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Abstract: Rapid climate change requires more powerful and precise modeling methods to forecast future 

climate variability. The GSTARIMA Model is efficient, combining space-time analysis with the Autoregressive 

Moving Average (ARIMA) Model. The integration of heteroscedasticity error and the Kriging method can 

strengthen the Model's ability to handle the problem of non-constant error variance in the GSTARIMA Model 

and forecast at unobserved locations of climate observations. This paper's Systematics Literature Review (SLR) 

is presented comprehensively with the principal aim of developing a thorough understanding of applying the 

GSTARIMA Model with heteroskedasticity error and the Kriging Method in climate forecasting following the 

Data Analytics Lifecycle methodology. The Systematic Literature Review (SLR) process consists of three main 

stages. We sourced the articles from databases such as Scopus, Dimensions, and EBSCO-Host The subsequent 

stage involved conducting a comprehensive literature review using the PRISMA method to ensure rigor and 

depth. Additionally, we performed bibliometric analysis to enhance rigor. Lastly, we conducted a gap analysis 

session to scrutinize existing research on the GSTARIMA Model and identify new opportunities. This literature 

review reveals that integrating GSTARIMA Model with heteroscedasticity errors and the Kriging method is 

suitable for climate forecasting. This research inspires researchers to contribute to the improvement and 

refinement of the Model, making it a more potent and valuable tool in climate forecasting. 

Keywords: GSTARIMA; heteroscedastics error; Kriging method; climate; data analytics life cycle 

MSC: 62M10; 62H11 

 

1. Introduction 

Climate is a statistical description of the average variability of the relevant quantities over 

months to years, referred to as average weather [1]. In addition, it includes several interrelated 

elements, such as temperature, rainfall, humidity, atmospheric conditions, and wind patterns [2]. 

Climate change is a pressing global issue of paramount importance that demands comprehensive 

research. The Intergovernmental Panel on Climate Change (IPCC) is an organization founded by 

scientists worldwide to research the concept. The sixth assessment report of the IPCC explains that 

climate change affects ecosystem conditions, human activities, the global water cycle, infrastructure, 

health, and others [3]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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The handling of climate change is in the world's spotlight, which is included in the pillars of 

SDGs [4,5]. Meanwhile, climate management is the 13th goal in the SDGs, with the mission statement 

"Take urgent action to combat climate change and its impacts by regulating emissions and promoting 

developments in renewable energy” [6]. One of the climate changes very important to study is rainfall 

patterns [7,8]. Based on NASA's Global Precipitation Measurement, the Indonesian region has high 

rainfall around 1000-4000 mm per year. This is because Indonesia is located on the equator, and it is 

vulnerable to natural disasters such as floods and landslides. Based on data from the West Java 

Regional Disaster Management Agency (known as BPBD), which can be accessed on the website 

https://opendata.jabarprov.go.id/id/ (accessed on 01/04/2023), there were 1954 and 5,662 flood and 

landslide events in 2012-2021. The number of flood and landslide events for each district and city in 

West Java is presented in Figure 1.a and 1.b. 

 

Figure 1. Natural disasters caused by rainfall in West Java (a) Flood Disaster; (b) Landslide. 

Natural disasters due to extreme rainfall have a significant impact and cause damage to 

community settlements. Based on data from the West Java BPBD report, settlement damage totaled 

943,160 units from 2012-2021. Damage is categorized into destroyed, heavily damaged, slightly 

damaged, moderately damaged, threatened, and submerged/buried, as presented in Table 1. 

Table 1. Damage Due to Floods and Landslides in West Java in 2012-2021. 

Damage Category Number of units 

Destroyed 607 

Heavily Damaged 13.776 

Light Damage 50.699 

Moderate Damage 22.167 

Threatened 27.459 

Submerged/Buried 828.452 

Total 943.160 

Climate change is very detrimental regarding materials, infrastructure, and people's lives. 

Therefore, it is essential to forecast future climate conditions to take preventive, mitigation, and 

adaptation actions.  

Climate forecasting can also be conducted using the Spatio-Temporal Model. The Spatio-

Temporal Model combines location and time to model a phenomenon to understand the relationship 

between changes in spatial and time. The Generalized Space-Time Autoregressive (GSTAR) Model 

assumes heterogeneous characteristics between locations and stationary data. Furthermore, it has 
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different autoregressive and Space-Time parameters for each location. The Model was studied using 

stationary data by Borovkova et al.[9]. Giacinto developed the Model into the Generalized Space-

Time ARMA (GSTARMA) Model [10]. In addition, the GSTARMA Model adds the effect of an error 

element with a Moving Average (MA) and is applied to stationary data. The Model Estimation uses 

the Maximum Likelihood Estimation (MLE) method and is applied to forecast the unemployment 

rate in each region of Italy based on historical data. The Model of non-stationary data is called the 

GSTARIMA Model, developed by Min et al., 2010 [11].  

The GSTAR Model has a non-constant error variance (heteroscedastic error) for climate data. 

The GSTAR-ARCH Model is an extension of the Spatio-Temporal Model, which considers the 

heteroscedasticity of variance that depends on previous information in an autoregressive manner by 

Nainggolan et al [12]. The Model is applied to stationary data as an extension of the GSTAR-ARCH 

model for non-stationary data by Bonar et al. [13]. The GSTARI-ARCH model also overcomes the 

non-constant error variance. Bonar et al. used the concept to model and forecast the Consumer Price 

Index (CPI) in North Sumatra. In forecasting Spatio Temporal Model, the respon variable is 

influenced by exogenous variables. For example, in climate data, rainfall is affected by humidity and 

temperature. The Spatio-Temporal model with the addition of exogenous variables is known as the 

GSTARI-X Model by Elfiyan et al. [14]. Ditago et al. (2016) used the GSTARX-GLS model, with the 

exogenous variable being calendar variation[15]. Monika et al. (2022) developed the GSTARI-X-

ARCH model to forecast rainfall with exogenous variables in humidity [16]. 

In previous research, the Kriging Method was used to predict phenomena at unobserved 

locations. Kriging method is used for interpolation and forecasting Temperature in Mosul and 

Baghdad City [17]. Kriging method, land-use regression (LUR), and LightGBM (light gradient 

boosting machine) methods were combined to predict PM2.5 concentrations [18]. In Spatio-Temporal 

modeling, the GSTAR Model is integrated with the Kriging method to forecast rainfall at unobserved 

locations in West Java [19]. 

This study aims to summarize previous research on Spatio Temporal forecasting models with 

heteroskedastic errors and the Kriging method applied to climate data. This research attempts to 

cover several areas, such as Spatio Temporal models for stationary and non-stationary data, methods 

for parameter estimation in the models, forecasting at unsampled locations, and the potential to 

integrate Spatio Temporal models with Heteroskedastic errors and Kriging for climate forecasting. 

Ultimately, this review contributes to a broader understanding of integrated Spatio Temporal Models 

with Heteroskedastic errors and the Kriging Method for climate and highlights avenues for further 

research and innovation in this critical area. To facilitate the analysis process, we formulate the 

following research questions (RQs): 

RQ1: How to integrate GSTARIMA model with heteroskedastic errors using Kriging method? 

RQ2:How to forecast climate phenomena using the integration of GSTARIMA and Kriging models 

through a data analysis life cycle approach? 

RQs were examined and explored by reviewing previous results carried out by searching 

literature on databases. The results were filtered and selected using the Preferred Reporting Items for 

Systematic Review and Meta-Analyses (PRISMA) method. Furthermore, relevant articles are 

presented in a state of the art to obtain research gaps. A bibliometric method was also used to show 

the linkage of keywords for each article. The review stage was performed to analyze search results 

and discuss new research. Potential new research was provided to be studied and developed on the 

GSTARIMA Model and its application. 

2. Materials and Methods 

2.1. Theoritical Background 

2.1.1. The Generalized Space Time Autoregressive Integrated Moving Average (GSTARIMA)Model 

In 1980, Pfeifer and Deutch introduced the Space-Time Autoregressive (STAR) Model, assuming 

each location has the same characteristics [20,21]. In 2002, Ruchjana developed the STAR model into 
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the Generalized Space-Time Autoregressive (GSTAR) model. This is because the assumptions in the 

STAR model do not match the reality in the field, where there is a diversity of characteristics at each 

location. The GSTAR model introduced by Ruchjana assumes that the characteristics of each location 

are heterogeneous. The GSTAR(𝑝, 𝜆௞)  model has a time order of 𝑝  and a spatial order of 𝜆௞   
expressed in matrix form through equation (1)[9] 𝐳(𝑡) = ෍ ෍ൣ𝚽௞௟𝐖(௟)𝐳(𝑡 − 𝑘)൧ + 𝐞(𝑡)ఒೖ

௟ୀ଴
௣

௞ୀଵ  (1) 

where, 𝑍(𝑡)  : the value of the observation at time 𝑡, 𝑍(𝑡 − 1) : the value of the observation at time 𝑡 − 1, 𝜙 : a parameter that indicates the influence of the value of 𝑍(𝑡 − 1) on the value of 𝑍(𝑡), 𝑒(𝑡)  :the value of error. 

The GSTARMA model expands the GSTAR model by adding MA error elements. The 

GSTARMA model is applied to stationary data [10]. The GSTARMA model developed on 

nonstationary data is called the GSTARIMA model. Min et al. (2010) first introduced the GSTARIMA 

model with application to urban traffic network modeling and short-term traffic flow forecasting. 

The GSTARIMA model (𝑝ఒೖ , 𝑑, 𝑞௩ೖ)with 𝑑 being the differencing order is expressed in Equation (2) 

[11] 𝐲(𝑡) = ෍ ෍ൣ𝚽௞௟𝐖(௟)𝐲(𝑡 − 𝑘)൧ − ෍ ෍ൣ𝚯௞௟𝐖(௟)𝐞(𝑡 − 𝑘)൧ + 𝐞(𝑡)௩ೖ
௟ୀ଴

௤
௞ୀଵ

ఒೖ
௟ୀ଴

௣
௞ୀଵ , (2) 

where,  𝐲(𝑡) = 𝐳(𝑡) − 𝐳(𝑡 − 1), 𝐲(𝑡 − 1) = 𝐳(𝑡 − 1) − 𝐳(𝑡 − 2), … , 𝐲(𝑡 − 𝑘) = 𝐳(𝑡 − 𝑘) − 𝐳(𝑡 − 𝑘 − 1) (3) 𝐳(𝑡)  : a vector of variables of size (𝑁 × 1)  at time 𝑡, 𝐳(𝑡 − 𝑘) : vector of variables of size (𝑁 × 1) at time (𝑡 − 𝑘), 𝜆௞  : spatial order in the 𝑘th autoregressive, 𝑣௞  : spatial order of the 𝑘th moving average, 𝚽௞௟  : autoregressive and space time parameters at time order 𝑘 and spatial order 𝑙 of size (𝑁 × 𝑁) in the form of diagonal matrix ൫𝛷௞௟(ଵ), 𝛷௞௟(ଶ), 𝛷௞௟(ଷ), … , 𝛷௞௟(ே)൯, 𝚯௞௟  : MA parameters at time order 𝑘  and spatial order 𝑙  of size (𝑁 × 𝑁) in the form of 

diagonal matrix ൫Θ௞௟(ଵ), Θ௞௟(ଶ), Θ௞௟(ଷ), … , Θ௞௟(ே)൯, 𝐖(௟)  : weight matrix of size (𝑁 × 𝑁) at spatial order 𝑙, 𝑙 = 0,1,2, … , 𝜆௞ containing 𝑤௜௜ = 0  and ∑ 𝑤௜௝ = 1௜ஷ௝ , 𝐞(𝑡)  : error vector of size (𝑁 × 1) at time 𝑡, assuming 𝐞(𝑡) ~௜௜ௗ𝑁(𝟎, 𝜎ଶ𝐈). 
2.1.2. Autoregressive Conditional Heteroscedasticity (ARCH) Model 

Although the GSTARIMA model assumes constant error variance, applying climate data often 

shows non-constant error variance. The GSTARIMA model is integrated with the Autoregressive 

Conditional Heteroscedasticity (ARCH) Model to overcome this. This time series model detects 

variance heteroscedasticity using historical data [22]. Describing the ARCH(𝑝) model, researchers use 

the following expression [22] ℎ௧ = 𝜎௧ଶ = 𝛼଴ + ෍ 𝛼௜𝐞௧ି௜ଶ௣௜ୀଵ  ; 𝑖 = 1,2,3, … , 𝑝, (4) 

In Equation (4), the variables represented include: ℎ௧  : the conditional variance at time 𝑡, 𝛼଴  : the intercept or constant error, 𝛼ଵ, 𝛼ଶ, … , 𝛼௣: ARCH model parameters, 𝛼଴ > 0 dan 𝛼௜ ≥ 0. 

2.1.3. Kriging Method 
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The Kriging method is a geostatistical interpolation technique used to predict variable values at 

unobserved locations based on variable values observed at other locations. This method assumes that 

variable values have a spatial structure related to the distance and direction between observation 

locations. In the calculation of the Kriging Method, a Semivariogram is required. An experimental 

semivariogram is calculated based on measurement data collected from the field or observations at a 

particular location. The formula for calculating the experimental semivariogram is as follows [23]:  𝜓෠(ℎ) = 12𝑁(ℎ) ෍ [𝑍(𝑥௜ + ℎ) − 𝑍(𝑥௜)]ଶே(௛)
௜ୀଵ  (5) 

where, 𝜓෠(ℎ)  : semivariogram value at distance ℎ, 𝑍(𝑥௜)  : observation value at location 𝑥௜, 𝑍(𝑥௜ + ℎ) : observation value at location 𝑥௜ + ℎ, 𝑁(ℎ)  : many pairs of data that have distance ℎ, ℎ   : distance between 2 locations. 

Theoretical semivariograms can be divided into Spherical, Gaussian, and Exponential Models. 

The Spherical Model is a model that assumes that spatial dependence has a certain maximum distance 

or radius. This Model is used if the spatial dependence decreases with distance and reaches a 

threshold value at a specific radius, after which the semivariogram value becomes constant. The 

semivariogram function of the Spherical Model can be expressed as [23]: 𝜓(ℎ) = ቐ𝑐 ቈ൬3ℎ2𝑎൰ − ൬ ℎ2𝑎൰ଷ቉ , ℎ ≤ 𝑎𝑐                              , ℎ > 𝑎 (6) 

The Exponential Model is a model that assumes that spatial dependence decreases exponentially with 

distance between locations. The semivariogram function of the Exponential Model can be expressed 

as [23]: 𝜓(ℎ) = ൝𝑐 ൤1 − 𝑒𝑥𝑝 ൬−ℎ𝑎 ൰൨ , ℎ ≤ 𝑎𝑐                              , ℎ > 𝑎 (7) 

The Gaussian Model is a model that assumes that spatial dependence has a symmetric pattern and 

decreases exponentially with distance between locations. The semivariogram function of the 

Gaussian Model can be expressed as [23]: 𝜓(ℎ) = ቐ𝑐 ቈ1 − 𝑒𝑥𝑝 ൬−ℎ𝑎 ൰ଶ቉ , ℎ ≤ 𝑎𝑐                                , ℎ > 𝑎 (8) 

where, ℎ : distance between sample locations, 𝑐 : sill value, 𝑎 : range. 

The semivariogram also provides the weights used in interpolation. The Kriging method aims 

to determine the value of the Kriging weight 𝜃௜, which minimizes the estimator's variance so that a 

BLUE (Best Linear Unbiased Estimator) estimator is obtained. The Kriging estimator 𝑍መ(𝑥଴) can be 

written as follows [23]: 𝑍መ(𝑥଴) − 𝜉(𝑥଴) = ෍ 𝜃௜[𝑍(𝑥௜) − 𝜉(𝑥௜)],௡
௜ୀଵ  (8) 

where, 𝑍መ(𝑥଴)  :Kriging estimator at unobserved location 𝑥, 𝑥௜  : the ith data location adjacent to the unsampled location 𝑥, 𝜉(𝑥଴)  : expectation value of 𝑍(𝑥଴), 𝜉(𝑥௜)  : expectation value of 𝑍(𝑥௜) 𝑛  : many sample data used for estimation, 𝜃௜  : weight value at location 𝑖. 
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2.1.4. Data Analytics Life Cycle 

Climate data has the Big Data criteria of volume, variety, and velocity. Big Data could be more 

efficient when analyzed using traditional methods. The Data Analytics Life Cycle methodology is 

specifically designed to handle Big Data problems and data science projects. The Data Analytics Life 

Cycle consists of six phases, including [24]: 

• Discovery -> At this stage, researchers must study, search and investigate facts, identify 

problems, and develop context and understanding of the data sources needed to support 

research. 

• Data Preparation -> Next, data is cleaned to identify missing values or noisy data. The results of 

data cleaning are transformed by aggregating daily data into monthly or according to the needs 

of the analysis. In this case, pre-processing data is obtained and ready for processing and 

analysis. 

• Model Planning -> At this stage, the model planning that will be used for analysis is carried out. 

• Model Building -> Researchers divide the results of data preparation into in-sample data 

(training) and out-sample data (testing) to do forecasting. 

• Communicate Results -> Researchers present forecasting results using visualizations in the form 

of time series plots, choropleth maps, diagrams, and others. 

• Operationalize -> The final stage is operationalized, and researchers provide final reports, 

recommendations, scripts, and technical documents. In addition, researchers can also apply the 

Model to the appropriate environment. 

2.2. Collected Article 

The PRISMA method is a widely used guide and methodological framework for conducting and 

presenting systematic reviews and meta-analyses [25]. The method provides the results of a 

systematic review, including completeness and clarity in reporting. The PRISMA method is 

supported by flowcharts in selecting articles [26,27]. 

The first stage in the PRISMA method is a literature search. Meanwhile, literature search through 

keywords was carried out in this research in four databases, namely Google Scholar, Dimensions, 

Science Direct, and Scopus. The keywords entered in the database consist of four codes connected 

with "OR" and "AND." The criteria selected in the collection of articles include: 

1. The publication type selected is article research and conference paper. 

2. Written in English 

3. The range of article publications is 2000-2023. 

4. The title, abstract, or keywords contain the words presented in Table 2. 

Table 2. Keywords used for literature search. 

Codes Keywords 

A ("Spatio Temporal" OR "GSTAR" OR "GSTARIMA" OR "Generalized Space Time 

Autoregressive") 

B (“Heteroscedasticity” OR “ARCH” OR “GARCH” OR “Seemingly Unrelated 

Regression” OR “SUR” OR “Kriging Method”) 

C (“Data Analytics Life Cycle” OR “Data Mining” OR “Big Data Approach” OR 

“Climate Change” OR “Extreme Rainfall” OR “Weather” OR “Temperature”) 

D A AND B AND C 

The keywords provided in Table 2 are input into the database, followed by pressing the enter 

key to initiate a search. After displaying the search results, criteria 1-3, which pertain to the 

publication type, language selection, and publication year range, are configured to filter articles 

under the specified parameters. Subsequently, eligible articles are downloaded in .bib, .csv, and .ris 

formats. The number of article findings in each database is recorded for utilization as reference 

material in the subsequent stage. 
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The second stage involves the selection of articles, which is carried out through a manual process 

to ensure relevance. Specifically, the criteria for selecting relevant articles are those that explore the 

GSTAR model and its application. The articles included at this stage comprise both the ones obtained 

from the initial database search and the ones found manually through citation searching. The stages 

in article selection are explained as follows [28–30]: 

(a) Duplicate selection aims to remove duplicate articles found. Duplication can be found in 

databases or literature sources with almost the same or similar structure. Duplication selection 

stage can be conducted with special software such as Jabref and Mendeley reference managers 

to compare titles, abstracts, and content.  

(b) The relevance of the title and abstract is selected by assessing and ensuring that it matches the 

topic criteria. Titles and abstracts of selected articles are read in their entirety and irrelevant ones 

are excluded at this stage. 

(c) The full selection aims to determine whether the discussion and content in the article are relevant 

to the topic. All articles are accessed and read manually to ensure their appropriateness. Articles 

that fail to meet the established criteria or do not pertain to the subject matter under investigation 

are hereby excluded from the subsequent phases of the process. 

The final stage in the PRISMA method is the articles review, explaining, and answering the RQs 

presented in Section 1. 

3. Results 

3.1. Results of Literature Search and Dataset Analysis 

The results of the literature search are presented in Table 3, where code A produces 213,557 

articles, code B produces 1,121,262, code C produces 7,525,693, and code D is searched by combining 

code A, B, and C the "AND" connector to produce 286 articles. 

Table 3. Keyword search results in the database. 

Codes Scopus Dimensions EBSCO-Host Total 

A 101,483 69,050 34,024 213,557 

B 339,122 515,898 266,242 1,121,262 

C 1,381,753 4,046,170 2,097,770 7,525,693 

D 77 71 138 286 

The manual selection stage of the article is carried out as follows: 

(a) At the initial stage, duplicate selection is conducted to identify 161 articles as duplicates and 

removed from the study. 

(b) The selection stage is based on the relevance of the title and abstract, where 35 articles are selected 

as relevant and considered for further research. 

(c) In the full paper accessibility selection stage, a total of 60 articles can be accessed and downloaded 

for further selection. 

(d) In the full paper relevance selection stage, the entire contents of the 18 articles are read and 

analyzed to determine their relevance. Relevant papers were also added from another method 

with citation search, resulting in 32 relevant articles. So that a total of 48 review articles are 

obtained that are relevant to the topic discussed. 

These stages are presented visually in the PRISMA diagram in Figure 2 with three stages, namely 

identification, screening, and inclusion. Identification includes the duplication selection stage in stage 

(a). Screening consists of stages (b) and (c) for selecting title-abstract and full paper. Finally, inclusion 

explains the number of research articles relevant to the topic. 
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Figure 2. PRISMA Diagram for Relevant Article Selection. 

3.2 Bibliometric Analysis 

The next stage describes the selected articles in bibliometric mapping used as a visualization 

method to analyze the pattern of relationships between scientific articles [31–33]. This paper uses 

bibliometric maps to visualize scientific networks involving keywords in 48 articles. The visualization 

results are in the form of circles and clusters distinguished by different colors. The circles on the 

bibliometric map represent the number of related publications by keyword. A circle with a large size 

indicates several keywords with similar relationships between scientific articles. Clusters in a 

bibliometric map show connected circles and represent scientific articles with similarities in context, 

such as topics [34]. Furthermore, bibliometric mapping keyword analysis is obtained using 

VOSviewer to understand the structure, patterns, and relationships between scientific articles [35]. 

VOSviewer analyzes keywords that frequently appear in articles and identifies the relevant ones. The 

results of the bibliometric mapping for keyword analysis with VOSviewer are presented in Figure 3. 

 

Figure 3. Bibliometric mapping of keywords contained in 48 relevant articles. 

Figure 3 was created using the VosViewer software, and a total of 48 relevant articles are saved 

in .ris format. Article files are inputted into VOSviewer, which is a mapping selected for co-

occurrence words. The bibliometric mapping in Figure 3 shows that the co-occurrence of keywords 

consists of five clusters. These clusters indicate the link between "Spatio-Temporal Models" and 

"Climate." Forecasting climate is done chiefly with Spatio-Temporal Models and Time Series Models. 
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In Figure 3, it can be seen that there are clusters that show climate variables that are often used by 

researchers, such as rainfall, Pacific Decadal Oscillation (PDO), atmospheric pressure, etc. 

As revealed by an analysis of 48 relevant articles, the state-of-the-art in this field highlights 

significant progress in several key topics shown in Table 4. First, "GSTARIMA models" are emerging 

as a prominent approach to analyzing Spatio-Temporal data. This cutting-edge model combines the 

capabilities of time series analysis and spatial relationships, enabling a comprehensive understanding 

of complex interactions. Secondly, the exploration of "Heteroscedastic Error" in this study is in terms 

of overcoming the non-constant variance of errors in the GSTARIMA Model. By addressing these 

heteroscedastic errors, researchers aim to improve the accuracy and reliability of their forecasts, 

ultimately leading to more robust modeling results. In addition, "Kriging," a geostatistical 

interpolation technique, plays an essential role in spatial analysis. This method incorporates the 

estimation of unknown values based on observed values in the vicinity, incorporating spatial 

correlation. Collectively, these advances show the evolving research landscape in spatial-temporal 

analysis, featuring the integration of cutting-edge methodologies such as the GSTARIMA Model, the 

consideration of heteroscedastic errors, and the application of techniques such as Kriging to unravel 

complex spatial patterns and relationships. 
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Table 4. State-of-the-art from 48 relevant articles. 

References Model(s) Dataset Application 

Model Assumptions Model Performance Analysis 

MA 

Component

Exogenous 

Variable 

Hetero. 

Error 

Kriging 

Method 
MAPE RMSE MSE Accuracy 

Dhaher et al. 

(2023) 
[17] 

Kriging, 

Spatio-

Temporal 

Temperature Data in Mosul and 

Baghdad city 

Interpolate and 

Forecasting 

Temperatures 

- - -  - 

A) Mosul = 0.16 

B) Baghdad= 1.05 

C) A+B=0.61 

- - 

Dai et al. 

(2022) 
[18] 

LUR, 

LightGBM, ML, 

Kriging 

PM2.5 site 

monitoring data 

(http://106.37.208.233: 

20035/)  

Spatio-Temporal 

Characteristics of 

PM2.5 Concentrations 

- - -  - - - 
R2= 0.976 (average 

for 2016–2021) 

             

Kumar et al. 

(2022) 
[36] 

STARMA, 

GARCH 

Temperature Data 

(https://power.larc.nasa.gov/data-

accessviewer/) 

Forecasting Monthly 

Temperature 
 -  - 

MAPE for 

Max. 

Temperature 

2-4% and 

MAPE for 

Temperature 

Range 10-12% 

- - - 

Monika et al. 

(2022) 
[16] 

GSTARI-X-

ARCH 

Climate Data 

(https://power.larc.nasa.gov/data-

accessviewer/) 

Forecasting Climate 

in West Java 
-   - 

MAPE In-

Sample= 20%, 

MAPE 

Outsample= 

19% 

- - - 

Mukhaiyar et 

al. (2022) 
[37] GSTAR 

The average daily wind speed 

from NOAA 

Predict the 

occurrence of 

Hurricane Katrina 

- -  - MAPE= 6.86 - MSE=0.86 MAD=0.70 

Permatasi et al. 

(2022) 
[38] GSTARI 

The  Consumer Price Index 

(CPI)  data 

Forecasting the CPI 

in Three Cities in 

Central Java 

- - - - MAPE <10% - - - 

Kuo et al. 

(2021) 
[39] Kriging 

The sensors and the weather 

stations (http://e-

service.cwb.gov.tw) 

Comparing Kriging 

Estimators 
- - -  - RMSE<3 - MAE<3 

Iriany et al. 

(2021) 
[40] 

GSTAR, SUR, 

NN 
Precipitation data 

Comparison GSTAR-

SUR-NN for 

precipitation 

forecasting  

- -  - - RMSE=5.8684 - MAD=3.8917 
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Prastuti et al. 

(2021) 
[41] GSTARX 

The number  

of foreign tourist arrivals to 

Indonesia 

Forecasting the 

number of foreign 

tourist arrivals to  

Indonesia during 

COVID-19 

-  - - - 

RMSE Jakarta= 

21039, Bali= 32687, 

Surabaya=2228 

- - 

Alawiyah et al. 

(2021) 
[42] GSTARI 

The daily positive covid-19 

positive patients 

Forecasting Covid-19 

in West Java 
- - - - - - - - 

Iriany et al. 

(2021) 
[43] GSTAR 

The daily data of the cumulative 

number of COVID-19 

cases(www.covid19.go.id) 

Forecasting Covid-19 

in East Java 
- - - - MAPE=1.43 RMSE=0.005 - - 

Yundari et al. 

(2021) 
[44] 

GSTAR, Kernel 

Weight 
The tea production data 

Forecasting tea 

production 
- - - - - RMSE= 10-20 - - 

Alawiyah et al. 

(2021) 
[45] GSTARI-ARCH 

Positive confirmed data for 

Covid-19 

Forecasting Covid-19 

in West Java 
- -  - - RMSE=1.24356 - - 

Primageza et 

al. (2021) 
[46] 

NNs-

GSTARIMAX 

Historical data on the average 

price of rice in the period January 

1,2008, to December 31,2019 

(weekly) 

Rice Price 

Forecasting in 

Indonesia 

  - - 

NNs-

GSTARIMAX= 

1.09% 

- - - 

Zhang et al. 

(2020) 
[47] 

Spatio-

Temporal, 

Kriging 

Data for three 

fixed locations from APDRC 

(Asia-Pacific Data Research 

Center) 

- - - -  - - MSE=0.744 MAE=0.751 

Su et al. (2020) [48] ML, Kriging NFI datasets 

Estimating 

aboveground 

biomass  

- - -  - 

RF=52.08% 

RFOK=52.05% 

RFCK=51.60% 

- 

RF=24.56 

RFOK=23.47 

RFCK=22.14 

Iriany et al. 

(2020) 
[49] 

GSTAR, SUR, 

NN 
Precipitation Data in Malang 

Precipitation 

Forecasting 
- -  - - General= 5.3131 - R2= 0.6177 

Sulistyono et 

al. (2020) 
[50] GSTAR, SUR Rainfall Data 

Rainfall forecasting 

in agricultural areas 
- -  - - 

Training=5.779 

Testing=10.433 
- - 

Akbar et al. 

(2020) 
[51] GSTARMAX Air Pollutant Data 

Forecasting Air 

Pollutant in  

Surabaya 

   - - 
A smaller RMSE 

Value 
- - 

Pramoedyo et 

al. (2020) 
[52] GSTAR Kriging 

The percentage of coffee berry 

borer infestation and monthly 

rainfall 

Forecasting and  

mapping coffee 

berry borer attack 

-    

GSTAR-

SUR=5.04 

GSTAR-

Kriging=5.11 

GSTAR-SUR=0.03 

GSTAR-Kriging=0.04 
- - 

Ashari et al. 

(2020) 
[53] GSTARX-SUR 

The percentage of coffee berry 

borer infestation and monthly 

rainfall 

Forecasting and  

mapping coffee 

berry borer attack 

-   - MAPE<15% - - - 

Pramoedyo et 

al. (2020) 
[54] 

GSTARX-SUR-

Kriging 

The percentage of coffee berry 

borer infestation and monthly 

rainfall 

Forecasting and  

mapping coffee 

berry borer attack 

-    
GSTAR-

Kriging=6.63% 

GSTAR-

Kriging=0.0434 
- - 
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GSTARX-

Kriging=6.18% 

GSTARX-

Kriging=0.0423 

Ji et al. (2020) [55] GSTARI The montly CPI data CPI Prediction - - - - - - - 

Dalian=38.29% 

Shenyang=7.71% 

Changchun=17.49%

Sjahid et al. 

(2020) 
[56] GSTARMA 

The concentration of PM10 

pollutants 

Prediction of PM10 

pollutant in surabaya 
 - - - - - - - 

Hølleland et 

al. (2019) 
[57] ST-GARCH 

Dataset of sea surface 

temperature anomalies 
-  -  - - - - - 

Venetsanou et 

al. (2018) 
[58] ST-Kriging 

Precipitation and temperature 

dataset 

Prediction 

precipitation and 

tem-perature  

- - -  - - 

Prec. MPI=25.7 and 

0.3 

Prec.HadGEM2=30.3 

and 304.8 

Temp. MPI=8.9 and 

2.5 

Temp. 

HadGEM2=6.6 and 

14.7 

- 

Novianto et al. 

(2018) 
[59] GSTARIX 

Tourist  

arrival data in Indonesia 

Prediction tourist 

arrival 
-  - - - 

Jakarta=40.41 

Denpasar=44.89 

Surabaya=2.761 

Surakarta=398 

- - 

Akbar et al. 

(2018) 
[60] GSTARX-SUR 

Rupiah outflow data in Java, 

Indonesia 

Forecast Outflow Of 

Currencies 
-   - MAPE<10% - - - 

Jamilatuzzahro 

et al. (2018) 
[61] GSTAR 

The Weekly Progress of Retail 

Prices 

Prediction Chili 

Prices 
- - - - - 

Jakarta=17406,22 

Bandung=15830,43 

Semarang=15754,02 

D.I 

Yogyakarta=15103,99 

- - 

Abdullah et al. 

(2018) 
[19] 

GSTAR-

Kriging 
Rainfall Data 

Predicting 

Rainfall Data at 

Unobserved 

Locations in West 

Java 

- - -  

Model 

1=8.97% 

Model 

II=12.51% 

Model 

III=7.72% 

- - - 

Bonar et al. 

(2017) 
[13] GSTARI-ARCH 

CPI data in North Sumaterat, 

Indonesia 
Forecasting CPI - -  - - - - - 

Yundari et al. 

(2017) 
[62] GSTAR 

The  

monthly tea production 

Forecasting tea 

production 
- - - - - 

Parakan Salah=1.16 

Sinumbra=1.70 

Rancabali=5.15 

Rancabolang=9.94 

Panyairan=7.28 

- - 
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Nainggolan et 

al. (2017) 
[63] GSTAR-ARCH - - - - - - - - - - 

Nisak (2016) [64] 
GSTARIMA-

SUR 

Rain Fall  

Data in Malang Southern Region 

Districts 

Forecasting rainfall  -  - - Tangkilsari=5.263 - R2=0.6481 

Setiawan et al. 

(2016) 
[65] S-GSTAR-SUR The number of tourist arrivals 

Forecasting tourist 

arrivals 
- -  - - GSTAR-SUR=13,60 - - 

Ditago et al. 

(2016) 
[15] GSTARX-GLS The impact of Ramadhan effect 

Adding a predictor 

of calendar variation 

model 

-  - - - NRMSE closed to 0 - - 

Suhartono et 

al. (2016) 
[66] GSTARX-GLS Inflation Data Inflation forecasting -  - -  

GSTARX-OLS=0.801 

GSTARX-GLS=0.826 
- - 

Mukhaiyar 

(2015) 
[67] 

GSTAR-

Kriging 
The monthly tea production 

Forecasting tea 

production 
- - -  - - - SSR 

Setiawan et al. 

(2015) 
[68] GSTARIMA Inflation Data Inflation forecasting  - - - - RMSE=0.9199 - - 

Shu-qin et al. 

(2014) 
[69] GWR, Kriging 

Climate and Socio-economic 

variable 

Variability of Soil 

Organic Matter 

influenced by 

climate and socio-

economic 

- - -  - - - - 

Nainggolan et 

al. (2010) 
[12] GSTAR-ARCH Simulation data - - -  - - - - - 

Min et al. 

(2010) 
[11] GSTARIMA The traffic flow data 

Short-term traffic 

flow forecasting 
 - - - - - MSE=7246 - 

Giacinto (2006) [10] GSTARMA Unemployment data 

Regional 

Unemployment 

Analysis in Italia 

 - - - - - - - 

Borovkova et 

al. (2002) 
[9] GSTAR Montly oil production 

Forecasting oil 

production 
- - - - - - - R2=0.9227 

Note: LUR: land-use regression, LightGBM: light gradient boosting machine, ML: Machine Learning, NN: Neural Network, GWR: Geographically Weighted Regression. 
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Table 4 provides a comprehensive overview of the research developments related to the 

GSTARIMA/Spatio-Temporal model. Several studies have been conducted in Spatio-Temporal 

modeling while considering heteroscedastic errors. Kumar et al. (2022) used a STARMA-GARCH 

model to forecast monthly temperatures, resulting in minimal Mean Absolute Percentage Error 

(MAPE) values in their predictions [36]. Similarly, Monika et al. (2022) used the GSTARI-X-ARCH 

model to forecast rainfall influenced by humidity, showing favorable forecast accuracy [16]. In a 

different context, Akbar et al. (2020) introduced the GSTARMAX model to forecast air pollutants in 

Surabaya, achieving low Root Mean Square Error (RMSE) values [51]. Furthermore, the integration 

of Spatio-Temporal and Kriging models is seen in several articles. Dhaher et al. (2023) applied the 

Spatio-Temporal-Kriging model for temperature interpolation and prediction in Baghdad and Mosul 

cities [17]. Dai et al. (2022) used four methods, including LUR, LightGBM, ML, and Kriging, to 

forecast PM2.5 concentrations, which resulted in satisfactory R2 accuracy [18]. Pramoedyo et al. (2020) 

adopted the GSTARX-SUR-Kriging model to forecast cocoa plant diseases affected by rainfall with 

reasonably accurate forecast results [54]. However, Abdullah et al. (2018) used the GSTAR-Kriging 

model to forecast rainfall in unobserved locations and produced fairly reliable prediction results [19]. 

Shu-qin et al. (2014) explored two different approaches, namely GWR and Kriging methods [69]. 

4. Discussion 

4.1. GAP Analysis 

Conducting a GAP analysis based on relevant articles illustrates the evolving research landscape 

in Spatio-Temporal modeling, heteroscedastic errors, and Kriging methodologies for forecasting 

climate and environmental data. These articles collectively represent vital insights and areas that 

need further exploration. The research that has been evaluated demonstrates a high propensity to use 

GSTARIMA models' capacity to forecast climate-related variables like temperature, precipitation, 

and air pollutants [19,37,40,49–51,64]. A common thread is the evaluation of model performance 

metrics, especially MAPE, RMSE, R2, and MSE. However, the gap lies in comprehensively exploring 

complex parameter configurations in the GSTARIMA framework, especially in dynamic Spatio-

Temporal systems. In addition, progress still needs to be made in validating these models using more 

sophisticated techniques, especially in handling larger and higher-dimensional data sets. 

It is clear that heteroskedastic errors are critical to climate prediction, and special attention has 

been paid to using ARCH and GARCH models to address this issue [16,36,57]. Researchers 

concentrate on achieving higher prediction accuracy, indicated by lower RMSE and MSE values. 

However, there are differences in research in dealing with complex and non-linear forms of 

heteroscedasticity, which can arise from complex climate datasets. Identifying more flexible methods 

to handle this complexity could be an interesting subject of investigation. By incorporating Kriging 

into a spatiotemporal model, discernible trends can be identified, especially in interpolation and 

forecasting climate variables [17–19,47,58]. This study relies heavily on RMSE and MAE as tools to 

assess prediction accuracy. However, areas still need to be addressed in creating an adaptive Kriging 

method that can capture the temporal and spatial changes present in complex climate data. Due to 

these limitations, there is a possibility for more complex techniques that are adapted to changing 

trends and non-stationary data. 

4.2. The Framework for model integration for climate forecast 

4.2.1. The Integration of GSTARIMA Model with Heteroskedastic error and Kriging Method for 

forecasting 

After the review of previous researchers and gap analysis, a conceptual integration model of 

GSTARIMA with Heteroskedastic error and the Kriging method is made to answer RQ1. The 

GSTARIMA model is processed following the Box-Jenkins method, including identification, 

parameter estimation, and diagnostic checking. The initial identification of the GSTARIMA model is 

to determine the stationarity of the data. If the stationary test results show that the data is not 
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stationary, then a differencing process is carried out until stationary data is obtained. Next, check the 

order of the model univariately with the ARIMA Model. The model order is received from the results 

of the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. Models 

with the same order are selected for further multivariate and Spatio-Temporal modeling. In terms of 

Spatio-Temporal modeling, a weight matrix is used that shows the diversity in locations. The order 

of the Spatio-Temporal Model is obtained based on the calculation of the Space-Time Autocorrelation 

Function (STACF) and Partial Space-Time Autocorrelation Function (STPACF). 

Furthermore, parameter estimation for the GSTARI Model is carried out using the Ordinary 

Least Square (OLS) method. The error generated by the GSTARI Model is re-modeled to obtain the 

GSTIMA Model using the Maximum Likelihood (MLE) method. The GSTARI Model and GSTIMA 

Model are combined to produce the GSTARIMA Model. On the other hand, if exogenous variables 

influence the response variable, it becomes the GSTARIMA-X Model. Furthermore, predictions are 

made on the testing data for the GSTARIMA Model. The last stage of the model diagnostic check to 

determine the model error is white noise and homoscedasticity. 

The GSTARIMA Model errors with heteroscedasticity errors are re-estimated following the 

ARCH/GARCH Model to overcome the non-constant variance of the errors. GSTARIMA Model 

errors are divided into mean equations and variance equations. The mean equation of the GSTARIMA 

Model error is estimated using the MLE method, and the variance equation is estimated using the GLS 

method. Integrating the GSTARIMA Model with the ARCH/GARCH Model can minimize the model 

error. This model is only able to do forecasting at locations that have observed values. 

Regarding climate data, some areas do not have observation stations. The GSTARIMA and 

ARCH/GARCH models are then integrated with the Kriging method. The Kriging method is proven 

to forecast phenomena at unobserved locations. Estimated parameters in the GSTARIMA-ARCH 

Model are input to obtain parameters at unobserved locations. Furthermore, experimental and 

theoretical semivariogram calculations are carried out to obtain Kriging weights from unobserved 

locations. The estimated parameters for the unobserved locations are simulated to get the data at the 

unsampled locations. Finally, the data at unsampled locations are forecasted with the GSTARI-MA-

ARCH Model. The integration of the GSTARIMA Model, ARCH/GARCH Model, and Kriging 

Method can forecast the phenomenon at unobserved locations in the future. 

4.2.2. Data Analytics Life Cycle for Climate Forecasting 

The conceptual Integrated Model of GSTARIMA, ARCH/GARCH, and Kriging Method is then 

used in forecasting climate that meets the criteria of Big Data. Regarding answering RQ2, the 

modeling flow follows the data analytics life cycle methodology presented in Figure 4. The initial 

stage begins with discovery, problem identification, determination of data sources to be processed, 

and hypotheses that are proven using theorems and mathematical formulas. The next step involves 

data preparation, inputting climate data into the process. Raw climate data is taken at a daily interval 

and cleaned to eliminate missing value data. Daily data is transformed by aggregating daily data into 

monthly data. In model planning, mathematical model integration is carried out. At this stage, the 

theorem that answers the research hypothesis is created. The GSTARIMA model is developed 

following the Box-Jenkins method. Integrating the GSTARIMA model, ARCH/GARCH, and Kriging 

method requires complex mathematical reasoning, especially in estimating model parameters. The 

integrated model is used in the Model Building stage with the input of data preparation results. 

Climate data is divided into training data and testing data. The results of forecasting are interpreted 

by the model obtained. Furthermore, visualization is carried out at the communication results stage, 

and recommendations are obtained. The last step is to operationalize the results of discoveries in 

Model development with theorems on mathematical modeling and dissemination. 
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Figure 4. Data Analytics Life Cycle for Integrated GSTARIMA, ARCH, and Kriging. 

5. Conclusions 

In conclusion, a systematic literature review was conducted in developing the Integration 

GSTARIMA model with heteroscedastic error and the Kriging method for climate forecasting. A 

comprehensive search and analysis of the literature was performed to provide a clear understanding 

of the latest research. This research uses the PRISMA and bibliometric methods in analyzing the 

developments on this topic. In this paper, the results of the study in integrating the GSTARIMA 

Model with the ARCH/GARCH Model can overcome the problem of non-constant error variance. 

The GSTARIMA and ARCH models provide an overview of multivariate modeling affected by time, 

location, and non-stationary data. On the other hand, the GSTARIMA/Spatio-Temporal Model can 

only forecast at the observed location. Through the integration of the GSTARIMA Model with the 

Kriging Method, it has been discovered that the prediction of Spatio-Temporal phenomena becomes 

feasible for unobserved locations in the future. The development of the GSTARIMA Model, 

ARCH/GARCH, and Kriging Method allows the discovery of theorems in mathematical modeling. 

The application of this model to climate data uses the data analytics life cycle methodology for more 

detailed processing and more accurate information. 
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