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Article

2m − 1 as the Integer Formulation to Govern the
Dynamics of Collatz-Type Sequences

Gaurav Goyal

Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India; gaurav.goyal@mech.iitd.ac.in

Abstract: It has been discovered that representing odd integers as modified binary expressions of the form

∑
n>m

2n + 2m − 1 for m ≥ 1 helps in understanding the dynamics of Collatz-type sequences. Starting with the

original Collatz sequence 3x + 1, it is found that when the odd step is applied to an odd integer ∑
n>m

2n + 2m − 1,

an even integer 3
(

∑
n>m

2n
)
+ 2m+1 + 2m − 2 is obtained, which is exactly once divisible by 2, unless the lowest

index reduces to zero. This implies that the sequence alternates between odd and even steps m times. This governs

the dynamics of the Collatz-type sequences because the value of m determines the number of times the integer

can be divided by 2 in each even step. A shortcut method is developed based on this dynamics that states that

the even integer after m odd-even steps are completed is
((

3
2

)m
∑

n>m
2n
)
+ 3m − 1. A shortcut method of this

magnitude has never been utilized anywhere. The shortcut method for the modified Collatz sequence 5x + 1 is

also presented.

Keywords: Collatz; 3n+1

1. Introduction

The Collatz problem [1–4], defines the following set of rules: If n is odd, multiply it by 3, and add
1. If n is even, it is divided by 2.

The associated Collatz conjecture states that every integer ultimately reduces to unity. To prove
this conjecture, it must be shown not only that the sequence eventually cycles through 1, 4, 2, 1, but
also that no integer diverges to infinitely larger integers [5,6].

While a complete proof may be impossible, this article attempts to understand the working of
Collatz-type sequences. For this, the odd integers are expressed as modified binary expressions ending
in 2m − 1 for m ≥ 1. By examining the integers that result from this seed form, insights are gained
into the patterns of the odd-even steps. The conditions that govern the progression of Collatz-type
sequences are immediately made clear through the use of the modified binary form ending with 2m − 1.
For this reason, 2m − 1 is stated as the governing integer formulation for Collatz-type sequences.

2. Behavior of Collatz Sequence 3n + 1

Let x be an odd integer ending with 2m − 1. The term 2m − 1 is crucial because it governs the
sequence’s behavior. Although calculations will only explicitly show the evolution of this term, it is
implied that the full odd integer, including higher index terms, is present but not explicitly written out.

Let O{1},O{2}, . . . denote the resulting integer at the end of the odd step while E{1}, E{2}, . . .
denote the resulting integer at the end of the even step. The modified binary expression of integers at
the end of each step is:
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x = 2m − 1

O{1} = (2 + 1)(2m − 1) + 1

= 2m+1 + 2m − 2

E{1} = 2m + 2m−1 − 1

O{2} = (2 + 1)(2m − 1) + 1 + (2 + 1)(2m−1)

= 2m+1 + 2m − 2 + (2 + 1)(2m−1)

E{2} = 2m + 2m−1 − 1 + (2 + 1)(2m−2)

O{3} = 2m+1 + 2m − 2 + (2 + 1)(2m−1) + (2 + 1)2(2m−2)

E{3} = 2m + 2m−1 − 1 + (2 + 1)(2m−2) + (2 + 1)2(2m−3)

The above expressions are re-written in the expanded form as follow:

x = 2m − 1

O{1} = 2m+1 + 2m − 2

E{1} = 2m + 2m−1 − 1

O{2} = 2m+2 + 2m−1 − 2

E{2} = 2m+1 + 2m−2 − 1

O{3} = 2m+2 + 2m+1 + 2m−1 + 2m−2 − 2

E{3} = 2m+1 + 2m + 2m−2 + 2m−3 − 1

The following observations are made based on the expanded form:

• Under normal conditions, each O step is followed by exactly one E step.
• However, after each OE step, the value of the lowest index decreases. Consequently, after m OE

steps, the lowest index becomes zero.
• When the first 20 term is reached, it cancels out the negative 1, resulting in an even integer.

Additional E steps are performed until the integer becomes odd again, meaning the next lowest
index also becomes zero and a positive 1 is obtained.

• The positive 1 is rewritten as 21 − 1. An O step is then performed, followed immediately by two
E steps.

• This process repeats until m additional E steps are completed. These m additional E steps reduce
the term 2m to 20, causing all lower index terms to vanish. The value m is also subtracted from
higher indices.

This demonstrates that, despite the overall growth of the integer, terms with progressively smaller
indices are being generated. Once the smallest index is reduced to zero, it triggers a domino effect,
causing the next smallest index to also become zero. This cascading process continues until all indices
are reduced to zero.

Let the even integer obtained at the first even step after the mth odd step be E (1){m}.

E (1){m} = 2m + 2m−1 + (2 + 1)(2m−2) + · · ·+ (2 + 1)m−1 − 1

= 3m − 1
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Suppose the actual integer is ∑
n>m

2n + 2m − 1, then the integer obtained at E (1){m} becomes

E (1){m} =

((
3
2

)m

∑
n>m

2n

)
+ 3m − 1

A few examples are given in Table 1.

Table 1. Examples of the even integer obtained at E (1){m} for various seed integers.

Integer Modified binary E (1){m} Integer value
7 23 − 1 33 − 1 26

19 24 + 22 − 1
(

3
2

)2
24 + 32 − 1 44

34603007 225 + 220 − 1
(

3
2

)20
225 + 320 − 1 115063885232

57343 215 + 214 + 213 − 1
(

3
2

)13
(215 + 214) + 313 − 1 11160260

3. Controlling the Collatz Sequence

Since the behavior of the Collatz sequence is understood, it is now possible to estimate the starting
integer based on a given pattern of OE cycles, or to estimate the cycle pattern based on the integer. An
example of estimating the integer based on a given OE cycle is presented.

3.1. Estimating Integer based on a Cycle Pattern

Suppose the following cycle pattern is desired:

OEE︸ ︷︷ ︸
α

OEE︸ ︷︷ ︸
β

OEOEE︸ ︷︷ ︸
γ

The cycle is segmented into α, β, and γ blocks depending on termination by the extra E step. Let
the integer be of the form 2γ + 2β + 2α − 1, γ > β > α. The value of α is visually determined as 1.

The residue of 2α − 1 at the end of α block is one. The lowest index term at the end of α block
determine the cycle pattern for the β block. The lowest index terms resulting from 2β and 2γ at the end
of the α block are estimated using binary formulation in previous section.

OEE(x) = . . . + 2γ−1 + 2γ−2 + 2β−1 + 2β−2 + 1

The higher index terms are ignored. The integer formulation should end in 21 − 1 since there is
one OE cycle. Therefore, the odd integer resulting from 2β−2 + 1 should be equivalent to 21 − 1.

2β−2 + 1 ≡ 21 − 1

β ≥ 4

In a similar manner, the lowest index at the end of β block are

OEEOEE(x) = . . . + 2γ−2 + 2γ−3 + 2γ−3 + 2γ−4 + 2β−2 + 2β−3 + 2β−3 + 2β−4 + 1

OEEOEE(x) = . . . + 2γ−1 + 2γ−4 + 2β−1 + 2β−4 + 1

OEEOEE(x) = . . . + 2γ−4 + 2β−4 + 1
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The higher index terms obtained from coalescing lower index terms are removed. The lowest
index terms are 2γ−4 + 2β−4 and this should be equivalent to 22 − 1 since the OE continues for two
cycle.

2γ−4 + 2β−4 + 1 ≡ 22 − 1

If β = 5, the term 2β−4 + 1 becomes equal to 22 − 1. Therefore, the value of γ is greater than 4.
Some of the integers obtained for different values of γ along with their cycle are given.

3.1.1. γ = 5

The integer is 25 + 25 + 21 − 1 = 65. The Collatz cycle is OEEOEEOEEE . The cycle is correct till
the β block but then differs for the γ block. It happens because the value of γ and β is taken equal that
results in index coalescing.

3.1.2. γ = 6

The integer is 26 + 25 + 21 − 1 = 97. The Collatz cycle is OEEOEEOEOEOEE . The cycle is
improvement over the previous one but still not correct. This occurs because 2γ−4 + 2β−4 + 1 =

22 + 22 − 1. As one can see, the indices are same and coalesce to become 23 − 1 for which the OE
repeat three times.

3.1.3. γ = 7

The integer is 27 + 25 + 21 − 1 = 161 and the Collatz cycle is OEEOEEOEOEE which is the
desired cycle.

3.1.4. γ = 8

The integer is 28 + 25 + 21 − 1 = 289 and the Collatz cycle is OEEOEEOEOEE which is also the
desired cycle. Similarly, any integer 2γ + 25 + 21 − 1 will follow the desired cycle for any γ ≥ 7.

4. Constructing Integers That ‘Might’ Diverge

There are two ways the sequence can diverge:

• m is infinite.
• Alternatively, if every time the binary expression of an integer ends in positive 1 and is re-written

as 21 − 1, there is a sequence of 21 + 22 + 23 + · · · that combines with 21 to produce an index
larger than m.

This discussion focuses on the second method of divergence. Let the seed integer be of the form
x = 2b + 2a − 1.

As a starting point, let a = 1. The integer obtained after applying OEE is:

OEE(x) = 2b−1 + 2b−2 + 2 − 1

If the terms 2b−1 + 2b−2 are set to 4 + 2 for b = 3, the integer obtained after OEE becomes
OEE(x) = 23 − 1, and the seed integer is x = 9.

Next, let the seed integer be x = 2c + 23 + 21 − 1. The integer obtained after applying
OEEOEOEOEE is:
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OEEOEOEOEE(x) = OEEOEOEOEE(2a) + 24 + 23 + 21

= 2a+1 + 2a−1 + 2a−5 + 24 + 23 + 21

OEEOEOEOEEE(x) = 2a + 2a−2 + 2a−6 + 23 + 22 + 2 − 1

The integer is reduced to odd value in last step. For instance, let a = 7. The resulting integer is
27 + 25 + 24 − 1, giving a seed integer of x = 137. This shows that the value of the lowest index has
increased once again.

Higher indices can be calculated in a similar manner. Changing the value of a will yield different
seed integers.

5. Application to Collatz-Type 5x + 1 Sequence

Consider the modified binary expression of integers obtained when 5x + 1 is applied to 2m − 1:

x = 2m − 1

O{1} = (22 + 1)(2m − 1) + 1

= 2m+2 + 2m − 22

E (1){1} = 2m+1 + 2m−1 − 2

E (2){1} = 2m + 2m−2 − 1

O{2} = (22 + 1)(2m − 1) + 1 + (22 + 1)(2m−2)

= 2m+2 + 2m − 22 + (22 + 1)(2m−2)

E (1){2} = 2m+1 + 2m−1 − 2 + (22 + 1)(2m−3)

E (2){2} = 2m + 2m−2 − 1 + (22 + 1)(2m−4)

O{3} = 2m+2 + 2m − 22 + (22 + 1)(2m−2) + (22 + 1)2(2m−4)

E (1){3} = 2m+1 + 2m−1 − 2 + (22 + 1)(2m−3) + (22 + 1)2(2m−5)

E (2){3} = 2m + 2m−2 − 1 + (22 + 1)(2m−4) + (22 + 1)2(2m−6)

The following observations are made:

• If m is odd then the pattern OE (1)E (2) repeats for
(

m−1
2

)
times. The integer obtained at

E (1){m+1
2 } is odd and a O step follows, resulting in the pattern terminating with OE (1)O.

• If m is even then the pattern OE (1)E (2) repeats for
(m

2 − 1
)

times. The integer obtained at E (2){m
2 }

is even and another E step follows, resulting in the pattern terminating with OE (1)E (2)E (3). The
actual number of E steps depend on the integer.
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5.1. Case 1: m is odd

Suppose m is odd and the O{m+1
2 + 1} step occurs after the E (1){m+1

2 } step. The even integer
obtained at O{m+1

2 + 1} is

O
{

m + 1
2

+ 1
}

= (22 + 1)(2m+1 − 2) + 1

+ (22 + 1)(2m−1) + (22 + 1)2(2m−3) + · · ·+ (22 + 1)
m+1

2

= 2m+3 + 2m+1

+ (22 + 1)(2m−1) + (22 + 1)2(2m−3) + · · ·+ (22 + 1)
m+1

2 − 9

= 2m+3 + 2m+1 + 5
m+3

2 − 5 · 2m+1 − 9

= 5
m+3

2 − 9

As before, if the actual integer is ∑
n>m

2n + 2m − 1, then the integer obtained at O
{

m+1
2 + 1

}
becomes

O
{

m + 1
2

+ 1
}

=

(
10 ·

(
5
22

)m+1
2

∑
n>m

2n

)
+ 5

m+3
2 − 9

A few examples are given in Table 2.

Table 2. Values of even integer obtained at O
{

m+1
2 + 1

}
for various seed integers with odd m.

Integer Modified binary O
{

m+1
2 + 1

}
Integer value

7 23 − 1 5
3+3

2 − 9 116

95 26 + 25 − 1 10 ·
(

5
22

) 5+1
2 26

+5
5+3

2 − 9
1866

57343 215 + 214 + 213 − 1 10 ·
(

5
22

) 13+1
2
(215 + 214)

+5
13+3

2 − 9
2734366

5.2. Case 2: m is even

Let z additional E steps occur after E (2){m
2 }. The resulting odd integer will be

E (2+z)
{m

2

}
=

1
2z

(
2m + 2m−2 − 1 + (22 + 1)(2m−4) + · · ·+ (22 + 1)

m
2 −1

)
The odd step produces an even integer given by
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O
{m

2
+ 1
}
=

1
2z

(
(22 + 1)(2m − 1)

)
+ 1

+
1
2z

(
(22 + 1)(2m−2) + (22 + 1)2(2m−4) + · · ·+ (22 + 1)

m
2

)
=

1
2z

(
5

m
2 +1 − 5

)
+ 1

As before, if the actual integer is ∑
n>m

2n + 2m − 1, then the integer obtained at O
{m

2 + 1
}

becomes

O
{m

2
+ 1
}
=

(
5
2z ·

(
5
22

)m
2

∑
n>m

2n

)
+

1
2z

(
5

m
2 +1 − 5

)
+ 1

The variable z is chosen such that O
{m

2 + 1
}

is even.
A few examples are given in Table 3.

Table 3. Values of even integer obtained at O
{m

2 + 1
}

for various seed integers with even m. (*6 is
obtained when O is applied to 1.)

Integer Modified binary O
{m

2 + 1
}

z Integer value

3 22 − 1 1
2z

(
5

2
2 +1 − 5

)
+ 1 2 6*

79 26 + 24 − 1

(
5
2z ·
(

5
22

) 4
2 26
)

+ 1
2z

(
5

4
2 +1 − 5

)
+ 1

2 156

53247 215 + 214 + 212 − 1

(
5
2z ·
(

5
22

) 12
2
(215 + 214)

)
+ 1

2z

(
5

12
2 +1 − 5

)
+ 1

2 253906

6. Conclusions

It has been recently discovered that expressing odd integers in the alternate binary form 2m − 1 aids
in understanding the workings of Collatz-type sequences. The understanding leads to formulations
that generate the even integer obtained after m odd-even steps are completed. For the original Collatz

sequence 3x + 1, the said even integer is given by
(( 3

2
)m

∑
n>m

2n
)
+ 3m − 1. This formulation allows

for construction on odd integers that follow a specific odd-even step pattern.
For the modified Collatz-type sequence 5x + 1, the formulation for the even integer depends on

m. If m is odd, the even integer is
(

10 ·
(

5
22

)m+1
2

∑
n>m

2n
)
+ 5

m+3
2 − 9. However, when m is even, the

even integer is
(

5
2z ·
(

5
22

)m
2

∑
n>m

2n
)
+ 1

2z

(
5

m
2 +1 − 5

)
+ 1. Here, the maximum value of z is such that

the integer remains even.

Data Availability Statement: Data availability is not applicable to this article as no new data were created or
analysed in this study.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2024                   doi:10.20944/preprints202407.0961.v5

https://doi.org/10.20944/preprints202407.0961.v5


8 of 8

1. Lagarias, J.C. The 3x+ 1 problem: An annotated bibliography (1963–1999). The ultimate challenge: the 3x
2003, 1, 267–341.

2. Lagarias, J.C. The 3x+ 1 problem: An annotated bibliography. preprint 2004.
3. Lagarias, J.C. The 3x+ 1 problem: An annotated bibliography, II (2000-2009). arXiv preprint math/0608208

2006.
4. Lagarias, J.C. The ultimate challenge: The 3x+ 1 problem; American Mathematical Soc., 2010.
5. Terras, R. A stopping time problem on the positive integers. Acta Arithmetica 1976, 3, 241–252.
6. Tao, T. Almost all orbits of the Collatz map attain almost bounded values. Forum of Mathematics, Pi.

Cambridge University Press, 2022, Vol. 10, p. e12.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2024                   doi:10.20944/preprints202407.0961.v5

https://doi.org/10.20944/preprints202407.0961.v5

	Introduction
	Behavior of Collatz Sequence bold0mu mumu 3n + 13n + 1section3n + 13n + 13n + 13n + 1
	Controlling the Collatz Sequence
	Estimating Integer based on a Cycle Pattern
	= 5
	= 6
	= 7
	= 8


	Constructing Integers That `Might' Diverge
	Application to Collatz-Type 5x + 1 Sequence
	Case 1: m is odd
	Case 2: m is even

	Conclusions
	

