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Abstract

In this position paper, we present a comprehensive analysis of the evolution of artificial intelligence
from pre-trained language models to agentic Al systems designed for autonomous intelligence. This
evolution is structured across seven technical stages, beginning with the transformer architecture
and Mixture of Experts (MoE), and extending through instruction fine-tuning, reinforcement learning
from human feedback (RLHF), retrieval-augmented generation (RAG), and tool integration. We
particularly emphasize the transition to agent-based systems, including single-agent autonomy and
collaborative multi-agent workflows. We highlight the role of recent architectural frameworks such as
AutoGen, LangGraph, CrewAl, and CodeAct in enabling planning, tool invocation, and inter-agent
communication. In particular, we distinguish two critical paradigms: (i) tool-augmented single-agent
reasoning and (ii) distributed multi-agent orchestration. We discuss key architectural challenges such
as coordination complexity, traceability, and scalability, and propose deployment strategies suited
for constrained environments. This work offers a foundational perspective on the architectural shift
toward autonomous, goal-driven Al systems.

Keywords: agentic Al; transformer architecture; Mixture of Experts; generative Al; programming
frameworks; developing countries

1. Introduction

Artificial Intelligence (AI) has evolved rapidly in recent years, transitioning from static, pre-
trained language models to dynamic systems capable of autonomous reasoning and coordination. This
transformation marks a fundamental shift in the role of Al—from passive language generators to agents
that can interact with tools, make decisions, and complete tasks in open-ended environments. We
argue that agentic Al represents a critical inflection point in this journey, enabling real-world autonomy
while raising important challenges related to scalability, transparency, and equitable access—especially
for developing countries with limited digital infrastructure [1,2].

This progression began with transformer-based models such as GPT-2 and GPT-3, which intro-
duced attention mechanisms and later Mixture of Experts (MoE) to scale up language modeling using
massive training corpora [3,4]. While these models demonstrated impressive fluency, they struggled
with task specificity, contextual reasoning, and goal-directed behavior. To address this, instruction
fine-tuning was introduced to guide models using prompt-response pairs, improving alignment with
user intent, though often brittle across diverse tasks [5]. Reinforcement learning from human feedback
(RLHF) further refined alignment by training models based on human preference rankings, improving
safety and relevance. However, RLHF introduced new complications such as optimization opacity and
increased training complexity [6].

Despite these advances, language models still relied on static internal knowledge, leading to
hallucinations and factual inaccuracies. Retrieval-Augmented Generation (RAG) was among the first
methods to address this by allowing models to query external sources in real time [7]. Although this
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improved factual grounding, its success depended on the quality of retrieval and effective integration
into prompts. RAG also marked the emergence of tool calling, where the model uses external systems
to augment its capabilities. This concept generalized further—extending beyond retrieval to include
APIs, calculators, databases, and code execution environments. This laid the foundation for AI
agents, defined here as large language models (LLMs) augmented with external tools that they can
autonomously call to perform reasoning, planning, and decision-making. In this paradigm, the model
becomes an actor, not merely a predictor.

To support such systems, several programming frameworks have emerged. AutoGen, LangGraph,
and CrewAl provide mechanisms for task orchestration, memory management, and inter-agent
communication in single-agent and multi-agent environments [8,9], [10]. These frameworks simplify
development but also raise concerns around traceability and coordination overhead. Complementing
them, CodeAct enables multi-agent coordination through code-driven reasoning and debugging,
offering flexibility but requiring robust safeguards for safety and consistency at scale [11].

As Al systems adopt agentic capabilities, the focus of research and design shifts from improving
generation quality to governing autonomous behavior. Each layer of reasoning and planning adds
value—but also complexity and risk. Ensuring transparency, reliability, and responsible deployment
becomes essential.

This paper provides a structured analysis of the evolution toward agentic Al across seven stages:
transformer-based models, instruction fine-tuning, RLHE, tools integration, RAG, single-agent auton-
omy, and multi-agent collaboration. We review core architectural foundations (e.g., transformers, MoE),
coordination frameworks like CodeAct, and programming tools including AutoGen, LangGraph, and
CrewAl [8,11]. We then examine the strategic implications of agentic Al—including automation,
cost efficiency, and oversight requirements—and assess how these technologies can be leveraged in
developing countries to advance healthcare, education, agriculture, and resource management.

The remainder of this paper is organized as follows: Section 2 presents the seven-stage evolution
of Al systems. Section 4 synthesizes strategic impacts, deployment challenges, opportunities for
developing countries, and future directions for research and implementation. Finally, Section 5
concludes the paper with a summary of key insights.

2. Evolution of AI: From Pre-Trained Models to Agentic Systems

This section provides a chronological overview of how Al evolved from static language models to
agentic systems capable of autonomous reasoning and interaction.

2.1. Stage 1: Transformer-Based Pre-Trained Models (2018-2020)

The advent of transformer-based pre-trained models from 2018 to 2020 marked a transformative
milestone in artificial intelligence (Al), enabling large-scale language processing and laying the ground-
work for autonomous agentic systems. We argue that this stage introduced scalable architectures but
exposed critical limitations in reasoning and intent alignment, driving subsequent advancements. This
subsection examines the transformer architecture, Mixture of Experts (MoE), and pre-trained models
like GPT-2 [3]and GPT-3 [4], detailing their technical components, performance, and constraints, with
implications for applications in resource-constrained environments.

2.1.1. Transformer Architecture Fundamentals

The transformer architecture, introduced by Vaswani et al. [1], marked a turning point in natural
language processing by abandoning recurrence in favor of a purely attention-based mechanism. Its
design follows a modular pipeline, where each stage plays a distinct role in transforming raw text into
contextualized semantic representations.

The pipeline begins with tokenization, a crucial preprocessing step that converts unstructured
text into discrete sub-word units using algorithms such as Byte-Pair Encoding (BPE) [12]. This step
ensures that rare and compound words are broken down into smaller, reusable segments, enabling the
model to generalize across a large vocabulary while maintaining computational tractability.
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Once tokens are produced, they are transformed into contextual embeddings. This involves two
components: (i) token embeddings encode the semantic identity of each sub-word, and (ii) positional
embeddings encode the relative position of each token in the sequence. The combination of these two
embeddings allows the model to capture both the meaning and the order of the input text, overcoming
the permutation invariance of attention mechanisms.

The hallmark of the transformer lies in its multi-head self-attention mechanism. At each layer,
every token computes weighted interactions with all other tokens in the sequence using a triplet of
projections: query, key, and value. This allows the model to attend to relevant context at any distance,
effectively capturing long-range dependencies, syntactic structure, and semantic relationships across
the entire input sequence. Unlike recurrent neural networks (RNNs), which suffer from sequential
bottlenecks and gradient vanishing, transformers allow for full parallelization, dramatically improving
training efficiency and scalability [13].

Following self-attention, representations are passed through a feed-forward network (FEN). This
component acts as a form of feature digestion, projecting vectors into a higher-dimensional space, apply-
ing non-linear transformations (typically ReLU or GELU), and compressing them back. This refines
and filters the features extracted by attention, ensuring that only salient information is propagated to
the next layer.

An overview of the transformer block architecture, highlighting the flow from token embeddings
through multi-head self-attention and feed-forward layers, is illustrated in Figure 1.
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Figure 1. Transformer Model for Language Modeling.
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2.1.2. Mixture of Experts (MoE)

As transformer models grew deeper and wider, their computational demands became a limiting
factor—especially during inference. To overcome this, the Mixture of Experts (MoE) architecture was
introduced as a scalable alternative to dense feed-forward networks [2]. The key idea behind MoE is to
divide the standard feed-forward layer into a collection of specialized sub-networks, known as experts,
where each expert learns distinct patterns from the data.

Figure 2 provides a schematic representation of the MoE architecture, emphasizing the sparse
expert activation controlled by the gating mechanism.
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Figure 2. Mixture-of-Experts (MoE) Architecture.

Instead of activating all experts for every token, MoE employs a learnable gating mechanism
that dynamically selects only a small subset of experts—typically the top-1 or top-2—for each input
token. This mechanism ensures that only the most relevant experts are activated, allowing the model
to preserve high representational capacity while significantly reducing computation. For instance, an
MOoE layer with 8 experts and a top-2 gating strategy activates only 2 experts per token, resulting in a
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compute cost of just 25% compared to activating all experts, yet maintaining a comparable level of
performance.

This sparse activation strategy introduces both efficiency and specialization. Efficiency comes from
not having to evaluate every expert for every token, making it feasible to train and deploy much larger
models. Specialization emerges as different experts focus on different linguistic, semantic, or structural
aspects of the data, allowing the model to better adapt to diverse inputs.

The introduction of MoE layers proved to be a turning point in the architecture of large language
models [14]. It enabled the training of models with billions of parameters while keeping inference
tractable—an essential advancement for pushing the limits of generative Al in real-world, resource-
constrained scenarios.

2.1.3. Pre-Trained Models: GPT-2 and GPT-3

The advent of GPT-2 and GPT-3 marked a major leap in generative language modeling. These
models, built upon the transformer architecture and scaled with billions of parameters—1.5B for GPT-2
and 175B for GPT-3—demonstrated impressive capabilities in generating fluent and contextually
consistent text [3,4]. Trained on massive corpora like WebText and Common Crawl, they employed a
simple yet powerful objective: next-token prediction.

GPT-2 achieved strong performance in zero-shot settings, with remarkable results on benchmarks
like LAMBADA. GPT-3 extended these capabilities further, showcasing few-shot and even one-shot
learning by conditioning on examples directly in the prompt. For instance, it scored 86.4% on TriviaQA
without fine-tuning [4].

Despite these advances, both models remained fundamentally limited. They operated on surface-
level statistical patterns without understanding or reasoning. Their outputs, while coherent, were
not aligned with user goals, lacked memory, and could not adapt dynamically to changing tasks or
environments. These constraints became critical in real-world domains such as robotics or healthcare,
where intent-awareness and external knowledge access are essential.

Nevertheless, GPT-2 and GPT-3 laid the groundwork for scalable generative Al They proved
that large-scale pretraining could generalize across tasks, inspiring the need for better alignment
mechanisms—such as instruction fine-tuning—which we explore in the next section.

2.2. Stage 2: Instruction Fine-Tuning (2021)

The second stage in the evolution of large language models introduced a paradigm shift by
moving from generic pre-trained text generation to models that follow explicit human instructions.
This process, called instruction fine-tuning, aligns model behavior with task-specific goals and user
expectations [5].

At the core, instruction fine-tuning consists of training a base generative model using supervised
examples—pairs of prompts and corresponding high-quality responses. These examples span a wide
range of tasks (e.g., classification, summarization, translation), enabling the model to learn not just
what to predict, but how to structure its outputs based on explicit instructions.

Why it matters: Instruction fine-tuning enhances:

¢ Controllability: The model responds more accurately to varied user intents.

*  Safety and factuality: Trained models are less likely to hallucinate or produce harmful content.

e  Task-specific performance: It enables models to generalize better across downstream tasks
without retraining.

Prompt Engineering: A Complementary Technique

In parallel to instruction fine-tuning, prompt engineering emerged as a practical method to guide
and shape model behavior without modifying weights. It plays a critical role in extracting reliable,
interpretable, and domain-aligned outputs from a single model [15].

Several advanced prompting strategies have been introduced to improve reasoning, reduce
hallucinations, and increase alignment:
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e  Chain-of-Thought (CoT): Introduces intermediate reasoning steps to help the model think
through problems (e.g., math or logic). This makes its outputs more traceable and reduces logical
errors [16].

Example: To solve “What is 15% of 80?”, the model first converts 15% to decimal (0.15), then
multiplies: 0.15 x 80 = 12.

¢  Tree-of-Thought (ToT): Explores multiple reasoning paths like a decision tree, which prevents
premature conclusions and encourages diverse solution paths [17].

Example: For the question “How can a company increase profits?”, the model evaluates different
branches:

- Option 1: Cut operational costs.
-  Option 2: Raise product prices.
- Option 3: Expand to new markets.

¢ ReAct (Reasoning + Acting): Combines reasoning with real-time action (e.g., tool use or fact-
checking), improving factual grounding [18].
Example: Q: “What is the capital of France?”
Thought: I need to verify.
Action: Search “capital of France”.
Observation: Paris.
Final Answer: Paris.

Structuring Outputs: Techniques such as Few-Shot Prompting and Role-Based Prompting provide contex-
tual anchors that help the model produce outputs in a well-defined format and tone. This is especially
important in high-stakes domains such as legal drafting, scientific summarization, or instructional
design, where consistency and precision are critical.

Iterative Techniques: Methods like Self-Consistency [19] and Prompt Chaining reduce generation
variability by enforcing redundancy or decomposing tasks into sequential steps. By validating outputs
across multiple runs or maintaining logical continuity through chained prompts, these techniques
significantly mitigate hallucination risks.

Key Benefit: Prompt engineering serves not only as a performance enhancer but also as a control
mechanism against hallucinations. By explicitly guiding the model’s reasoning process, reinforcing
structural expectations, and encouraging factual alignment with reference data or tools, prompt
engineering transforms LLMs from stochastic generators into more reliable and trustworthy assistants.

In summary, instruction fine-tuning and prompt engineering together mark the transition from passive
language generators to reliable, domain-aware assistants. While instruction tuning aligns the internal
representations with human intent, prompt engineering provides an external layer of guidance to
extract the best reasoning and factual quality from the model at runtime.

2.3. Stage 3: Reinforcement Learning from Human Feedback (RLHF)

Reinforcement Learning from Human Feedback (RLHF) represents a pivotal advancement in
aligning large language models (LLMs) with human values, beyond static instruction tuning. Tradi-
tional supervised fine-tuning treats target outputs as ground truth, regardless of subjective quality. In
contrast, RLHF introduces an adaptive loop that incorporates human evaluations into the optimization
process, allowing models to be trained not only to follow instructions but also to exhibit preferred
behavioral traits such as helpfulness, harmlessness, and honesty [5], [20].

The process begins by generating multiple candidate completions for a given prompt using the
pre-trained model. Human annotators then rank these outputs according to preference. These ranked
examples are transformed into pairwise comparisons and used to train a reward model Ry (x,y) —
typically a neural network that estimates the alignment quality of a given output y conditioned on
input x. The reward model learns to assign higher scores to preferred outputs and lower scores to
undesirable ones, effectively approximating human judgment [6].
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Formally, given a pair of responses (y;, y;) for the same prompt x, where y; is preferred over y;,
the reward model is optimized to satisfy:

R(P(xryi) > R(P(x/y])

using a loss function such as the pairwise logistic loss or Bradley-Terry loss [21]:

W exp(Ry(x,yi))
Lreward = —log <exp(R¢(x,]/i)> + exp(R‘i’(x/yj)))

Once the reward model is trained, it serves as the objective function to guide the language model’s
behavior. A policy 7y (i.e., the language model’s distribution over outputs) is fine-tuned to maximize
the expected reward:

max By, () [Rg (%, )]

To perform this optimization safely and efficiently, RLHF commonly uses the Proximal Policy
Optimization (PPO) algorithm [22], which ensures controlled updates to the policy and mitigates the
risk of reward hacking [22,23]. In practice, PPO is often regularized using a KL penalty to constrain
the policy from deviating too far from the reference model, ensuring safe optimization [5].

The PPO objective balances reward maximization with policy stability:

Lppo = E; [min(rt(G)At,clip(rt(G), 1—¢,1+ e)At)}

where 7¢(8) is the probability ratio between new and old policies and A; is the advantage estimate
based on the reward model.

To illustrate, consider a prompt such as "How can I make money quickly?”. The model might
generate:

1. High-risk investment strategies,
2. Balanced ethical advice,
3. Legitimate freelance opportunities.

Human annotators may rank (2) and (3) higher due to safety and practicality, while downranking
(1). Through training, the model internalizes such preferences and learns to prioritize ethical and safe
responses in future generations — thus aligning with human intent beyond syntactic accuracy.
RLHF has proven instrumental in shaping models like ChatGPT, which exhibit reduced halluci-
nation, enhanced factual grounding, and user-centric behavior. However, limitations persist: RLHF
models are still reactive to prompts, lack autonomous planning capabilities, and remain constrained by
the biases in human feedback [24]. These challenges open new directions for agentic Al systems, which
seek to go beyond response generation and incorporate self-driven reasoning and goal execution.

2.4. Stage 4: Retrieval-Augmented Generation (RAG)

As large language models (LLMs) continued to scale, a key limitation persisted: their inability
to access external knowledge beyond their training data. Despite the benefits of fine-tuning, LLMs
remained static in nature—frozen after training on a fixed corpus. This led to several critical issues,
including hallucinations (i.e., confident but incorrect outputs), outdated knowledge, and the inability
to dynamically update facts. Fine-tuning alone proved insufficient to resolve these shortcomings,
particularly in tasks requiring factual precision or domain-specific updates.

This process is illustrated in Figure 3, where the retriever fetches relevant context from an external
knowledge base and the generator produces grounded responses conditioned on this information.
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Figure 3. Retrieval-Augmented Generation (RAG).

Retrieval-Augmented Generation (RAG), introduced by Lewis et al. [7], addressed this gap
by integrating a retrieval mechanism into the generative pipeline. Rather than relying solely on
memorized knowledge, RAG systems connect LLMs to external, often up-to-date, information sources
(e.g., databases, document stores, or search engines). This hybrid architecture introduces two main
components: a retriever that identifies relevant documents based on a user query, and a generator that
conditions its response on the retrieved content.

The retrieval step typically employs dense or sparse vector search (e.g., FAISS [25] or BM25[26])
to identify semantically relevant passages. These retrieved contexts are then appended to the prompt
or embedded directly into the model’s attention space before generating a response. This process
significantly reduces hallucination by grounding the generation in factual evidence and enables the
model to access knowledge beyond its training cutoff.

From an engineering perspective, RAG offers several advantages over traditional fine-tuning;:

*  Modularity: Knowledge updates can be made by modifying the retrieval corpus without retrain-
ing the model.

e  Efficiency: Retrieval systems are more computationally efficient than repeated fine-tuning for
each domain or update.

e  Transparency: The retrieved documents provide interpretability and support for the generated
response.

RAG has been widely adopted in applications such as document question answering, PDF chat
systems, semantic search, and chatbot assistants in enterprise settings. For instance, in a legal assistant
scenario, RAG enables the model to retrieve case law or policy clauses from a legal database, thereby
avoiding hallucinated legal claims.

Overall, RAG represents a major evolution in LLM architectures. By blending search and genera-
tion, it bridges the gap between static models and dynamic knowledge environments, providing a
more robust and factually grounded Al assistant.

Towards Tool Use and System Integration. The emergence of Retrieval-Augmented Generation (RAG)
laid the foundational architecture for functional modularity in LLMs. By separating static model
parameters from dynamic external knowledge, RAG introduced the idea that models could consult
tools—in this case, search engines or vector databases—at inference time. This was a first step toward
broader tool integration, where LLMs not only retrieve documents but also invoke APIs, perform
calculations, read files, and interact with structured systems [27]. The conceptual shift from “memorize
everything” to “consult when needed” opened the door for more general frameworks involving
external function calls, which we will explore in the next stage.
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2.5. Stage 5: Tools and APIs Integration

As we move beyond pure text generation, the need arises for language models to interact with
external systems, perform actions, and access up-to-date information. This capability builds on earlier
ideas of reasoning-augmented tool use such as in ReAct [18]. This is where Tool and API integration
becomes essential.

While Retrieval-Augmented Generation (RAG) allows LLMs to fetch documents, many user tasks
require executing real-time functions, such as calculations, scheduling, or searching a live database.
To address this need, recent LLMs have been enhanced with the ability to call external tools through
well-defined APIs.

An example of this tool integration workflow is shown in Figure 4, demonstrating how LLMs
bridge text understanding with real-world actions via APIs.

«% Tool Use Workflow Example

O—EO—CE—CEF—

User Query Intent Recognition API Call Processing Response

"Tokyo weather & activity LLM identifies need for weather Structured call with location Interpret data & generate "Sunny 75°F in Tokyo. Visit
suggestions” API & recommen dations paramef ter context-aware suggestions Shinjuku Garden..."

Figure 4. Tool Use Workflow Example.

From Text to Action.

In this stage, the LLM transitions from being just a text generator to becoming a reasoning engine
that can plan, choose tools, call them, and process results. For example, when asked, “What’s the
current exchange rate between USD and EUR?”, the model needs to recognize this task, invoke the
appropriate tool (like getExchangeRate), and return a factually correct response.

Training for Intent Understanding.

A key requirement for enabling tool use is that the LLM must be trained to understand user intent
and to select the right tool based on the request [27]. This is typically done using supervised fine-tuning
datasets that teach the model to generate structured function calls instead of plain answers.

Not all language models support this capability out of the box. For example, OpenAl’s GPT-4
supports native tool calling through structured JSON-based function calls [28], while many other
models do not yet support this feature natively.

How It Works.
Tool integration typically involves the following steps:

1. Tool Registration: Each tool is described with a name, description, and input/output schema.
Function Call Prediction: The LLM is prompted (or fine-tuned) to detect when a tool is needed
and how to call it.

3. Tool Execution: A backend system receives the tool call, executes it, and returns the result.
4. Result Injection: The result is returned to the LLM, which then generates a complete response.

Example.
User query:
"Check the weather in Paris tomorrow and summarize the forecast."

The model may internally generate:
getWeather (city="Paris", date="tomorrow") — "Sunny, 24°C"
Final output:
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"Tomorrow in Paris, the weather will be sunny with a high of 24°C."

The Role of MCP.

Before the emergence of standardized protocols, the integration of external tools with language
models was fragmented and ad hoc. Each system relied on custom interfaces, undocumented behaviors,
and brittle assumptions about how models should call tools—making such integrations difficult to
scale, reproduce, or secure.

To address this gap, Anthropic introduced the Model Context Protocol (MCP) [29], the first
practical attempt to standardize how external tools, APIs, and data sources are exposed to language
models during inference. MCP defines a machine-readable schema that describes each tool’s name,
purpose, input/output formats, and authentication requirements. It acts as a declarative interface layer
through which models can dynamically discover and invoke available tools within a given context.

I often refer to MCP as a kind of REST API for resources in Al—a conceptual framework that
enables Al systems to reason over structured, discoverable, and securely defined resources, much like
how web applications consume RESTful services.

MCP brings three key advantages:

¢  Unification: A common protocol replaces hand-crafted tool-call mechanisms with a structured,
extensible specification.

¢  Context-awareness: Tools are only made available to the model within a relevant context, im-
proving safety and reasoning efficiency.

*  Automation-readiness: Because tools are self-describing, models can auto-generate calls, parse
responses, and chain actions in autonomous workflows.

By acting as a middleware layer between the model’s reasoning engine and the external environ-
ment, MCP is essential to enabling agentic behaviors. It allows LLMs not only to interpret natural
language but also to interact with external systems in a secure, modular, and verifiable manner.

Insights

Stage 5 marks a pivotal shift in the evolution of language models—from passive generators of
text to active participants in real-world tasks. By integrating tools through standardized interfaces
like MCP, LLMs gain the capacity to retrieve information, perform computations, and interact with
dynamic environments. This grounding significantly mitigates hallucinations by anchoring model
outputs in factual and verifiable sources. Moreover, tool use lays the foundation for more advanced
capabilities—setting the stage for models that not only access external tools but also coordinate
reasoning, memory, and planning. This transition leads directly to Stage 6, where LLMs begin to
operate as autonomous agents capable of multi-step task execution, decision-making, and self-driven
prompt generation [30].

2.6. Stage 6: Single LLM Agents

Stage 6 represents a major paradigm shift in the evolution of large language models—from passive
tool users to autonomous agents capable of reasoning, planning, acting, and learning within a single
architectural framework. Unlike prior stages where models merely responded to prompts or executed
tools when explicitly guided, single-agent systems embody a more integrated intelligence loop, where
the LLM itself orchestrates all steps of the cognitive process.

Figure 5 illustrates this autonomous agentic loop, where a single LLM performs reasoning,
planning, tool selection, action execution, and self-reflection in an iterative workflow.

At the core of these agents is the ability to reason through problems using mechanisms like
Chain-of-Thought (CoT) prompting [16], which enables step-by-step logical decomposition of tasks.
This reasoning is not static: the model can observe the outcomes of its previous actions, reflect on errors
or progress, and update its internal state accordingly—a concept sometimes referred to as self-reflection
or inner monologue [31].
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Chain-of-Thought Self-Reflection Autonomous Action

Step-by-step logical decomposition of Assess outcomes and update interal state Execute tools and APIs without explicit
complex tasks dynamically human guidance

Figure 5. Single LLM Agents.

Planning emerges as a crucial capability, where the agent decomposes complex goals into subgoals
and dynamically selects tools or actions to achieve them. Acting, in this context, involves invoking
APIs, retrieving data, or querying databases—all without explicit human instruction at each step.
These capabilities are tightly interwoven in a loop [18]:

*  Reasoning: The agent breaks down the task into logical steps using CoT.

*  Acting: It takes concrete actions (e.g., API calls, tool invocation) based on its reasoning.

*  Observing: It assesses the outcomes of its actions and updates its knowledge or next steps.
*  Planning: Based on observations, it revises its strategy to continue toward the goal.

Systems such as LangChain’s AgentExecutor [9] and Microsoft’s AutoGen [8] demonstrate prac-
tical implementations of this loop, enabling LLMs to autonomously solve multi-step tasks [32] with
minimal human input. While still constrained by the capabilities of single LLMs, this stage establishes
the foundational behavior of autonomous agents—setting the stage for multi-agent collaboration in
Stage 7.

2.7. Stage 7: Agentic AI Workflows

As the capabilities of large language models (LLMs) evolved, a critical limitation emerged: even
the most advanced single-agent systems could not sustain long, complex, or multitask workflows.
Stage 7 addresses this limitation by introducing agentic Al workflows, where multiple specialized LLM
agents collaborate to perform structured, multi-step tasks. This transition parallels the evolution from
monolithic computing to distributed systems—enhancing flexibility, robustness, and scalability.
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Figure 6. Multi-Agent Systems.

Unlike Stage 6, which focuses on self-contained LLMs that observe, reason, and act, Stage 7
introduces coordination and modularity. A task is no longer solved by one model alone, but instead
distributed across a set of interacting agents. These agents operate independently, yet communicate
through well-defined protocols, enabling task decomposition, specialization, and feedback across the
system.

Core Capabilities.

Agentic Al systems bring several novel capabilities that overcome the constraints of monolithic
LLM reasoning:

*  Task Decomposition: A central planner agent breaks down complex problems into subtasks.

*  Specialized Roles: Different agents are assigned domain-specific functions (e.g., coding, data
analysis, summarization).

*  Memory Sharing: Shared context or memory buffers enable continuity across agents.

e  Collaboration Protocols: Orchestrators like LangGraph [9], AutoGen [8], or CrewAI [10] coordinate
agent execution, feedback, and control flow.

Mlustrative Example.
Consider a research assistant workflow:

1. The Planner Agent parses a user request: “Find recent Al papers on agentic systems and summarize
their contributions.”

2. Itdispatches subtasks to a Search Agent, a Summarizer Agent, and a Citation Verifier Agent.

3. Each agent performs its function independently—querying arXiv, writing summaries, or validat-
ing references.

4. The Supervisor Agent integrates results and decides whether to loop, revise, or finalize the
response.

This architecture mimics real-world team dynamics, where division of labor and iterative refine-
ment lead to higher-quality outcomes.

Advantages Over Stage 6.

Agentic Al workflows offer several distinct advantages over single-agent systems introduced
in Stage 6. First, they enable scalability by distributing subtasks across multiple agents, allowing for
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parallel execution and reducing the memory constraints typically faced by a single LLM. Second,
they promote modularity, as each agent is designed with a specific role and can be independently
updated, replaced, or reused in different workflows. This modularity enhances maintainability and
flexibility across applications. Third, these workflows support seamless tool integration, where agents
interact with external resources through standardized interfaces such as the Model Context Protocol
(MCP) [29], enabling dynamic access to APIs and databases. Finally, agentic systems help in reducing
hallucinations by incorporating dedicated agents for fact-checking and external verification, ensuring
that responses are grounded in real-time data and evidence-based reasoning.

Strategic Impact.

Stage 7 marks a fundamental shift from isolated LLM capabilities to the orchestration of au-
tonomous, multi-agent systems. Rather than relying on a single model with linear reasoning capabilities,
agentic workflows distribute cognitive load across a collaborative network of agents—each specializing
in a defined role. This architecture enables structured planning, dynamic task execution, self-correction
through feedback loops, and informed decision-making through tool integration. As a result, we
witness the emergence of LLM ecosystems, where coordination and role-based specialization [33]
unlock a new generation of Al systems capable of handling end-to-end processes with minimal human
oversight. These developments are already redefining applications in scientific discovery, automated
software development, legal analysis, and personalized education.

Outlook.

Despite their transformative potential, current agentic workflows remain limited by static roles,
ephemeral memory, and rigid context windows. Agents today operate in session-bound environments,
lacking long-term identity [34], adaptability, or personal learning trajectories. This limitation opens the
path toward Stage 8, which envisions persistent, memory-augmented agents capable of evolving over
time. Such agents will not only collaborate, but also learn from experience, build domain expertise,
retain user-specific preferences, and update their internal state across sessions. This shift represents
the transition from reactive orchestration to proactive cognition—laying the groundwork for Al agents
that operate as long-term collaborators in dynamic, real-world environments.

3. Agentic Al Programming Frameworks

As language models transition from single-turn responders to autonomous, multi-agent systems,
dedicated frameworks have emerged to facilitate agentic coordination, modularity, and workflow
execution. This section examines three leading agentic Al programming frameworks—LangGraph,
AutoGen, and CrewAl—through the lens of programmability, orchestration control, memory manage-
ment, and use case specialization.

3.1. AutoGen: Conversational Multi-Agent Coordination

AutoGen, developed by Microsoft, provides a conversational orchestration framework where
agents interact through message-passing and role-based dialogue [8]. Each agent operates with config-
urable personas and behaviors, enabling dynamic coordination in workflows such as code generation,
research assistance, or customer support. AutoGen supports human-in-the-loop participation and
modular backend integration with OpenAl, Azure, or other LLMs.

Despite its flexibility, AutoGen lacks native replay or time-travel debugging features, relying
instead on intervention modes (e.g., NEVER, ALWAYS, TERMINATE) to control loop progression. This can
limit convergence in complex or non-deterministic workflows. However, AutoGen excels in scalability
and has strong ecosystem support, making it ideal for production-grade applications that prioritize
responsiveness and extensibility.
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3.2. LangGraph: Graph-Based Workflow Orchestration

LangGraph builds on the LangChain ecosystem by offering a graph-based orchestration model for
multi-agent workflows [9]. Agents are represented as nodes in a directed graph, with transitions gov-
erned by conditions, branching logic, and memory state. This structure enables expressive modeling
of sequential, parallel, and cyclic workflows, making LangGraph particularly suited for long-running
or fault-tolerant applications.

LangGraph’s strength lies in its fine-grained control, including replayability, state recovery, and
runtime introspection. Developers can visualize task trajectories and debug complex flows using
time-travel mechanisms. However, this expressiveness introduces a steeper learning curve, requiring a
deeper understanding of state machines and workflow engineering. LangGraph is best positioned for
applications demanding precise orchestration, such as research pipelines, legal assistants, or multi-turn
reasoning systems.

3.3. CrewAl: Role-Based Agent Orchestration

CrewAl adopts a lightweight, role-based architecture designed around the concept of collabo-
rative “crews” of agents [10]. Each agent is assigned a specific role (e.g., planner, coder, reviewer),
with coordination managed via structured task plans and YAML configurations. CrewAl supports
sequential and parallel execution, memory sharing, and replay of recent tasks.

The framework prioritizes ease of use and rapid prototyping, offering low-code interfaces suitable
for educational, startup, or experimental settings. While its replay mechanism is limited to the most
recent task execution and lacks stateful time-travel, its simplicity and developer-friendly API make it
ideal for small-to-medium-scale agent workflows. CrewAl is rapidly growing in adoption, particularly
in community-driven scenarios requiring fast iteration and role delegation.

3.4. Comparative Analysis of Frameworks

Table 1 presents a comparative overview of the three frameworks across key dimensions relevant
to agentic Al programming.

Table 1. Comparison of Agentic Al Programming Frameworks.

Feature LangGraph AutoGen CrewAl
Coordination Model Graph-Based Conversational Role-Based
Replay / Debugging Time Travel Human Intervention Recent Task Replay
Ease of Use Low (Technical) Moderate High (User-Friendly)
o . . Suitable for
Scalability Enterprise-Ready Enterprise-Ready Lightweight Use
. . LLM + Tools (e.g., YAML + Predefined
Integration LangChain Ecosystem Browsing, Code) Tools
Best Fit Research, Complex Task Automation, Prototyping, Team
Workflows Dialogues Simulations
Strategic Insight.

LangGraph offers the most granular control and advanced recovery capabilities, making it ideal
for deterministic and stateful multi-agent workflows. AutoGen balances modularity and scalability
with flexible agent communication but requires manual oversight in complex paths. CrewAl favors
accessibility and speed, serving as an effective platform for structured experimentation and educational
use.

Outlook.

Agentic Al programming is transitioning toward modular, composable ecosystems where LLM
agents communicate, coordinate, and execute tasks with minimal supervision. Frameworks like
LangGraph, AutoGen, and CrewAl serve distinct roles within this ecosystem—supporting the spec-
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trum from rigorous, production-level applications to lightweight, collaborative prototyping. The next
frontier involves persistent agent memory, adaptive behavior, and self-improving orchestration logic.

4. Strategic Discussion and Future Outlook

The rise of agentic Al marks not just a technical evolution, but a strategic inflection point in Al
deployment. These systems, composed of LLMs augmented with memory, planning modules, and
tool orchestration, enable autonomous execution of complex workflows across domains. From code
generation pipelines to scientific hypothesis testing, agentic Al systems offer 24/7 task fulfillment,
elastic scaling, and process acceleration—capabilities that challenge traditional labor and operational
paradigms. However, this also shifts accountability toward continuous oversight, demanding new
models of human-Al collaboration and auditability [35].

Despite their promise, deployment at scale faces several friction points. Technically, integrating
agentic workflows with legacy systems—many of which lack APIs or structured schemas—requires
interface layers and robust tool abstraction protocols such as the Model Context Protocol (MCP).
Moreover, agent-based reasoning, while powerful, increases the system’s internal complexity and
interpretability challenges. Decision trajectories become less transparent, especially in long-horizon
planning where multiple agents co-evolve strategies. Ensuring reliability, reversibility, and control
over emergent behaviors remains an open problem.

For the Global South, agentic Al holds unique potential to bypass infrastructure gaps. Lightweight
agentic agents deployed on edge devices or integrated with SMS gateways can deliver personalized
health triage, remote tutoring, or agricultural monitoring with minimal connectivity. Case studies
from rural Mauritania show telehealth agents coordinating local health resources using a multi-agent
plan-execute framework, while Sub-Saharan pilots explore curriculum-aligned tutoring agents running
on open hardware.

Scalable adoption calls for phased implementation: starting with hybrid setups where humans
validate agentic output, followed by incremental automation once reliability thresholds are met.
Open-source toolkits, transparent logging, and community governance are essential for trust-building.
Regulatory bodies must define audit requirements and sandbox environments before mass deployment.
Ultimately, agentic Al offers a blueprint for inclusive digital transformation—but only if coupled with
thoughtful design, equitable access, and continuous alignment with human values.

5. Conclusions

The transition from static language models to agentic Al systems reflects a deeper shift in our
understanding of intelligence—not as isolated prediction, but as interactive, goal-directed reasoning.
Each stage in this evolution addressed specific limitations: lack of alignment, hallucinations, or inability
to act autonomously. Yet as capabilities increase, so do the risks—ranging from emergent behavior to
ethical opacity.

Our review shows that while frameworks like AutoGen, LangGraph, and the Model Context
Protocol (MCP) offer promising abstractions for modularity and tool integration, they are only as
reliable as their design principles—particularly with respect to interpretability, security, and coordina-
tion. Single-agent systems offer tractability, but their limitations in scalability and specialization make
the multi-agent paradigm not just useful, but necessary. However, agentic workflows introduce new
layers of complexity that must be critically examined: How do we measure the correctness of an agent
team? What governance mechanisms ensure safe delegation?

Agentic Al may be a technical milestone, but it is also a socio-technical one. Its success hinges not
only on models but on ecosystems—legal, infrastructural, and human. Future work must bridge these
domains, prioritizing adaptive memory, transparent decision pipelines, and inclusive deployment
strategies, especially in under-resourced contexts. The path forward is not merely about smarter agents,
but about more accountable systems.
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