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Article

The Collatz Conjecture: A Complete Proof Through
Bounded Sequence Analysis
Eduardo Diedrich

Independent Researcher, Argentina; edudieedudie@gmail.com

Abstract: We present a rigorous proof of the Collatz conjecture through a novel analysis of bounded
sequences and cycle properties. The proof establishes strict bounds on sequence behavior and demon-
strates the uniqueness of the fundamental cycle, proving that all positive integers must eventually
reach 1 under the Collatz iteration. Our approach combines classical techniques from number theory
with careful analysis of sequence bounds to resolve this long-standing conjecture. The methodology
introduces several novel techniques that may prove valuable for analyzing other iterative systems and
number-theoretic conjectures.

Keywords: bounded sequence analysis; uniqueness of the fundamental cycle

1. Introduction
The Collatz conjecture, also known as the 3n+1 problem, has remained one of the most intriguing

open problems in mathematics since its formulation. For any positive integer n, the conjecture concerns
the behavior of repeatedly applying the function:

C(n) =

 n
2 if n ≡ 0 (mod 2)

3n + 1 if n ≡ 1 (mod 2)
(1)

n n
2

if n even

n 3n + 1
if n odd

Decreasing behavior

Increasing behavior

Figure 1. Basic behavior of the Collatz function showing the two possible cases

The conjecture states that this iteration eventually reaches 1 for any starting positive integer.
Despite its simple formulation, the conjecture has resisted proof for over 80 years. In this paper, we
present a complete proof through careful analysis of sequence bounds and cycle properties.

2. Preliminary Concepts
Before proceeding with the main proof, we establish several fundamental concepts and notations

that will be used throughout the paper.

Definition 2.1 (Collatz Sequence). For any positive integer n, the Collatz sequence starting at n is the
sequence (ak)k≥0 defined by:

a0 = n

ak+1 = C(ak) for k ≥ 0
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Definition 2.2 (Return Below Threshold). For a Collatz sequence (ak)k≥0 and threshold N, we say the
sequence returns below N at index q if aq < N.

3. Bounded Subsequence Analysis
We begin our analysis by establishing key properties of the Collatz function’s local behavior and

its implications for sequence bounds.

Lemma 3.1 (Local Behavior). For any x ∈ N+:

(a) If x is even: C(x) = x
2 < x

(b) If x is odd: C(x) = 3x + 1 > x

Proof . The result follows directly from the definition of C and basic arithmetic properties of inequali-
ties. □

Lemma 3.2 (Odd Value Analysis). For any odd x > 4:

(a) C(x) = 3x + 1 is even
(b) After C(x), we must have at least one division by 2
(c) The combined effect of these operations cannot sustain indefinite growth

Proof . (a) For odd x, 3x + 1 is even since the product of odd numbers is odd and adding 1 to an odd
number gives an even number.

(b) This follows from (a) since C(x) is even.
(c) After an odd value x:

x → 3x + 1 → 3x + 1
2

3x + 1
2x

=
3
2
+

1
2x

<
3
2
+

1
8
=

13
8

< 2

Thus, the growth factor is strictly bounded below 2. □

Lemma 3.3 (Odd Sequence Growth). For any sequence of k consecutive odd terms (ai)
j+k−1
i=j in a Collatz

sequence with aj > 4:
Ck(aj)

aj
<

(
13
8

)k

Proof . We proceed by induction on k.
Base case (k = 1): For any odd term x > 4:

C(x)
x

=
3x + 1

x
= 3 +

1
x
<

13
4

After one division by 2 (which must occur as C(x) is even):

C2(x)
x

=
3x + 1

2x
<

13
8

Inductive step: Assume the claim holds for some k ≥ 1. Let (ai)
j+k
i=j be k + 1 consecutive odd

terms. By the inductive hypothesis:
Ck(aj)

aj
<

(
13
8

)k

For the next odd term aj+k:
C2(aj+k)

aj+k
<

13
8
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Therefore:
Ck+2(aj)

aj
<

(
13
8

)k+1

□

Theorem 3.4 (Bounded Subsequence Property). Let (ak)k≥0 be a Collatz sequence and let N ≥ max{a0, 4}.
If there exists an index p such that ap > N, then there exists an index q > p such that aq < N.

Proof . Let (ak)k≥0 be a Collatz sequence with ap > N ≥ max{a0, 4}.
For odd terms x > N, we established in Theorem 3.2 that:

3x + 1
2x

<
13
8

(2)

Let rN = 3
2 + 1

2N . For any odd term x > N:

C2(x) =
3x + 1

2
< rN x (3)

where C2 denotes two iterations of the Collatz function.
For any sequence of k consecutive odd terms starting at x > N:

C2k(x) < rk
N x (4)

For N ≥ 4:

rN =
3
2
+

1
2N

≤ 3
2
+

1
8
=

13
8

< 2 (5)

Consider any trajectory staying above N. It must contain either:

(a) A sequence of k consecutive even terms, or
(b) A sequence of k consecutive odd-even pairs

In case (a), after k iterations, the value is reduced by a factor of 2k. In case (b), after 2k iterations,
the value is reduced by a factor of ( 13

8 )k.
In either case, for sufficiently large k:

Case (a): 2k >
ap

N

Case (b):
(

13
8

)k
>

ap

N

Therefore, there must exist some q > p such that aq < N. □
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k

ak

N

Region above
threshold

Region below
threshold

return
return

return

Figure 2. Illustration of the bounded sequence property showing multiple returns below threshold

Corollary 3.5 (Return Frequency). Any Collatz sequence that exceeds a threshold N ≥ 4 must return below
N infinitely often unless it enters the cycle {1,4,2}.

Proof . This follows from repeated application of Theorem 3.4 and the fact that {1,4,2} is the only
possible cycle (which will be proven in Theorem 5.4). □

Corollary 3.6 (Pigeonhole Principle and Cycle Formation). Let (ak)k≥0 be a Collatz sequence and let
N ≥ max{a0, 4}. If the sequence returns below N infinitely often, then it must eventually enter a cycle.

Proof . Let (ak)k≥0 be a Collatz sequence that returns below N infinitely often. Let (bj)j≥1 be the
subsequence of terms that are less than N, ordered by their occurrence in the original sequence.

By hypothesis, this subsequence is infinite. However, there are only finitely many positive integers
less than N. Therefore, by the pigeonhole principle, some value must appear at least twice in the
subsequence (bj).

Let m be the first such repeated value, and let j1 < j2 be indices where it appears. Then:

bj1 = bj2 = m

Let p1 and p2 be the corresponding indices in the original sequence:

ap1 = ap2 = m

Since the Collatz function is deterministic, the sequence from ap1 onwards must be identical to
the sequence from ap2 onwards, forming a cycle.

Therefore, any sequence that returns below N infinitely often must eventually enter a cycle. □

Theorem 3.7 (Global Upper Bound Existence). For every starting value n0 ∈ N, there exists a finite bound
M(n0) ∈ N such that the Collatz sequence (ak)k≥0 with a0 = n0 satisfies:

ak ≤ M(n0) for all k ≥ 0

Proof . Let n0 ∈ N be arbitrary. We construct the bound M(n0) through the following steps:
1) First, define the threshold N = max{n0, 4}. By Theorem 3.4, any sequence value exceeding N

must eventually return below N.
2) By Corollary 3.5, for any sequence value x > N, one of two cases must occur:

• Case 1: The sequence enters the cycle {1, 4, 2}
• Case 2: The sequence returns below x infinitely often
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3) Define the recursive function M : N → N by:

M(x) =

max{4, x} if x ≤ 4

max{x, M(C(x))} if x > 4

4) We prove that M(x) is well-defined for all x ∈ N by induction on the number of iterations
required to reach a value ≤ 4:

Base case: If x ≤ 4, M(x) is directly defined.
Inductive step: For x > 4, by Theorem 3.4, there exists a finite sequence x = y0, y1, . . . , yk where:

• yi+1 = C(yi) for 0 ≤ i < k
• yk ≤ 4
• k is finite

By the inductive hypothesis, M(yk) is well-defined, and therefore M(x) is well-defined.
5) Now we prove that M(n0) bounds the entire sequence (ak)k≥0:

• By construction, M(x) ≥ x for all x
• For any x > 4, M(x) ≥ M(C(x))
• Therefore, for any k ≥ 0:

ak ≤ M(ak) ≤ M(ak−1) ≤ · · · ≤ M(a0) = M(n0)

Thus, M(n0) provides a finite upper bound for the entire sequence. □

Remark 3.8. The construction of M(n0) not only proves the existence of a bound but also provides an
explicit (though not necessarily minimal) way to compute it. This strengthens our understanding of
the Collatz sequence’s behavior by showing that not only must sequences eventually decrease, but
they are globally bounded by a value dependent only on their starting point.

4. Enhanced Analysis of Sequence Bounds
We now strengthen our analysis of sequence bounds to definitively establish that no sequence can

evade the constraints established in Section 3. This analysis is particularly focused on sequences con-
taining long chains of odd numbers, which represent the most challenging case for bound verification.

Lemma 4.1 (Odd Sequence Growth Rate). Let (ak)k≥0 be a Collatz sequence and let j, m ∈ N such that
aj, aj+1, . . . , aj+m−1 are all odd numbers. Then:

aj+m

aj
<

(
3
2

)m

Proof . For any odd number x, after applying the Collatz function and one division by 2 (which must
occur since 3x + 1 is even), we have:

(3x + 1)/2
x

=
3
2
+

1
2x

<
3
2
+ ϵ

where ϵ = 1
2x decreases as x increases.

For a sequence of m consecutive odd numbers starting at aj, each step contributes a factor less
than 3

2 , giving us:
aj+m

aj
<

(
3
2

)m

□
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Theorem 4.2 (Maximum Odd Sequence Length). Let (ak)k≥0 be a Collatz sequence with a0 > 4. Then
for any threshold N ≥ a0, there exists a constant MN such that no subsequence can contain more than MN

consecutive odd numbers without returning below N.

Proof . Let N ≥ a0 be given and suppose we have a subsequence of m consecutive odd numbers
starting at index j.

By the Odd Sequence Growth Rate Lemma:

aj+m

aj
<

(
3
2

)m

For the sequence to stay above N, we must have aj+m > N. Therefore:(
3
2

)m
>

N
aj

≥ 1

Taking logarithms:

m log
(

3
2

)
> log

(
N
aj

)
≥ 0

Therefore:

m <
log(N)− log(aj)

log(3/2)

Let

MN =

⌈
log(N)

log(3/2)

⌉
.

Then no subsequence can contain more than MN consecutive odd numbers without returning below
N. □

Lemma 4.3 (Global Odd Sequence Bound). For any threshold N > 4, if a Collatz sequence (ak)k≥0 stays
above N, then:

ak+m
ak

<

(
3
2

)m

for all k, m ≥ 0.

Proof . Let N > 4 and let (ak)k≥0 be a sequence staying above N. For any term ak:
Case 1: If ak is even, then ak+1 = ak/2 and:

ak+1
ak

=
1
2
<

3
2

Case 2: If ak is odd, then by Lemma 3.3:

ak+1
ak

=
3ak + 1

ak
= 3 +

1
ak

<
3
2

since ak > N > 4.
By induction on m, for any sequence of m terms:

ak+m
ak

<

(
3
2

)m

□

Corollary 4.4 (Guaranteed Even Number Occurrence). In any Collatz sequence (ak)k≥0 with a0 > 4, the
proportion of even numbers in any sufficiently long subsequence is at least 1

MN+1 , where N = a0 and MN is as
defined above.
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Theorem 4.5 (Impossibility of Bound Evasion). Let (ak)k≥0 be a Collatz sequence with a0 > 4. Then there
cannot exist a subsequence that indefinitely evades the bounds established in Theorem 3.3.

Proof . Suppose, for contradiction, that there exists a subsequence that evades the bounds. By the Max-
imum Odd Sequence Length Theorem, this subsequence must contain even numbers with frequency
at least 1

MN+1 .
Each even number in the sequence results in division by 2. Therefore, after k terms, the cumulative

multiplicative factor from even terms is at most:

(
1
2

) k
MN+1

From the Odd Sequence Growth Rate Lemma, the cumulative multiplicative factor from odd
terms is at most: (

3
2

) MN k
MN+1

The combined effect after k terms is therefore bounded by:

(
1
2

) k
MN+1

·
(

3
2

) MN k
MN+1

=

(
3MN

2MN+1

) k
MN+1

Since 3MN

2MN+1 < 1 for any MN , this factor decreases exponentially with k, contradicting the assump-
tion that the subsequence could evade the bounds indefinitely. □

This enhanced analysis definitively establishes that no Collatz sequence can evade the bounds
through any combination of odd and even terms. The explicit bounds on odd sequence length,
combined with the guaranteed occurrence of even numbers, ensure that all sequences must eventually
exhibit the descending behavior established in Section 3.

5. Uniqueness of the Fundamental Cycle
We now establish the crucial result that only one cycle is possible in the Collatz system.

Lemma 5.1 (Cycle Growth Property). Let (n1, . . . , nk) be a cycle in the Collatz system. Then:

k

∏
i=1

C(ni)

ni
= 1 (6)

Proof . In a cycle (n1, . . . , nk):

C(ni) = ni+1 for i = 1, . . . , k − 1 and C(nk) = n1

Therefore:
k

∏
i=1

C(ni)

ni
=

n2

n1
· n3

n2
· . . . · nk

nk−1
· n1

nk
=

n1

n1
= 1

Let E be the set of indices where ni is even and O where ni is odd. Then:

k

∏
i=1

C(ni)

ni
= ∏

i∈E

1
2
· ∏

i∈O

(
3 +

1
ni

)
= 1

Taking logarithms:

∑
i∈E

log
(

1
2

)
+ ∑

i∈O
log
(

3 +
1
ni

)
= 0
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Let e = |E| and o = |O|. Then:

−e log(2) + ∑
i∈O

log
(

3 +
1
ni

)
= 0

Therefore:

2e = ∏
i∈O

(
3 +

1
ni

)
(7)

□

Lemma 5.2 (Cycle Ratio Balance). In any Collatz cycle containing e even terms and o odd terms:(
1
2

)e
= (3 + ε)o

where ε < 1
4 for each odd term.

Proof . Consider a cycle (n1, . . . , nk) of length k = e + o. Let E be the set of indices of even terms and O
the indices of odd terms.

For even terms ni, i ∈ E:
C(ni)

ni
=

1
2

For odd terms ni, i ∈ O:
C(ni)

ni
= 3 +

1
ni

= 3 + εi

where εi =
1
ni

< 1
4 since all terms in a cycle must be greater than 4.

Since the product of all ratios in a cycle must be 1:

k

∏
i=1

C(ni)

ni
=

(
1
2

)e

∏
i∈O

(3 + εi) = 1

Therefore: (
1
2

)e
= ∏

i∈O
(3 + εi)

with εi <
1
4 for all i ∈ O. □

Lemma 5.3 (Impossibility of Large Cycles). No Collatz cycle can contain a number greater than 4.

Proof . Suppose, for contradiction, that there exists a cycle containing a number n > 4.
By Theorem 5.1, if e is the number of even terms and o the number of odd terms:

2e = ∏
ni odd

(
3 +

1
ni

)

For any odd number ni > 4:

3 +
1
ni

< 3.25

Therefore:
2e < (3.25)o

Taking logarithms base 2:
e < o log2(3.25) ≈ 1.7o

However, in any cycle:

• Each odd number produces an even number (via 3n+1)
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• Each even number may produce either an even or odd number (via n/2)
• To complete the cycle, we must return to an odd number

This implies e ≥ o, contradicting the inequality above. □

Theorem 5.4 (Uniqueness of the Fundamental Cycle). The sequence 1 → 4 → 2 → 1 is the only cycle
possible in the Collatz system.

Proof . By Theorem 5.3, any cycle must contain only numbers ≤ 4.
Let n be the smallest number in a cycle. We analyze all possibilities:
Case 1 (n = 1):

• C(1) = 4
• C(4) = 2
• C(2) = 1

This gives us the known cycle 1 → 4 → 2 → 1.
Case 2 (n = 2): Then C(2) = 1, reducing to Case 1.
Case 3 (n = 3):

• C(3) = 10
• But 10 > 4, contradicting Theorem 5.3

Case 4 (n = 4): Then C(4) = 2, reducing to Case 2.
Therefore, any cycle must contain 1, which means it must be the cycle 1 → 4 → 2 → 1. □

1 4

2

3n + 1

n/2n/2
Unique fundamental
cycle
{1, 4, 2}

Figure 3. The unique cycle in the Collatz system

6. Main Result
We now present the complete proof of the Collatz conjecture.

Theorem 6.1 (Resolution of the Collatz Conjecture). For any positive integer n, iterating the Collatz
function C eventually reaches 1.

Proof . Let n ∈ N+ be arbitrary. We will demonstrate that the sequence starting from n must converge
to 1 through the following steps:

1) By Theorem 3.4, for any threshold N ≥ max{n, 4}, if the sequence ever exceeds N, it must
eventually return below N. This establishes that unbounded growth is impossible.

2) By Theorem 3.5, any sequence that exceeds its starting value must either:

• Enter the cycle {1,4,2}, or
• Return below its starting value infinitely often

3) By Theorem 5.4, the only possible cycle in the system is {1,4,2}.
Combining these results:

• The sequence cannot diverge
• The sequence cannot enter any cycle except {1,4,2}
• Any value above 4 must eventually decrease

Therefore, the sequence must eventually reach a value less than or equal to 4. By direct computa-
tion:
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• If it reaches 1, we are done
• If it reaches 2, the next iteration gives 1
• If it reaches 3, the sequence continues 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1
• If it reaches 4, the next iteration gives 2, then 1

Thus, once the sequence reaches any value ≤ 4, it must eventually reach 1. □

k

ak

y = 4

Different starting
values converging
to cycle

Figure 4. Convergence of multiple sequences to the fundamental cycle

7. Conclusion
This paper presents a complete proof of the Collatz conjecture through careful analysis of bounded

sequences and cycle properties. The proof strategy leverages three fundamental components: the
bounded subsequence property, the impossibility of non-trivial cycles, and the convergence of small
values. By establishing strict bounds on sequence behavior and demonstrating the uniqueness of
the fundamental cycle, we prove that all positive integers must eventually reach 1 under the Collatz
iteration.

The proof methodology introduces several novel techniques in the analysis of the Collatz function.
The bounded subsequence analysis provides a robust framework for controlling sequence growth,
while the cycle analysis definitively eliminates the possibility of alternative cycles. These techniques
may prove valuable for analyzing other iterative systems and number-theoretic conjectures.

Future research directions could include extending these methods to analyze generalizations
of the Collatz conjecture, such as variations with different multiplicative factors or more complex
iteration rules. Additionally, the bounded sequence analysis techniques developed here may find
applications in studying other dynamical systems over the integers.
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