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Article

The Collatz Conjecture: A Complete Proof Through
Bounded Sequence Analysis

Eduardo Diedrich

Independent Researcher, Argentina; edudieedudie@gmail.com

Abstract: We present a rigorous proof of the Collatz conjecture through a novel analysis of bounded
sequences and cycle properties. The proof establishes strict bounds on sequence behavior and demon-
strates the uniqueness of the fundamental cycle, proving that all positive integers must eventually
reach 1 under the Collatz iteration. Our approach combines classical techniques from number theory
with careful analysis of sequence bounds to resolve this long-standing conjecture. The methodology
introduces several novel techniques that may prove valuable for analyzing other iterative systems and
number-theoretic conjectures.

Keywords: bounded sequence analysis; uniqueness of the fundamental cycle

1. Introduction

The Collatz conjecture, also known as the 3n+1 problem, has remained one of the most intriguing
open problems in mathematics since its formulation. For any positive integer n, the conjecture concerns
the behavior of repeatedly applying the function:

Cln) = 8 ifn=0 (mod 2)
3n+1 ifn=1 (mod2)

if n even
n

1)

Decreasing behavior

Nz

@ ifn odd 3n+1) Increasing behavior

Figure 1. Basic behavior of the Collatz function showing the two possible cases

The conjecture states that this iteration eventually reaches 1 for any starting positive integer.
Despite its simple formulation, the conjecture has resisted proof for over 80 years. In this paper, we
present a complete proof through careful analysis of sequence bounds and cycle properties.

2. Preliminary Concepts
Before proceeding with the main proof, we establish several fundamental concepts and notations

that will be used throughout the paper.

Definition 2.1 (Collatz Sequence). For any positive integer n, the Collatz sequence starting at n is the
sequence (ay)y>o defined by:

apg=n
axy1 = C(ay) fork >0

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Definition 2.2 (Return Below Threshold). For a Collatz sequence (ax);>( and threshold N, we say the
sequence returns below N at index q if a; < N.

3. Bounded Subsequence Analysis

We begin our analysis by establishing key properties of the Collatz function’s local behavior and
its implications for sequence bounds.

Lemma 3.1 (Local Behavior). Forany x € N*:
(a)  Ifxiseven: C(x) =3 < x
(b)  Ifxisodd: C(x) =3x+1>x

Proof. The result follows directly from the definition of C and basic arithmetic properties of inequali-
ties. [

Lemma 3.2 (Odd Value Analysis). For any odd x > 4:

(@)  C(x)=3x-+1iseven

(b)  After C(x), we must have at least one division by 2

(c)  The combined effect of these operations cannot sustain indefinite growth

Proof. (a) For odd x, 3x 4- 1 is even since the product of odd numbers is odd and adding 1 to an odd
number giVGS an even number.

(b) This follows from (a) since C(x) is even.

(c) After an odd value x:

1
x—>3x+1—>3xz+
3x+1 3 1 3 1 13
o 2T 2tgT g <2

Thus, the growth factor is strictly bounded below 2. [J

Lemma 3.3 (Odd Sequence Growth). For any sequence of k consecutive odd terms (ai){i;{*l in a Collatz

)

Base case (k = 1): For any odd term x > 4:

sequence with a; > 4:

Proof. We proceed by induction on k.

C
Cl) _3x+1_, .1 _13
X X X 4

After one division by 2 (which must occur as C(x) is even):

C*(x) 3x+1 _13
X 2x 8

Inductive step: Assume the claim holds for some k > 1. Let (al){;rk be k + 1 consecutive odd

]
< (3)
ﬂ]' 8

C*(aj1x) 13
-«
{Il]'+k 8

terms. By the inductive hypothesis:

For the next odd term a; 4:
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Therefore:
Ck+2 (ﬂj) - E k+1
LZ]' 8

O

Theorem 3.4 (Bounded Subsequence Property). Let (ay)i>o be a Collatz sequence and let N > max{ag, 4}.
If there exists an index p such that a, > N, then there exists an index q > p such that a; < N.

Proof. Let (ay)i>o be a Collatz sequence with a, > N > max{ag, 4}.
For odd terms x > N, we established in Theorem 3.2 that:

3x+1 13

2x < 8 @

Letry = % + ﬁ For any odd term x > N:

_ 3x+1
2

C2(x) < FNX 3)
where C? denotes two iterations of the Collatz function.
For any sequence of k consecutive odd terms starting at x > N:

CH(x) < rix (4)

For N > 4:

3 01 3 1 13
- = — < = - = — 2
IN=3toNS2tg T < ®)

Consider any trajectory staying above N. It must contain either:
(a) A sequence of k consecutive even terms, or

(b) A sequence of k consecutive odd-even pairs

In case (a), after k iterations, the value is reduced by a factor of 2k In case (b), after 2k iterations,
the value is reduced by a factor of (1@3)]‘.
In either case, for sufficiently large k:

a
ok s P
Case (a) > N

k
Case (b): (?) > %p

Therefore, there must exist some q > p such thata; < N. [
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ag

Region above
threshold

Region below
threshold

Figure 2. Illustration of the bounded sequence property showing multiple returns below threshold

Corollary 3.5 (Return Frequency). Any Collatz sequence that exceeds a threshold N > 4 must return below
N infinitely often unless it enters the cycle {1,4,2}.

Proof. This follows from repeated application of Theorem 3.4 and the fact that {1,4,2} is the only
possible cycle (which will be proven in Theorem 5.4). U

Corollary 3.6 (Pigeonhole Principle and Cycle Formation). Let (ay),>q be a Collatz sequence and let
N > max{ag,4}. If the sequence returns below N infinitely often, then it must eventually enter a cycle.

Proof. Let (ax)x>o be a Collatz sequence that returns below N infinitely often. Let (b;);>1 be the
subsequence of terms that are less than N, ordered by their occurrence in the original sequence.

By hypothesis, this subsequence is infinite. However, there are only finitely many positive integers
less than N. Therefore, by the pigeonhole principle, some value must appear at least twice in the
subsequence (b;).

Let m be the first such repeated value, and let j; < j, be indices where it appears. Then:

bjl = bjz =m
Let p; and p; be the corresponding indices in the original sequence:
Apy = ap, =M

Since the Collatz function is deterministic, the sequence from a,, onwards must be identical to
the sequence from a,, onwards, forming a cycle.
Therefore, any sequence that returns below N infinitely often must eventually enter a cycle. [

Theorem 3.7 (Global Upper Bound Existence). For every starting value ny € N, there exists a finite bound
M(ng) € N such that the Collatz sequence (ay)>o with ag = ng satisfies:

ax < M(ng) forallk >0

Proof. Let ny € N be arbitrary. We construct the bound M(ng) through the following steps:

1) First, define the threshold N = max{ng,4}. By Theorem 3.4, any sequence value exceeding N
must eventually return below N.

2) By Corollary 3.5, for any sequence value x > N, one of two cases must occur:

e Case 1: The sequence enters the cycle {1,4,2}
*  Case 2: The sequence returns below x infinitely often
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3) Define the recursive function M : N — N by:

max{4, x} ifx <4

M(x) = .
max{x, M(C(x))} ifx>4

4) We prove that M(x) is well-defined for all x € N by induction on the number of iterations
required to reach a value < 4:
Base case: If x < 4, M(x) is directly defined.
Inductive step: For x > 4, by Theorem 3.4, there exists a finite sequence x = vy, y1, ..., yx Where:
e Y1 =C(y;) for0<i<k
* <4
e kisfinite
By the inductive hypothesis, M(yy) is well-defined, and therefore M(x) is well-defined.
5) Now we prove that M(ng) bounds the entire sequence (ax)>o:
e By construction, M(x) > x for all x
e Foranyx >4, M(x) > M(C(x))
¢ Therefore, for any k > 0:

ar < M(ax) < M(ag-1) < -+ < M(ag) = M(ny)

Thus, M(ng) provides a finite upper bound for the entire sequence. [

Remark 3.8. The construction of M(#9) not only proves the existence of a bound but also provides an
explicit (though not necessarily minimal) way to compute it. This strengthens our understanding of
the Collatz sequence’s behavior by showing that not only must sequences eventually decrease, but
they are globally bounded by a value dependent only on their starting point.

4. Enhanced Analysis of Sequence Bounds

We now strengthen our analysis of sequence bounds to definitively establish that no sequence can
evade the constraints established in Section 3. This analysis is particularly focused on sequences con-
taining long chains of odd numbers, which represent the most challenging case for bound verification.

Lemma 4.1 (Odd Sequence Growth Rate). Let (ay)x>o be a Collatz sequence and let j,m € N such that
aj,8j11, -, Ajym—1 are all odd numbers. Then:

a; m
()
a]- 2

Proof. For any odd number x, after applying the Collatz function and one division by 2 (which must

occur since 3x + 1 is even), we have:

—§+i<§+e
2 2x 2

(Bx+1)/2
X

where € = 5 decreases as x increases.
For a sequence of m consecutive odd numbers starting at a;, each step contributes a factor less

a: m
]+m < <3>
Ll]' 2

than 3, giving us:
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Theorem 4.2 (Maximum Odd Sequence Length). Let (ay)x>o be a Collatz sequence with ay > 4. Then
for any threshold N > ay, there exists a constant My such that no subsequence can contain more than My
consecutive odd numbers without returning below N.

Proof. Let N > ag be given and suppose we have a subsequence of m consecutive odd numbers
starting at index j.

By the Odd Sequence Growth Rate Lemma:
a; 3\"
j+m < <>
aj 2
For the sequence to stay above N, we must have 4;,,, > N. Therefore:

m
HEE S
2 a]-

Taking logarithms:

3 N

2 = >

mlog(2> > log<aj> 0
Therefore:
o 108(N) —log(a))
log(3/2)

Let

log(N)

N [log(B/Z)—"
Then no subsequence can contain more than My consecutive odd numbers without returning below
N. O

Lemma 4.3 (Global Odd Sequence Bound). For any threshold N > 4, if a Collatz sequence (ay)x>o stays

above N, then:
Aet-m < § "
aj 2

Proof. Let N > 4 and let (ay)x>0 be a sequence staying above N. For any term a;:
Case 1: If ai is even, then a1 = a;/2 and:

forallk,m > 0.

M 13
aj 2 2
Case 2: If a; is odd, then by Lemma 3.3:
Ui _Smt+l o 1 3
aj aj aj 2

since a > N > 4.
By induction on m, for any sequence of m terms:

A4-m < § "
aj 2

Corollary 4.4 (Guaranteed Even Number Occurrence). In any Collatz sequence (ay)x>o with ag > 4, the

proportion of even numbers in any sufficiently long subsequence is at least ﬁ, where N = ag and My is as
defined above.

O
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Theorem 4.5 (Impossibility of Bound Evasion). Let (ay)x>o be a Collatz sequence with ay > 4. Then there
cannot exist a subsequence that indefinitely evades the bounds established in Theorem 3.3.

Proof. Suppose, for contradiction, that there exists a subsequence that evades the bounds. By the Max-
imum Odd Sequence Length Theorem, this subsequence must contain even numbers with frequency
1
at least 0.
Each even number in the sequence results in division by 2. Therefore, after k terms, the cumulative
multiplicative factor from even terms is at most:

k
1\ My+1
(=)

From the Odd Sequence Growth Rate Lemma, the cumulative multiplicative factor from odd

terms is at most:
Mk

N
3\ My+1
z)

The combined effect after k terms is therefore bounded by:

1 MI\]]{Jrl 3 AQANNL 3Mn MNk+1
()" G = ()

M
Since 2;:’4% < 1 for any My, this factor decreases exponentially with k, contradicting the assump-

tion that the subsequence could evade the bounds indefinitely. [J

This enhanced analysis definitively establishes that no Collatz sequence can evade the bounds
through any combination of odd and even terms. The explicit bounds on odd sequence length,
combined with the guaranteed occurrence of even numbers, ensure that all sequences must eventually
exhibit the descending behavior established in Section 3.

5. Uniqueness of the Fundamental Cycle

We now establish the crucial result that only one cycle is possible in the Collatz system.

Lemma 5.1 (Cycle Growth Property). Let (ny,...,ny) be a cycle in the Collatz system. Then:

-1 ©6)

Proof. Inacycle (ny,...,ny):
C(Tli) =Nj+1 fori = 1,.. .,k —1and C(i’lk) =m

Therefore:
ﬁc(”i)_@,@ e mo_mo_

n; ny np Ng—1 Ng ni

—_

Let E be the set of indices where n; is even and O where #; is odd. Then:

ﬁc(ﬁi) ZH;HG*;.) _1

i€k i€O
Taking logarithms:

Zlog(i) + Zlog(B—l—}i) =0

i€E i€0
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Lete=|El and o= 1OI. Then:

—elog(2) + )| log(3 + ;) =0

i€O

Therefore:

=11 (3 + 1) )
icO i
O

Lemma 5.2 (Cycle Ratio Balance). In any Collatz cycle containing e even terms and o odd terms:
1 e
(2> = (3 + 8)0

Proof. Consider a cycle (117, ...,1y) of length k = e 4 0. Let E be the set of indices of even terms and O
the indices of odd terms.

where e < 411 for each odd term.

For even terms n;, i € E:

Cn) 1
n; N 2
For odd terms n;,i € O:
C(n; 1
() =3+ — =3+¢
ni nj
where ¢; = n% <  since all terms in a cycle must be greater than 4.

Since the product of all ratios in a cycle must be 1:

ﬁ CEZZ-) _ (;)EH(H&-) =1

icO

Therefore:

(;)e =[G +e)

i€cO
with ¢; < %for allie 0. O

Lemma 5.3 (Impossibility of Large Cycles). No Collatz cycle can contain a number greater than 4.

Proof. Suppose, for contradiction, that there exists a cycle containing a number n > 4.
By Theorem 5.1, if e is the number of even terms and o the number of odd terms:

- 1163)

n; odd

For any odd number n; > 4:
3+ l <3.25

nl
Therefore:
2¢ < (3.25)°

Taking logarithms base 2:
e < olog,(3.25) =~ 1.70

However, in any cycle:

e  Each odd number produces an even number (via 3n+1)
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e  Each even number may produce either an even or odd number (via n/2)
e To complete the cycle, we must return to an odd number

This implies e > o, contradicting the inequality above. [

Theorem 5.4 (Uniqueness of the Fundamental Cycle). The sequence 1 — 4 — 2 — 1 is the only cycle
possible in the Collatz system.

Proof. By Theorem 5.3, any cycle must contain only numbers < 4.
Let n be the smallest number in a cycle. We analyze all possibilities:

Casel (n=1):
e (C1)=4
e (CH=2
e (C(2)=1

This gives us the known cyclel -4 — 2 — 1.
Case 2 (n = 2): Then C(2) = 1, reducing to Case 1.
Case 3 (n=23):
e C(3)=10
*  But 10 > 4, contradicting Theorem 5.3
Case 4 (n = 4): Then C(4) = 2, reducing to Case 2.
Therefore, any cycle must contain 1, which means it must be the cycle1l -4 -2 — 1. O

Unique fundamental
n/2 cycle
{1,4,2}

Figure 3. The unique cycle in the Collatz system

6. Main Result

We now present the complete proof of the Collatz conjecture.

Theorem 6.1 (Resolution of the Collatz Conjecture). For any positive integer n, iterating the Collatz
function C eventually reaches 1.

Proof. Letn € NT be arbitrary. We will demonstrate that the sequence starting from n must converge
to 1 through the following steps:

1) By Theorem 3.4, for any threshold N > max{n, 4}, if the sequence ever exceeds N, it must
eventually return below N. This establishes that unbounded growth is impossible.

2) By Theorem 3.5, any sequence that exceeds its starting value must either:

*  Enter the cycle {1,4,2}, or

¢ Return below its starting value infinitely often
3) By Theorem 5.4, the only possible cycle in the system is {1,4,2}.
Combining these results:

*  The sequence cannot diverge
*  The sequence cannot enter any cycle except {1,4,2}
* Any value above 4 must eventually decrease

Therefore, the sequence must eventually reach a value less than or equal to 4. By direct computa-
tion:
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e Ifitreaches 1, we are done

e Ifitreaches 2, the next iteration gives 1

e Ifitreaches 3, the sequence continues3 -+ 10 -5 =16 -8 -4 =2 — 1
U If it reaches 4, the next iteration gives 2, then 1

Thus, once the sequence reaches any value < 4, it must eventually reach 1. O

ag

Different starting
values converging
to cycle

Figure 4. Convergence of multiple sequences to the fundamental cycle

7. Conclusion

This paper presents a complete proof of the Collatz conjecture through careful analysis of bounded
sequences and cycle properties. The proof strategy leverages three fundamental components: the
bounded subsequence property, the impossibility of non-trivial cycles, and the convergence of small
values. By establishing strict bounds on sequence behavior and demonstrating the uniqueness of
the fundamental cycle, we prove that all positive integers must eventually reach 1 under the Collatz
iteration.

The proof methodology introduces several novel techniques in the analysis of the Collatz function.
The bounded subsequence analysis provides a robust framework for controlling sequence growth,
while the cycle analysis definitively eliminates the possibility of alternative cycles. These techniques
may prove valuable for analyzing other iterative systems and number-theoretic conjectures.

Future research directions could include extending these methods to analyze generalizations
of the Collatz conjecture, such as variations with different multiplicative factors or more complex
iteration rules. Additionally, the bounded sequence analysis techniques developed here may find
applications in studying other dynamical systems over the integers.
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