers1409225	53 patients with		analyzed	for he	without l	.ymph
	Cancers	9	cN0 squamous	HNSCC	transcriptio	onal	node	
Biomarker of Vilaseca I et al.			cell carcinoma		expression	of	involvem	.ent
Occult Lymph					SEMA3F aı	nd NRP2	(cN0/pN0)).
Node							Consider	ing
Metastases in							the expr	ession
HNSCC							of	the
							SEMA3F-	-
							NRP2	genes,
							patients	were
							classified	into
							two g	groups
							according	g to

69

the risk of

occult nodal

metastasis:

Group 1 (n =

34), high

SEMA3F/low

NRP2

expression,

with a low risk

of occult nodal

involvement

(14.7%

cN0/pN+);

Group 2 (n =

19), low

SEMA3F or

high

SEMA3F/high

NRP2

expression,

with a high risk

of occult nodal

involvement

(78.9%

cN0/pN+).

Dissecting Tissue Compartment- Specific Protein Signatures in Primary and Metastatic Oropharyngeal Squamous Cell Carcinomas.	Sadeghirad H, 10.3389 2022 Frontiers in immunology Monkman J, Mehdi A 5513 et al.	43 patients with Oropharyng proteomic primary tumors eal approaches to and 11 with squamous primary and lymph nodal cell node metastasis metastases carcinoma from an oropharyngeal SCC	Overall survival (OS) analysis indicated CD25 in tumor regions of primary rumors to be associated with reduced survival, while progesterone receptor (PR) was associated with an improved OS
Circulating tumor cells as a predictor for poor prognostic factors and overall survival in treatment naïve oral squamous cell carcinoma patients	Oral Surgery, Oral Medicine, Qayyumi B, Bharde 2022 Oral Pathology and Oral A, Aland G et al. Radiology	naïve oral squamous cell carcinoma. Sensitivity Oral SCC analysis was performed by including 40 CTCs were isolated using OncoDiscover technique from presurgically obtained peripheral blood	CTCs above 20.5 were suggestive of nodal petastasis with a linear trend for detecting occult metastasis

Expression of Connexins 37, 40 and 45, Pannexin 1 and Vimentin in Laryngeal Squamous Cell Carcinomas	2023	Mizdrak I, Mizdrak Racetin A et al.	Genes	10.3390/genes14020446	34 patients who underwent (hemi-)laryngectomy and regional lymphadenecto my due to LSCC	Laryngeal squamous cell carcinoma	Samples of tumor tissue and adjacent normal mucosa embedded in paraffin blocks were stained using the immunofluorescence method and were semi-quantitatively analyzed.	The expression of Cx37, Cx40, and Panx1 differed between cancer and adjacent normal mucosa and between histological grades, being the highest in well-differentiated (G1) cancer and low/absent in poorly differentiated	p < 0.05
Diagnostic performance of FDG PET/MRI for cervical lymph node metastasis in patients with clinically N0		beci S, Aydos U, niceri A et al.	European Review for Medical and Pharmacological Sciences	10.26355/eurrev_20230 5_32459	44 patients who underwent neck dissection with the diagnosis of HNSCC	HNSCC	Clinical examinations, including ultrasonography, were performed to identify cervical metastases in HNSCC patients with preoperative	differentiated (G3) cancer PET/MRI was more successful in distinguishing pathological	83.3% sensitivity, 92.1% specificity, 97.2% NPV, 62.5% PPV and 90.9% accuracy

head and neck					cN0. A nuclear		
cancer					medicine specialist		
					visually evaluated		
					the MRI, PET, and		
					PET/MRI results		
The modified						pT category,	
Polsby-Popper						tumor grade,	
score is a novel						pNX nodal	nT satarawa
quantitative						status and the	pT category
histomorpholo			Patients with			presence of	(p = 0.044), tumor
gy biomarker			pT1-pT4a	Tongue	A total of 100	manifest	grade ($p = 0.036$), pNX nodal status
with potential Csury T, Csury	On all and December and	10.1159/000535363		ell squamous paraffi	formalin-fixed	metastatic	(p=0.004), and the presence of manifest the
to predict 2024 Balk M et al.			squamous cell		paraffin-embedded (FFPE) primary	cervical lymph	
lymph node	Treatment		carcinomas of cell			nodes at the	
positivity and			the mobile	carcinoma	tumor specimens	time of	metastatic cervical
cancer-specific			tongue (TSCC)			diagnosis were	lymph nodes at the
survival in						all found to be	time of diagnosis
tongue						significant	(p = 0.002)
squamous cell						predictors of	
carcinoma						OS.	
Predictors of					Nodal nodes		
Occult	**			Oral	samples for occult	OS was	
Yamagata Metastasis and	K,	10.3390/diseases120200 39	86 patients with OSCC	squamous	metastasis and risk	significantly	
Prognostic	chi Diseases (Basel, Switzerland)			cell	factors for poor	associated with	p = 0.015
A et al. Factors in				carcinoma	prognosis after	pN	
Patients with					SOHND.		

cN0 Oral Who Cancer Underwent Elective Neck Dissection. Orohypopharynge al and oral cancers, locally Baseline neutrophiladvanced stage to-lymphocyte ratio were (NLR), platelet-toassociated with Blood Markers lymphocyte ratio an increased Predicting 472 patients (PLR), lymphocyte- risk of Clinically diagnosed with to-monocyte ratio pathological Occult Lymph Gaudioso P, ORL; journal for oto-rhinocN0 HNSCC (LMR), systemic lymph node OR = 5.22; 95% CI: Node Borsetto D, Polesel J et laryngology and its related 10.1159/000534079 **HNSCC** inflammatory 2.14-12.75 who underwent involvement. Metastasis in al. specialties marker (SIM), and NLR, LMR, up-front Head and Neck systemic immune- PLR, SIM, and surgery. Squamous Cell inflammation index SII were Carcinoma. (SII) were calculated significantly from available blood associated at parameters. multivariable analysis. NLR >2.12 was the most reliable at predicting

occult lymph

node

metastasis

3. Results

Following extensive individual searches conducted by the first two authors (M.P.G. and P.S.), a total of 771 articles were initially retrieved (PubMed = 145 results; Embase = 482 results; Scopus = 72 results; Cochrane = 3; Google Scholar = 69 results). Employing Mendeley Software, an automated duplicate removal process validated by human check for each article identified and eliminated 137 duplicates, resulting in 634 unique manuscripts. Subsequently, a meticulous screening phase based on title and abstract led to the exclusion of 412 articles, leaving 222 for further evaluation. Comprehensive scrutiny of the entire manuscripts was undertaken, followed by group discussions to ensure consensus on inclusion criteria. Additionally, the bibliographies of selected articles were scrutinized to identify any missed manuscripts, leading to the inclusion of one additional article. Ultimately, 103 articles met the predefined criteria and were included in the review, with the remaining excluded for specific reasons detailed as follows: Not regarding HNSCC (n = 33); Occult carcinoma (n = 22); Article in Japanese (n = 2); Article in Chinese (n = 3); Article in German (n = 1); Article in Polish (n = 1); HNSCC not regarding marker of occult metastasis (n = 35); Abstract only (n = 1); Reviews (n = 16); Congress abstract with unavailable full text (n = 1); Case report (n = 1); Post neoadjuvant CT PET/CT (n = 1); Reply letter (n = 1). The entire selection process is summarized in a PRISMA flow-chart (Figure 1) for transparency and reproducibility. All the selected articles are summarised in Table 1.

3.1. Lymph Nodes Analysis

3.1.1. Micro-RNA in Lymph Nodes

Micro-RNAs (miRNA, miR) are non-coding RNA molecules that regulate gene expression by interacting with messenger RNA (mRNA). [13,14] Specific miRNAs play pivotal roles in orchestrating gene expression patterns in various tumors, including HNSCC. [15–19] For instance, Fletcher et al. observed tumor-specific expression of miR-205 in metastatic HNSCC lymph nodes, demonstrating significant differential expression compared to benign mucosal samples (p < 0.05). While miR-205 levels may not serve as a marker for cancer transformation in epithelial tissues, they show promise in detecting lymph node metastasis. In their study, miR-205 expression was significantly different in histologically metastatic lymph nodes compared to non-metastatic ones (p < 0.01), indicating its potential as a marker for micro-metastatic disease. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated acceptable sensitivity in identifying metastatic HNSCC within lymph nodes, suggesting the utility of miR-205 as a diagnostic marker. [20]

The pooled analysis of miRNA expression profiles in HNSCC lymph nodes revealed a spectrum of potential markers, encompassing miR-200a, miR-200c, miR-203, miR-205, miR-382, miR-628-5p, and miR-758. Notably, miR-628-5p, miR-758, and miR-382 exhibited limited sensitivity, detecting only 26.3%, 31.6%, and 52.6% of metastatic samples, respectively, underscoring their suboptimal diagnostic utility. Conversely, miR-200a, miR-200c, miR-203, and miR-205 demonstrated maximal specificity (100%) and high sensitivity levels (84.2%, 94.7%, 100%, and 100%, respectively), indicative of their potential as robust diagnostic markers. The expression profiles of these miRNAs were significantly associated with the presence of metastatic disease. However, miR-200a and miR-200c exhibited limited efficacy in detecting micrometastases, identifying only 40% and 80%, respectively, of such cases and failing to detect isolated tumor cells. In contrast, miR-203 and miR-205 displayed exceptional sensitivity, accurately classifying lymph nodes containing macrometastases, micrometastases, or isolated tumor cells with 100% sensitivity. The diagnostic accuracy of miR-200a was 84.2% (95% CI, 68.1–93.4%), with a positive predictive value of 100% and a negative predictive value of 68.4% (95% CI, 43.5–87.3%). Similarly, miR-200c exhibited an accuracy of 92.1%, with positive and negative predictive values of 100% and 81.2% (95% CI, 77.5-97.9%), respectively. For miR-203 and miR-205, both positive and negative predictive values, along with accuracy levels, were 100%, with an area under the curve (AUC) of 1.0. Given their high accuracy, miR-203 and miR-205 were further evaluated by comparing fine needle aspiration biopsies (FNAs) with cytological assessments,

revealing complete concordance between molecular and cytological approaches. Notably, both markers exhibited 100% sensitivity, specificity, negative predictive value, and positive predictive value. Furthermore, the diagnostic accuracy of miR-203 and miR-205 in distinguishing positive and negative FNAs was remarkably high, with AUC values of 0.963 and 0.966, respectively, and accuracy levels of 97.3% (95% CI, 92.1–99.4%). Moreover, the negative predictive values were 95.9% (95% CI, 88.6–99.1%), and the positive predictive values were 100% (95% CI, 90.9–100%) for both miRNAs. These findings underscore the clinical potential of miR-203 and miR-205 as reliable diagnostic markers for HNSCC lymph node metastasis, offering enhanced accuracy and precision in patient management. [21]

miR-145 and MYO5A are implicated in the development and metastasis of laryngeal squamous cell carcinoma (LSCC). In a study involving 132 LSCC patients and 52 healthy individuals, the expression levels of miR-145 and MYO5A were examined. It was observed that miR-145 expression was significantly diminished in the LSCC group compared to the healthy mucosa group (4.05±2.82 vs. 10.00±2.44, p = .002). Conversely, the relative expression value of MYO5A in LSCC tissue was markedly elevated relative to healthy tissue $(64.52\pm15.20 \text{ vs. } 31.81\pm8.30, \text{ p} = .007)$. Furthermore, the serum concentrations of MYO5A in the N+ and N0+ groups were notably higher than those in the Ngroup (294.2±62.0 pg/mL vs. 199.3±71.1 pg/mL, p = .003; 276.3±73.5 pg/mL vs. 199.3±71.1 pg/mL, p = 0.009), with no significant disparities between the N+ and N0+ groups. These findings underscore the potential of MYO5A as a presurgical biomarker, as its levels in both primary tumor tissue and serum exhibit significant elevation in conjunction with neck lymph node or occult metastasis. In conclusion, the altered expression patterns of miR-145 and MYO5A in LSCC tissues and serum suggest their involvement in the pathogenesis and metastatic progression of LSCC. The observed dysregulation of these molecules highlights their potential as biomarkers for prognostic and diagnostic purposes in LSCC, offering insights into the disease mechanisms and paving the way for the development of targeted therapeutic strategies. [22]

3.1.2. REEP1, RNF145, CTONG2002744, MYO5A, and FBXO32

In the investigation of oral squamous cell carcinoma (OSCC), the disparity in gene expression profiles between metastatic and non-metastatic lymph nodes was scrutinized, with 73 positive and 40 negative nodes compared. Utilizing multivariate linear regression analysis, researchers pinpointed several genes—REEP1, RNF145, CTONG2002744, MYO5A, and FBXO32—that exhibited differential expression between node-positive and node-negative OSCCs. Subsequently, employing stepwise logistic regression, a predictive model based on four of these genes – MYO5A, RNF145, FBXO32, and CTONG2002744 – was identified. Comparison of this gene-based predictive model with tumor size – a conventional predictor of locoregional metastasis-revealed a significantly superior AUC at the Receiver Operating Characteristic (ROC) curve (AUC= 0.85 vs. 0.61, respectively; p < .011). Interestingly, the incorporation of tumor size into the gene-based model did not enhance its predictive value. Notably, this investigation was conducted using the Affymetrix Platform, with quantitative PCR (qPCR) subsequently employed on a separate set of 31 metastatic vs. 13 nonmetastatic lymph nodes. Observations from qPCR analysis indicated a correlation between CTONG2002744 and FBX032 only. However, it's noteworthy that statistical power analysis revealed sufficient power (at alpha = 0.05) for CTONG2002744 exclusively. These findings underscore the potential significance of CTONG2002744 as a key gene associated with metastatic processes in OSCC. Further validation studies are warranted to consolidate and expand upon these preliminary findings, shedding more light on the role of CTONG2002744 and other implicated genes in the metastatic cascade of OSCC. [23]

3.1.3. CK14, eIF4E, and DSG3

qPCR was employed to assess the expression levels of CK14, eIF4E, and DSG3 in 44 patients with oral tongue squamous cell carcinoma (SCC). Subsequently, these results were compared with histological and immunohistochemical analyses. The sensitivity of each marker as a diagnostic tool for lymph node cancer involvement varied: CK14: 0.6, eIF4E: 0.92, and DSG3: 0.88. Regarding

specificity, CK14 exhibited a specificity of 0.9, eIF4E had a specificity of 0.74, and DSG3 showed a specificity of 0.8. Interestingly, combining more than one marker led to an increase in diagnostic capacity. Specifically, the combination of CK14 and DSG3 demonstrated a sensitivity of 0.88 and a specificity of 0.85. Furthermore, a comprehensive evaluation incorporating all markers achieved the highest sensitivity possible (sensitivity = 1). Notably, immunohistochemical investigation of DSG3 alone surpassed cytokeratin in terms of sensitivity (0.9 vs. 0.7, respectively). In conclusion, the authors advocated for the use of multiple markers to facilitate an accurate diagnosis of occult metastasis in patients with HNSCC. Such a comprehensive approach enhances the sensitivity and specificity of intraoperative staging of the pN0 neck, thereby potentially improving clinical outcomes and patient management strategies. [5]

James et al. utilized a microfluidics-based molecular assay system for the intraoperative detection of nodal metastasis, selecting markers based on meta-analysis. They developed both polyclonal and monoclonal antibodies, establishing a lateral flow assay system to screen lymph nodes from patient samples—both positive and negative for metastasis—to determine sensitivity and specificity. In their preliminary study focusing on DSG3, five monoclonal and one polyclonal antibodies were developed and validated in positive (17) and negative (7) lymph nodes. The marker demonstrated a sensitivity above 80% and specificity above 71%. Subsequently, a sandwich ELISA indicated the optimal combination of antibodies, and the Lateral Flow test (LFT) assays developed with this combination for DSG-3 exhibited a sensitivity of 72.5% and specificity of 55.6% in detecting positive lymph node samples (11 positive & 9 negative lymph nodes). Moving forward, DSG3, along with the newly identified markers, will undergo validation in larger patient cohorts, with the aim of selecting the best combination of markers for developing the diagnostic assay. The authors concluded that incorporating multiple markers on a proficient platform like microfluidics holds the potential to enhance the clinical utility of the assay system, offering improved accuracy and reliability in the intraoperative detection of nodal metastasis. [24]

3.1.4. The Loss of Heterozygosity at D9S 171 (9p21)

The loss of heterozygosity at D9S 171 microsatellite locus on the 9th chromosome (9p21) was studied as a potential marker for lymph node micro metastasis. The authors used 20 supraglottic cancer samples and 182 lymph nodes and examined loss of heterozygosity at D9S 171 with the outcomes of immunohistochemistry for CK19 and histology. They observed significantly different outcomes between those three techniques (34.4%, 23.6%, and 16.5%, respectively) with 45% of the population had micro metastasis. [25]

3.1.4. Squamos Cell Carcinoma Antigen and Cytokeratins

In 2004, Onishi et al. conducted a study aimed at identifying occult metastasis in cervical lymph nodes of patients with oral cancer utilizing polymerase chain reaction (PCR). Their investigation focused on assessing the expression of squamous cell carcinoma antigen (SCCA) and cytokeratin 13 (CK13) as potential markers. While CK13 was initially considered as a candidate marker for occult metastasis detection, its expression was found in control lymph nodes, rendering it unsuitable for this purpose. Conversely, SCCA demonstrated promising results, with expression observed in 4 out of 30 control lymph nodes and significantly elevated levels detected in metastatic lymph nodes. Based on their findings, the authors concluded that SCCA mRNA expression, detected through real-time quantitative PCR, holds clinical utility for the detection of occult tumor cells in cervical lymph nodes. This underscores the potential of molecular techniques, such as PCR, in improving the accuracy and sensitivity of lymph node metastasis detection in oral cancer patients, thereby informing treatment decisions and enhancing patient outcomes. [26]

Cytokeratin 14 (CK14) expression was investigated using real-time (RT) PCR in 153 cervical lymph nodes obtained from 13 patients with HNSCC. These lymph nodes were also subjected to semi-step sectioning and immunohistochemistry for CK14 analysis. A cutoff value of 50 molecules of CK14-RNA per nanogram was utilized for the RT-PCR analysis. The results indicated that CK14-RNA was detected in a total of 33 nodes, 14 of which were found to have nodal metastasis upon

pathological examination. Interestingly, among these, 2 metastatic nodes with occult metastasis tested positive for CK14-RNA, and an additional 2 nodes without micro-metastasis exhibited CK-14 levels above the predetermined cutoff value. In conclusion, the authors noted that RT-PCR for CK-14 RNA in lymph nodes demonstrated sensitivity in detecting micro-metastasis. However, they also observed a relatively high false-positive rate associated with this method. These findings underscore the need for cautious interpretation of RT-PCR results for CK14-RNA in lymph node evaluation, emphasizing the importance of corroborating findings with other diagnostic modalities to minimize the risk of misdiagnosis and ensure accurate clinical management of HNSCC patients. [27]

Cytokeratin 19 (CK19) has been found to be an inadequate marker for occult lymph node metastasis in oral squamous cell carcinoma (OSCC), as well as lacking specificity for SCC. This conclusion was drawn based on observations that glandular tissue adjacent to the analyzed lymph nodes exhibited positive expression of CK19. In a study involving tissue microarrays from 212 patients, the authors investigated the correlation between CK19 expression in tumors and lymph nodes. They found that in 65 cases, there was a correlation between tumor and lymph node CK19 expression, albeit this correlation was deemed only "fair" (kappa 0.391; p = .001). Notably, for earlystage OSCC, this correlation was not statistically significant (kappa 0.422; p = .064). Furthermore, CK19 was also evaluated through CK19 mRNA expression in cervical lymph nodes. Amplification of CK19 mRNA, as demonstrated by RT-PCR, was associated with the presence of carcinoma cells in lymph nodes, with significantly higher values observed in metastatic nodes (p < .0001). This approach exhibited higher sensitivity for nodal involvement compared to histology alone (16.3% vs. 36%; p < .0001). In summary, CK19 has limitations as a marker for occult lymph node metastasis in OSCC, with its expression not being specific to SCC. However, CK19 mRNA expression analysis via RT-PCR shows promise as a more sensitive method for detecting nodal involvement, highlighting the importance of employing advanced molecular techniques in clinical practice for improved diagnostic accuracy and patient management. [28]

Pan-cytokeratin (pan-CK) (AE1/AE3) was evaluated in 133 lymph nodes obtained from 10 patients diagnosed with OSCC. In addition to pan-CK analysis, these lymph nodes underwent serial sectioning at $100 \, \mu m$ intervals to detect micro-metastases or single cancer cells. The analysis resulted in the upstaging of 3 out of 10 patients (3.33%), with cancer positivity detected in 2.25% of the examined lymph nodes. [29]

Similarly, Barrera et al. utilized pan-CK AE1/AE3 in a study involving 1012 lymph nodes from 50 patients with HNSCC. They compared the efficacy of metastasis detection using serial sectioning at 5-to 6-µm interval specimens. Notably, unexpected micro-metastases were identified through pan-CK AE1/AE3 immunohistochemistry, leading to an upstaging in 29% of N0 patients and 45% of N1 patients. The authors observed that in 8 cases where serial sectioning analysis yielded negative results, immunohistochemical analysis with pan-CK AE1/AE3 revealed positive findings, while the opposite occurred in 3 cases. Consequently, they concluded that the combined utilization of serial sectioning and immunohistochemistry employing pan-CK AE1/AE3 could enhance the detection of micro-metastases. This approach holds promise for improving the accuracy of nodal staging in patients with HNSCC, potentially leading to more tailored and effective treatment strategies. [30]

In a study involving 26 cases of laryngeal and hypopharyngeal carcinoma, classic hematoxylin and eosin (H&E) histology and cytokeratin immunostaining were employed for analysis. Interestingly, the cytokeratin immunostaining revealed micro-metastases in 5 out of the 26 cases, representing 19.2% of the specimens that tested negative via conventional histology (p = .001). This finding underscores the enhanced sensitivity of cytokeratin immunostaining in detecting micro-metastases, thereby highlighting its potential utility as a complementary diagnostic tool alongside traditional histological examination. The ability to identify these occult metastases can have significant implications for patient prognosis and treatment planning, emphasizing the importance of incorporating advanced immunostaining techniques into routine pathological assessment protocols for improved clinical outcomes. [31]

CK19 mRNA was investigated utilizing a one-step nucleic acid amplification method to identify occult metastasis from OSCC, achieving an impressive accuracy of 95%. Oka et al. conducted an

analysis of gene expression profiles from metastatic lymph nodes, identifying 36 genes, including annexin A8-like 2 (ANXA8L2) and desmoglein 3 (DSG3), which were consistently detected at significantly higher levels in metastatic lymph nodes compared to benign lymph nodes. Subsequently, a retrospective analysis of 330 lymph nodes was performed, with 62 of them testing positive for metastatic involvement. The individual accuracy of each marker—CK19, ANXA8L2, and DSG3—was approximately 90%. Remarkably, the combination of these markers substantially improved sensitivity to 96-100%. Furthermore, the expression of ANXA8L2 and DSG3 was detected in approximately 3% of histopathologically metastasis-negative lymph nodes. These findings suggest that ANXA8L2 and DSG3 hold promise as molecular markers for enhancing the detection rate of occult metastasis in OSCC. By utilizing a combination of these markers, clinicians may achieve higher sensitivity in identifying metastatic involvement, thereby facilitating more accurate staging and treatment planning for patients with OSCC. [32]

Three immunohistochemistry assays utilizing antibodies against CK5/14, a broad spectrum of cytokeratins (CK 1-8, 10, 14-16, and 19), and CD44v6 were employed for investigating regional lymph node metastasis. Among 50 cN0 subjects with head and neck squamous cell carcinoma (HNSCC), the authors detected 7 micrometastases in 5 patients and 31 disseminated tumor cells in 12 patients. Sentinel lymph node biopsy is recommended by NCCN guidelines for HNSCC. Similarly, in breast cancer, the one-step nucleic acid amplification (OSNA) method has demonstrated enhanced reliability. In a study involving 26 cN0 HNSCC patients, 157 lymph nodes were analyzed using immunohistochemistry for CK19, RT-qPCR for CK19 (the target of OSNA assay), and two additional markers, EPCAM and PVA. OSNA provided intraoperative results for all patients, detecting 21 metastases. Of the 157 lymph nodes, 139 were concordant (88.5%). There were 18 initially discordant lymph nodes (11.5%), with 13 (8.3%) being OSNA positive but pathologically negative, and 5 (3.2%) being OSNA negative but pathologically positive. After the elimination of allocation bias, the falsenegative rate was reduced to 1.3%, with a sensitivity and specificity of 90% and 95.6%, respectively. The positive predictive value and negative predictive value were calculated at 75% and 98.5%, respectively. These findings underscore the potential utility of OSNA as an effective intraoperative diagnostic tool for assessing lymph node metastasis in HNSCC patients, providing valuable insights for treatment decision-making and patient management. [33]

Rhee et al. utilized a monoclonal antibody cocktail AE1/AE3 for cytokeratin in their investigation of occult nodal metastasis. Their study uncovered 5 micrometastases among 10 patients that were not detected by standard analysis methods. This underscores the potential of utilizing monoclonal antibody cocktails for enhancing the sensitivity of nodal metastasis detection, providing valuable insights into the presence of micrometastases that may otherwise go undetected using conventional approaches. [34]

3.1.5. Tumour Budding Score

In a study involving 97 patients with cT2N0 tongue SCC, researchers investigated the potential of tumour budding score and the AE1/AE3 cocktail as predictors of occult nodal metastasis. Their findings confirmed the significance of both markers in predicting the occurrence of occult neck metastasis. Specifically, a tumor budding score of ≥4 emerged as a significant independent predictive factor for occult neck metastasis. This underscores the importance of incorporating tumor budding assessment into clinical evaluations for identifying patients at higher risk of nodal metastasis, thereby facilitating more informed treatment decisions and improved patient outcomes. [35,36]

3.1.6. Desmoglein 3

In the investigation of antibodies to Desmoglein-3 (DSG3) within lymph nodes using the Lateral Flow Test assay system, researchers observed a sensitivity of 72.5% and specificity of 55.6% in the detection of nodal metastasis. These findings suggest that while the assay system demonstrates moderate sensitivity in identifying nodal metastasis, its specificity is relatively lower. This underscores the need for further refinement or complementary approaches to improve the accuracy of nodal metastasis detection, ensuring more reliable clinical assessments and treatment decisions for

patients. [7] DSG3 immunohistochemical analysis was also conducted by Nagvekar et al. in a study involving 47 lymph nodes from 10 patients with OSCC. The researchers identified positivity for DSG3 in 6 nodes upon histological examination with 3 μ m sections. However, the identification of additional micrometastatic deposits was challenging due to the presence of a considerable number of activated macrophages exhibiting DSG3 immunoreactivity. These DSG3-positive macrophages were distributed throughout various regions, including the subcapsular sinuses, interfollicular areas, medullary sinuses, and lymphoid follicles. Importantly, further characterization revealed that these DSG3-positive cells expressed CD68, confirming their macrophage phenotype. Based on these observations, the authors concluded that while DSG3 is indeed overexpressed, its utility as a marker for detecting micrometastasis is limited due to the confounding presence of DSG3-positive macrophages. This highlights the complexity of interpreting DSG3 immunoreactivity in lymph nodes and underscores the importance of considering potential cellular heterogeneity and non-neoplastic expression patterns when assessing its diagnostic significance in OSCC metastasis detection. [37]

Patel et al. introduced a ground-breaking nanostructured immunoarray system tailored for the ultrasensitive detection of DSG3 in lymph node tissue lysates. Through their research, they made a significant observation: DSG3 exhibits high expression levels in all head and HNSCC lesions and their corresponding metastatic cervical lymph nodes, while being conspicuously absent in non-invaded lymph nodes. This finding underscores the potential of DSG3 as a discriminatory biomarker for metastatic disease in HNSCC. Utilizing a straightforward microfluidic immunoarray platform, Patel et al. demonstrated the rapid and remarkably sensitive detection of DSG3. Their innovative approach enabled the detection of DSG3 even in human tissue sections containing minimal HNSCC-invading cells, thus enabling the clear differentiation between positive and negative lymph nodes. This advancement represents a significant leap forward in the field of HNSCC diagnosis, offering a promising avenue for the early and accurate detection of metastatic disease using DSG3 as a key molecular indicator. [38]

3.1.7. HPV-DNA in Lymph Nodes

In a study investigating HPV-16 positivity in cervical lymph node metastases of HPV16+ oropharyngeal SCC, researchers conducted RT-PCR analysis on cervical lymph nodes from 11 patients with oropharyngeal SCC and 3 controls with HPV-negative oropharyngeal SCC. The results revealed a significantly higher viral load in metastatic lymph nodes compared to tumor-free nodes in the experimental group (p < .01). Among the tumor-free lymph node samples, 16 had undetectable viral load values, 8 showed low or medium levels ($<10^5$ copies per million cells), and 3 exhibited high levels ($>10^5$ copies per million cells). This finding led the researchers to conclude that the detection of HPV-16 DNA in lymph nodes of patients with HPV-16(+) oropharyngeal cancer is indicative of metastatic involvement. Moreover, they suggested that tumor-free lymph nodes with a high viral load value may signify the presence of occult lymph node metastasis, thereby proposing HPV-16 DNA as a potential marker for metastasis in these cases.[39]

In a study by Mirghani et al., RT-PCR for HPV16 identification was evaluated as a potential marker of occult metastasis. The study included 11 patients with HPV16+ oropharyngeal SCC and 3 patients with HPV16- OSCC. Notably, HPV16 was not identified in the HPV16- patients, while metastatic lymph nodes from HPV16 oropharyngeal SCC exhibited a high viral load. Among 27 pathologically tumor-free lymph node (PTFLN) samples, 16 had no detectable viral load, while the viral load was low or medium (<10⁵ copies/million cells) in 8 samples and high (>10⁵ copies/million cells) in 3 samples. Interestingly, in the latter group where high viral load was detected in PTFLN, no metastatic cells were identified, and the viral DNA was found to be located in immune cells. Based on these findings, the authors concluded that HPV16 detection in lymph nodes can be attributed to its presence within either metastatic cells or immune cells. Furthermore, they suggested that HPV16 detection in PTFLN may not necessarily correlate with occult lymph node metastases. [40]

3.1.8. Tumor Infiltrating Lymphocytes and Immunohistochemistry

In a study involving 14 patients treated with transoral robotic surgery and neck dissection for HPV+ oropharyngeal SCC, tumor infiltrating lymphocytes (TILs) were investigated. Immunohistochemistry targeting CD3, CD8, FOXP3, PD-L1, and CTLA-4 was conducted. The analysis revealed that occult primary tumors exhibited a higher percentage of CD3+ and CD8+ TILs compared to tumor in lymph nodes. Specifically, the percentage of CD3+ T cells was 61% in occult primary tumors versus 42% in nodal tumors (p = 0.006), and the percentage of CD8+ T cells was 36% versus 23%, respectively (p = 0.01). Additionally, there was a higher concentration of FOXP3+ TILs in primary tumors compared to nodal tumors, with percentages of 8% and 5%, respectively (p = 0.01). Although not statistically significant, there was a trend towards a higher percentage of CTLA-4+ cells in primary tumors compared to nodal tumors (52% versus 34%, p = 0.09). Based on these findings, the authors concluded that occult primary HPV+ oropharyngeal SCC tumors tend to have a higher concentration of CD3+ and CD8+ TILs compared to their associated regional lymph node metastases. This observation may potentially contribute to the clinical presentation observed in these patients. [41]

3.1.9. Histological Techniques for Sentinel Lymph Node Analysis

In stage I (T1-2cN0) tongue cancer patients, sentinel lymph nodes were pathologically evaluated using various analysis techniques, including frozen section, imprint cytology, hematoxylin-eosin staining, serial step sectioning (SSS) with hematoxylin-eosin, and immunohistochemistry (IHC). Metastases were classified based on size: macrometastasis (>2.0 mm), micrometastasis (0.2 mm-2.0 mm), and isolated tumor cells (<0.2 mm). Out of 80 patients, occult metastasis was detected in 20. Frozen section and imprint cytology identified metastasis in 10 patients, while hematoxylin-eosin stain detected it in 13 patients. SSS further upstaged the disease in 7 additional patients (9%). While frozen section successfully detected macrometastasis in 7 out of 8 cases, it missed micrometastasis in 4 out of 7 cases and isolated tumor cells in all 5 cases. SSS was particularly effective, upstaging the disease by 10%, with a sensitivity and negative predictive value of 90% and 97%, respectively, when combined with hematoxylin-eosin stain. The authors concluded that frozen section and imprint cytology are inadequate for identifying occult metastasis, while IHC and SSS are necessary to detect micrometastasis and isolated tumor cells. [42]

3.1.10. Single Fiber Reflectance Spectroscopy

In a cohort of nine patients, intraoperative single-fiber reflectance (SFR) spectroscopy was conducted to assess its predictive capability for nodal metastasis. The study revealed three parameters—blood volume fraction (BVF), microvascular saturation (StO(2)), and Rayleigh amplitude—that were significantly lower in positive lymph nodes. These parameters were consolidated into a single score termed "delta" using discriminant analysis. The "delta" score exhibited a substantial decrease in positive lymph nodes, with remarkable sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) (p = .0006, 90.0%, 88.9%, 90.0%, and 88.9%, respectively). Moreover, the area under the ROC curve was an impressive 96.7% (95% confidence interval 89.7-100.0%). [43]

3.1.11. PET/MRI

cN0 HNSCC cases are typically identified following clinical and radiological assessments. The combination of positron emission tomography and magnetic resonance imaging (PET/MRI) has shown superior performance compared to PET or MRI alone. Specifically, PET/MRI demonstrated higher sensitivity, specificity, negative predictive value, positive predictive value, and accuracy when compared to PET or MRI alone. These values were as follows: 83.3%, 92.1%, 97.2%, 62.5%, and 90.9% for PET/MRI, 50%, 89.5%, 91.8%, 42.8%, and 84% for PET alone, and 83.3%, 68.4%, 96.2%, 29.4%, and 70.4% for MRI alone, respectively. [44]

3.1.12. PET/CT

The sensitivity of PET-CT in detecting nodal disease in recurrent laryngeal cancer was found to be 16.7% (95% CI, 3.5% to 46.0%), with a specificity of 97.1% (95% CI, 83.8% to 99.9%). The PPV was calculated at 66.7% (95% CI, 20.2% to 94.4%), while the NPV stood at 76.7% (95% CI, 62.1% to 87.0%). These findings suggest that PET-CT exhibits poor sensitivity and NPV, indicating its limitations as a predictor of nodal disease in recurrent laryngeal cancer. [45]

3.2. Tumour Tissue Analysis

3.2.1. Activin A and Carcinoma-Associated Fibroblasts

In oral tongue SCC, researchers have investigated the expression of Activin A and its association with carcinoma-associated fibroblasts (CAF). Activin A, a member of the transforming growth factor beta family, is produced by CAF and has been implicated in various aspects of cancer progression. Studies have shown that Activin A enhances cell proliferation and increases xenograft tumor volume in oral tongue SCC. Furthermore, it has been found to promote cancer cell migration, invasion, and epithelial-mesenchymal transition, thereby potentially contributing to the aggressive nature of the disease. Its high expression was significantly associated regional recurrence, regional metastasis and occult lymph node metastasis (p = .01, p = 0.034 and p = .006, respectively). [46] Additionally, multivariate analysis has revealed that activin A overexpression serves as an independent marker for overall survival in early-stage oral tongue SCC. When comparing populations with Activin A overexpression to those with low levels, the 5-year overall survival rates were 76.5% versus 89.7%, respectively (HR: 2.44, 95% CI: 1.55-3.85, p = 0.012). [47,48]

3.2.2. Cyclins

3.2.2.1. Cyclin D1

Cyclin D1 expression has been found to correlate with occult nodal metastasis in a cohort of 158 patients with early-stage tongue or floor of mouth cancers clinically negative for neck lymph node metastasis. Specifically, Cyclin D1 amplification and immunohistochemical positivity were significantly correlated with occult nodal metastasis in early floor of mouth SCC (p = .020). [6]

The predictive value of Cyclin D1 as a marker of occult lymph node metastasis has been consistently confirmed in various studies, including the trial conducted by Capaccio et al. In their study, which involved 96 cN0 HNSCC patients, 32 of whom were found to have pN+ status while 64 were pN0, Cyclin D1 expression was observed in 42 patients (43.7%) via immunofluorescence. Univariate regression analysis demonstrated a significant correlation between Cyclin D1 expression and occult lymph node metastasis (p = .007). This correlation remained significant in the multivariate regression analysis, where Cyclin D1 emerged as an independent predictor of occult metastasis (p = .0059). [49]

Numerical aberrations of the Cyclin D1 gene were found to be associated with occult lymph node metastasis in a study involving 45 patients with OSCC. These patients underwent primary tumor surgical excision without neck dissection. Fluorescence in situ hybridization (FISH) was utilized to detect numerical aberrations in the Cyclin D1 gene from fine-needle aspiration biopsies of cN0 patients. Among the cohort, 15 patients exhibited CCND1 aberrations, accounting for 33.3% of the sample. Remarkably, 12 out of these 15 patients (80%) developed cervical lymph node metastases within 2 years. Multivariate analysis underscored that the numerical aberration of the CCND1 gene independently predicted late cervical lymph node metastasis (RR = 8.685%, 95% CI = 2.232-33.802, p = .002). [50]

In a study involving 75 cases of laryngeal SCC, Cyclin D1 and E-Cadherin were assessed via immunohistochemistry to predict various outcomes, including lymph node metastasis. Cyclin D1 emerged as a significant independent prognostic factor for lymph node metastasis (p = 0.000). Consequently, the researchers concluded that Cyclin D1 could serve as an independent prognostic marker for lymph node metastasis in patients with laryngeal SCC. Furthermore, they suggested that

Cyclin D1 expression could aid in identifying patients with clinically negative lymph nodes who may still harbour a considerable risk for occult metastasis. [51]

3.2.2.2. Cyclin L1

Cyclin L1 amplification has been associated with higher stage in HNSCC. Through logistic regression analysis based on tissue microarray analysis using fluorescence in situ hybridization in 280 cases of HNSCC, a correlation between CCNL1 gain and lymph node metastasis was observed, independent of stage or subsite (p = .049). Additionally, this amplification was linked to shorter overall survival, as evidenced by the log-rank test (p = .006). These findings underscore the potential prognostic significance of Cyclin L1 amplification in HNSCC, particularly regarding lymph node involvement and overall survival. [52]

3.2.2.3. Cyclin B1

Cyclin B1 expression in the cytoplasm of tumor cells has been associated with occult cervical lymph node metastasis in a case series involving 40 patients with oral tongue SCC. Moreover, the levels of Cyclin B1 were found to be positively correlated with Ki67 levels in cancer cells. This suggests that Cyclin B1 expression may serve as a potential marker for predicting occult lymph node metastasis in oral tongue SCC patients, highlighting its potential role in assessing tumor aggressiveness and metastatic potential. [53]

3.2.3.β-. catenin

The expression of β -catenin in OSCC has been found to be significantly associated with nodal stage (p = 0.02), suggesting its potential role as a marker for identifying occult metastases in patients with OSCC. This finding underscores the importance of β -catenin as a potential biomarker for assessing the metastatic potential and disease progression in OSCC. Further research is needed to validate its utility in clinical practice for identifying occult lymph node metastases in OSCC patients. [54]

3.2.4. Histopathological Characteristics

The proliferative activity of cancer, measured through immunohistochemical assessment of PCNA and Ki67, as well as mitotic counting in laryngeal SCC, was investigated as a potential predictive factor for occult nodal metastasis. However, the researchers found that proliferative markers were not reliable indicators for diagnosing occult neck metastasis. This suggests that other factors or markers may need to be explored for more accurate prediction of occult nodal metastasis in laryngeal SCC. Further research is warranted to identify novel biomarkers or predictive factors that can improve the detection of occult metastasis in this context. [55]

PCNA and p53 were investigated as potential markers of occult metastasis in a population of 37 patients with oral tongue SCC. However, the study found that neither PCNA nor p53 had predictive value for detecting occult metastasis. This underscores the need for further research to identify more reliable markers or predictive factors for occult metastasis in oral tongue SCC. [56]

3.2.5. Genetic Amplifications

Genetic amplification of the 11q13 region, including genes such as CCND1, FGF4, FADD, and CTTN, as well as loss of CSMD1, showed significant correlation with lymph node metastasis in a cohort of 355 patients with oropharyngeal SCC and OSCC. When analyzing a clinically relevant subgroup, 11q13 amplification was the only factor that retained the ability to detect occult metastasis (p = .002), with a negative predictive value of 81%. This suggests that 11q13 amplification may serve as a useful marker for identifying occult lymph node metastasis in patients with oropharyngeal SCC and OSCC. [57]

Thangaraj et al. investigated a cohort of 100 patients with oral tongue SCC using RT-PCR and found that the upregulation of Tanancin C and Podoplanin genes was associated with occult lymph nodal metastasis (p = .049, F = 6.76; p = .049, F = .5). [58]

3.2.6. DNA Methylation

Clausen et al. explored the potential application of DNA methylation analysis of cancer cells as a predictor of nodal metastasis. They compared methylation levels from 6 cases of OSCC with nodal metastasis (N+) and 6 cases without nodal metastasis (N0) using MethlCap-Seq. Subsequently, they sequenced the isolated methylated DNA fragments using Illumina GA II and computationally mapped them back to the genome. Their next step involves validating the most promising methylation markers identified in this study in a larger cohort of 463 cases, pending completion of follow-up data collection. [59]

3.2.7. Ecotropic Viral Integration Site 1

EVI1 (Ecotropic Viral Integration Site 1) expression has emerged as a prognostic marker in various solid cancers and leukaemia. In HNSCC, EVI1 expression has been associated with poor survival and the presence of lymph node metastatic disease. A study conducted on a cohort of 389 HNSCC patients, of whom 57.2% had locoregional metastasis, revealed a correlation between EVI1 expression and these adverse outcomes. As a result, there is a hypothesis suggesting the potential utility of EVI1 as a marker for occult lymph node metastasis in patients clinically negative for lymph node involvement (cN0) with HNSCC. [60]

3.2.8. CC-Chemokine Receptor 7

The expression of CC-chemokine receptor 7 (CCR7) and its ligand, CCL21, plays a crucial role in tumor cell chemotaxis, particularly in the context of lymph node metastasis. In OSCC, the expression of CCR7 has been investigated in relation to cervical lymph node metastasis. Analyzing paraffin-embedded samples from previous patients using hematoxylin and eosin staining and anticytokeratin AE1/AE3 antibodies, researchers found that CCR7 expression in tumors was not significantly associated with cervical metastasis (p = .058). However, they concluded that lymph node sectioning combined with pan-CK AE1/AE3 staining remains an important complementary tool in detecting lymph node metastasis. Despite the lack of a significant correlation, the authors stated that the higher immunoexpression of the chemokine CCR7 in tumors of patients with cervical metastasis suggests its potential role as a prognostic biomarker, which warrants further investigation. [61]

3.2.9. Connexins, Pannexin 1 and Vimentin

In a study involving 32 patients with SCC, Connexins (Cx) 37, Cx40, Cx45, Pannexin 1 (Panx1), and Vimentin expression in cancer tissue were investigated using immunofluorescence. The findings revealed significant associations between certain markers and neck metastatic status. Specifically, the median Immunoreactive Score (IRS) of Panx-1 was notably higher in patients with a negative neck status compared to those with metastatic neck disease, with values of 4.5 and 2, respectively (p = .045). Additionally, Vimentin expression was observed to be higher in patients with a positive neck status, with a median of 7.65 compared to 3.83 in those with negative neck status (p = .048). Moreover, according to the logistic regression model, Panx-1 emerged as an independent prognostic factor for regional metastatic disease in LSCC (p = .049, 95% CI: .563–.980, OR: .76; regression coefficient -.271). Other identified risk factors for positive neck disease included higher histological grade, higher T stage, and positive lymphovascular invasion, all of which were statistically significant (all p < .05). [62]

3.2.10. E-Cadherin

In their 2002 publication, Rodrigo et al. conducted research on the quantification of E-cadherin in supraglottic laryngeal SCC and its association with various outcomes, including nodal metastasis. They found that low levels of E-cadherin in SCC of the supraglottic larynx were significantly correlated with nodal metastases (p = .007). Based on their findings, the authors concluded that E-cadherin serves as an independent predictor of nodal metastases in supraglottic squamous cell carcinomas. [63]

3.2.11. Melanoma Associated-A Antigens

Melanoma-associated antigens (MAGE-A) are typically silent in normal tissues except for the testis, but their expression in other tissues is characteristic of tumor cells. In a study on OSCC, RT-PCR analysis for MAGE-A12 revealed expression of the gene in 49.1% of the 57 cancer tissue samples, while no expression was detected in normal tissues. Based on these findings, the authors hypothesized that MAGE-A12 could serve as a diagnostic marker for occult metastasis. [64]

3.2.12. Vascular Endothelial Growth Factor - C

In a study involving 87 patients with OSCC and T1-2cN0M0 tumors, the expression of Vascular Endothelial Growth Factor – C (VEGF-C) was analysed. The researchers compared the VEGF-C expression with the incidence of occult metastasis after elective neck dissection, which was found to be 22%. Surprisingly, the authors discovered that VEGF-C expression was not related to lymph node metastasis in this cohort of patients. [65]

3.2.13. Panitumumab and Epidermal Growth Factor Receptor

Panitumumab is an antibody that targets the epidermal growth factor receptor (EGFR), which is commonly expressed in up to 90% of HNSCC cases. In a study involving six patients, intravenous injection of panitumumab-IRDye800 was administered, followed by evaluation using a high-sensitivity fluorescence system. The correlation between fluorescence intensity and tumor location, as defined by pathologists, was examined. During neck dissections, a total of 172 lymph nodes were extracted, with eight of them found to be positive for cancer metastasis. Fluorescence imaging of panitumumab-IRDye800 accurately predicted the lymph node status in all cases. Specifically, there were 164 true negative nodes (i.e., not fluorescent and not tumor-positive), eight true positive nodes (i.e., fluorescent and tumor-positive), and no false-positive or false-negative nodes. These findings yielded a sensitivity, specificity, positive predictive value, and negative predictive value of 100%. Therefore, the authors concluded that panitumumab-IRDye800 can effectively identify HNSCC lymph node metastasis with high specificity and negative predictive value.[66]

In 2021, researchers investigated a novel technique for sentinel lymph node biopsy (SLNB) in 27 patients with OSCC, 18 of whom were cN0. The study involved the intravenous administration of Panitumumab-IRDye800CW before surgical resection of the primary tumor with neck dissection and/or SLNB. A total of 960 lymph nodes were analyzed, of which 34 (3.5%) contained metastatic disease. Panitumumab-IRDye800CW demonstrated preferential localization to metastatic and sentinel lymph nodes, exhibiting a higher fluorescent signal compared to others. The median fluorescent intensity (MFI) of metastatic lymph nodes was significantly higher than that of benign ones (0.06 versus 0.02, p < 0.05). Furthermore, selecting the five lymph nodes with the highest fluorescence intensity from individual specimens resulted in 100% sensitivity, 85.8% specificity, and 100% NPV for the detection of occult metastases, and 100% accuracy for clinically staging the neck. In the cN+ cohort, assessment of the highest five fluorescence lymph nodes per patient achieved 87.5% sensitivity, 93.2% specificity, and 99.1% NPV for the detection of metastatic nodes. These findings suggest that Panitumumab-IRDye800CW-enhanced SLNB may offer high sensitivity and accuracy in detecting occult metastases and clinically staging the neck in patients with OSCC. [67]

3.2.14. Cornulin and Total Protein Analysis

The study utilized a sophisticated approach to analyze protein expression in snap-frozen tumor tissue and adjacent normal tissue from patients with HNSCC, aiming to identify potential biomarkers associated with occult nodal metastases. Total protein analysis was performed using laser microdissection and saturation-labeling 2D difference in-gel electrophoresis (2D-DIGE). Significance analysis of Microarray (SAM) method was utilized to evaluate differential protein expression. Protein spots meeting specific criteria were further analysed by liquid chromatography and tandem mass spectrometry to identify proteins. In tumor tissue, no significant differences in protein expression were observed between patients with and without occult nodal metastases. However, considerable differences in protein expression were detected in normal adjacent tissue: 60 protein spots showed significant differences between patients with and without occult metastases; Among these, 31 proteins were underexpressed and 29 were overexpressed in patients with occult metastases; The top candidate among the underexpressed proteins was found to be 11.9-fold lower in the occult metastasis group, while the top candidate among the overexpressed proteins was 6.6-fold higher; Cornulin, a 53 kDa calcium-binding protein of the S100 family, emerged as a significant protein overexpressed in the occult metastasis group. Cornulin, previously identified as a novel biomarker for HNSCC, was found to be overexpressed in the adjacent normal tissue of patients with occult nodal metastases. Elevated cornulin levels in normal adjacent tissue may indicate ongoing epithelial injury, potentially predisposing developing tumors to aggressive behavior. The findings suggest that overexpression of cornulin in adjacent normal tissue could serve as a novel biomarker for tumors with occult metastases in cN0 HNSCC patients. Additionally, the study underscores the importance of tumor-stroma interactions in the development of early nodal metastases.

Overall, this study provides valuable insights into the molecular mechanisms underlying occult nodal metastases in HNSCC and highlights the potential utility of cornulin as a biomarker for identifying high-risk patients. Further research is warranted to validate these findings and explore the clinical implications of cornulin expression in HNSCC. [68]

3.2.15. Markers of Cancer Stem Cells CD133, NANOG and NOTCH1

The study investigated the association between cancer stem cell markers (CD133, NANOG, and NOTCH1) and lymph node metastasis in 144 T1-2cN0 OSCC patients. High expression levels of CD133, NANOG, and NOTCH1 were observed in 72.91%, 59.02%, and 56.94% of the tumor samples, respectively. Significant associations were found between the expression of these markers and lymph node metastasis in early-stage OSCC (CD133: p = 0.035; NANOG: p = .024; NOTCH1: p = .043). These findings suggest that CD133, NANOG, and NOTCH1 may serve as potential indicators of lymph node metastasis in early-stage OSCC. Further research is needed to validate these findings and explore the underlying mechanisms. [69]

3.2.16. Metastasis-Associated Protein 1

In a study involving 43 patients with tonsillar squamous cell carcinoma (SCC), overexpression of Metastasis-associated protein (MTA) 1 was found to be a predictor of occult nodal metastasis. Among the population, 41.9% of patients expressed MTA1, and its presence was significantly associated with lymph node metastasis (p = .034). The sensitivity and specificity for diagnosing occult metastasis were reported as 53.3% and 84.6%, respectively. These findings suggest that MTA1 expression could serve as a potential marker for identifying occult nodal metastasis in tonsillar SCC patients. [70]

3.2.17. SFN, TCTP and 14-3-3-Zeta

A proteomic approach was employed to analyze lymph nodes and identify predictors of occult metastasis in early-stage buccal mucosa SCC involving 90 patients. Among the molecules considered, higher expression of SFN was associated with a lower risk of nodal metastasis (p = .03), while higher expression of TCTP was also linked to a lower risk of nodal metastasis (p = .003). Additionally, these

markers, along with 14-3-3-zeta, exhibited significant differences in expression between well-differentiated tumors and others. These findings highlight the potential utility of SFN and TCTP as markers for identifying occult nodal metastasis in early-stage buccal mucosa SCC. [71]

3.2.18. E-Cadherin and Focal Adhesion Kinase

In a study involving 95 patients with supraglottic laryngeal cancer, E-cadherin and Focal Adhesion Kinase (FAK) were investigated as markers for nodal metastasis. Reduced E-cadherin expression was found to be associated with the presence of nodal metastases (P = .006). Furthermore, combining the assessment of E-cadherin and FAK expression resulted in improved accuracy in detecting nodal metastasis (P = .001). Histological grade also showed an association with nodal metastases (P = .005). Multivariate analysis confirmed that these parameters were independent predictors of nodal metastases. [72]

3.2.19. p-EMT and SPRR1B

Parikh et al. conducted a study involving 99 patients with OSCC, where they examined tumor tissues using three validated markers of partial epithelial-mesenchymal transition (p-EMT) (PDPN, LAMB3, LAMC2), as well as one marker of well-differentiated epithelial cells (SPRR1B). They found that the p-EMT score was associated with node positivity (2.09 vs. 1.87, p = 0.02), including occult node positivity (56% vs. 19%, p = 0.005). In a multivariate analysis, p-EMT was independently associated with nodal metastasis (OR 3.12, p = 0.039). [73]

3.2.20. NKX3-1 and DNA Copy Number Aberrations

In a study involving 60 patients with OSCC, Affymetrix mapping arrays were utilized to analyze DNA copy number aberrations (CNAs) as a potential marker for occult nodal metastasis. Through correlation analysis between CNA data for genes and the presence of occult metastasis using Fisher's exact test, several gene clusters with loss/deletion or gain/amplification of genes were found to be significantly associated with occult metastasis (p < .05). Among these clusters, the authors focused on the loss of NKX3-1 (8p21.2), a homeodomain-containing transcription factor, based on findings from a literature review. Further analysis through quantitative RT-PCR and immunohistochemistry (IHC) confirmed significantly lower expression of NKX3-1 in cases with occult nodal metastasis. This observation was validated by IHC analysis in independent cases, where the Wilcoxon rank sum test revealed a significant difference in average positive rates between OSCC cases with and without occult LNM (p<.001). Additionally, the Wilcoxon rank sum test applied to the IHC results in the independent OSCC cases further confirmed the significance (p= .004). Thus, the authors concluded that loss of NKX3-1 may serve as a potential biomarker for occult LNM in OSCC. [74]

3.2.21. MFAP5, TNNC1, MGP, FBFBP1 and FBXO32

Tissue samples from patients with tongue squamous cell carcinoma (TSCC) were analyzed using the Affymetrix HTA2.0 high-density oligonucleotide array to identify differentially expressed genes associated with cervical lymph node metastasis (CLNM). A total of 107 genes were found to be differentially expressed (p < 0.05) in TSCC samples with CLNM (n = 6) compared to those without CLNM (n = 6). Further analysis using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes revealed that these genes were involved in cell-matrix adherens junction and migration functions. Five genes, namely MFAP5, TNNC1, MGP, FBFBP1, and FBXO32, implicated in these pathways were selected and validated using RT-PCR in TSCC samples from a larger cohort (n = 32). Among them, MFAP5 and TNNC1 expressions were further confirmed using immunohistochemistry in additional TSCC samples (n = 61). A significant positive correlation between MFAP5 and TNNC1 expression (p<.001) was observed. Notably, overexpression of MFAP5 and TNNC1 was associated with CLNM, metastasis relapse-free survival, and overall survival. These findings suggest that MFAP5 and TNNC1 may serve as potential markers for predicting occult cervical lymphatic metastasis and prognosis in patients with oral tongue carcinoma. [75]

3.2.22. Homo Sapiens Fatty Acid Binding Protein 5

Ramanathan et al. conducted a study on gene expression in 30 samples of tongue cancers using the mRNA Differential Display system (DD-PCR). Among the 30 cases, 15 signals that showed differential expression between the tumor and metastatic samples were selected after DD-PCR. Out of these 15 signals, only two were successfully reamplified to obtain a single band using primer pair AP18 and T12MC, with a band size of 180 bp. The expressions of these signals were found to be higher in the primary tumors compared to the metastasis. Further analysis revealed that the sequences of these signals showed 100% homology to the gene for Homo sapiens fatty acid binding protein 5 (psoriasis-associated) (FABP5). Northern blot analysis was performed, which indicated that the primary tumors had up to four times higher expression of FABP5 compared to the metastasis. In three cases, the metastatic samples showed complete absence of expression, while in one case, the expression of FABP5 was similar in both the tumor and metastatic samples. A t-test for paired samples comparing the expression between primary tumors and metastases showed a significant difference (p = .011). The mean expression value for primary tumor samples was 0.8741, while the value for metastatic samples was 0.5309. [76]

3.2.23. B cell-Specific Moloney Murine Leukemia Virus Integration Site 1

In a study involving 64 laryngeal SCC patients, the expression of B cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) was examined immunohistochemically on formalin-fixed paraffin-embedded primary tissue specimens. It was found that high expression of nuclear BMI-1 served as an independent prognostic factor for lymph node metastasis (p = .0002). Additionally, high BMI-1 expression correlated significantly with distant metastasis (p < .05), while negative or low BMI-1 expression correlated with negative lymph nodes (p < .05). [77]

3.2.24. Podoplanin

In a prospective clinical trial involving 120 patients with early HNSCC of the oral cavity and oropharynx undergoing sentinel lymph node (SLN) biopsy, the value of cancer cell-expressed podoplanin as a predictive marker for SLN metastasis was assessed. Podoplanin expression by cancer cells was determined using immunohistochemistry on tissue microarrays, with expression quantified by the intensity reactivity score and categorized into expression and nonexpression. Occult metastasis was found in 45 patients (37.5%) upon SLN examination, while 29 out of 120 (24.2%) primary HNSCC tumors showed podoplanin expression. Podoplanin expression significantly correlated with SLN metastasis (p = .029) and remained a significant predictor for lymph node status even after adjusting for tumor stage (p = .028). However, as a predictive marker for SLN metastasis, podoplanin expression demonstrated low sensitivity (36%) and moderate specificity (83%). [78]

3.2.25. p53, Bcl-2, EGFR, Ki67, Cyclin D1 and Cox-2

In laryngeal squamous cell carcinoma (SCC), various molecules were investigated as potential markers of nodal positivity. Among these were apoptotic markers such as p53 and Bcl-2, proliferation markers including EGFR, Ki67, and Cyclin D1, as well as the inflammatory marker Cox-2. Cox-2 was found to be significantly associated with nodal positivity, suggesting its potential utility as a marker for occult nodal metastasis. Additionally, the expression of Cyclin D1 or Ki67 in node-negative patients may indicate the need for neck dissection or irradiation to manage the risk of occult nodal metastasis. [79]

3.2.26. Semaphorin-3F and Neuropilin-2

In 53 patients with cN0 (clinically node-negative) HNSCC, the expression levels of semaphorin-3F (SEMA3F) and neuropilin-2 (NRP2) were investigated. It was found that SEMA3F expression was significantly lower in patients with lymph node involvement compared to those without (cN0/pN0). Based on these findings, patients were categorized into two groups based on their risk of occult nodal metastasis: Group 1 (n = 34): This group exhibited high SEMA3F expression and low NRP2

expression. They demonstrated a low risk of occult nodal involvement, with only 14.7% of patients in this group progressing from cN0 to pN+ (pathologically node-positive). Group 2 (n = 19): Patients in this group had either low SEMA3F expression or high SEMA3F expression along with high NRP2 expression. They showed a significantly higher risk of occult nodal involvement, with 78.9% of patients progressing from cN0 to pN+. Multivariate analysis further confirmed that patients in Group 2 had a substantially higher risk (26.2 times higher) of lymph node involvement compared to those in Group 1. These findings suggest that SEMA3F-NRP2 expression levels may serve as a potential predictive marker for occult nodal metastasis in HNSCC. [80]

3.2.27. Histologic Features

In their study, Sparano et al. examined histologic and staging characteristics in early-stage (T1-2cN0) oral tongue cancers and explored their association with occult metastasis. They found that several factors were significantly linked to occult metastasis, including greater tumor thickness, deeper muscle invasion, T2 stage, poorly differentiated tumors, an infiltrating-type invasion front, presence of perineural invasion, and presence of angiolymphatic invasion. Using a multivariate analysis, they constructed a model to predict the likelihood of occult neck disease, which incorporated greater tumor thickness, presence of perineural invasion, infiltrating-type invasion front, poorly differentiated tumors, and T2 stage. These findings suggest that these histologic and staging characteristics may be valuable indicators for identifying patients at heightened risk of occult neck disease in early-stage oral tongue cancers. [81]

In a study comparing skeletal muscle invasion and depth of invasion (DOI) in oral tongue squamous cell carcinoma (SCC), 61 T1N0 cases served as a reference group for assessing their predictive value for occult metastasis over a 2-year follow-up period. Among cases with muscle invasion, there was a 23.3% positive predictive value (PPV) for occult lymph node metastasis. Similarly, cases with a DOI greater than 3 mm exhibited a 29.7% PPV for occult lymph node metastasis. These findings highlight the potential of both skeletal muscle invasion and DOI as predictive factors for identifying cases at risk of occult lymph node metastasis in oral tongue SCC. [82]

In a retrospective review of 48 patients with early oral tongue squamous cell carcinoma (SCC), histopathological factors such as depth of tumor, differentiation, blood vessel invasion, lymphatic invasion, and tumor budding were examined for their association with late lymph node metastasis. Univariate analysis revealed that blood vessel invasion, lymphatic invasion, and high-grade tumor budding were predictive factors for neck recurrence (p<.001). However, the Cox proportional hazards model identified high-grade tumor budding as an independent predictive factor (p < .01). Notably, the combination of a tumor depth≥3 mm and high-grade tumor budding showed high diagnostic accuracy. These findings underscore the significance of tumor depth and budding grade as histopathological risk factors for late neck recurrence in clinical N0 early oral tongue carcinoma. [83]

In patients with cT1/2N0 oral tongue squamous cell carcinoma (SCC), the pathomorphological evaluation of tumor budding grade (TBG) and tumor-stroma ratio (TSR) has been shown to predict lymph-node metastases. Among 70 patients, 35 had positive neck lymph node metastasis. Univariate analysis revealed correlations between lymph node metastasis and pathological depth of invasion (pDOI) (p < 0.001), TBG (p = 0.008), and TSR (p < 0.001). In multivariate analysis, pDOI (p = 0.01) and TSR (p = 0.02) remained significant predictors of lymph node metastasis. [84]

In a study involving 152 patients with cT1-T3N0 oral squamous cell carcinoma (OSCC), the presence of stromal myofibroblasts was examined as a potential marker for occult nodal metastasis. Immunohistochemical analysis of surgical resection specimens revealed that 84.2% of OSCC cases (n=128) were positive for myofibroblasts in the tumor stroma. Importantly, an increased presence of myofibroblasts in the tumor stroma was significantly correlated with the presence of occult neck metastasis (P<0.001). [85]

The Modified Polsby-Popper (MPP) score, implemented as a semi-automated image analysis workflow, was explored as a potential predictor of cervical lymph node metastases in tongue cancer.

Machine learning models were constructed to forecast both survival outcomes and the likelihood of occult cervical metastases. The findings indicated that higher MPP scores correlated with an elevated incidence of distant metastasis, particularly in early-stage tongue cancer. [86]

Digital analysis of tumor budding (TB) and minimal cell nest size (MCNS) was conducted in 331 cases of HNSCC, both HPV-positive and HPV-negative. The analysis encompassed 1 and 10 high-power fields (HPF). High cellular dissociation grading was found to be linked with clinically occult lymph-node metastases. [87]

In a study involving 323 patients with stage I OSCC (cT1-2N0), the Worst Pattern of Invasion-type 5 (WPOI-5) was evaluated as a risk model outcome. High-risk classification according to WPOI-5 was associated with regional metastasis (p = .052; HR, 3.27; 95% CI, 1.42-7.5). Moreover, WPOI-5 was found to be significantly predictive of occult cervical metastases (p < .0001). [88]

3.2.28. Cellular Dissociation Grade

In an article published in the British Journal of Cancer, a novel grading system termed Cellular Dissociation Grade (CDG), based on Tumour Budding and Cell Nest Size, was proposed as a predictor of occult metastasis. In a subgroup of HNSCC patients with clinically negative cervical lymph nodes (cN0 necks; n = 40), occult metastases were detected by pathological evaluation of neck dissection specimens in 8 out of 40 cases (20.0%). All cases with occult metastases had a histopathological grading of nG2/3, while none of the nG1 cases showed presence of lymph node metastases. This finding suggested a positive predictive value (PPV) of 100% for nG1 grading in predicting nodal negativity upon pathological examination in cN0 necks. [89]

3.2.29. MRI Size for Oral Tongue SCC

Kwon et al. investigated the tumor contrast MRI thickness measured in axial (mediolateral direction), coronal (superoinferior direction), and sagittal (anteroposterior direction) views of oral tongue SCC as a predictor of occult lymph node metastasis in 53 patients. Among the 39 patients classified as cN0, 15 were found to have occult metastasis (38.5%). Using ROC curves, the authors developed a predictive model for occult lymph node metastasis, yielding an area under the curve (AUC) of 0.750 in the medial-lateral direction on the axial view, 0.753 for tumor thickness (TT) in the superior-inferior direction on the coronal view, and 0.750 for TT in the anterior-inferior direction on the sagittal view. They found that cutoff values of 6.7 mm, 7.2 mm, and 12.3 mm in axial, coronal, and sagittal planes, respectively, were predictors of occult lymph node metastasis (p < .05). [90]

3.2.30. Prospero Homeobox Protein 1

Mermod et al. investigated lymphatic vessel density as a predictor of occult lymph node metastasis, using a specific antibody against the transcription factor Prospero homeobox protein 1 (PROX1) as an indicator. They retrospectively included 42 cN0 HNSCC and 10 cN+ HNSCC patients. A PROX1 nuclei cutoff >31.33 showed a sensitivity of 0.6 (95% CI 0.26–0.88), specificity of 0.98 (95% CI 0.87–0.99), positive predictive value (PPV) of 0.86 (95% CI 0.42–0.99), negative predictive value (NPV) of 0.91 (95% CI 0.79–0.98), and overall accuracy of 0.88 (95% CI 0.76–0.96). Reliability analysis assessing agreement between authors resulted in an ICC of 0.83 (p = .005). Consequently, the authors concluded that PROX1 could be an independent predictor of occult metastasis. [11]

3.2.31. SPECT/CT

SPECT/CT, a radiological imaging technique for lymphatic metastasis detection, was evaluated in 44 cases of OSCC, including 13 with occult nodal disease confirmed by histopathology and elective neck dissection (END). Occult nodal disease was present in 29.5% (n=13) of patients based on END histopathology. Sentinel node biopsy (SNB) demonstrated sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of 76%, 100%, 91%, and 100% respectively. A total of 183 sentinel nodes were identified, with a mean of 8.13 per patient. Planar lymphoscintigraphy (PL) and SPECT revealed ipsilateral neck hotspots in 95% (n=42) of patients and contralateral neck

hotspots in 9% (n=4). PL identified 77 hotspots (mean 1.75 per patient) and SPECT identified 92 hotspots (mean 2.5 per patient). SPECT/CT detected additional hotspots in 8 patients, including 3 where PL failed to detect any nodes. In 2 patients, both PL and SPECT were negative. Detection rates by PL, SPECT, and gamma probe were 93%, 95%, and 97% respectively. Good concordance was observed between anatomical localization on SPECT/CT and gamma probe findings. Although SPECT/CT allowed better anatomical characterization, the authors concluded that given the excellent accuracy of combined planar imaging and intra-operative gamma probe, SPECT/CT did not offer

3.2.32. SUV PET/CT

clear advantages. [91]

Xu et al. investigated whether the maximum standardized uptake value (SUVmax) measured on PET/CT could serve as a predictor of occult nodal metastasis in stage I (cT1-2N0) tongue SCC. The study included 120 patients for analysis. Among 60 patients with an SUVmax of ≤9.7, 5 patients had occult metastasis. In contrast, among 60 patients with an SUVmax of >9.7, 13 patients had occult metastasis. This difference was found to be statistically significant (p=0.041). [92] While Kuźmińska et al. considered PET/CT alone as a potential tool for detecting occult metastasis. [93]

3.2.33. Ultrasonography

Norling et al. investigated the benefits of incorporating ultrasonography into the standard imaging protocol for OSCC. They found that the short axial diameter was the most effective size criterion for metastasis detection. However, they observed that sonographic characteristics were better predictors than size alone. Specifically, the presence of at least four sonographic characteristics—hypoechoic or heterogeneous appearance, irregular border, spherical shape, absence of nodal hilum, and peripheral nodal blood flow—yielded a sensitivity of 43.8%, specificity of 91.4%, positive predictive value (PPV) of 70.0%, and negative predictive value (NPV) of 78.0%. With this approach, the number of patients with occult metastases decreased from 16 out of 51 (31%) to nine out of 51 (18%). [94]

Ultrasonography assessment of cervical lymph nodes was conducted in 60 patients with laryngeal SCC who had negative neck nodes on CT scan. The respective values for ultrasound-guided fine needle aspiration cytology (USg FNAC) demonstrated high sensitivity, specificity, positive predictive value, negative predictive value, and accuracy (92%, 100%, 100%, 96%, and 97%, respectively). However, the size, shape, and vascularity showed significantly lower values for these statistical parameters. [95]

3.2.34. E-Cadherin

The E-Cadherin glycoprotein plays a crucial role in establishing and maintaining intercellular connections. In an analysis of 120 patients with HNSCC affecting the oral cavity or oropharynx, the Intensity Reactivity Score for E-Cadherin expression was quantified and compared to lymph node status obtained by sentinel lymph node biopsy. The study revealed a significant correlation between the differentiation grade and E-cadherin expression with positive lymph node status (p = .018 and p = .005, respectively). [96]

3.2.35. Ki-67, PARP, BAD, Caspase-9, VEGF-A

Researchers utilized a targeted spatial proteomic approach to analyze lymph node metastasis. Their observations revealed higher expression levels of Ki-67, PARP, BAD, and cleaved Caspase 9 within metastatic cells compared to primary cancer cells. [97]

Ki-67 and vascular endothelial growth factor A (VEGF-A) expression were investigated in pharyngeal and laryngeal SCC. The study revealed that Ki-67 expression was a significant risk factor for nodal involvement (N+) across all tumors ($P \le .009$). Conversely, VEGF-A expression was associated with nodal involvement in oral and pharyngeal SCC exclusively (P < .03). Specifically, Ki-67 expression alone in oral and pharyngeal SCC was linked to a relative risk of nodal involvement of

3.83 (95% confidence interval, 1.22-11.99; P = .009), and the additional expression of VEGF-A increased this value to 6.12 (2.09-17.93; P < .001). Furthermore, the combined expression of both markers was 3.25 times more effective in predicting nodal involvement for T1,2 tumors compared to T3,4 tumors. [98]

3.2.36. HPV and p16

In a study of 93 cases of nodal metastatic (N+) SCC, researchers employed in situ hybridization for high-risk HPV and immunostaining for p16 in both nodal tissues and primary tumors. The cohort comprised 32 cases of oropharyngeal cancer, 35 cases of oral cancer, and 26 cases from the larynx or hypopharynx. Of the total cases, 23 were found to be HPV-positive, with 22 of them originating from the oropharynx. The findings suggested that lymph node metastasis could be assessed using in situ hybridization and p16 immunoreactivity in conjunction with histomorphological evaluation. [99]

3.2.37. Methylation Status of Long INterspersed Element 1 (LINE-1) and Alu Elements (Alu)

Epigenomic analysis was conducted on lymph node tissues to explore their potential as markers for cancer metastasis. Hypomethylation of Long INterspersed Element 1 (LINE-1) and Alu elements (Alu) was investigated using the Combine Bisulfite Restriction Analysis (COBRA) technique. A total of 61 nodes were analyzed. LINE-1 and Alu loci were classified based on the methylation statuses of two CpG dinucleotides in each allele, including hypermethylation (mCmC), hypomethylation (uCuC), and two forms of partial methylation (mCuC and uCmC). The results showed altered LINE-1 methylation, with lower LINE-1 methylation levels observed (p < 0.001). Additionally, there was a higher percentage of mCuC (p < 0.01), a lower percentage of uCmC (p < 0.001), and a higher percentage of uCuC (p < 0.001) in the analyzed samples. Receiver operating characteristic (ROC) curve analysis revealed that %uCmC and %mCuC values had high areas under the curve (AUC) of 0.806 and 0.716, respectively, in distinguishing lymph node (LN) from non-metastatic (NM) cases. Based on these findings, the authors concluded that the LINE-1 methylation changes in LN exhibited a similar pattern to that in primary tumors. This epigenomic alteration may be indicative of the presence of occult metastatic tumor cells in the lymph nodes analyzed.[100]

3.2.38. MET

In a study involving 151 lymph nodes from 20 cases of squamous cell carcinomas, both in-depth histology and end-point and real-time quantitative RT-PCR techniques were used. MET-encoding sequences were detected in 61 out of 151 nodes (40%), with 24 nodes (16%) found to be metastatic by in-depth histopathology. In comparison, routine histopathologic analysis of 654 lymph nodes from the same cases identified only 36 metastases (5%). Real-time quantitative RT-PCR was employed to measure MET gene-specific mRNA levels in normal tissues, primary tumors, and lymphatic metastases. The study concluded that the MET gene product serves as a valuable marker for the detection of occult tumor cells in lymph nodes due to its high expression in metastatic cells. [101]

3.2.39. Gene Expression Analyses and Molecular Subtypes

In a retrospective cohort study, gene expression subtypes in oral squamous cell carcinoma (OSCC) and laryngeal squamous cell carcinoma (SCC) were examined to determine their predictive value for nodal metastasis. The study identified four molecular subtypes: basal (BA), mesenchymal (MS), atypical (AT), and classical (CL). In OSCC, the mesenchymal (MS) subtype was significantly associated with a higher risk of nodal metastasis. Furthermore, it was predictive of occult nodal metastasis in a subset of T1-2cN0M0 patients, with a relative risk of 3.38 (95% confidence interval [CI]: 1.08-10.69).[102]

3.3. Blood Markers

3.3.1. Indexes and Rations from Standard Blood Analysis

In a multicentric retrospective analysis by Gaudioso et al. involving 472 patients with cN0 neck, various baseline blood parameters including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), systemic inflammatory marker (SIM), and systemic immune-inflammation index (SII) were evaluated, along with stage and differentiation grade. The study focused on oral, oropharyngeal, and hypopharyngeal cancers, which were found to have a greater risk of occult metastasis compared to other head and neck subsites. Additionally, locally advanced stages and moderate to poor differentiation grades (G2 and 3) were associated with a higher risk of lymph node involvement. Multivariate analysis revealed a significant association between NLR, LMR, PLR, SIM, and SII, with NLR greater than 2.12 emerging as the most reliable parameter (OR = 5.22; 95% CI 2.14 – 12.75) for predicting lymph node metastasis. Based on these findings, the authors developed a predictive score for lymph node metastasis incorporating cancer subsite, local stage, and NLR value. [10]

In a retrospective analysis of 108 patients with laryngeal squamous cell carcinoma (SCC), the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were assessed as predictors of occult metastasis (OM). High values of NLR, but not PLR, were found to significantly correlate with the probability of OM. Through an iterative algorithm, an NLR value of 2.26 was determined to correspond to a probability of OM of 20%. As a result, the authors concluded that there is a statistical correlation between high pre-treatment NLR values and occult metastasis in patients with laryngeal SCC. [103]

In a retrospective study involving 110 patients with early-stage oral tongue squamous cell carcinoma (SCC) (T1-2cN0), the neutrophil-to-lymphocyte ratio (NLR) was investigated as a predictor of occult metastasis. The analysis revealed a statistically significant relationship between high levels of pre-treatment NLR and the probability rate for neck occult metastases (p = 0.000496). A cutoff value of NLR > 2.93 was determined, above which the probability of finding metastasis in a clinically negative neck increased exponentially according to their model. [104]

In a recent study by Yamagata et al., the neutrophil-to-lymphocyte ratio (NLR) was confirmed as a predictor of occult metastasis. Similarly, Ventura et al. found a significant association between NLR (p = 0.001) and monocyte-lymphocyte ratio (p = 0.011) with neck status on univariate analysis. However, multivariate analysis revealed that only NLR (p = 0.02) was an independent risk factor for occult metastasis among inflammatory blood markers. [105]

In a cohort of 110 patients with oral tongue SCC, the neutrophil-to-lymphocyte ratio (NLR) and depth of invasion (DOI) were analyzed as predictors of occult nodal metastasis using a logistic regression model. The study found that a DOI greater than 5.4 mm and an NLR greater than 2.93 are associated with an increased risk of presenting occult cervical metastases. Additionally, a positive correlation was observed between the variables NLR and DOI, as indicated by Spearman's rank correlation coefficient rho of 0.64. Specifically, a unitary increase in the DOI of 1 mm was directly associated with an increase of 0.47 in the NLR. [106]

3.3.2. Circulating Tumour Cells

In a study involving 152 patients using the OncoDiscover technique for circulating tumor cells (CTCs), comparisons were made with 40 non-HNSCC controls. Among several outcomes measured, including the presence of nodal metastasis, the results suggested that CTC counts above 20.5 were indicative of nodal metastasis (p < .0001). Additionally, there was a linear trend observed for detecting occult metastasis (p = .061). [107]

3.3.3. Circulating Tumour Cells

Circulating hybrid cells (CHCs) are characterized by their fusion of genetic material from cancer cells and host leukocytes. These hybrid cells exhibit increased tumorigenic potential compared to standard circulating tumor cells and have been found to correlate with disease stage and progression

in cancer. [108,109] In a study involving 20 patients with clinically node-negative oral squamous cell carcinoma (OSCC), researchers investigated circulating hybrid cell (CHC) levels. They compared these levels with the pathological nodal status and also included positive controls (patients with clinically positive nodal metastasis, cN+) and negative controls (volunteers without cancer, T0). The findings revealed a significant difference in CHC levels between patients with cN0 OSCC who later developed positive nodes and those who remained negative (p = .005). [108] Henn et al. also found a significant relationship between circulating hybrid cells (CHC) and occult nodal metastasis (p = .006)

in patients with clinically node-negative oral squamous cell carcinoma (OSCC). [109]

3.3.4. Circulating HPV DNA

Circulating human papillomavirus (HPV) DNA in the serum of patients with HPV-positive head and neck squamous cell carcinoma (HNSCC) was investigated using conventional PCR, real-time quantitative assay, and Southern blotting for confirmation in case of positivity. Among the patients tested, conventional PCR using E7 primers and Southern blot hybridization detected circulating HPV DNA in 6 patients. Strikingly, 4 of these patients subsequently developed distant metastasis. This finding led the authors to hypothesize a potential relationship between circulating HPV DNA and tumor cells, suggesting a possible role in metastatic dissemination. [110]

3.3.5. CD31

The density of the panvascular endothelial antibody CD31 was evaluated as a potential predictor of occult metastasis in patients with clinically node-negative (cN0) oral cavity and oropharyngeal squamous cell carcinoma (SCC). A total of 56 cases of oral cavity SCC and 6 cases of oropharyngeal SCC were included in the analysis. The results revealed a significant correlation between CD31 density and occult lymph node metastasis (p < 0.01). Using recursive partitioning analysis, a cutoff value of 19.33 for CD31 density was determined, which demonstrated a sensitivity of 91%, a specificity of 65%, a positive predictive value of 40%, a negative predictive value of 97%, and an overall diagnostic accuracy of 71% for identifying occult lymph node metastasis. [111]

3.3.6. Bone Marrow

In 2004, Wollenberg et al. conducted a study investigating the predictive value of detecting free tumor cells in bone marrow aspirates of patients with head and neck squamous cell carcinoma (HNSCC). They utilized monoclonal KS 19.1 antibodies to detect cytokeratin 19 (CK19) expression in bone marrow aspirates obtained from the iliac crest of 176 HNSCC patients. Among them, 54 patients tested positive for CK19 expression in bone marrow cells. Over a 60-month follow-up period, 60 patients (34.09%) experienced disease recurrence, with 34 cases (56.67%) involving locoregional recurrences and 26 cases (43.33%) involving distant metastases. Among the 54 patients with CK19-positive cells in the bone marrow, 27 (50%) had tumor recurrence, compared to 33 out of 122 patients (27.05%) in the CK19-negative group. This difference demonstrated a significant correlation between CK19 positivity in bone marrow aspirates and tumor recurrence (p < 0.05). [112]

4. Discussion

The accurate diagnosis of regional lymph node metastasis is critical for determining the appropriate treatment strategy in patients with head and neck cancer. Clinical staging, based on physical examination and imaging modalities, may not always accurately detect occult metastasis. Therefore, elective neck dissection is often recommended for N0 patients with a calculated risk of locoregional metastasis exceeding 20%, especially in high-risk cases or when imaging results are inconclusive. This approach helps ensure that occult metastases are detected and appropriately managed, ultimately improving patient outcomes. [12,113] Indeed, postoperative histological analysis often reveals that a significant proportion of patients who undergo elective neck dissection do not harbor metastatic disease in their lymph nodes. Studies have reported rates ranging from 50% to 80% of patients with clinically node-negative necks who ultimately have no evidence of metastasis

in the dissected lymph nodes. This highlights the potential for over-treatment and the associated morbidity of unnecessary surgical intervention in these patients. As such, there is a growing interest in refining the selection criteria for elective neck dissection to minimize unnecessary procedures and reduce associated morbidity while still ensuring appropriate management for those at risk of occult metastasis. [108,114-117] Exactly, the sensitivity of conventional pathologic evaluation, which typically involves the examination of hematoxylin and eosin (H&E)-stained tissue sections under a microscope, is limited in detecting small metastatic deposits within lymph nodes. This limitation can lead to false-negative results, where small metastases are missed during routine histopathological examination. As a result, patients with occult metastasis may be incorrectly classified as nodenegative based on conventional pathological evaluation, leading to potential undertreatment. This underscores the need for more sensitive diagnostic approaches to accurately identify occult metastases in lymph nodes, especially in patients with clinically node-negative necks. [118] Absolutely, identifying reliable markers of locoregional or distal metastasis is crucial for several reasons. Firstly, it helps avoid subjecting patients to unnecessary and potentially harmful treatments, such as elective neck dissection or adjuvant therapy, if they do not have metastatic disease. This reduces the risk of treatment-related morbidity and improves patients' quality of life. Secondly, accurate identification of metastasis allows for more tailored and precise treatment strategies, ensuring that patients receive appropriate therapy based on their disease stage and prognosis. Lastly, early detection of metastasis enables timely intervention and monitoring, which can improve outcomes and overall survival rates for patients with head and neck cancer. Therefore, finding reliable markers of metastasis is essential for optimizing patient care and treatment outcomes in this population. Furthermore, clinical staging of lymph nodes is far less accurate than pathological staging. Pathological staging also suffers limitations because it fails to detect micrometastasis in a subset of nodal specimens. [20] Therefore, the use of microRNA for metastasis detection could also help identifying occult metastasis in cases of apparent negative neck dissections improving accuracy of post operative neck dissection specimens analysis.

Fletcher et al. highlight the importance of defining the threshold value for metastasis markers. This value separates patients into positive and negative groups, guiding treatment decisions. Determining the optimal threshold requires balancing sensitivity and specificity. Further studies are needed to establish accurate cutoff values, improving clinical utility and patient outcomes. [20]

The investigation into metastasis markers presents several considerations. Blood markers offer a less invasive approach, allowing surgeons to plan operations and conduct concurrent procedures like neck dissection and tumor excision. However, analyzing markers from the initial biopsy of the cancer specimen, rather than post-surgery specimens, is crucial. This is because suspected nodal metastasis may necessitate a second surgery, leading to treatment delays and increased risks due to repeated anesthesia exposure.

Moreover, it's important to note that many studies included in this systematic review focused solely on neck nodal metastasis. However, paratracheal lymph nodes should also be considered. For example, in a cohort of laryngeal cancer patients undergoing salvage laryngectomy, 14% had paratracheal involvement, with 55% showing no lateral neck disease. Neglecting to consider lateral neck disease may result in incomplete evaluation and mismatches in identifying molecular markers. [119]

Identifying micro-metastases through molecular techniques in lymph node specimens may seem inconsequential unless we consider its impact on post-surgical therapy. A positive lymph node status (pN+) typically prompts healthcare providers to recommend adjuvant chemotherapy or radiotherapy to the patient. [12] Hence, investigating micro-metastases preoperatively through blood markers aids in surgery planning, while examining nodal specimens post-neck dissection is pivotal for adjuvant therapy planning. In our review, we noted various potential markers of occult metastasis. Although the concept of identifying a single powerful marker to predict occult nodal involvement is appealing, it may overlook the influence of other factors. Combining multiple markers could enhance predictive accuracy. [5,7,24] Indeed, the concept of devising a scoring system that incorporates multiple factors, similar to the approaches taken by Gaudioso et al. and James et al., enhances predictive capability.

[7,10,24] Integrating the various molecules and markers discussed could pave the way for the development of a novel scoring system with enhanced predictive value for occult lymph node metastasis. [5,24]

Advancements in imaging technology are inherently tied to technological progress. As new imaging techniques enhance their diagnostic capabilities, it becomes essential to correlate molecular findings with the latest radiological insights. However, a significant challenge lies in the slow dissemination of costly equipment. Despite the promising outcomes of new imaging modalities, their widespread adoption, like PET/MRI, remains limited due to cost and accessibility issues. [44]

While numerous researchers have explored promising markers, the limited sample sizes often hinder conclusive findings. For instance, in the case of HPV DNA research as a marker for circulating tumor cells, only six patients tested positive, with four of them later developing distant metastasis. Such small sample sizes underscore the need for larger, more comprehensive studies to draw meaningful conclusions about these markers. [110] Indeed, with such a small sample size, generalizing the findings becomes challenging. However, these preliminary results can serve as a valuable starting point for larger-scale clinical trials, providing a foundation for further investigation and potentially uncovering more robust associations between the marker and metastasis.

Indeed, some of the techniques mentioned could prove useful intraoperatively, aiding surgeons in making clinical decisions regarding neck dissection during surgery. For instance, light reflectance spectroscopy has shown promise as a predictor of nodal metastasis, offering real-time information that can guide surgical interventions. [43] It's crucial to critically analyze the practical impact of such promising results on clinical practice. While techniques like light reflectance spectroscopy offer realtime guidance during surgery, it's important to consider their limitations. Since neck dissection already exposes patients to significant morbidity, the decision to perform it should be carefully weighed. While predictive models may not achieve 100% accuracy in detecting metastasis, factors like depth of invasion (DOI) remain important predictors for occult lymph node metastasis in oral squamous cell carcinoma (OSCC). [120-122] Indeed, indicators like a DOI exceeding 2.5 mm or the presence of poorly differentiated OSCC are strong signals for considering elective neck dissection. These factors provide valuable guidance in determining the appropriate course of action to manage potential occult lymph node metastasis. [123] The adoption of this marker, as endorsed by NCCN guidelines, establishes it as the current gold standard in clinical practice. [12] Hence, we contend that any novel marker should undergo comparison with DOI or be integrated with it before being incorporated into any clinical protocol.

Méndez et al. compared their model with tumor size, which is a distinctly different parameter compared to DOI. [23] Indeed, the relationship between tumor size and DOI can vary significantly. Hence, it's crucial to compare these parameters alongside DOI for a more comprehensive understanding of their predictive value.

Several of the aforementioned markers have been tested in multiple studies, consistently showing efficacy as predictors of occult cervical lymph node metastasis. However, the studies reviewed here often involve small populations, limiting their statistical power. We advocate for large multicenter trials that focus on markers demonstrating effectiveness across multiple studies. Promising candidates for such validation trials include microRNAs, notably miR-205, as well as DSG3, pan-CK AE1/AE3, HPV-16, Activin-A, Cyclin D1, and NPL.

5. Conclusions

The accurate diagnosis of regional lymph node metastasis is pivotal for guiding treatment decisions in head and neck cancer patients. Markers serving as diagnostic tools hold promise in averting overtreatment of negative necks and ensuring appropriate treatment for metastatic patients. To solidify their efficacy, future research efforts should involve larger populations. This validation process is particularly crucial for markers like miR-205, DSG3, pan-CK AE1/AE3, cytokeratins, HPV-16, Activin-A, Cyclin D1, and NPL, which have demonstrated effectiveness across multiple studies. Combining multiple markers into a scoring system could enhance their predictive accuracy.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of Worldwide Burden of Cancer in 2008: GLOBOCAN 2008. *Int. J. Cancer* 2010, 127, 2893–2917, doi:10.1002/ijc.25516.
- 2. Dias, F.L.; Kligerman, J.; Matos De Sá, G.; Arcuri, R.A.; Freitas, E.Q.; Farias, T.; Matos, F.; Lima, R.A. Elective Neck Dissection versus Observation in Stage I Squamous Cell Carcinomas of the Tongue and Floor of the Mouth. *Otolaryngol. Head Neck Surg.* **2001**, 125, 23–29, doi:10.1067/MHN.2001.116188.
- Ferlito, A.; Silver, C.E.; Rinaldo, A. Neck Dissection: Present and Future? Eur. Arch. Oto-Rhino-Laryngology 2008, 265, 621–626, doi:10.1007/s00405-008-0606-z.
- 4. Lim, S.C.; Zhang, S.; Ishii, G.; Endoh, Y.; Kodama, K.; Miyamoto, S.; Hayashi, R.; Ebihara, S.; Cho, J.S.; Ochiai, A. Predictive Markers for Late Cervical Metastasis in Stage I and II Invasive Squamous Cell Carcinoma of the Oral Tongue. *Clin. Cancer Res.* **2004**, *10*, 166–172, doi:10.1158/1078-0432.CCR-0533-3.
- 5. Suresh, A.; Jeevan, M.; Trivedi, N.; Hiran, K.R.; Kekatpure, V.; Kuriakose, M.A. Detection of Occult Lymph Node Metastasis in Oral Tongue Squamous Cell Carcinoma. *Oral Oncol.* **2011**, 47, S89, doi:10.1016/j.oraloncology.2011.06.290 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=13688375&id=doi:10.1016%2Fj. oraloncology.2011.06.290&atitle=Detection+of+occult+lymph+node+metastasis+in+oral+tongue+squamous+cell+carcinoma&stitle=Oral+Oncol.&title=Oral+Oncology&volume=47&issue=&spage=S89&epage=&aulast=Suresh&aufirst=A.&auinit=A.&aufull=Suresh+A.&coden=&isbn=&pages=S89-&date=2011&auinit1=A&auinitm=.
- 6. Noorlag, R.; Boeve, K.; Witjes, M.J.H.; Koole, R.; Peeters, T.L.M.; Schuuring, E.; Willems, S.M.; van Es, R.J.J. Amplification and Protein Overexpression of Cyclin D1: Predictor of Occult Nodal Metastasis in Early Oral Cancer. *Head Neck* **2017**, *39*, 326–333, doi:10.1002/hed.24584.
- 7. Kothandaraman, S.; James, B.L.; Raghavan, N.; Suresh, A.; Kuriakose, M.A. Clinical Application of Bio-Markers for Detection of Nodal Metastasis in Head and Neck Squamous Cell Carcinoma. *Head Neck* **2017**, 39, E96.
- 8. Ferlito, A.; Rinaldo, A.; Robbins, K.T.; Silver, C.E. Neck Dissection: Past, Present and Future? *J. Laryngol. Otol.* **2006**, *120*, 87–92, doi:10.1017/S0022215105004512.
- 9. Wei, W.I.; Ferlito, A.; Rinaldo, A.; Gourin, C.G.; Lowry, J.; Ho, W.K.; Leemans, C.R.; Shaha, A.R.; Suárez, C.; Clayman, G.L.; et al. Management of the N0 Neck Reference or Preference. *Oral Oncol.* **2006**, 42, 115–122, doi:10.1016/J.ORALONCOLOGY.2005.04.006.
- Gaudioso, P.; Borsetto, D.; Polesel, J.; Tirelli, G.; Emanuelli, E.; Menegaldo, A.; Molteni, G.; Nicolai, P.; Tomasoni, M.; Montenegro, C.; et al. Blood Markers Predicting Clinically Occult Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma. ORL. J. Otorhinolaryngol. Relat. Spec. 2024, 86, 32–40, doi:10.1159/000534079.
- 11. Mermod, M.; Bongiovanni, M.; Petrova, T.V.T.V.; Dubikovskaya, E.A.E.A.; Simon, C.; Tolstonog, G.; Monnier, Y. Prediction of Occult Lymph Node Metastasis in Squamous Cell Carcinoma of the Oral Cavity and the Oropharynx Using Peritumoral Prospero Homeobox Protein 1 Lymphatic Nuclear Quantification. *Head Neck* **2016**, *38*, 1407–1415, doi:10.1002/hed.24452.
- 12. Network, N.C.C. NCCN Clinical Practice Guidelines in Oncology Head and Neck Cancers Version 2.2022. *NCCN* **2022**, doi:10.1007/978-3-030-30766-0_4.
- 13. Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. *Cell* **2004**, *116*, 281–297, doi:10.1016/S0092-8674(04)00045-5.
- 14. He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a Big Role in Gene Regulation. *Nat. Rev. Genet.* **2004**, *5*, 522–531, doi:10.1038/NRG1379.
- 15. Nagadia, R.; Pandit, P.; Coman, W.B.; Cooper-White, J.; Punyadeera, C. MiRNAs in Head and Neck Cancer Revisited. *Cell. Oncol.* **2013**, *36*, 1–7, doi:10.1007/S13402-012-0122-4.
- Childs, G.; Fazzari, M.; Kung, G.; Kawachi, N.; Brandwein-Gensler, M.; McLemore, M.; Chen, Q.; Burk, R.D.; Smith, R. V.; Prystowsky, M.B.; et al. Low-Level Expression of MicroRNAs Let-7d and MiR-205 Are Prognostic Markers of Head and Neck Squamous Cell Carcinoma. *Am. J. Pathol.* 2009, 174, 736–745, doi:10.2353/AJPATH.2009.080731.
- 17. Hui, A.B.Y.; Lenarduzzi, M.; Krushel, T.; Waldron, L.; Pintilie, M.; Shi, W.; Perez-Ordonez, B.; Jurisica, I.; O'Sullivan, B.; Waldron, J.; et al. Comprehensive MicroRNA Profiling for Head and Neck Squamous Cell Carcinomas. *Clin. Cancer Res.* **2010**, *16*, 1129–1139, doi:10.1158/1078-0432.CCR-09-2166.

- 18. Salazar, C.; Calvopiña, D.; Punyadeera, C. MiRNAs in Human Papilloma Virus Associated Oral and Oropharyngeal Squamous Cell Carcinomas. *Expert Rev. Mol. Diagn.* **2014**, *14*, 1033–1040, doi:10.1586/14737159.2014.960519.
- 19. Salazar, C.; Nagadia, R.; Pandit, P.; Cooper-White, J.; Banerjee, N.; Dimitrova, N.; Coman, W.B.; Punyadeera, C. A Novel Saliva-Based MicroRNA Biomarker Panel to Detect Head and Neck Cancers. *Cell. Oncol.* 2014, 37, 331–338, doi:10.1007/S13402-014-0188-2.
- 20. Fletcher, A.M.; Heaford, A.C.; Trask, D.K. Detection of Metastatic Head and Neck Squamous Cell Carcinoma Using the Relative Expression of Tissue-Specific Mir-205. *Transl. Oncol.* **2008**, *1*, 202–208, doi:10.1593/TLO.08163.
- 21. de Carvalho, A.C.A.C.; Scapulatempo-Neto, C.; Maia, D.C.C.D.C.C.; Evangelista, A.F.A.F.; Morini, M.A.M.A.; Carvalho, A.L.A.L.; Vettore, A.L.A.L. Accuracy of MicroRNAs as Markers for the Detection of Neck Lymph Node Metastases in Patients with Head and Neck Squamous Cell Carcinoma. *BMC Med.* 2015, 13, 108, doi:10.1186/s12916-015-0350-3.
- 22. Zhao, X.; Zhang, W.; Ji, W. MYO5A Inhibition by MiR-145 Acts as a Predictive Marker of Occult Neck Lymph Node Metastasis in Human Laryngeal Squamous Cell Carcinoma. *Onco. Targets. Ther.* 2018, 11, 3619–3635, doi:10.2147/OTT.S164597 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=11786930&id=doi:10.2147%2F OTT.S164597&atitle=MYO5A+inhibition+by+miR-145+acts+as+a+predictive+marker+of+occult+neck+lymph+node+metastasis+in+human+laryngeal+squam ous+cell+carcinoma&stitle=OncoTargets+Ther.&title=OncoTargets+and+Therapy&volume=11&issue=&sp age=3619&epage=3635&aulast=Zhao&aufirst=Xudong&auinit=X.&aufull=Zhao+X.&coden=&isbn=&pages=3619-3635&date=2018&auinit1=X&auinitm=.
- 23. Méndez, E.; Lohavanichbutr, P.; Fan, W.; Houck, J.R.; Rue, T.C.; Doody, D.R.; Futran, N.D.; Upton, M.P.; Yueh, B.; Zhao, L.P.; et al. Can a Metastatic Gene Expression Profile Outperform Tumor Size as a Predictor of Occult Lymph Node Metastasis in Oral Cancer Patients? *Clin. cancer Res. an Off. J. Am. Assoc. Cancer Res.* 2011, 17, 2466–2473, doi:10.1158/1078-0432.CCR-10-0175.
- 24. James, B.L.; Kontharaman, S.; Kumar, M.; Ravindra, D.R.; Mitha, S.; Dwivedi, N.; Nisheena, R.; Pillai, V.; Hedne, N.; Suresh, A.; et al. Molecular Marker Based Intra-Operative Diagnostic Assay for Detection of Lymph Node Metastasis in Hnscc. *Head Neck* **2017**, *39*, E108.
- 25. Wang, Q.; Takashima, S.; Takayama, F.; Wang, J.C.; Kawakami, S.; Saito, A.; Matsushita, T.; Sone, S. Detection of Occult Metastatic Lymph Nodes in the Neck with Gray-Scale and Power Doppler US. *Acta Radiol.* 2001, 42, 312–319, doi:10.1080/028418501127346701.
- 26. Onishi, A.; Nakashiro, K.-I.; Mihara, M.; Sumida, T.; Kawamata, H.; Shintani, S.; Aida, T.; Tachikawa, T.; Hamakawa, H. Basic and Clinical Studies on Quantitative Analysis of Lymph Node Micrometastasis in Oral Cancer. *Oncol. Rep.* **2004**, *11*, 33–39.
- 27. Shores, C.G.; Yin, X.; Funkhouser, W.; Yarbrough, W. Clinical Evaluation of a New Molecular Method for Detection of Micrometastases in Head and Neck Squamous Cell Carcinoma. *Arch. Otolaryngol. Head Neck Surg.* **2004**, *130*, 937–942, doi:10.1001/ARCHOTOL.130.8.937.
- Dhawan, I.; Sandhu, S. V; Bhandari, R.; Sood, N.; Bhullar, R.K.; Sethi, N. Detection of Cervical Lymph Node Micrometastasis and Isolated Tumor Cells in Oral Squamous Cell Carcinoma Using Immunohistochemistry and Serial Sectioning. J. Oral Maxillofac. Pathol. 2016, 20, 436–444, doi:10.4103/0973-029X.190946.
- 30. Barrera, J.E.; Miller, M.E.; Said, S.; Jafek, B.W.; Campana, J.P.; Shroyer, K.R. Detection of Occult Cervical Micrometastases in Patients with Head and Neck Squamous Cell Cancer. *Laryngoscope* 2003, 113, 892–896, doi:10.1097/00005537-200305000-00022 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=0023852X&id=doi:10.1097%2F0 0005537-200305000-00022&atitle=Detection+of+occult+cervical+micrometastases+in+patients+with+head+and+neck+squamou s+cell+cancer&stitle=Laryngoscope&title=Laryngoscope&volume=113&issue=5&spage=892&epage=896& aulast=Barrera&aufirst=Jose+E.&auinit=J.E.&aufull=Barrera+J.E.&coden=LARYA&isbn=&pages=892-896&date=2003&auinit1=J&auinitm=E.

- 31. Hamed, M.; Samir, M.; Hamid, O.A.; El-Maraghy, M. Evaluation of Cytokeratin Tissue Marker in Detection of Metastatic Lymph Nodes in Cases of Laryngeal and Hypopharyngeal Carcinoma. *Cancer Mol. Biol.* **1996**, 3, 955–960.
- 32. Oka, R.; Nakashiro, K.-I.; Goda, H.; Tanaka, H.; Hamakawa, H. Identification of Novel Molecular Markers for Detecting Lymph Node Metastasis of Oral Squamous Cell Carcinoma. *Cancer Res.* 2012, 72, doi:10.1158/1538-7445.AM2012-720 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=00085472&id=doi:10.1158%2F1 538-7445.AM2012-720&atitle=Identification+of+novel+molecular+markers+for+detecting+lymph+node+metastasis+of+oral+s quamous+cell+carcinoma&stitle=Cancer+Res.&title=Cancer+Research&volume=72&issue=8&spage=&epa ge=&aulast=Oka&aufirst=Ryota&auinit=R.&aufull=Oka+R.&coden=&isbn=&pages-&date=2012&auinit1=R&auinitm=.
- 33. Peigné, L.; Godey, F.; Le Gallo, M.; Le Gall, F.; Fautrel, A.; Morcet, J.; Jégoux, F. One-Step Nucleic Acid Amplification for Detecting Lymph Node Metastasis of Head and Neck Squamous Cell Carcinoma. *Oral Oncol.* **2020**, 102, doi:10.1016/j.oraloncology.2019.104553 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&sissn=18790593&id=doi:10.1016%2Fj. oraloncology.2019.104553&atitle=One-step+nucleic+acid+amplification+for+detecting+lymph+node+metastasis+of+head+and+neck+squamous+cell+carcinoma&stitle=Oral+Oncol.&title=Oral+Oncology&volume=102&issue=&spage=&epage=&aulast=Peign%C3%A9&aufirst=Lucie&auinit=L.&aufull=Peign%C3%A9+L.&coden=EJCCE&isbn=&pages-&date=2020&auinit1=L&auinitm=.
- 34. Rhee, D.; Wenig, B.M.; Smith, R. V. The Significance of Immunohistochemically Demonstrated Nodal Micrometastases in Patients with Squamous Cell Carcinoma of the Head and Neck. *Laryngoscope* **2002**, *112*, 1970–1974, doi:10.1097/00005537-200211000-00011.
- 35. Sakata, J.; Yamana, K.; Yoshida, R.; Matsuoka, Y.; Kawahara, K.; Arita, H.; Nakashima, H.; Nagata, M.; Hirosue, A.; Kawaguchi, S.; et al. Tumor Budding as a Novel Predictor of Occult Metastasis in CT2N0 Tongue Squamous Cell Carcinoma. *Hum. Pathol.* **2018**, *76*, 1–8, doi:10.1016/j.humpath.2017.12.021.
- 36. Yamana, K.; Sakata, J.; Yoshida, R.; Gohara, S.; Kawaguchi, S.; Nagao, Y.; Arita, H.; Nakashima, H.; Matsuoka, Y.; Kawahara, K.; et al. Tumor Budding Is a Predict Marker of Occult Node Metastasis and Prognosis in Patients with CT2N0 TSCC. *Cancer Sci.* **2018**, *109*.
- Nagvekar, S.; Spadigam, A.; Dhupar, A. Determining the Potential of Desmoglein 3 as a Sensitive and Specific Immunohistochemical Marker for the Detection of Micrometastasis in Patients with Primary Oral Squamous Cell Carcinoma. Contemp. Oncol. (Poznan, Poland) 2016, 20, 374–380, doi:10.5114/wo.2016.64596.
- 38. Patel, V.; Martin, D.; Malhotra, R.; Marsh, C.A.; Doçi, C.L.; Veenstra, T.D.; Nathan, C.-A.O.; Sinha, U.K.; Singh, B.; Molinolo, A.A.; et al. DSG3 as a Biomarker for the Ultrasensitive Detection of Occult Lymph Node Metastasis in Oral Cancer Using Nanostructured Immunoarrays. *Oral Oncol.* **2013**, *49*, 93–101, doi:10.1016/j.oraloncology.2012.08.001.
- 39. Mirghani, H.; Moreau, F.; Lefèvre, M.; Tam, C.; Périé, S.; Soussan, P.; St Guily, J.L. Human Papillomavirus Type 16 Oropharyngeal Cancers in Lymph Nodes as a Marker of Metastases. *Arch. Otolaryngol. Head. Neck Surg.* **2011**, *137*, 910–914, doi:10.1001/archoto.2011.141.
- 40. Mirghani, H.; Ferchiou, M.; Moreau, F.; Vourexakis, Z.; Amen, F.; Breuskin, I.; Lefèvre, M.; Casiraghi, O.; Drusch, F.; Soussan, P.; et al. Oropharyngeal Cancers: Significance of HPV16 Detection in Neck Lymph Nodes. *J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol.* 2013, 57, 120–124, doi:10.1016/j.jcv.2013.02.009.
- 41. Lukens, J.N.; Pustylnikov, S.; Montone, K.; Lin, A.; Swisher-McClure, S.D.; Ghiam, A.F.; Weinstein, G.S.; Cohen, R.; Facciabene, A. Tumor Infiltrating Lymphocytes in Occult Primary HPV+ Oropharyngeal Squamous Cell Carcinoma (OPSCC): Comparison of the Primary Tumor and Regional Lymph Node Metastases. *Int. J. Radiat. Oncol. Biol. Phys.* **2019**, *105*, E425–E426, doi:10.1016/j.ijrobp.2019.06.1539 LK http://sfx-
 - 82 yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=1879355X&id=doi:10.1016%2Fj. ijrobp.2019.06.1539&atitle=Tumor+Infiltrating+Lymphocytes+in+Occult+Primary+HPV%2B+Oropharynge al+Squamous+Cell+Carcinoma+%28OPSCC%29%3A+Comparison+of+the+Primary+Tumor+and+Regional+Lymph+Node+Metastases&stitle=Int.+J.+Radiat.+Oncol.+Biol.+Phys.&title=International+Journal+of+Radiation+Oncology+Biology+Physics&volume=105&issue=1&spage=E425&epage=E426&aulast=Luke.

- 43. Bugter, O.; Aaboubout, Y.; Algoe, M.; de Bruijn, H.S.; Keereweer, S.; Sewnaik, A.; Monserez, D.A.; Koljenović, S.; Hardillo, J.A.U.; Robinson, D.J.; et al. Detecting Head and Neck Lymph Node Metastases with White Light Reflectance Spectroscopy; a Pilot Study. *Oral Oncol.* **2021**, 123, 105627, doi:10.1016/j.oraloncology.2021.105627.
- 44. Cebeci, S.; Aydos, U.; Yeniceri, A.; Pula, D.; Duzlu, M.; Atay, L.O.; Yilmaz, M. Diagnostic Performance of FDG PET/MRI for Cervical Lymph Node Metastasis in Patients with Clinically N0 Head and Neck Cancer. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 4528–4535, doi:10.26355/eurrev_202305_32459 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=22840729&id=doi:10.26355%2F eurrev_202305_32459&atitle=Diagnostic+performance+of+FDG+PET%2FMRI+for+cervical+lymph+node+ metastasis+in+patients+with+clinically+N0+head+and+neck+cancer&stitle=Eur.+Rev.+Med.+Pharmacol.+S ci.&title=European+Review+for+Medical+and+Pharmacological+Sciences&volume=27&issue=10&spage=4 528&epage=4535&aulast=Cebeci&aufirst=S.&auinit=S.&aufull=Cebeci+S.&coden=RESFD&isbn=.
- 45. Rosko, A.; Birkeland, A.; Shuman, A.; Prince, M.; Bradford, C.; Wolf, G.; Worden, F.; Eisbruch, A.; Srinivasan, A.; Wong, K.K.; et al. Positron Emission Tomography-CT Prediction of Occult Nodal Metastasis in Recurrent Laryngeal Cancer. *Head Neck* **2017**, *39*, 980–987, doi:10.1002/hed.24719.
- 46. Coletta, R.D.; Bufalino, A.; Sobral, L.M.; Rodrigues, P.C.; Graner, E.; Kowalski, L.P.; Salo, T. Activin A Regulates Cell Interactions in the Microenvironment of Oral Squamous Cell Carcinomas. Cancer Res. 2015, 75, doi:10.1158/1538-7445.CHTME14-B14 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=00085472&id=doi:10.1158%2F1 538-7445.CHTME14-B14&atitle=Activin+A+regulates+cell+interactions+in+the+microenvironment+of+oral+squamous+cell+car cinomas&stitle=Cancer+Res.&title=Cancer+Research&volume=75&issue=1&spage=&epage=&aulast=Colet ta&aufirst=Ricardo+D.&auinit=R.D.&aufull=Coletta+R.D.&coden=&isbn=&pages=&date=2015&auinit1=R&auinitm=D.
- 47. Kelner, N.; Rodrigues, P.C.P.C.; Bufalino, A.; Fonseca, F.P.F.P.; Santos-Silva, A.R. dos; Miguel, M.C.C.M.C.C.; Pinto, C.A.L.C.A.L.; Leme, A.F.P.A.F.P.; Graner, E.; Salo, T.; et al. Activin A Immunoexpression as Predictor of Occult Lymph Node Metastasis and Overall Survival in Oral Tongue Squamous Cell Carcinoma. *Head Neck* 2015, *37*, 479–486, doi:10.1002/hed.23627.
- 48. Coletta, R.; Rodrigues, P.; Kelner, N.; Bufalino, A.; Fonseca, F.; Santos- Silva, A.; Kowalski, L.P.; Salo, T.; Graner, E. Activin A Immunoexpression Is Useful to Predict Occult Lymph Node Metastasis and Overall Survival in Oral Tongue Squamous Cell Carcinoma. *Virchows Arch.* 2013, 463, 116, doi:10.1007/s00428-013-1444-y LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=09456317&id=doi:10.1007%2Fs 00428-013-1444-y &atitle=Activin+A+immunoexpression+is+useful+to+predict+occult+lymph+node+metastasis+and+overa ll+survival+in+oral+tongue+squamous+cell+carcinoma&stitle=Virchows+Arch.&title=Virchows+Archiv& volume=463&issue=2&spage=116&epage=&aulast=Rodrigues&aufirst=P.&auinit=P.&aufull=Rodrigues+P. &coden=&isbn=&pages=116-&date=2013&auinit1=P&auinitm=.
- 49. Capaccio, P.; Pruneri, G.; Carboni, N.; Pagliari, A.V.; Quatela, M.; Cesana, B.M.; Pignataro, L. Cyclin D1 Expression Is Predictive of Occult Metastases in Head and Neck Cancer Patients with Clinically Negative Cervical Lymph Nodes. *Head Neck* **2000**, *22*, 234–240, doi:10.1002/(SICI)1097-0347(200005)22:3<234::AID-HED5>3 0 CO:2-3
- 50. Myo, K.; Uzawa, N.; Miyamoto, R.; Sonoda, I.; Yuki, Y.; Amagasa, T. Cyclin D1 Gene Numerical Aberration Is a Predictive Marker for Occult Cervical Lymph Node Metastasis in TNM Stage I and II Squamous Cell Carcinoma of the Oral Cavity. *Cancer* **2005**, *104*, 2709–2716, doi:10.1002/cncr.21491.
- 51. Ahmed, R.A.; Shawky, A.E.-A.; Hamed, R.H. Prognostic Significance of Cyclin D1 and E-Cadherin Expression in Laryngeal Squamous Cell Carcinoma. *Pathol. Oncol. Res.* 2014, 20, 625–633, doi:10.1007/s12253-014-9741-6 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&sissn=15322807&id=doi:10.1007%2Fs 12253-014-9741-6&atitle=Prognostic+significance+of+cyclin+D1+and+E-cadherin+expression+in+laryngeal+squamous+cell+carcinoma&stitle=Pathol.+Oncol.+Res.&title=Patholog y+and+Oncology+Research&volume=20&issue=3&spage=625&epage=633&aulast=Ahmed&aufirst=Rehab +Allah&auinit=R.A.&aufull=Ahmed+R.A.&coden=POREF&isbn=&pages=625-633&date=2014&auinit1=R&auinitm=A.
- 52. Sticht, C.; Hofele, C.; Flechtenmacher, C.; Bosch, F.X.X.; Freier, K.; Lichter, P.; Joos, S. Amplification of Cyclin L1 Is Associated with Lymph Node Metastases in Head and Neck Squamous Cell Carcinoma (HNSCC). *Br. J. Cancer* 2005, 92, 770–774, doi:10.1038/sj.bjc.6602400.
- 53. Harada, H.; Omura, K.; Nakajima, Y.; Hasegawa, S.; Mogi, S. Cyclin B1 Is Useful to Predict Occult Cervical Lymph Node Metastases in Tongue Carcinoma. *J. Exp. Clin. Cancer Res.* **2006**, 25, 351–356.
- 54. Rosado, P.; Lequerica-Fernández, P.; Fernández, S.; Allonca, E.; Villallaín, L.; De Vicente, J.C. E-Cadherin and β-Catenin Expression in Well-Differentiated and Moderately-Differentiated Oral Squamous Cell

 $\label{lem:carcinoma:} Carcinoma: Relations with Clinical Variables. \textit{Br. J. Oral Maxillofac. Surg. 2013, 51, 149–156,} \\ doi:10.1016/j.bjoms.2012.03.018 & LK & - & http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=15321940&id=doi:10.1016%2Fj. \\ bjoms.2012.03.018&atitle=E-cadherin+and+%CE%B2-catenin+expression+in+well-\\ \end{tabular}$

differentiated+and+moderately-differentiated+oral+squamous+cell+carcinoma%3A+Relations+with+clinical+variables&stitle=Br.+J.+Oral+Maxillofac.+Surg.&title=British+Journal+of+Oral+and+Maxillofacial+Surgery&volume=51&issue=2&spage=149&epage=156&aulast=Rosado&aufirst=Pablo&auinit=P.&aufull=Rosa.

- 55. Bayazit, Y.; Bakir, K.; Ucak, R.; Mumbuc, S.; Ozer, E.; Kanlikama, M. Clinical and Histopathological Correlates of the Proliferative Activity in Squamous Cell Laryngeal Carcinoma. *Rev. Laryngol. Otol. Rhinol.* (*Bord*). **2002**, *123*, 43–46.
- Keum, K.C.K.C.; Chung, E.J.E.J.; Koom, W.S.W.S.; Cho, J.H.J.H.; Cho, S.H.S.H.; Choi, E.C.E.C.; Lee, C.G.C.G.; Suh, C.O.C.O.; Kim, G.E.G.E. Predictive Value of P53 and PCNA Expression for Occult Neck Metastases in Patients with Clinically Node-Negative Oral Tongue Cancer. *Otolaryngol. neck Surg. Off. J. Am. Acad. Otolaryngol. Neck Surg.* 2006, 135, 858–864, doi:10.1016/j.otohns.2006.02.011.
- 57. van Kempen, P.M.W.; Noorlag, R.; Braunius, W.W.; Moelans, C.B.; Rifi, W.; Savola, S.; Koole, R.; Grolman, W.; van Es, R.J.J.; Willems, S.M. Clinical Relevance of Copy Number Profiling in Oral and Oropharyngeal Squamous Cell Carcinoma. *Cancer Med.* **2015**, *4*, 1525–1535, doi:10.1002/cam4.499.
- 58. Thangaraj, S.V.S.V.; Shyamsundar, V.; Krishnamurthy, A.; Ramshankar, V. Deregulation of Extracellular Matrix Modeling with Molecular Prognostic Markers Revealed by Transcriptome Sequencing and Validations in Oral Tongue Squamous Cell Carcinoma. *Sci. Rep.* **2021**, *11*, 250, doi:10.1038/s41598-020-78624-4.
- 59. Clausen, M.J.A.M.; Melchers, L.J.; De Bruin, L.B.; Mastik, M.F.; Slagter-Menkema, L.; Groen, H.J.M.; Van Der Vegt, B.; Van Der Laan, B.F.A.M.; De Meyer, T.; Van Criekinge, W.; et al. Discovery of DNA Methylation Markers That Predict Nodal Metastases in Oral Squamous Cell Carcinoma. *Oral Oncol.* 2013, 49, S5, doi:10.1016/j.oraloncology.2013.03.011 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&sissn=13688375&id=doi:10.1016%2Fj. oraloncology.2013.03.011&atitle=Discovery+of+DNA+methylation+markers+that+predict+nodal+metastas es+in+oral+squamous+cell+carcinoma&stitle=Oral+Oncol.&title=Oral+Oncology&volume=49&sisue=&spage=S5&epage=&aulast=Clausen&aufirst=Martijn+J.A.M.&auinit=M.J.A.M.&aufull=Clausen+M.J.A.M.&coden=&sisbn=&pages=S5-&date=2013&auinit1=M&auinitm=J.A.M.
- 60. Idel, C.; Ribbat-Idel, J.; Kuppler, P.; Krupar, R.; Offermann, A.; Vogel, W.; Rades, D.; Kirfel, J.; Wollenberg, B.; Perner, S. EVI1 as a Marker for Lymph Node Metastasis in HNSCC. *Int. J. Mol. Sci.* **2020**, 21, doi:10.3390/ijms21030854.
- 61. Lourenc, o, S.; Silami, M.; Camisasca, D.; Diblasi, E.; Fonseca, E.; Faria, P.; Dias, F. Expression of Chemokine Receptor CCR7 in Oral Squamous Cell Carcinoma with and without Cervical Metastasis. *Eur. J. Cancer* **2012**, 48, S266, doi:10.1016/S0959-8049(12)71708-2 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=09598049&id=doi:10.1016%2FS 0959-8049%2812%2971708-2 &atitle=Expression+of+chemokine+receptor+CCR7+in+oral+squamous+cell+carcinoma+with+and+witho ut+cervical+metastasis&stitle=Eur.+J.+Cancer&title=European+Journal+of+Cancer&volume=48&issue=&s page=\$266&epage=&aulast=Lourenc%C2%B8o&aufirst=S.&auinit=S.&aufull=Lourenc%C2%B8o+S.&code
- 62. Mizdrak, I.; Mizdrak, M.; Racetin, A.; Bošković, B.; Benzon, B.; Durdov, M.G.; Vukojević, K.; Filipović, N. Expression of Connexins 37, 40 and 45, Pannexin 1 and Vimentin in Laryngeal Squamous Cell Carcinomas. *Genes* (*Basel*). **2023**, 14, doi:10.3390/genes14020446.

n=&isbn=&pages=S266-&date=2012&auinit1=S&auinitm=.

- 63. Rodrigo, J.P.; Domínguez, F.; Alvarez, C.; Manrique, C.; Herrero, A.; Suárez, C. Expression of E-Cadherin in Squamous Cell Carcinomas of the Supraglottic Larynx with Correlations to Clinicopathological Features. *Eur. J. Cancer* **2002**, *38*, 1059–1064, doi:10.1016/S0959-8049(01)00399-9.
- 64. Mollaoglu, N.; Vairaktaris, E.; Nkenke, E.; Neukam, F.W.; Ries, J. Expression of MAGE-A12 in Oral Squamous Cell Carcinoma. *Dis. Markers* **2008**, 24, 27–32, doi:10.1155/2008/359840.
- 65. Faustino, S.E.S.; Oliveira, D.T.; Nonogaki, S.; Landman, G.; Carvalho, A.L.; Kowalski, L.P. Expression of Vascular Endothelial Growth Factor-C Does Not Predict Occult Lymph-Node Metastasis in Early Oral Squamous Cell Carcinoma. *Int. J. Oral Maxillofac. Surg.* 2008, 37, 372–378, doi:10.1016/j.ijom.2007.11.021.
- 66. Van Den Berg, N. Feasibility of Panitumumab-IRDye800 for Metastatic Lymph Node Identification in Patients with Head-and-Neck Squamous Cell Carcinoma. *Mol. Imaging Biol.* **2017**, *19*, S515, doi:10.1007/s11307-01-017-1138-y LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&sisn=18602002&id=doi:10.1007%2Fs 11307-01-017-1138-y&atitle=Feasibility+of+panitumumab-IRDye800+for+metastatic+lymph+node+identification+in+patients+with+head-and
 - neck+squamous+cell+carcinoma&stitle=Mol.+Imaging+Biol.&title=Molecular+Imaging+and+Biology&vol

- ume=19&issue=1&spage=S515&epage=&aulast=Van+Den+Berg&aufirst=Nynke&auinit=N.&aufull=Van+Den+Berg+N.&coden=&isbn=&pages=S515-&date=2017&auinit.
- 67. Krishnan, G.; van den Berg, N.S.; Nishio, N.; Juniper, G.; Pei, J.; Zhou, Q.; Lu, G.; Lee, Y.-J.; Ramos, K.; Iagaru, A.H.; et al. Metastatic and Sentinel Lymph Node Mapping Using Intravenously Delivered Panitumumab-IRDye800CW. *Theranostics* **2021**, *11*, 7188–7198, doi:10.7150/THNO.59196 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=18387640&id=doi:10.7150%2FT HNO.59196&atitle=Metastatic+and+sentinel+lymph+node+mapping+using+intravenously+delivered+Pan itumumab-
 - IRDye800CW&stitle=Theranostics&title=Theranostics&volume=11&issue=15&spage=7188&epage=7198&aulast=Krishnan&aufirst=Giri&auinit=G.&aufull=Krishnan+G.&coden=&isbn=&pages=7188-7198&date=2021&auinit1=G&auinitm=.
- 68. Weinberger, P.M.; Merkley, M.; Jackson, L.; Dynan, W.S. Overexpression of Cornulin in Histologically Normal Adjacent Tissue Predicts Occult Nodal Metastases in Head and Neck Cancer Patients. *Cancer Res.* 2010, 70, doi:10.1158/1538-7445.AM10-3286 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=00085472&id=doi:10.1158%2F1 538-7445.AM10-3286&atitle=Overexpression+of+cornulin+in+histologically+normal+adjacent+tissue+predicts+occult+noda l+metastases+in+head+and+neck+cancer+patients&stitle=Cancer+Res.&title=Cancer+Research&volume=7 0&issue=8&spage=&epage=&aulast=Weinberger&aufirst=Paul+M.&auinit=P.M.&aufull=Weinberger+P.M .&coden=&isbn=&pages=-&date=2010&auinit1=P&auinitm=M.
- 69. Wang, S.; Fan, H.; Xu, J.; Zhao, E. Prognostic Implication of NOTCH1 in Early Stage Oral Squamous Cell Cancer with Occult Metastases. *Clin. Oral Investig.* **2018**, 22, 1131–1138, doi:10.1007/s00784-017-2197-9.
- 70. Park, J.-O.; Jung, C.-K.; Sun, D.-I.; Joo, Y.-H.; Kim, M.-S. Relationships between Metastasis-Associated Protein (MTA) 1 and Lymphatic Metastasis in Tonsil Cancer. Eur. Arch. oto-rhino-laryngology Off. J. Eur. Fed. Oto-Rhino-Laryngological Soc. Affil. with Ger. Soc. Oto-Rhino-Laryngology Head Neck Surg. 2011, 268, 1329–1334, doi:10.1007/s00405-010-1478-6.
- 71. Nair, S.; Malgundkar, S.; Patil, A.; Kane, S.; Sadhana, K.; D'Cruz, A.; Zingde, S. Proteomic Markers in Early Buccal Mucosa Squamous Cell Cancers. *Eur. J. Cancer* 2013, 49, S26, doi:10.1016/S0959-8049(13)70161-8 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=09598049&id=doi:10.1016%2FS 0959-8049%2813%2970161-8&atitle=Proteomic+markers+in+early+buccal+mucosa+squamous+cell+cancers&stitle=Eur.+J.+Cancer&titl e=European+Journal+of+Cancer&volume=49&issue=&spage=\$26&epage=&aulast=Nair&aufirst=S.&auinit=S.&aufull=Nair+S.&coden=&isbn=&pages=\$26-&date=2013&auinit1=S&auinitm=.
- 72. Rodrigo, J.P.; Dominguez, F.; Suárez, V.; Canel, M.; Secades, P.; Chiara, M.D. Focal Adhesion Kinase and E-Cadherin as Markers for Nodal Metastasis in Laryngeal Cancer. *Arch. Otolaryngol. Head. Neck Surg.* **2007**, 133, 145–150, doi:10.1001/archotol.133.2.145.
- 73. Parikh, A.S.A.S.; Puram, S.V.S. V; Faquin, W.C.W.C.; Richmon, J.D.J.D.; Emerick, K.S.K.S.; Deschler, D.G.D.G.; Varvares, M.A.M.A.; Tirosh, I.; Bernstein, B.E.B.E.; Lin, D.T.D.T. Immunohistochemical Quantification of Partial-EMT in Oral Cavity Squamous Cell Carcinoma Primary Tumors Is Associated with Nodal Metastasis. *Oral Oncol.* 2019, 99, 104458, doi:10.1016/j.oraloncology.2019.104458.
- 74. Miyaguchi, K.; Uzawa, N.; Mogushi, K.; Takahashi, K.-I.; Michikawa, C.; Nakata, Y.; Sumino, J.; Okada, N.; Mizushima, H.; Fukuoka, Y.; et al. Loss of NKX3-1 as a Potential Marker for an Increased Risk of Occult Lymph Node Metastasis and Poor Prognosis in Oral Squamous Cell Carcinoma. *Int. J. Oncol.* 2012, 40, 1907–1914, doi:10.3892/ijo.2012.1373.
- 75. Yang, X.; Wu, K.; Li, S.; Hu, L.; Han, J.; Zhu, D.; Tian, X.; Liu, W.; Tian, Z.; Zhong, L.; et al. MFAP5 and TNNC1: Potential Markers for Predicting Occult Cervical Lymphatic Metastasis and Prognosis in Early Stage Tongue Cancer. *Oncotarget* **2017**, *8*, 2525–2535, doi:10.18632/oncotarget.12446.
- 76. Uma, R.S.R.S.; Naresh, K.N.K.N.; D'Cruz, A.K.A.K.; Mulherkar, R.; Borges, A.M.A.M. Metastasis of Squamous Cell Carcinoma of the Oral Tongue Is Associated with Down-Regulation of Epidermal Fatty Acid Binding Protein (E-FABP). *Oral Oncol.* **2007**, *43*, 27–32, doi:10.1016/j.oraloncology.2005.12.024.
- 77. Allegra, E.; Puzzo, L.; Zuccalà, V.; Trapasso, S.; Vasquez, E.; Garozzo, A.; Caltabiano, R. Nuclear BMI-1 Expression in Laryngeal Carcinoma Correlates with Lymph Node Pathological Status. *World J. Surg. Oncol.* **2012**, *10*, 206, doi:10.1186/1477-7819-10-206.
- 78. Huber, G.F.G.F.; Fritzsche, F.R.F.R.; Züllig, L.; Storz, M.; Graf, N.; K. Haerle, S.; Jochum, W.; Stoeckli, S.J.S.J.; Moch, H.; Haerle, S.K.; et al. Podoplanin Expression Correlates with Sentinel Lymph Node Metastasis in Early Squamous Cell Carcinomas of the Oral Cavity and Oropharynx. *Int. J. cancer* **2011**, *129*, 1404–1409, doi:10.1002/ijc.25795.
- 79. Iype, E.M.; Balakrishnan, L.S.R. Selected Molecular Markers as Indicators of Clinical Profile, Tumor Characteristics and Treatment Outcome in Squamous Cell Carcinoma of the Larynx. *J. Clin. Oncol.* **2019**, 37, doi:10.1200/jco.2019.37.15_suppl.e17522 LK http://sfx-

- $82 yum.hosted.exlibrisgroup.com/yum?sid=EMBASE\&sid=EMBASE\&issn=15277755\&id=doi:10.1200\%2Fjc o.2019.37.15_suppl.e17522\&atitle=Selected+molecular+markers+as+indicators+of+clinical+profile%2C+tu mor+characteristics+and+treatment+outcome+in+squamous+cell+carcinoma+of+the+larynx&stitle=J.+Clin. +Oncol.&title=Journal+of+Clinical+Oncology&volume=37&issue=&spage=&epage=&aulast=Iype&aufirst=Elizabeth+Mathew&auinit=E.M.&aufull=Iype+E.M.&coden=&isbn=&pages=-.$
- 80. Meler-Claramonte, C.; Avilés-Jurado, F.X.; Vilaseca, I.; Terra, X.; Bragado, P.; Fuster, G.; Vintró, X.L.; Camacho, M. Semaphorin-3F/Neuropilin-2 Transcriptional Expression as a Predictive Biomarker of Occult Lymph Node Metastases in HNSCC. *Cancers (Basel)*. **2022**, *14*, doi:10.3390/cancers14092259.
- 81. Sparano, A.; Weinstein, G.; Chalian, A.; Yodul, M.; Weber, R. Multivariate Predictors of Occult Neck Metastasis in Early Oral Tongue Cancer. *Otolaryngol. Head Neck Surg.* 2004, 131, 472–476, doi:10.1016/j.otohns.2004.04.008 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=01945998&id=doi:10.1016%2Fj. otohns.2004.04.008&atitle=Multivariate+predictors+of+occult+neck+metastasis+in+early+oral+tongue+can cer&stitle=Otolaryngol.+Head+Neck+Surg.&title=Otolaryngology+-+Head+and+Neck+Surgery&volume=131&issue=4&spage=472&epage=476&aulast=Sparano&aufirst=Ant hony&auinit=A.&aufull=Sparano+A.&coden=OTOLD&isbn=&pages=472-476&date=2004&auinit1=A&auinitm=.
- 82. Chandler, K.; Vance, C.; Budnick, S.; Muller, S. Muscle Invasion in Oral Tongue Squamous Cell Carcinoma as a Predictor of Nodal Status and Local Recurrence: Just as Effective as Depth of Invasion? *Head Neck Pathol.* **2011**, *5*, 359–363, doi:10.1007/s12105-011-0296-5.
- 83. Hori, Y.; Kubota, A.; Yokose, T.; Furukawa, M.; Matsushita, T.; Takita, M.; Mitsunaga, S.; Mizoguchi, N.; Nonaka, T.; Nakayama, Y.; et al. Predictive Significance of Tumor Depth and Budding for Late Lymph Node Metastases in Patients with Clinical N0 Early Oral Tongue Carcinoma. *Head Neck Pathol.* **2017**, *11*, 477–486, doi:10.1007/s12105-017-0814-1.
- 84. Sakai, T.; Saito, Y.; Tateishi, Y.; Yamazawa, S.; Fukuoka, O.; Kobayashi, K.; Omura, G.; Akashi, K.; Yoshida, M.; Ando, M.; et al. Tumor–Stroma Ratio Can Predict Lymph-Node Metastasis in CT1/2N0 Oral Tongue Squamous Cell Carcinoma Independent of Tumor Budding Grade. *Int. J. Clin. Oncol.* 2022, 27, 1818–1827, doi:10.1007/s10147-022-02249-y LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=14377772&id=doi:10.1007%2Fs 10147-022-02249-y&atitle=Tumor%E2%80%93stroma+ratio+can+predict+lymph-node+metastasis+in+cT1%2F2N0+oral+tongue+squamous+cell+carcinoma+independent+of+tumor+budding+grade&stitle=Int.+J.+Clin.+Oncol.&title=International+Journal+of+Clinical+Oncology&volume=27&iss ue=12&spage=1818&epage=1827&aulast=Sakai&aufirst=Toshihiko&auinit=T.&aufull=Sakai+T.&coden=IJ COF&isbn=&page.
- 85. Luksic, I.; Suton, P.; Manojlovic, S.; Virag, M.; Petrovecki, M.; Macan, D. Significance of Myofibroblast Appearance in Squamous Cell Carcinoma of the Oral Cavity on the Occurrence of Occult Regional Metastases, Distant Metastases, and Survival. *Int. J. Oral Maxillofac. Surg.* **2015**, 44, 1075–1080, doi:10.1016/j.ijom.2015.05.009.
- 86. Choi, K.; Park, S.; Kim, J.; Medicine, D.L.-; 2021, undefined The Occult Nodal Metastasis Rate of Early Tongue Cancer (T1–T2): A Protocol for a Systematic Review and Meta-Analysis. *journals.lww.com*.
- 87. Stögbauer, F.; Beck, S.; Ourailidis, I.; Hess, J.; Poremba, C.; Lauterbach, M.; Wollenberg, B.; Buchberger, A.M.S.; Jesinghaus, M.; Schirmacher, P.; et al. Tumour Budding-Based Grading as Independent Prognostic Biomarker in HPV-Positive and HPV-Negative Head and Neck Cancer. *Br. J. Cancer* **2023**, *128*, 2295–2306, doi:10.1038/s41416-023-02240-y.
- 88. Velosa, C.; Shi, Q.; Stevens, T.M.; Chiosea, S.I.; Purgina, B.; Carroll, W.; Rosenthal, E.; Morlandt, A.; Loree, T.; Brandwein-Weber, M.S. Worst Pattern Of Invasion and Occult Cervical Metastases for Oral Squamous Carcinoma. Head Neck 2017, doi:10.1002/hed.24754 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=10970347&id=doi:10.1002%2Fh ed.24754&atitle=Worst+Pattern+Of+Invasion+and+occult+cervical+metastases+for+oral+squamous+carcin oma&stitle=Head+Neck&title=Head+and+Neck&volume=&issue=&spage=&epage=&aulast=Velosa&aufir st=Claudia&auinit=C.&aufull=Velosa+C.&coden=HEANE&isbn=&pages=-&date=2017&auinit1=C&auinitm=.
- 89. Jesinghaus, M.; Steiger, K.; Stögbauer, F.; Haller, B.; Kolk, A.; Straßen, U.; Pickhard, A.; Wirth, M.; Silva, M.; Budczies, J.; et al. Pre-Operative Cellular Dissociation Grading in Biopsies Is Highly Predictive of Post-Operative Tumour Stage and Patient Outcome in Head and Neck Squamous Cell Carcinoma. *Br. J. Cancer* **2020**, *122*, 835–846, doi:10.1038/s41416-019-0719-8.
- 90. Kwon, M.; Moon, H.; Nam, S.Y.; Lee, J.H.; Kim, J.W.; Lee, Y.-S.; Roh, J.-L.; Choi, S.-H.; Kim, S.-Y. Clinical Significance of Three-Dimensional Measurement of Tumour Thickness on Magnetic Resonance Imaging in Patients with Oral Tongue Squamous Cell Carcinoma. *Eur. Radiol.* **2016**, *26*, 858–865, doi:10.1007/s00330-015-3884-z.

- 91. Chandra, P.; Dhake, S.; Agrawal, A.; Shah, S.; Purandare, N.; Rangarajan, V.; Dutta, S.; Chaturvedi, P. Does SPECT/CT Offer Incremental Benefit over Planar Lympho-Scintigraphy in Sentinel Node Biopsies in Oral Cavity Squamous Cell Carcinomas? *Indian J. Nucl. Med.* **2015**, *30*, S19.
- 92. Xu, C.; Li, H.; Seng, D.; Liu, F. Significance of SUV Max for Predicting Occult Lymph Node Metastasis and Prognosis in Early-Stage Tongue Squamous Cell Carcinoma. *J. Oncol.* **2020**, 2020, 6241637, doi:10.1155/2020/6241637.
- 93. Kuźmińska, M.; Osuch-Wójcikiewicz, E.; Fronczewska-Wieniawska, K.; Królicki, L.; Niemczyk, K. Usefulness of 18F-FDG PET/CT examination in the diagnosis of head and neck cancer Preliminary results. Otolaryngol. Pol. 2011, 65, 17–21, doi:10.1016/S0030-6657(11)70704-1 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=00306657&id=doi:10.1016%2FS 0030-6657%2811%2970704-1&atitle=Usefulness+of+18F-FDG+PET%2FCT+examination+in+the+diagnosis+of+head+and+neck+cancer+-
 - +Preliminary+results&stitle=Otolaryngol.+Pol.&title=Otolaryngologia+Polska&volume=65&issue=5+SUP PL.&spage=17&epage=21&aulast=Ku%C5%BAmi%C5%84ska&aufirst=Magdalena&auinit=M.&aufull=Ku%C5%BAmi%C5%84ska+M.&coden=OTPOA&isbn=&pages=17-21&date=2011&auin.
- 94. Norling, R.; Buron, B.M.D.; Therkildsen, M.H.; Henriksen, B.M.; Von Buchwald, C.; Nielsen, M.B. Staging of Cervical Lymph Nodes in Oral Squamous Cell Carcinoma: Adding Ultrasound in Clinically Lymph Improve Diagnostic Work-Up. PLoSNode Negative Patients May One 2014, doi:10.1371/journal.pone.0090360 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=19326203&id=doi:10.1371%2Fj ournal.pone.0090360&atitle=Staging+of+cervical+lymph+nodes+in+oral+squamous+cell+carcinoma%3A+ Adding+ultrasound+in+clinically+lymph+node+negative+patients+may+improve+diagnostic+workup&stitle=PLoS+ONE&title=PLoS+ONE&volume=9&issue=3&spage=&epage=&aulast=Norling&aufirst=R ikke&auinit=R.&aufull=Norling+R.&coden=POLNC&isbn=&pages=-&date=2014&auinit1=R&auinitm=.
- 95. Cvorović, L.; Milutinović, Z.; Strbac, M.; Markovski, S. What Is Important for Ultrasound Evaluation of Occult Metastatic Lymph Nodes in Laryngeal Cancer: Size, Shape, Vascularity or Cytological Findings? *ORL. J. Otorhinolaryngol. Relat. Spec.* **2007**, *69*, 172–175, doi:10.1159/000099227.
- 96. Huber, G.F.G.F.; Züllig, L.; Soltermann, A.; Roessle, M.; Graf, N.; Haerle, S.K.S.K.; Studer, G.; Jochum, W.; Moch, H.; Stoeckli, S.J.S.J. Down Regulation of E-Cadherin (ECAD) a Predictor for Occult Metastatic Disease in Sentinel Node Biopsy of Early Squamous Cell Carcinomas of the Oral Cavity and Oropharynx. *BMC Cancer* **2011**, *11*, 217:1-8, doi:10.1186/1471-2407-11-217.
- 97. Sadeghirad, H.; Monkman, J.; Mehdi, A.M.; Ladwa, R.; O'Byrne, K.; Hughes, B.G.M.B.G.M.; Kulasinghe, A.; O'Byrne, K.; Hughes, B.G.M.B.G.M.; Kulasinghe, A. Dissecting Tissue Compartment-Specific Protein Signatures in Primary and Metastatic Oropharyngeal Squamous Cell Carcinomas. *Front. Immunol.* **2022**, *13*, 895513, doi:10.3389/fimmu.2022.895513.
- 98. Boonkitticharoen, V.; Kulapaditharom, B.; Leopairut, J.; Kraiphibul, P.; Larbcharoensub, N.; Cheewaruangroj, W.; Chintrakarn, C.; Pochanukul, L. Vascular Endothelial Growth Factor a and Proliferation Marker in Prediction of Lymph Node Metastasis in Oral and Pharyngeal Squamous Cell Carcinoma. *Arch. Otolaryngol. Head. Neck Surg.* 2008, 134, 1305–1311, doi:10.1001/archotol.134.12.1305.
- 99. El-Mofty, S.K.; Zhang, M.Q.; Davila, R.M. Histologic Identification of Human Papillomavirus (HPV)-Related Squamous Cell Carcinoma in Cervical Lymph Nodes: A Reliable Predictor of the Site of an Occult Head and Neck Primary Carcinoma. *Head Neck Pathol.* **2008**, *2*, 163–168, doi:10.1007/s12105-008-0066-1.
- 100. Kitkumthorn, N.; Keelawat, S.; Rattanatanyong, P.; Mutirangura, A. LINE-1 and Alu Methylation Patterns in Lymph Node Metastases of Head and Neck Cancers. *Asian Pacific J. Cancer Prev.* **2012**, *13*, 4469–4475, doi:10.7314/APJCP.2012.13.9.4469

 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=15137368&id=doi:10.7314%2FA PJCP.2012.13.9.4469&atitle=LINE-1+and+alu+methylation+patterns+in+lymph+node+metastases+of+head+and+neck+cancers&stitle=Asian+Pac.+J.+Cancer+Preven.&title=Asian+Pacific+Journal+of+Cancer+Prevention&volume=13&issue=9&spage=4469&epage=4475&aulast=Kitkumthorn&aufirst=Nakarin&auinit=N.&aufull=Kitkumthorn+N.&coden=
- 101. Cortesina, G.; Martone, T.; Galeazzi, E.; Olivero, M.; De Stefani, A.; Bussi, M.; Valente, G.; Comoglio, P.M.M.; Di Renzo, M.F.F. Staging of Head and Neck Squamous Cell Carcinoma Using the MET Oncogene Product as Marker of Tumor Cells in Lymph Node Metastases. *Int. J. cancer* 2000, 89, 286–292, doi:10.1002/1097-0215(20000520)89:3<286::AID-IJC12>3.0.CO;2-U.

&isbn=&pages=4469-4475&date=2012&auinit1=N&auinitm=.

- 102. Zevallos, J.P.J.P.; Mazul, A.L.A.L.; Walter, V.; Hayes, D.N.D.N. Gene Expression Subtype Predicts Nodal Metastasis and Survival in Human Papillomavirus-Negative Head and Neck Cancer. *Laryngoscope* **2019**, 129, 154–161, doi:10.1002/lary.27340.
- 103. Salzano, G.; Perri, F.; Maglitto, F.; Togo, G.; De Fazio, G.R.; Apolito, M.; Calabria, F.; Laface, C.; Vaira, L.A.; Committeri, U.; et al. Pre-Treatment Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios as Predictors of Occult Cervical Metastasis in Clinically Negative Neck Supraglottic and Glottic Cancer. *J.*

- Pers. Med. 2021, 11, doi:10.3390/jpm11121252 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=20754426&id=doi:10.3390%2Fj pm11121252&atitle=Pre-treatment+neutrophil-to-lymphocyte+and+platelet-to-lymphocyte+ratios+as+predictors+of+occult+cervical+metastasis+in+clinically+negative+neck+supraglottic+and+glottic+cancer&stitle=J.+Pers.+Med.&title=Journal+of+Personalized+Medicine&volume=11&issue=1 2&spage=&epage=&aulast=Salzano&aufirst=Giovanni&auinit=G.&aufull=Salzano+G.&coden=&isbn=&pa
- 104. Abbate, V.; Dell'Aversana Orabona, G.; Salzano, G.; Bonavolontà, P.; Maglitto, F.; Romano, A.; Tarabbia, F.; Turri-Zanoni, M.; Attanasi, F.; Di Lauro, A.E.; et al. Pre-Treatment Neutrophil-to-Lymphocyte Ratio as a Predictor for Occult Cervical Metastasis in Early Stage (T1-T2 CN0) Squamous Cell Carcinoma of the Oral Tongue. *Surg. Oncol.* **2018**, *27*, 503–507, doi:10.1016/j.suronc.2018.06.002.
- 105. Ventura, E.; Barros, J.; Salgado, I.; Millán, A.; Vilares, M.; Zagalo, C.; Gomes, P. Pretreatment Blood Markers in the Prediction of Occult Neck Metastasis: A 10-Year Retrospective Study. *Cureus* **2021**, *13*, e16641, doi:10.7759/cureus.16641.
- 106. Salzano, G.; Dell'Aversana Orabona, G.; Abbate, V.; Vaira, L.A.; Committeri, U.; Bonavolontà, P.; Piombino, P.; Maglitto, F.; Russo, C.; Russo, D.; et al. The Prognostic Role of the Pre-Treatment Neutrophil to Lymphocyte Ratio (NLR) and Tumor Depth of Invasion (DOI) in Early-Stage Squamous Cell Carcinomas of the Oral Tongue. *Oral Maxillofac. Surg.* 2022, 26, 21–32, doi:10.1007/s10006-021-00969-5.
- 107. Qayyumi, B.; Bharde, A.; Aland, G.; D'Souza, A.; Jayant, S.; Singh, N.; Tripathi, S.; Badave, R.; Kale, N.; Singh, B.; et al. Circulating Tumor Cells as a Predictor for Poor Prognostic Factors and Overall Survival in Treatment Naïve Oral Squamous Cell Carcinoma Patients. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol.* **2022**, *134*, 73–83, doi:10.1016/j.0000.2022.02.018.
- 108. Anderson, Y.; Wong, M.H.; Clayburgh, D. Circulating Hybrid Cells as a Marker of Nodal Metastases in Oral Cavity Squamous Cell Carcinoma. *Int. J. Radiat. Oncol. Biol. Phys.* **2020**, *106*, 1125–1126, doi:10.1016/j.ijrobp.2019.11.347.
- 109. Henn, T.E.; Anderson, A.N.; Hollett, Y.R.; Sutton, T.L.; Walker, B.S.; Swain, J.R.; Sauer, D.A.; Clayburgh, D.R.; Wong, M.H. Circulating Hybrid Cells Predict Presence of Occult Nodal Metastases in Oral Cavity Carcinoma. *Head Neck* 2021, 43, 2193–2201, doi:10.1002/hed.26692 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=10970347&id=doi:10.1002%2Fh ed.26692&atitle=Circulating+hybrid+cells+predict+presence+of+occult+nodal+metastases+in+oral+cavity+carcinoma&stitle=Head+Neck&title=Head+and+Neck&volume=43&issue=7&spage=2193&epage=2201&aulast=Henn&aufirst=Tara+E.&auinit=T.E.&aufull=Henn+T.E.&coden=HEANE&isbn=&pages=2193-2201&date=2021&auinit1=T&auinitm=E.
- 110. Capone, R.B.B.; Pai, S.I.I.; Koch, W.M.M.; Gillison, M.L.L.; Danish, H.N.N.; Westra, W.H.H.; Daniel, R.; Shah, K.V. V; Sidransky, D. Detection and Quantitation of Human Papillomavirus (HPV) DNA in the Sera of Patients with HPV-Associated Head and Neck Squamous Cell Carcinoma. *Clin. cancer Res. an Off. J. Am. Assoc. Cancer Res.* 2000, 6, 4171–4175.
- 111. Mermod, M.; Bongiovanni, M.; Petrova, T.; Goun, E.; Simon, C.; Tolstonog, G.; Monnier, Y. Prediction of Occult Lymph Node Metastasis in Head and Neck Cancer with CD31 Vessel Quantification. *Otolaryngol. neck Surg. Off. J. Am. Acad. Otolaryngol. Neck Surg.* **2019**, *160*, 277–283, doi:10.1177/0194599818791779.
- 112. Wollenberg, B.; Walz, A.; Kolbow, K.; Pauli, C.; Chaubal, S.; Andratschke, M. Clinical Relevance of Circulating Tumour Cells in the Bone Marrow of Patients with SCCHN. *Onkologie* **2004**, *27*, 358–362, doi:10.1159/000079088.
- 113. Elsheikh, M.N.; Rinaldo, A.; Hamakawa, H.; Mahfouz, M.E.; Rodrigo, J.P.; Brennan, J.; Devaney, K.O.; Grandis, J.R.; Ferlito, A. Importance of Molecular Analysis in Detecting Cervical Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma. *Head Neck* 2006, 28, 842–849, doi:10.1002/HED.20368.
- 114. Rhee, D.; Wenig, B.M.; Smith, R. V The Significance of Immunohistochemically Demonstrated Nodal Micrometastases in Patients with Squamous Cell Carcinoma of the Head and Neck. *Laryngoscope* 2002, 112, 1970–1974, doi:10.1097/00005537-200211000-00011 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=0023852X&id=doi:10.1097%2F0 0005537-200211000-00011&atitle=The+significance+of+immunohistochemically+demonstrated+nodal+micrometastases+in+na-
 - 00011&atitle=The+significance+of+immunohistochemically+demonstrated+nodal+micrometastases+in+pa tients+with+squamous+cell+carcinoma+of+the+head+and+neck&stitle=Laryngoscope&title=Laryngoscope &volume=112&issue=11&spage=1970&epage=1974&aulast=Rhee&aufirst=Dukhee&auinit=D.&aufull=Rhe e+D.&coden=LARYA&isbn=&pages=1970-1974&date=2002&auinit1=D&auin.
- 115. Rodrigo, J.P.; Shah, J.P.; Silver, C.E.; Medina, J.E.; Takes, R.P.; Robbins, K.T.; Rinaldo, A.; Werner, J.A.; Ferlito, A. Management of the Clinically Negative Neck in Early-Stage Head and Neck Cancers after Transoral Resection. *Head Neck* **2011**, 33, 1210–1219, doi:10.1002/HED.21505.
- 116. Thomsen, J.B.; Christensen, R.K.; Sørensen, J.A.; Krogdahl, A. Sentinel Lymph Nodes in Cancer of the Oral Cavity: Is Central Step-Sectioning Enough? *J. Oral Pathol. Med.* **2007**, *36*, 425–429, doi:10.1111/J.1600-0714.2007.00538.X.

- 117. Kligerman, J.; Lima, R.A.; Soares, J.R.; Prado, L.; Dias, F.L.; Freitas, E.Q.; Olivatto, L.O. Supraomohyoid Neck Dissection in the Treatment of T1/T2 Squamous Cell Carcinoma of Oral Cavity. *Am. J. Surg.* **1994**, *168*, 391–394, doi:10.1016/S0002-9610(05)80082-0.
- 118. De Carvalho, A.C.; Maia, D.C.C.; Horst, M.A.; Carvalho, A.L.; Scapulatempo-Neto, C.; Vettore, A.L. Concord Ance of Pathologic Examination and QRT-PCR for MicroRNA Expressi on in Lymph Nodes from Cell 2013, Squamous Carcinoma Patients. Oral Oncol. S104-S105, doi:10.1016/j.oraloncology.2013.03.276 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=13688375&id=doi:10.1016%2Fi. oraloncology.2013.03.276&atitle=Concord+ance+of+pathologic+examination+and+qRT-PCR+for+microRNA+expressi+on+in+lymph+nodes+from+oral+squamous+cell+carcinoma+patients&stitle =Oral+Oncol.&title=Oral+Oncology&volume=49&issue=&spage=\$104&epage=\$105&aulast=De+Carvalho &aufirst=Ana+Carolina&auinit=A.C.&aufull=De+Carvalho+A.C.&coden=&isbn=&pages=S104-S105&date=2013.
- 119. Farlow, J.L.; Birkeland, A.C.; Rosko, A.J.; VanKoevering, K.; Haring, C.T.; Smith, J.D.; Brenner, J.C.; Shuman, A.G.; Chinn, S.B.; Stucken, C.L.; et al. Elective Paratracheal Lymph Node Dissection in Salvage Laryngectomy. *Ann. Surg. Oncol.* 2019, 26, 2542–2548, doi:10.1245/s10434-019-07270-6 LK http://sfx-82yum.hosted.exlibrisgroup.com/yum?sid=EMBASE&sid=EMBASE&issn=15344681&id=doi:10.1245%2Fs 10434-019-07270-6&atitle=Elective+Paratracheal+Lymph+Node+Dissection+in+Salvage+Laryngectomy&stitle=Ann.+Surg.+Oncol.&title=Annals+of+Surgical+Oncology&volume=26&issue=8&spage=2542&epage=2548&aulast=Farl ow&aufirst=Janice+L.&auinit=J.L.&aufull=Farlow+J.L.&coden=ASONF&isbn=&pages=2542-2548&date=2019&auinit1=J&auinitm=L.
- 120. Shih, H.; Khanna, M.; Thomas, J.; Gazala, F.; El-Hakim, M. DEPTH OF INVASION CUTOFF FOR RECOMMENDING ELECTIVE NECK DISSECTION IN ORAL SQUAMOUS CELL CARCINOMA. *Int. J. Oral Maxillofac. Surg.* **2024**, *52*, 185, doi:10.1016/j.ijom.2023.10.514.
- 121. Masood, M.M.; Farquhar, D.R.; Vanleer, J.P.; Patel, S.N.; Hackman, T.G. Depth of Invasion on Pathological Outcomes in Clinical Low-Stage Oral Tongue Cancer Patients. *Oral Dis.* **2018**, 24, 1198–1203, doi:10.1111/odi.12887.
- 122. Aaboubout, Y.; van der Toom, Q.M.Q.M.; de Ridder, M.A.J.M.A.J.; De Herdt, M.J.M.J.; van der Steen, B.; van Lanschot, C.G.F.C.G.F.; Barroso, E.M.E.M.; Nunes Soares, M.R.; ten Hove, I.; Mast, H.; et al. Is the Depth of Invasion a Marker for Elective Neck Dissection in Early Oral Squamous Cell Carcinoma? *Front. Oncol.* 2021, 11, 628320, doi:10.3389/fonc.2021.628320.
- 123. Chien, C.-Y.; Wang, C.P.; Lee, L.-Y.; Lee, S.-R.; Ng, S.-H.; Kang, C.-J.; Lin, J.-C.; Terng, S.-D.; Hua, C.-H.; Chen, T.-M.; et al. Indications for Elective Neck Dissection in CT1N0M0 Oral Cavity Cancer According to the AJCC Eight Edition: A Nationwide Study. *Oral Oncol.* 2023, 140, doi:10.1016/j.oraloncology.2023.106366.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.