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Abstract: Rapid climate change requires more powerful and precise modeling methods to forecast future
climate variability. The GSTARIMA Model is efficient, combining space-time analysis with the Autoregressive
Moving Average (ARIMA) Model. The integration of heteroscedasticity error and the Kriging method can
strengthen the Model's ability to handle the problem of non-constant error variance in the GSTARIMA Model
and forecast at unobserved locations of climate observations. This paper's Systematics Literature Review (SLR)
is presented comprehensively with the principal aim of developing a thorough understanding of applying the
GSTARIMA Model with heteroskedasticity error and the Kriging Method in climate forecasting following the
Data Analytics Lifecycle methodology. The Systematic Literature Review (SLR) process consists of three main
stages. We sourced the articles from databases such as Scopus, Dimensions, and EBSCO-Host The subsequent
stage involved conducting a comprehensive literature review using the PRISMA method to ensure rigor and
depth. Additionally, we performed bibliometric analysis to enhance rigor. Lastly, we conducted a gap analysis
session to scrutinize existing research on the GSTARIMA Model and identify new opportunities. This literature
review reveals that integrating GSTARIMA Model with heteroscedasticity errors and the Kriging method is
suitable for climate forecasting. This research inspires researchers to contribute to the improvement and
refinement of the Model, making it a more potent and valuable tool in climate forecasting.
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1. Introduction

Climate is a statistical description of the average variability of the relevant quantities over
months to years, referred to as average weather [1]. In addition, it includes several interrelated
elements, such as temperature, rainfall, humidity, atmospheric conditions, and wind patterns [2].
Climate change is a pressing global issue of paramount importance that demands comprehensive
research. The Intergovernmental Panel on Climate Change (IPCC) is an organization founded by
scientists worldwide to research the concept. The sixth assessment report of the IPCC explains that
climate change affects ecosystem conditions, human activities, the global water cycle, infrastructure,
health, and others [3].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The handling of climate change is in the world's spotlight, which is included in the pillars of
SDGs [4,5]. Meanwhile, climate management is the 13t goal in the SDGs, with the mission statement
"Take urgent action to combat climate change and its impacts by regulating emissions and promoting
developments in renewable energy” [6]. One of the climate changes very important to study is rainfall
patterns [7,8]. Based on NASA's Global Precipitation Measurement, the Indonesian region has high
rainfall around 1000-4000 mm per year. This is because Indonesia is located on the equator, and it is
vulnerable to natural disasters such as floods and landslides. Based on data from the West Java
Regional Disaster Management Agency (known as BPBD), which can be accessed on the website
https://opendata.jabarprov.go.id/id/ (accessed on 01/04/2023), there were 1954 and 5,662 flood and
landslide events in 2012-2021. The number of flood and landslide events for each district and city in
West Java is presented in Figure 1.a and 1.b.
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Figure 1. Natural disasters caused by rainfall in West Java (a) Flood Disaster; (b) Landslide.

Natural disasters due to extreme rainfall have a significant impact and cause damage to
community settlements. Based on data from the West Java BPBD report, settlement damage totaled
943,160 units from 2012-2021. Damage is categorized into destroyed, heavily damaged, slightly
damaged, moderately damaged, threatened, and submerged/buried, as presented in Table 1.

Table 1. Damage Due to Floods and Landslides in West Java in 2012-2021.

Damage Category Number of units
Destroyed 607

Heavily Damaged 13.776
Light Damage 50.699
Moderate Damage 22.167
Threatened 27.459
Submerged/Buried 828.452
Total 943.160

Climate change is very detrimental regarding materials, infrastructure, and people's lives.
Therefore, it is essential to forecast future climate conditions to take preventive, mitigation, and
adaptation actions.

Climate forecasting can also be conducted using the Spatio-Temporal Model. The Spatio-
Temporal Model combines location and time to model a phenomenon to understand the relationship
between changes in spatial and time. The Generalized Space-Time Autoregressive (GSTAR) Model
assumes heterogeneous characteristics between locations and stationary data. Furthermore, it has
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different autoregressive and Space-Time parameters for each location. The Model was studied using
stationary data by Borovkova et al.[9]. Giacinto developed the Model into the Generalized Space-
Time ARMA (GSTARMA) Model [10]. In addition, the GSTARMA Model adds the effect of an error
element with a Moving Average (MA) and is applied to stationary data. The Model Estimation uses
the Maximum Likelihood Estimation (MLE) method and is applied to forecast the unemployment
rate in each region of Italy based on historical data. The Model of non-stationary data is called the
GSTARIMA Model, developed by Min et al., 2010 [11].

The GSTAR Model has a non-constant error variance (heteroscedastic error) for climate data.
The GSTAR-ARCH Model is an extension of the Spatio-Temporal Model, which considers the
heteroscedasticity of variance that depends on previous information in an autoregressive manner by
Nainggolan et al [12]. The Model is applied to stationary data as an extension of the GSTAR-ARCH
model for non-stationary data by Bonar et al. [13]. The GSTARI-ARCH model also overcomes the
non-constant error variance. Bonar et al. used the concept to model and forecast the Consumer Price
Index (CPI) in North Sumatra. In forecasting Spatio Temporal Model, the respon variable is
influenced by exogenous variables. For example, in climate data, rainfall is affected by humidity and
temperature. The Spatio-Temporal model with the addition of exogenous variables is known as the
GSTARI-X Model by Elfiyan et al. [14]. Ditago et al. (2016) used the GSTARX-GLS model, with the
exogenous variable being calendar variation[15]. Monika et al. (2022) developed the GSTARI-X-
ARCH model to forecast rainfall with exogenous variables in humidity [16].

In previous research, the Kriging Method was used to predict phenomena at unobserved
locations. Kriging method is used for interpolation and forecasting Temperature in Mosul and
Baghdad City [17]. Kriging method, land-use regression (LUR), and LightGBM (light gradient
boosting machine) methods were combined to predict PM2.5 concentrations [18]. In Spatio-Temporal
modeling, the GSTAR Model is integrated with the Kriging method to forecast rainfall at unobserved
locations in West Java [19].

This study aims to summarize previous research on Spatio Temporal forecasting models with
heteroskedastic errors and the Kriging method applied to climate data. This research attempts to
cover several areas, such as Spatio Temporal models for stationary and non-stationary data, methods
for parameter estimation in the models, forecasting at unsampled locations, and the potential to
integrate Spatio Temporal models with Heteroskedastic errors and Kriging for climate forecasting.
Ultimately, this review contributes to a broader understanding of integrated Spatio Temporal Models
with Heteroskedastic errors and the Kriging Method for climate and highlights avenues for further
research and innovation in this critical area. To facilitate the analysis process, we formulate the
following research questions (RQs):

RQ1: How to integrate GSTARIMA model with heteroskedastic errors using Kriging method?
RQ2:How to forecast climate phenomena using the integration of GSTARIMA and Kriging models
through a data analysis life cycle approach?

RQs were examined and explored by reviewing previous results carried out by searching
literature on databases. The results were filtered and selected using the Preferred Reporting Items for
Systematic Review and Meta-Analyses (PRISMA) method. Furthermore, relevant articles are
presented in a state of the art to obtain research gaps. A bibliometric method was also used to show
the linkage of keywords for each article. The review stage was performed to analyze search results
and discuss new research. Potential new research was provided to be studied and developed on the
GSTARIMA Model and its application.

2. Materials and Methods
2.1. Theoritical Background

2.1.1. The Generalized Space Time Autoregressive Integrated Moving Average (GSTARIMA)Model

In 1980, Pfeifer and Deutch introduced the Space-Time Autoregressive (STAR) Model, assuming
each location has the same characteristics [20,21]. In 2002, Ruchjana developed the STAR model into
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the Generalized Space-Time Autoregressive (GSTAR) model. This is because the assumptions in the
STAR model do not match the reality in the field, where there is a diversity of characteristics at each
location. The GSTAR model introduced by Ruchjana assumes that the characteristics of each location
are heterogeneous. The GSTAR(p,4;) model has a time order of p and a spatial order of 4
expressed in matrix form through equation (1)[9]

P Ak
20 = ) ) [@uWO2(t — )] + () M

k=11=0
where,
Z(t) : the value of the observation at time t,
Z(t—1) :thevalue of the observation at time t — 1,

¢ : a parameter that indicates the influence of the value of Z(t — 1) on the value of Z(t),

e(t) :the value of error.

The GSTARMA model expands the GSTAR model by adding MA error elements. The
GSTARMA model is applied to stationary data [10]. The GSTARMA model developed on
nonstationary data is called the GSTARIMA model. Min et al. (2010) first introduced the GSTARIMA
model with application to urban traffic network modeling and short-term traffic flow forecasting.
The GSTARIMA model (py,,d, g, )with d being the differencing order is expressed in Equation (2)

(11]
P A q vk
y(® = ) D [@aWOyE -] = ) > [0,WOe(t — )] +e(t), 2
k=11=0 k=11=0
where,
vy =z@)—zt-1,yt-1D=z(t-1)—-z(t—-2),...y(t—k)=z(t—-k)—z(t—k—-1) (3)
z(t) : a vector of variables of size (N X 1) at time ¢,
z(t —k)  :vector of variables of size (N X 1) attime (t — k),
Ak : spatial order in the kt autoregressive,
Vg : spatial order of the kth moving average,
Lo : autoregressive and space time parameters at time order k and spatial order [ of size
(N x N) in the form of diagonal matrix (CD,S), CD,EIZ), CD,S), . (plgv) ,
0y : MA parameters at time order k and spatial order | of size (N x N) in the form of
diagonal matrix (G),(Cll), G(kzl), @,(631), . G(kly) )
w® : weight matrix of size (N x N) atspatial order [,! = 0,1,2, ..., A containing w;; =0 and
DizjWij =1,
e(t) : error vector of size (N X 1) at time t, assuming e(t)“4N(0, o2I).

2.1.2. Autoregressive Conditional Heteroscedasticity (ARCH) Model

Although the GSTARIMA model assumes constant error variance, applying climate data often
shows non-constant error variance. The GSTARIMA model is integrated with the Autoregressive
Conditional Heteroscedasticity (ARCH) Model to overcome this. This time series model detects
variance heteroscedasticity using historical data [22]. Describing the ARCH(p) model, researchers use
the following expression [22]

P
hy = 0f = ag + Z ae;_;;i=123,..,p, 4)
i=1
In Equation (4), the variables represented include:
h; : the conditional variance at time t,
[0} : the intercept or constant error,

A1, Ay e, Ayl ARCH model parameters,
a, >0 dan a; = 0.

2.1.3. Kriging Method
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The Kriging method is a geostatistical interpolation technique used to predict variable values at
unobserved locations based on variable values observed at other locations. This method assumes that
variable values have a spatial structure related to the distance and direction between observation
locations. In the calculation of the Kriging Method, a Semivariogram is required. An experimental
semivariogram is calculated based on measurement data collected from the field or observations at a
particular location. The formula for calculating the experimental semivariogram is as follows [23]:

N(h)
B = —— D 126+ ) — 2G)P 5)
2N(h) L ' '
where,
P(h) : semivariogram value at distance h,
Z(x;) : observation value at location x;
Z(x; + h) :observation value at location x; + h,
N(h) : many pairs of data that have distance h,
h : distance between 2 locations.

Theoretical semivariograms can be divided into Spherical, Gaussian, and Exponential Models.
The Spherical Model is a model that assumes that spatial dependence has a certain maximum distance
or radius. This Model is used if the spatial dependence decreases with distance and reaches a
threshold value at a specific radius, after which the semivariogram value becomes constant. The
semivariogram function of the Spherical Model can be expressed as [23]:

3
W(h) = C[(%)_(%) ]'hsa ©6)

c ,h>a
The Exponential Model is a model that assumes that spatial dependence decreases exponentially with
distance between locations. The semivariogram function of the Exponential Model can be expressed
as [23]:

—h

OB {C [1-ew (T n=e )
c ,h>a

The Gaussian Model is a model that assumes that spatial dependence has a symmetric pattern and

decreases exponentially with distance between locations. The semivariogram function of the

Gaussian Model can be expressed as [23]:

2
Wh) = c[l—exp(;h)],hSa ®)
c ,h>a
where,
h : distance between sample locations,
c : sill value,
a  :range.

The semivariogram also provides the weights used in interpolation. The Kriging method aims
to determine the value of the Kriging weight 6;, which minimizes the estimator's variance so that a
BLUE (Best Linear Unbiased Estimator) estimator is obtained. The Kriging estimator Z(x,) can be
written as follows [23]:

n
2x0) = §0) = ) 6il20x) = £ ®)
i=1
where,
Z(x) :Kriging estimator at unobserved location x,
X; : the i data location adjacent to the unsampled location x,
&(xp) : expectation value of Z(x),
E(x;) : expectation value of Z(x;)
n : many sample data used for estimation,

0; : weight value at location i.
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2.1.4. Data Analytics Life Cycle

Climate data has the Big Data criteria of volume, variety, and velocity. Big Data could be more
efficient when analyzed using traditional methods. The Data Analytics Life Cycle methodology is
specifically designed to handle Big Data problems and data science projects. The Data Analytics Life
Cycle consists of six phases, including [24]:

e Discovery -> At this stage, researchers must study, search and investigate facts, identify
problems, and develop context and understanding of the data sources needed to support
research.

e  Data Preparation -> Next, data is cleaned to identify missing values or noisy data. The results of
data cleaning are transformed by aggregating daily data into monthly or according to the needs
of the analysis. In this case, pre-processing data is obtained and ready for processing and
analysis.

e Model Planning -> At this stage, the model planning that will be used for analysis is carried out.

e  Model Building -> Researchers divide the results of data preparation into in-sample data
(training) and out-sample data (testing) to do forecasting.

¢  Communicate Results -> Researchers present forecasting results using visualizations in the form
of time series plots, choropleth maps, diagrams, and others.

e  Operationalize -> The final stage is operationalized, and researchers provide final reports,
recommendations, scripts, and technical documents. In addition, researchers can also apply the
Model to the appropriate environment.

2.2. Collected Article

The PRISMA method is a widely used guide and methodological framework for conducting and
presenting systematic reviews and meta-analyses [25]. The method provides the results of a
systematic review, including completeness and clarity in reporting. The PRISMA method is
supported by flowcharts in selecting articles [26,27].

The first stage in the PRISMA method is a literature search. Meanwhile, literature search through
keywords was carried out in this research in four databases, namely Google Scholar, Dimensions,
Science Direct, and Scopus. The keywords entered in the database consist of four codes connected
with "OR" and "AND." The criteria selected in the collection of articles include:

1. The publication type selected is article research and conference paper.
2. Written in English

3. The range of article publications is 2000-2023.

4.  The title, abstract, or keywords contain the words presented in Table 2.

Table 2. Keywords used for literature search.

Codes Keywords
A ("Spatio Temporal" OR "GSTAR" OR "GSTARIMA" OR "Generalized Space Time
Autoregressive")
B (“Heteroscedasticity” OR “ARCH” OR “GARCH” OR “Seemingly Unrelated
Regression” OR “SUR” OR “Kriging Method”)
C (“Data Analytics Life Cycle” OR “Data Mining” OR “Big Data Approach” OR
“Climate Change” OR “Extreme Rainfall” OR “Weather” OR “Temperature”)
D A AND B AND C

The keywords provided in Table 2 are input into the database, followed by pressing the enter
key to initiate a search. After displaying the search results, criteria 1-3, which pertain to the
publication type, language selection, and publication year range, are configured to filter articles
under the specified parameters. Subsequently, eligible articles are downloaded in .bib, .csv, and .ris
formats. The number of article findings in each database is recorded for utilization as reference
material in the subsequent stage.


https://doi.org/10.20944/preprints202308.1651.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 August 2023 doi:10.20944/preprints202308.1651.v1

The second stage involves the selection of articles, which is carried out through a manual process
to ensure relevance. Specifically, the criteria for selecting relevant articles are those that explore the
GSTAR model and its application. The articles included at this stage comprise both the ones obtained
from the initial database search and the ones found manually through citation searching. The stages
in article selection are explained as follows [28-30]:

(a) Duplicate selection aims to remove duplicate articles found. Duplication can be found in
databases or literature sources with almost the same or similar structure. Duplication selection
stage can be conducted with special software such as Jabref and Mendeley reference managers
to compare titles, abstracts, and content.

(b) The relevance of the title and abstract is selected by assessing and ensuring that it matches the
topic criteria. Titles and abstracts of selected articles are read in their entirety and irrelevant ones
are excluded at this stage.

(c) The full selection aims to determine whether the discussion and content in the article are relevant
to the topic. All articles are accessed and read manually to ensure their appropriateness. Articles
that fail to meet the established criteria or do not pertain to the subject matter under investigation
are hereby excluded from the subsequent phases of the process.

The final stage in the PRISMA method is the articles review, explaining, and answering the RQs
presented in Section 1.

3. Results

3.1. Results of Literature Search and Dataset Analysis

The results of the literature search are presented in Table 3, where code A produces 213,557
articles, code B produces 1,121,262, code C produces 7,525,693, and code D is searched by combining
code A, B, and C the "AND" connector to produce 286 articles.

Table 3. Keyword search results in the database.

Codes Scopus Dimensions EBSCO-Host Total
A 101,483 69,050 34,024 213,557
B 339,122 515,898 266,242 1,121,262
C 1,381,753 4,046,170 2,097,770 7,525,693
D 77 71 138 286

The manual selection stage of the article is carried out as follows:

(a) At the initial stage, duplicate selection is conducted to identify 161 articles as duplicates and
removed from the study.

(b) The selection stage is based on the relevance of the title and abstract, where 35 articles are selected
as relevant and considered for further research.

(c) Inthe full paper accessibility selection stage, a total of 60 articles can be accessed and downloaded
for further selection.

(d) In the full paper relevance selection stage, the entire contents of the 18 articles are read and
analyzed to determine their relevance. Relevant papers were also added from another method
with citation search, resulting in 32 relevant articles. So that a total of 48 review articles are
obtained that are relevant to the topic discussed.

These stages are presented visually in the PRISMA diagram in Figure 2 with three stages, namely
identification, screening, and inclusion. Identification includes the duplication selection stage in stage
(a). Screening consists of stages (b) and (c) for selecting title-abstract and full paper. Finally, inclusion
explains the number of research articles relevant to the topic.
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Figure 2. PRISMA Diagram for Relevant Article Selection.

3.2 Bibliometric Analysis

The next stage describes the selected articles in bibliometric mapping used as a visualization
method to analyze the pattern of relationships between scientific articles [31-33]. This paper uses
bibliometric maps to visualize scientific networks involving keywords in 48 articles. The visualization
results are in the form of circles and clusters distinguished by different colors. The circles on the
bibliometric map represent the number of related publications by keyword. A circle with a large size
indicates several keywords with similar relationships between scientific articles. Clusters in a
bibliometric map show connected circles and represent scientific articles with similarities in context,
such as topics [34]. Furthermore, bibliometric mapping keyword analysis is obtained using
VOSviewer to understand the structure, patterns, and relationships between scientific articles [35].
VOSviewer analyzes keywords that frequently appear in articles and identifies the relevant ones. The
results of the bibliometric mapping for keyword analysis with VOSviewer are presented in Figure 3.
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Figure 3. Bibliometric mapping of keywords contained in 48 relevant articles.

Figure 3 was created using the VosViewer software, and a total of 48 relevant articles are saved
in .ris format. Article files are inputted into VOSviewer, which is a mapping selected for co-
occurrence words. The bibliometric mapping in Figure 3 shows that the co-occurrence of keywords
consists of five clusters. These clusters indicate the link between "Spatio-Temporal Models" and
"Climate." Forecasting climate is done chiefly with Spatio-Temporal Models and Time Series Models.
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In Figure 3, it can be seen that there are clusters that show climate variables that are often used by
researchers, such as rainfall, Pacific Decadal Oscillation (PDO), atmospheric pressure, etc.

As revealed by an analysis of 48 relevant articles, the state-of-the-art in this field highlights
significant progress in several key topics shown in Table 4. First, "GSTARIMA models" are emerging
as a prominent approach to analyzing Spatio-Temporal data. This cutting-edge model combines the
capabilities of time series analysis and spatial relationships, enabling a comprehensive understanding
of complex interactions. Secondly, the exploration of "Heteroscedastic Error" in this study is in terms
of overcoming the non-constant variance of errors in the GSTARIMA Model. By addressing these
heteroscedastic errors, researchers aim to improve the accuracy and reliability of their forecasts,
ultimately leading to more robust modeling results. In addition, "Kriging," a geostatistical
interpolation technique, plays an essential role in spatial analysis. This method incorporates the
estimation of unknown values based on observed values in the vicinity, incorporating spatial
correlation. Collectively, these advances show the evolving research landscape in spatial-temporal
analysis, featuring the integration of cutting-edge methodologies such as the GSTARIMA Model, the
consideration of heteroscedastic errors, and the application of techniques such as Kriging to unravel
complex spatial patterns and relationships.
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Table 4. State-of-the-art from 48 relevant articles.
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Forecasting the
. The number number of foreign RMSE Jakarta=
Prastuti et al. . . . . . :
[41] GSTARX of foreign tourist arrivals to tourist arrivals to - 21039, Bali= 32687, - -
(2021) . o
Indonesia Indonesia during Surabaya=2228
COVID-19
Alawiyah et al. [42] GSTARI The dall}f I')osmve-: covid-19 ForeFastlng Covid-19 ) ) ) )
(2021) positive patients in West Java
The daily data of the cumulative
Iri L. F i id-1
Hanyetal. a0 GSTAR number of COVID-19 orecasting Covid-19 MAPE-143  RMSE=0.005 - -
(2021) . . in East Java
cases(www.covid19.go.id)
Yundari et al. [44] GSTAR., Kernel The tea production data Forecastm.g tea . RMSE= 10-20 ) )
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GSTARX- GSTARX-
Kriging=6.18%  Kriging=0.0423

CPI Prediction

Dalian=38.29%
Shenyang=7.71%
Changchun=17.49%

Prediction of PMio
pollutant in surabaya

Jietal. (2020) [55] GSTARI The montly CPI data
Sjahid et al. (56] GSTARMA The concentration of PMio
(2020) pollutants
Helleland et (57] ST-GARCH Dataset of sea surfa.ce
al. (2019) temperature anomalies

Prec. MPI=25.7 and

0.3
Prec.HadGEM2=30.3
Venetsanou et Precipitation and temperature Prediction and 304.8
al. (2018) [58]  ST-Kriging dataset precipitation and - - Temp. MPI=8.9 and -
tem-perature 2.5
Temp.
HadGEM2=6.6 and
14.7
Jakarta=40.41
Novianto et al. Tourist Prediction tourist Denpasar=44.89
59 GSTARIX - - -
(2018) (591 arrival data in Indonesia arrival Surabaya=2.761
Surakarta=398
Akbar et al. (60] GSTARX-SUR Rupiah outflow d.ata inJava, Forecast Outflow Of MAPE<10% ) ) )
(2018) Indonesia Currencies
Jakarta=17406,22
Jamilatuzzahro [61] GSTAR The Weekly Pr.ogress of Retail Predict%on Chili } Seamn:ir;ggzllf;%(li)z ) )
etal. (2018) Prices Prices DI
Yogyakarta=15103,99
1
Predicting 11:;0;1760/
Abdullah et al. GSTAR- _ Rainfall Data at Model
.. Rainfall Data Unobserved - - -
(2018) Kriging R . 11=12.51%
Locations in West
Java Model
v 111=7.72%
Bonar et al. CPI data in North Sumaterat, .
(2017) [13] GSTARI-ARCH Indonesia Forecasting CPI - - - -
Parakan Salah=1.16
: . Sinumbra=1.70
Yundari et al. 62] GSTAR The . Forecastm.g tea } Rancabali=5.15 ) )
(2017) monthly tea production production
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Panyairan=7.28
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Nainggolan et
al. (2017) [63] GSTAR-ARCH - - - - - - - - - -
Rain Fall
TARIMA-
Nisak (2016) [64] G5 SUR Data in Malang Southern Region Forecasting rainfall v - v - - Tangkilsari=5.263 - R2=0.6481
Districts
Setiawan et al. . . Forecasting tourist
[65] S-GSTAR-SUR The number of tourist arrivals . - - v - - GSTAR-SUR=13,60 - -
(2016) arrivals
Ditago et al Adding a predictor
5 " [15] GSTARX-GLS The impact of Ramadhan effect of calendar variation - v - - - NRMSE closed to 0 - -
(2016) model
Suhartono et GSTARX-OLS=0.801
- i ~ ~ B, v - . - .
al. (2016) [66] GSTARX-GLS Inflation Data Inflation forecasting GSTARX-GLS=0.826
Mukhaiyar [67] GSTAR- The monthly tea production Forecastm.g tea - - - v - - - SSR
(2015) Kriging production
Se“a(;galr;)e tal- 168] GSTARIMA Inflation Data Inflation forecasting v - - - - RMSE=0.9199 - -
Variability of Soil
. . . . Organic Matter
Shu-qin et al. . Climate and Socio-economic .
- - - v - - - -
(2014) [69] GWR, Kriging variable 'mﬂuenced by-
climate and socio-
economic
Nainggolan et . .
- - - - v - - - - -
al. (2010) [12] GSTAR-ARCH Simulation data
Minetal. 0 GoTARIMA The traffic flow data Short-term traffic v - - - - - MSE=7246 -
(2010) flow forecasting
Regional
Giacinto (2006) [10] GSTARMA Unemployment data Unemployment v - - - - - - -
Analysis in Italia
Borovkova et . . Forecasting oil .
al. (2002) [9] GSTAR Montly oil production production - - - - - - - R2=0.9227

Note: LUR: land-use regression, LightGBM: light gradient boosting machine, ML: Machine Learning, NN: Neural Network, GWR: Geographically Weighted Regression.
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Table 4 provides a comprehensive overview of the research developments related to the
GSTARIMA/Spatio-Temporal model. Several studies have been conducted in Spatio-Temporal
modeling while considering heteroscedastic errors. Kumar et al. (2022) used a STARMA-GARCH
model to forecast monthly temperatures, resulting in minimal Mean Absolute Percentage Error
(MAPE) values in their predictions [36]. Similarly, Monika et al. (2022) used the GSTARI-X-ARCH
model to forecast rainfall influenced by humidity, showing favorable forecast accuracy [16]. In a
different context, Akbar et al. (2020) introduced the GSTARMAX model to forecast air pollutants in
Surabaya, achieving low Root Mean Square Error (RMSE) values [51]. Furthermore, the integration
of Spatio-Temporal and Kriging models is seen in several articles. Dhaher et al. (2023) applied the
Spatio-Temporal-Kriging model for temperature interpolation and prediction in Baghdad and Mosul
cities [17]. Dai et al. (2022) used four methods, including LUR, LightGBM, ML, and Kriging, to
forecast PM2.5 concentrations, which resulted in satisfactory R accuracy [18]. Pramoedyo et al. (2020)
adopted the GSTARX-SUR-Kriging model to forecast cocoa plant diseases affected by rainfall with
reasonably accurate forecast results [54]. However, Abdullah et al. (2018) used the GSTAR-Kriging
model to forecast rainfall in unobserved locations and produced fairly reliable prediction results [19].
Shu-gin et al. (2014) explored two different approaches, namely GWR and Kriging methods [69].

4. Discussion

4.1. GAP Analysis

Conducting a GAP analysis based on relevant articles illustrates the evolving research landscape
in Spatio-Temporal modeling, heteroscedastic errors, and Kriging methodologies for forecasting
climate and environmental data. These articles collectively represent vital insights and areas that
need further exploration. The research that has been evaluated demonstrates a high propensity to use
GSTARIMA models' capacity to forecast climate-related variables like temperature, precipitation,
and air pollutants [19,37,40,49-51,64]. A common thread is the evaluation of model performance
metrics, especially MAPE, RMSE, R?, and MSE. However, the gap lies in comprehensively exploring
complex parameter configurations in the GSTARIMA framework, especially in dynamic Spatio-
Temporal systems. In addition, progress still needs to be made in validating these models using more
sophisticated techniques, especially in handling larger and higher-dimensional data sets.

It is clear that heteroskedastic errors are critical to climate prediction, and special attention has
been paid to using ARCH and GARCH models to address this issue [16,36,57]. Researchers
concentrate on achieving higher prediction accuracy, indicated by lower RMSE and MSE values.
However, there are differences in research in dealing with complex and non-linear forms of
heteroscedasticity, which can arise from complex climate datasets. Identifying more flexible methods
to handle this complexity could be an interesting subject of investigation. By incorporating Kriging
into a spatiotemporal model, discernible trends can be identified, especially in interpolation and
forecasting climate variables [17-19,47,58]. This study relies heavily on RMSE and MAE as tools to
assess prediction accuracy. However, areas still need to be addressed in creating an adaptive Kriging
method that can capture the temporal and spatial changes present in complex climate data. Due to
these limitations, there is a possibility for more complex techniques that are adapted to changing
trends and non-stationary data.

4.2. The Framework for model integration for climate forecast

4.2.1. The Integration of GSTARIMA Model with Heteroskedastic error and Kriging Method for
forecasting

After the review of previous researchers and gap analysis, a conceptual integration model of
GSTARIMA with Heteroskedastic error and the Kriging method is made to answer RQI1. The
GSTARIMA model is processed following the Box-Jenkins method, including identification,
parameter estimation, and diagnostic checking. The initial identification of the GSTARIMA model is
to determine the stationarity of the data. If the stationary test results show that the data is not
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stationary, then a differencing process is carried out until stationary data is obtained. Next, check the
order of the model univariately with the ARIMA Model. The model order is received from the results
of the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. Models
with the same order are selected for further multivariate and Spatio-Temporal modeling. In terms of
Spatio-Temporal modeling, a weight matrix is used that shows the diversity in locations. The order
of the Spatio-Temporal Model is obtained based on the calculation of the Space-Time Autocorrelation
Function (STACF) and Partial Space-Time Autocorrelation Function (STPACEF).

Furthermore, parameter estimation for the GSTARI Model is carried out using the Ordinary
Least Square (OLS) method. The error generated by the GSTARI Model is re-modeled to obtain the
GSTIMA Model using the Maximum Likelihood (MLE) method. The GSTARI Model and GSTIMA
Model are combined to produce the GSTARIMA Model. On the other hand, if exogenous variables
influence the response variable, it becomes the GSTARIMA-X Model. Furthermore, predictions are
made on the testing data for the GSTARIMA Model. The last stage of the model diagnostic check to
determine the model error is white noise and homoscedasticity.

The GSTARIMA Model errors with heteroscedasticity errors are re-estimated following the
ARCH/GARCH Model to overcome the non-constant variance of the errors. GSTARIMA Model
errors are divided into mean equations and variance equations. The mean equation of the GSTARIMA
Model error is estimated using the MLE method, and the variance equation is estimated using the GLS
method. Integrating the GSTARIMA Model with the ARCH/GARCH Model can minimize the model
error. This model is only able to do forecasting at locations that have observed values.

Regarding climate data, some areas do not have observation stations. The GSTARIMA and
ARCH/GARCH models are then integrated with the Kriging method. The Kriging method is proven
to forecast phenomena at unobserved locations. Estimated parameters in the GSTARIMA-ARCH
Model are input to obtain parameters at unobserved locations. Furthermore, experimental and
theoretical semivariogram calculations are carried out to obtain Kriging weights from unobserved
locations. The estimated parameters for the unobserved locations are simulated to get the data at the
unsampled locations. Finally, the data at unsampled locations are forecasted with the GSTARI-MA-
ARCH Model. The integration of the GSTARIMA Model, ARCH/GARCH Model, and Kriging
Method can forecast the phenomenon at unobserved locations in the future.

4.2.2. Data Analytics Life Cycle for Climate Forecasting

The conceptual Integrated Model of GSTARIMA, ARCH/GARCH, and Kriging Method is then
used in forecasting climate that meets the criteria of Big Data. Regarding answering RQ2, the
modeling flow follows the data analytics life cycle methodology presented in Figure 4. The initial
stage begins with discovery, problem identification, determination of data sources to be processed,
and hypotheses that are proven using theorems and mathematical formulas. The next step involves
data preparation, inputting climate data into the process. Raw climate data is taken at a daily interval
and cleaned to eliminate missing value data. Daily data is transformed by aggregating daily data into
monthly data. In model planning, mathematical model integration is carried out. At this stage, the
theorem that answers the research hypothesis is created. The GSTARIMA model is developed
following the Box-Jenkins method. Integrating the GSTARIMA model, ARCH/GARCH, and Kriging
method requires complex mathematical reasoning, especially in estimating model parameters. The
integrated model is used in the Model Building stage with the input of data preparation results.
Climate data is divided into training data and testing data. The results of forecasting are interpreted
by the model obtained. Furthermore, visualization is carried out at the communication results stage,
and recommendations are obtained. The last step is to operationalize the results of discoveries in
Model development with theorems on mathematical modeling and dissemination.
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Figure 4. Data Analytics Life Cycle for Integrated GSTARIMA, ARCH, and Kriging.

5. Conclusions

In conclusion, a systematic literature review was conducted in developing the Integration
GSTARIMA model with heteroscedastic error and the Kriging method for climate forecasting. A
comprehensive search and analysis of the literature was performed to provide a clear understanding
of the latest research. This research uses the PRISMA and bibliometric methods in analyzing the
developments on this topic. In this paper, the results of the study in integrating the GSTARIMA
Model with the ARCH/GARCH Model can overcome the problem of non-constant error variance.
The GSTARIMA and ARCH models provide an overview of multivariate modeling affected by time,
location, and non-stationary data. On the other hand, the GSTARIMA/Spatio-Temporal Model can
only forecast at the observed location. Through the integration of the GSTARIMA Model with the
Kriging Method, it has been discovered that the prediction of Spatio-Temporal phenomena becomes
feasible for unobserved locations in the future. The development of the GSTARIMA Model,
ARCH/GARCH, and Kriging Method allows the discovery of theorems in mathematical modeling.
The application of this model to climate data uses the data analytics life cycle methodology for more
detailed processing and more accurate information.
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