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Abstract: Tracking an unmanned aerial vehicle (UAV) in the infrared video is an essential technology 
for the anti-UAV task. Given the frequent UAV target disappearance caused by occlusion or moving 
out of view, the global tracker, which has the unique advantage of recapturing the target, is widely 
used in infrared UAV tracking. However, the global tracker performs poorly when dealing with large 
target scale variation, because it cannot maintain the approximate consistency between the target 
sizes in the template and the search region. To enhance the scale adaptation of global trackers, we 
propose a plug-and-play scale adaptation enhancement module (SAEM). It can generate a scale 
adaptation enhancement kernel according to the target size in the previous frame, and then perform 
implicit scale adjustment on the extracted target template features. To optimize the training, we 
introduce an auxiliary branch to supervise the learning of SAEM, and add Gaussian noise to the input 
size to improve the robustness of SAEM. In addition, we propose a one-stage anchor-free global 
tracker (OSGT), which has a more concise structure than other global trackers to meet the real-time 
requirement. Extensive experiments on three Anti-UAV Challenge datasets and the Anti-UAV410 
dataset demonstrate the superior performance of our method, and verify that our proposed SAEM 
can effectively enhance the scale adaptation of existing global trackers. 

Keywords: infrared target tracking; scale adaptation; global tracker; UAV tracking; deep learning 
 

1. Introduction 

Infrared UAV tracking is to continuously locate a specific UAV in an infrared video and estimate 
its scale [1]. Benefiting from the excellent imaging ability of infrared cameras under all-weather and 
low-light conditions, this technology is widely applied to the anti-UAV task to protect individual 
privacy and public safety [2,3]. In essence, infrared UAV tracking belongs to the research field of 
single object tracking [4]. However, different from tracking generic objects such as pedestrians and 
vehicles, tracking high-speed moving UAVs in infrared videos needs to deal with more challenges: 

(1) The infrared UAV tracking is susceptible to occlusion, thermal crossover and interference in 
complex scenarios such as trees, buildings, heavy clouds, and strong clutter. 

(2) Due to the rapid movement of the UAV target or the instability of the infrared camera 
platform, the position of the UAV target will change drastically between two adja- 

cent frames or even move out of view. 
(3) The target scale variation is dramatic when the camera adjusts its focal length or the target 

moves rapidly closer or farther away, especially in the UAV-to-UAV task [5]. 
According to the size of the search region, single object trackers can be categorized into local 

trackers [6,7] and global trackers [8–10]. The local tracker crops a small patch from the current frame 
(Frame T) as the search region according to the target position and size in the previous frame, as 
shown in Figure 1(a). This is beneficial to reduce the computation and the background clutter. 
However, the local tracker relies on tracking a target stably. When the target disappears, it is liable to 
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select the wrong local search region, which leads to the failure of subsequent tracking. The global 
tracker uses the whole current frame as the search region, as shown in Figure 1(b), so it has the 
advantage of recapturing the disappeared target. For the above challenge (1) and (2), where targets 
frequently disappear due to occlusion or moving out of view, global trackers demonstrate greater 
robustness than local trackers, making them the preferred choice for the infrared UAV tracking. Table 
1 shows the comparison of the two categories of trackers. 

  

(a) (b) 

Figure 1. Comparison of the local tracker and the global tracker in handling target scale variation. (a) The local 
tracker can use the resizing operation in the preprocessing to cope with target scale variation; (b) The global 
tracker performs poorly when dealing with target scale variation. The red arrow indicates that our method uses 
the previous target size to implicitly resize the template to improve the scale adaptation. 

Table 1. Comparison of local and global trackers in the infrared UAV tracking task. 

Scheme 
Search 
region Efficiency 

Scale 
adaptation 

Occlusion or  
moving out of 

view 

Fast target or  
camera motion 

Local tracker Local patch High    

Global tracker 
Whole 
frame 

Low    

For challenge (3), the key to achieving scale adaptation is to maintain the approximate 
consistency between the sizes of the target in the template and the search region, which is beneficial 
to match the features of both for robust tracking. Traditional local trackers [11,12] employ pyramid 
sampling to obtain multi-scale search regions to deal with the target scale variation. Local trackers 
[13,14] based on deep learning adjust the template and the search region to the fixed sizes by resizing 
operation, as shown in Figure 1(a). This operation makes the target size in the search region 
approximately consistent with the target size in the template, which avoids the undesirable effect of 
target scale variation on tracking. However, global trackers cannot follow the above methods. On the 
one hand, if the whole current frame is resized according to the target scale change factor, the size of 
the image input to the model will increase dramatically, which leads to a sharp increase in the 
computation. On the other hand, if the target template is directly resized, the features of the resized 
template must be extracted every frame during online tracking, which also leads to a serious 
reduction in the running efficiency. Therefore, the existing global trackers have poor scale adaptation 
and cannot handle the target scale variation well, especially when the scale changes drastically. As 
shown in Figure 1(b), the global tracker incorrectly identifies the tower structure as the target, because 
the labeled target in the template is more approximate in size to the tower structure rather than the 
ground truth in the search region. 

Inspired by the scale-arbitrary image super-resolution [15,16], which can adaptively adjust 
model parameters to generate image features based on the required scaling factor, we propose an 
implicit scale adjustment method for the target template using the target size in the previous frame 
as a guide, as shown in Figure 1(b). Specifically, we propose a scale adaptation enhance module 
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(SAEM), which can generate a scale adaptation enhance kernel according to the previous target size, 
and then directly process the scale information of the extracted target template features. This method 
has less computation than the explicit method, which need to first resize the target template and then 
extract its features every frame. During training, we set up an auxiliary branch that adopts the above 
explicit method to supervise the learning of SAEM, and we also add Gaussian noise to the input size 
to improve the robustness of SAEM to handle the inaccurate input size in complex scenarios. During 
the online tracking, an adaptive threshold is proposed to more accurately judge whether the target is 
disappearing. This is used to prevent SAEM from receiving the incorrect size input caused by target 
disappearance. Moreover, SAEM is a plug-and-play module, which can be embedded into other 
global trackers to enhance their scale adaptation, especially when the typical scale change is more 
than 10× in infrared UAV tracking. 

In addition, we propose a concise one-stage anchor-free global tracker (OSGT) to meet the real-
time requirement of the infrared UAV tracking task. It is superior to the complex and inefficient two-
stage anchor-based structure commonly used in existing global trackers [10,17]. In detail, it combines 
the feature fusion module of GlobalTrack [8] improved by using hierarchical cross-correlation and 
the output head of FCOS [18] without the centerness branch. OSGT can run in real time at 30.9 fps in 
the infrared video with a resolution of 512×640. After SAEM is embedded, it can still run at 27.3 fps. 

In summary, the main contributions of the work in this paper are: 
(1) We propose a plug-and-play scale adaptation enhancement module, which can implicitly 

resize the target template to enhance the scale adaptation of existing global trackers for the infrared 
UAV tracking task. 

(2) During the training, we design an auxiliary branch to supervise the learning of SAEM and 
add Gaussian noise to the input size to enhance its robustness. During the online tracking, an 
adaptive threshold is proposed to accurately judge target disappearance and avoid SAEM being 
affected by the incorrect input size. 

(3) We propose a one-stage anchor-free global tracker with a simpler structure, which can track 
UAVs in real time. 

The rest of this paper is organized as follows. In Section 2, we briefly review the related works. 
In Section 3, we describe the proposed method in detail. In Section 4, experimental results are 
presented and analyzed. Finally, we conclude this paper in Section 5. 

2. Related Work 

This section focuses on approaches closely related to our work, including single object tracking, 
global tracker, infrared UAV tracking and scale-arbitrary image super-resolution. 

2.1. Single Object Tracking 

Single object tracking requires a target labeled in the first frame to be continuously located and 
scale-estimated in subsequent video frames. The target types are not limited, and the types of videos 
are usually RGB and infrared. Traditional target tracking algorithms use particle filtering [19], 
structured SVM [20] and correlation filter [21]. Among them, the correlation filter tackles the visual 
tracking by solving the ridge regression in Fourier domain, which has been widely developed 
because of its high efficiency. Benefiting from the development of deep learning, researchers have 
designed many high-performance deep trackers. These trackers usually adopt the Siamese network 
[22,23] to extract the features of the target template and the search region respectively, and then fuse 
them to search the target. According to the feature fusion methods, deep trackers can be roughly 
categorized into CNN-based and Transformer-based. The former mostly uses cross-correlation 
[22,24] and discriminative filtering [25,26], which has a simpler network structure and faster running 
speed. The latter utilizes the attention mechanism of Transformer to fuse the features [27,28], which 
exhibits attractive performance. However, these trackers need to use multiple Transformer modules 
in series, which leads to more computation and memory occupation. OSTrack [7] and MixFormer 
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[29] design Transformer-based one-stream frameworks, which combine feature extraction and 
feature fusion into one stage to deeply explore more suitable visual features for tracking. Moreover, 
ARTrack [30] and AQATrack [31] have used the autoregressive method to introduce the temporal 
motion information into the tracking model and achieve excellent performance. 

2.2. Global Tracker 

Different from the local tracker which uses a small image patch as the search region, the global 
tracker searches for the target over the entire current frame [8,32]. Therefore, the global tracker has 
the ability to recapture the target, which can effectively deal with the rapid target movement and the 
temporary target disappearance caused by occlusion and moving out of view. This advantage makes 
it perform well when tracking UAVs in complex infrared scenarios [9,10,17,33,34]. In contrast, the 
local tracker needs to attach a global detection module to recapture the reappearing target [35,36], 
which makes the model structure so complex that it needs to be trained in modules or stages. In fact, 
the global tracker is also often used as the global detection module of the local tracker, for example, 
LTMU [36] uses GlobalTrack to recapture the reappearing target. Nevertheless, the existing global 
trackers have poor scale adaptation, because they cannot keep the approximate consistency between 
the target sizes in the template and the search region, which makes them unable to cope well with 
the drastic target scale variation. 

2.3. Infrared UAV Tracking 

Compared with RGB cameras, infrared cameras are more suitable for the anti-UAV task because 
they can work well under all-weather and low-light conditions. However, tracking UAVs in infrared 
video is still challenging due to the complex and various application scenarios. In order to accurately 
track small UAV targets, TransIST [37] combines multi-scale attention and side window filter into a 
Transformer-based tracking model. Considering the camera motion, Zhao et al. [38] extracts feature 
points and calculates the homography matrix to compensate for the motion between frames. For the 
problem of background interference, Fang et al. [9] adopts Kalman filtering to estimate target motion, 
while SiamDT [34] detects and memorizes interference objects in the scene to exclude wrong 
candidate targets. In the common case where the target disappears during UAV tracking, Wu et al. 
[39] searches for the target by expanding the search region, Zhao et al. [38] and Yu et al. [40] use the 
global detection module to recapture the target, as well as SiamSTA [17], CAMTracker [10] and 
SiamDT adopt the global tracking scheme. When the target scale changes, our work solves the 
problem of poor scale adaptation of global trackers to track UAVs more robustly. 

2.4. Scale-Arbitrary Image Super-Resolution 

Our proposed SAEM refers to some research results on image super-resolution, which are briefly 
introduced here. Image super-resolution aims to reconstruct a high-resolution image from a low-
resolution one, which is widely used in remote sensing, medical, surveillance, etc. Recently, 
researchers have proposed some deep super-resolution models such as EDSR [41] and SwinIR [42]. 
However, these methods usually need to set a fixed scale factor, such as ×2 or ×4, which lacks 
flexibility. To address this problem, MetaSR [15] generates convolution kernels based on the desired 
factor and pixel coordinates for achieving image super-resolution with arbitrary magnification. 
ArbRCAN [16] combines the experts learned during training based on the desired factor and then 
generates a convolution kernel to achieve scale-arbitrary super-resolution. Inspired by these 
methods, we improve the scale-aware convolutional layer of ArbRCAN to implicitly resize the target 
template of the global tracker. 

3. Methodology 
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We propose an efficient one-stage anchor-free global tracker (OSGT), and introduce a scale 
adaptation enhancement module (SAEM) to implicitly resize the target template to solve the problem 
that global trackers do not cope well with target scale variation. As shown in Figure 2, our proposed 
OSGT adopts Siamese network: firstly, the multi-level features of the first frame (Frame 1, template) 
and the current frame (Frame T, search region) are extracted by parameter-shared ResNet50 and FPN 
(feature pyramid network); secondly, the feature fusion part fuses the features of the target template 
and the search region; finally, the output heads generate the multi-level score maps and regression 
maps, and the bounding box corresponding to the position with the largest score is taken as the 
tracking result of the current frame. In addition, our proposed SAEM is embedded into the feature 
fusion part, and directly processes the extracted target template features with the input of the initial 
target size and the target size in the previous frame (Frame T-1). During the training, an auxiliary 
branch is designed to supervise the learning of SAEM, and Gaussian noise is added to the input size 
to enhance its robustness. During the online tracking, an adaptive threshold is proposed to more 
accurately judge target disappearance and effectively avoid SAEM being affected by the incorrect 
input size. 

 
Figure 2. The overall framework of OSGT consists of feature extraction, feature fusion and output head. In 
addition, our proposed SAEM is embedded into the feature fusion part, as shown in the red dashed box. 

3.1. One-stage Anchor-free Global Tracker 

GlobalTrack, SiamSTA and SiamDT, based on RCNN [43], adopt the two-stage anchor-based 
framework, including the region proposal stage and the target regression stage. These methods have 
complex structures and require two rounds of feature fusion between the target template and the 
search region, making them unable to run in real time. In the field of object detection, one-stage 
anchor-free detection algorithms such as FCOS and CenterNet [44] use simpler structures that can 
run faster and perform well. Therefore, we combine the feature fusion module of GlobalTrack and 
the output head of FCOS to propose a concise and efficient one-stage anchor-free global tracker. 

3.1.1. Feature Extraction 

ResNet50 is used to extract the features of the first and current frame for obtaining four levels of 
features with different resolutions, and their sizes are [ , ]H l W l , where {4,8,16,32}l∈ , and then 
FPN is used for multi-scale feature enhancement. Note that the features of the first frame are extracted 
only once as the template during the online tracking. 
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Our OSGT is trained to use feature maps with different resolutions to track UAV targets of 
corresponding sizes, as shown in Figure 2, where the feature map of level iL  ( 0,1,2,3i =  correspond 
to l ) processes the targets with sizes belonging to [0,10) , [10,20) , [20,40)  and [40, )∞+ , 
respectively. In this way, small targets with fewer appearance features can be tracked using low-level 
texture features, while large targets with rich appearance features can be tracked using high-level 
semantic features. 

3.1.2. Feature Fusion 

The feature fusion part of GlobalTrack uses RoI Align [45] (region of interest) based on the 
ground truth to extract a level of the target features, and the level index is determined by the target 
size. Instead, we extract all four levels of the target features 256 7 7× ×∈iz , and then fuse iz  and the 
features of the current frame 256× ×∈ H l W l

ix  using hierarchical cross-correlation to obtain the fusion 
feature 256ˆ × ×∈ H l W l

ix . When SAEM is not embedded, the above process is calculated as follows: 

( )1 1 7 7ˆ ( , ) ( )× ×= = ⊗i i i i i ii ix C z x z x  , 0,1,2,3i =    (1) 
where 7 7×

i is a 7×7 convolutional layer with padding 0 for converting iz  to a 256×1×1 
convolutional kernel, ⊗ is the convolutional operation and 1 1×

i  is a 1×1 convolutional layer for 

transforming the number of channels. The hierarchical cross-correlation fuses the features of the 
target template and the search region separately according to the feature depth, which avoids the 
semantic confusion caused by correlating features from different levels. In addition, extracting all 
levels of the target features can provides our proposed SAEM with rich multi-scale information. 

3.1.3. Output Head 

Our proposed OSGT adopts the head of FCOS, but removes the centerness branch and some 
convolutional layers. In detail, the fusion feature ˆix  is processed with two CGRs 
(Conv+GroupNorm+ReLU) instead of the four CGRs used in FCOS, which is sufficient for the 
infrared UAV tracking task and conducive to improving the running speed. Then, a classification 
branch (consisting of a 3×3 convolutional layer) is set up to obtain the score map 1× ×∈ H l W l

is , and a 
regression branch (consisting of a 3×3 convolutional layer) is set up to obtain the bounding box 

4× ×∈ H l W l
ib , where the first dimension denotes the upper left and lower right corner points of the 

target 0 0 1 1( , , , )x y x y . Finally, we adopt the Top-1 prediction to take the bounding box corresponding 
to the position with the highest score as the tracking result of the current frame. 

3.2. Enhancing the Scale Adaptation of Global Tracker 

Figure 3 shows the changes in four levels of the target features iz  after 2× upsampling and 2× 
downsampling. It indicates that the target features not only contain appearance information such as 
shape, texture and brightness, but also are closely related to the target size. Therefore, the global 
tracker tends to search for the object in the current frame that is close in size to the target template. 
However, when the target scale changes greatly, existing global trackers cannot adjust the target 
template based on the scale change, resulting in tracking failure in case of being disturbed by other 
objects of similar size. 
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Figure 3. Visualization feature maps of the target template with different scales. For the convenience of display, 
we arrange the 256×7×7 tensor into 16×16 small squares with the size 7×7. 

In order to enhance the scale adaptation of global trackers, the target templates need to be 
dynamically adjusted to keep approximately the same size as the target in the search region. Inspired 
by the scale-arbitrary image super-resolution, we propose a plug-and-play scale adaptation 
enhancement module that can be embedded in the feature fusion part, as shown in Figure 2. It can 
generate the scale adaptation enhancement kernel according to the target size of the previous frame, 
and then directly process the extracted features of the target template to resize it implicitly, as shown 
in Figure 4. 

 
Figure 4. Our proposed scale adaptation enhancement module. 

3.2.1. Scale Adaptation Enhancement Module 

SAEM aims to directly adjust the scale information of the target template features based on the 
target size of the previous frame T-1 T-1[ , ]h w , as shown in the upper part of Figure 4. Firstly, the four 
levels of the target template features iz  are concatenated into 1024 7 7× ×∈Z . Next, Z is convolved 
with a scale adaptation enhancement kernel (SAEK) to obtain Ẑ . Finally, we divide Ẑ  into 

256 7 7ˆ × ×∈iz . The concatenation operation can ensure that each ˆiz  can obtain information from all 
four levels of iz . After SAEM is embedded, the feature fusion is calculated as follows: 

( )1 1 7 7ˆ ˆ ˆ( , ) ( )i i i i i ii ix C z x z x× ×= = ⊗  , 0,1,2,3i = .   (2) 
SAEK is obtained based on the initial size of the target template 1 1[ , ]h w  and the target size of 

the previous frame T-1 T-1[ , ]h w . Referring to ArbRCAN for scale-arbitrary super-resolution, SAEK is 
designed to contain M (the default value is 12) experts, and each expert is a learnable tensor with a 
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dimension 1024×1024×3×3, as shown in the lower part of Figure 4. During training, the experts learn 
and save knowledge that can be used to adjust the scale information of target template features. In 
addition, 1 1[ , ]h w  and T-1 T-1[ , ]h w  are input to the fully connected network to obtain the expert 
weight, and then the experts are weighted and summed to obtain SAEK. Therefore, the parameters 
of SAEK can change dynamically according to the input target size. 

As mentioned above, we concatenate 1 1[ , ]h w  and T-1 T-1[ , ]h w  as the input, which is different 
from the ratio input T-1 1 T-1 1[ , ]h h w w  in ArbRCAN. The advantage of our method is that it can 
provide a base scale for the model to avoid confusion. For example, a target with a size [8,10]  is 
upsampled ×2 to [16,20] , and the other target with a size [32,40] is also upsampled ×2 to [64,80] . 
Although these two operations have the same magnification factor, different experts (learned 
knowledge) should be used and their SAEKs should also be different. 

3.2.2. Supervision and Gaussian Noise 

The essence of SAEM is to map the template features with the initial size 1 1[ , ]h w  to a new 
template features with the size T-1 T-1[ , ]h w . The latter can also be obtained through an explicit method 
that involves: (1) resizing the template according to the target size in the previous frame, and (2) 
extracting its target features. These extracted features can serve as the ground truth for training the 
SAEM. In this way, we set up an auxiliary branch to supervise the learning of SAEM, as shown by 
the red flowline in Figure 5. Firstly, Template is resized by a factor of T-1 1 T-1 1[ , ]h h w w  to obtain 
Template*; then, the target features in Template* are extracted to obtain ∗

iz ; finally, we take ∗
iz  as the 

ground truth and use the smooth L1 loss to calculate the loss supL  between ˆiz  and ∗
iz . For training 

our model, the loss is calculated as follows: 
3

total cls reg sup
0

1 ˆ( , ) ( , ) ( , )
4 i i i i i i

i
L L s s L b b L z z∗ ∗ ∗

=

 = + + ∑
,    (3) 

where cls( )L  is the focal loss for classification, reg( )L  is the giou loss for regression, 
1∗ × ×∈ H l W l

is  and 4∗ × ×∈ H l W l
ib  denote the ground truth of score and bounding box at the i-th 

layer, respectively. The total loss totalL  is the average of four-layer losses. 

 
Figure 5. The auxiliary branch for supervising the learning of SAEM and Gaussian noise is added to the previous 
target size to enhance the robustness of SAEM. 

During online tracking, the previous target size T-1 T-1[ , ]h w  input to SAEM may be inaccurate 
due to occlusion and background clutter. To enhance the robustness of SAEM, T-1 T-1[ , ]h w  is 
multiplied by a random value to simulate the size bias during the training. Considering that some 
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trackers [7,27] employing the Gaussian corner heatmap as imprecise annotations of target bounding 
boxes, we use the random value that follow a Gaussian distribution with mean 1.0µ =  and standard 
deviation 0.1σ = . And we perform a clamp operation to limit its range within [ 3 , 3 ]µ σ µ σ− +  to 
avoid extreme values with small probability, as shown below: 

T-1 T-1 T-1 T-1 noise[ , ] [ , ]∗ ∗ = ×h w h w g , noise [ 3 , 3 ]µ σ µ σ∈ − +g ,   (4) 
where T-1 T-1[ , ]∗ ∗h w  is the previous target size after adding Gaussian noise, as shown in Figure 5. 

The above process can be regarded as adding noise to the exact T-1 T-1[ , ]h w  to achieve a data 
augmentation, which can effectively reduce the sensitivity of SAEM to the input size. 

3.2.3. An Adaptive Threshold for Judging Target Disappearance 

During the online tracking, the previous target size T-1 T-1[ , ]h w  entered into SAEM is initialized 
with the target annotation in the first frame, and it is updated frame by frame in the subsequent 
tracking. However, T-1 T-1[ , ]h w  should stop updating when the target disappears due to occlusion or 
moving out of view. Otherwise, if the wrong T-1 T-1[ , ]h w  is input to SAEM, it will lead to tracking 
failure and incorrect recapture. Therefore, it is important to accurately judge whether the target exists 
for online tracking. A common way is to set a specific threshold for the maximum score maxs , for 
example, if max 0.5s > , the target is present, and vice versa. Nevertheless, as shown in Figure 6, the 
smaller the target size, the harder it is to be tracked, and the lower the maximum score maxs . If 0.5 is 
used as the threshold, targets with the size less than 10 will be misjudged as disappearance; if a small 
threshold is used, such as 0.3, there will be more false positive cases when judging larger targets. 
Therefore, a fixed threshold is not appropriate. To address this problem, we propose an adaptive 
method to judge whether a target exists or not, as follows: 

max max
T 11, 0.5

0,
s s

e
otherwise

= >= 
       (5) 

where ‘1’ means the target is present, ‘0’ means the target is absent, and max
T 1=s  represents the 

target score obtained by inputting the first frame into the tracker, which is typically the maximum 
value. max

T 1=s  provides a base value for the threshold, which can avoid misjudging the existence of 
small and dim targets compared with directly using 0.5 as the threshold. 

 

Figure 6. The red line shows the relationship between the target size and the maximum score maxs , the green 
dashed line represents the threshold of 0.5, the blue dashed line represents our proposed adaptive threshold, 
and the gray shaded area shows the misjudgment when using 0.5 as the threshold. 

4. Experiment 
4.1. Datasets and Evaluation Metrics 
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We use the public datasets of the Anti-UAV Challenge and the Anti-UAV410 dataset for training 
and testing. These datasets are closely related to the infrared UAV tracking task. 

Our proposed OSGT is trained on the most comprehensive 3rd Anti-UAV training dataset, 
which contains 150 infrared videos, and tested on the 1st [1], 2nd Anti-UAV test-dev [46] and 3rd 
Anti-UAV validation datasets. These three test datasets contain 100, 140 and 50 infrared videos, 
respectively, with increasing scene complexity and tracking difficulty. Each video contains 1000 to 
1500 frames, and the resolution of each frame is 512×640. These datasets cover UAVs at different 
scales and in various scenarios such as cloudy skies, cities and mountains. 

The Anti-UAV410 dataset [34] is augmented with a large number of diverse and complex 
scenarios based on the 1st and 2nd Anti-UAV datasets. These scenarios included a wide range of 
backgrounds such as buildings, mountains, forests, urban areas, clouds, water surfaces, and others. 
The Anti-UAV410 dataset is divided into three sets: the train set, which consists of 200 videos; the 
validation set, which consists of 90 videos; and the test set, which consists of 120 videos. These videos 
contain 1069 frames on average and their resolution is 512×640. There are some differences in the data 
distribution between the Anti-UAV410 dataset and the 3rd Anti-UAV dataset. The latter has a higher 
proportion of difficult scenarios, which increases the difficulty of tracking UAVs. 

On three Anti-UAV Challenge test datasets, two commonly used evaluation metrics, namely 
precision plot and success plot, are utilized to assess the performance of location and scale estimation 
of all trackers through One-Pass Evaluation (OPE). Specifically, the precision plot calculates the 
percentage of frames in which the estimated target location falls within a given distance threshold 
from the ground truth. Precision (P, with a threshold of 20 pixels) and normal precision (PNorm) can 
be used to measure the accuracy of locating the target. The success plot measures the fraction of 
successful frames where the Intersection over Union (IoU) between the predicted bounding box and 
the ground truth is greater than a threshold ranging from 0 to 1. Area Under Curve (AUC) of the 
success plot and 50% overlap precision (OP50) can be used to evaluate the accuracy of estimating the 
target scale. The above metrics are widely used in tracking benchmarks. 

According to [34], on the Anti-UAV410 dataset, we use the state accuracy (SA) to 
comprehensively evaluate the performance of all trackers, which is calculated as follows: 

(1 ) (1 )t t t t

t

IoU v e v
SA

T
× + − × −

= ∑
,    (6) 

where tv  and te  are the ground truth and predicted value of whether the target exists in the t-
th frame, respectively. This metric not only requires the tracker to accurately predict the position and 
scale of the target, but also to determine the state of the target’s presence in the current frame, and 
make a judgment when the target disappears from the field of view. 

4.2. Implementation Details 

We use the SGD optimizer to train our proposed model for 24 epochs, and each epoch contains 
about 1200 iterations. The initial learning rate is 0.005, and is divided by 10 at the 8th and 16th epochs. 
The batch size is set to 12. We use 4 NVIDIA RTX 2080Ti GPUs for training and use one of them for 
testing. 

During training, we use common data augmentation techniques such as horizontal flipping and 
photometric distortion, and also use random scaling to increase the data proportion of target scale 
variation. Our proposed auxiliary branch supervision and Gaussian noise are only used to train 
SAEM, while they are removed during testing. 

4.3. Quantitative Evaluation 

Our method is tested against 17 high-performance deep trackers, including 11 local trackers, 
ATOM [25], DiMP [26], PrDiMP [47], KYS [48], STARK [27], AiATrack [49], TOMP [28], MixFormer 
[29], OSTrack [7], SeqTrack[50], AQATrack [31], and 6 trackers with target redetection capability 
DaSiamRPN [24], SiamSTA [17], LTMU [36], GlobalTrack [8], CAMTracker [10], SiamDT [34]. Among 
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them, SiamSTA, GlobalTrack and SiamDT are global trackers; DaSiamRPN is able to expand its 
search region when the target disappears; LTMU is attached with a global search module; SiamSTA, 
CAMTracker and SiamDT are specifically designed for the infrared UAV tracking task. For a fair 
comparison, these trackers are retrained on the 3rd Anti-UAV training dataset and Anti-UAV410 
training dataset, respectively. 

4.3.1. Comparison Results on Anti-UAV Challenge Datasets 

Table 2 shows the quantitative comparison results between our proposed method and 14 deep 
trackers. Figure 7 shows the corresponding precision plots (ranked based on P) and success plots 
(ranked based on AUC). Overall, the trackers with target recapture capability perform better than 
local trackers, and it proves that global search is essential for handling challenging scenarios in the 
infrared UAV tracking task. In addition, OSTrack is the best local tracker; DaSiamRPN expands the 
search region to recapture the target, and its performance is lower than that of other trackers that 
directly redetect the target over the whole frame. Our proposed OSGT outperforms state-of-the-art 
SiamDT in almost all four evaluation metrics on three test datasets. Specifically, P is improved by 
1.8% on 2nd Anti-UAV test-dev; AUC is improved by 1.9% and P is improved by 1.6% on the most 
difficult 3rd Anti-UAV val. After SAEM is embedded, the performance of OSGT is further improved, 
and it reaches the best place in most of the metrics on the three test datasets. In particular, AUC, 
OP50, P and PNorm are improved by 1.3%, 1.5%, 1.5% and 1.2% on 3rd Anti-UAV val, respectively. It 
indicates that the proposed SAEM is beneficial to improve the performance of OSGT. 

Table 2. Quantitative comparison results of our method and 14 deep trackers on three Anti-UAV challenge test 
datasets. 

Method Publication 
1st Anti-UAV test-dev 2nd Anti-UAV test-dev 3rd Anti-UAV val 

AUC OP50 P PNorm AUC OP50 P PNorm AUC OP50 P PNorm 
ATOM [25] CVPR 2019 61.6 77.9 79.3 78.9 54.1 68.8 72.5 69.5 43.1 54.7 58.5 57.6 
DiMP [26] ICCV 2019 66.8 84.0 85.2 84.9 59.1 74.6 77.7 75.3 47.4 58.8 64.4 62.1 

PrDiMP [47] CVPR 2020 69.2 87.7 89.1 88.7 61.3 78.1 82.2 79.0 49.0 62.1 66.4 64.2 
KYS [48] ECCV 2020 67.3 84.5 85.8 85.5 59.6 75.3 78.4 76.0 49.0 60.9 67.1 63.5 

STARK [27] ICCV 2021 69.5 87.4 89.4 88.5 62.0 78.3 82.2 79.1 48.8 62.1 69.0 64.0 
TOMP [28] CVPR 2022 65.8 82.0 83.0 82.8 57.8 72.1 74.3 72.9 43.8 55.2 60.8 57.8 
OSTrack [7] ECCV 2022 72.4 91.3 93.6 92.7 62.7 79.5 83.4 79.9 51.9 64.8 68.7 67.2 

SeqTrack [50] CVPR 2023 55.3 71.4 73.2 72.9 50.1 63.7 66.9 65.2 43.5 55.3 62.0 57.9 
AQATrack [31] CVPR 2024 70.3 88.9 90.9 89.9 60.9 77.0 80.7 78.0 47.5 59.6 66.2 62.3 

DaSiamRPN [24] ECCV 2018 68.7 88.1 90.7 87.9 57.7 74.5 77.2 74.8 42.0 53.0 59.6 55.7 
GlobalTrack [8] AAAI 2020 75.6 95.5 97.5 96.4 65.5 83.1 89.3 85.2 53.0 66.3 74.7 70.5 

LTMU [36] CVPR 2020 75.8 95.3 96.7 96.2 68.6 86.4 88.3 88.1 55.4 69.2 73.3 72.3 
SiamSTA # [17] ICCVW 2021 72.6 — 96.9 — 65.5 — 88.8 — — — — — 

SiamDT [34] PAMI 2024 76.4 96.2 97.7 97.2 68.5 87.1 89.4 89.1 53.3 67.1 75.0 70.3 
OSGT — 76.2 96.6 98.0 97.3 68.6 88.3 91.2 89.8 55.2 70.5 76.6 75.2 

OSGT+SAEM — 76.4 96.2 97.9 97.3 69.4 88.9 91.7 90.5 56.5 72.0 78.1 76.4 

* The best three results are shown in red, blue, and green fonts. The gray background indicates the results of 
trackers with target redetection capability. # means the values are taken from their publications. 

 

 
 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 June 2025 doi:10.20944/preprints202506.0960.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0960.v1
http://creativecommons.org/licenses/by/4.0/


 12 

 

 
  

Figure 7. Precision plots and success plots of our method and 13 deep trackers on three Anti-UAV Challenge 
test datasets. 

It is noted that OSGT has a slight performance degradation on the 1st test-dev dataset after 
embedding SAEM. This is because this dataset consists mostly of simple scenarios without obvious 
target scale variation, but the template features still change slightly through SAEM, which affects the 
precision of location and scale estimation to a certain extent. 

4.3.2. Comparison Results on Anti-UAV410 Dataset 

Table 3 shows the quantitative comparison results between our proposed method and 8 deep 
trackers. OSGT outperforms the baseline GlobalTrack. After embedding SAEM, OSGT achieves the 
state-of-the-art performance, outperforming SiamDT with improving SA by 0.79%. OSGT and 
SiamDT respectively focus on solving different problems of global trackers in the infrared UAV 
tracking task. SiamDT attempts to enhance the anti-interference ability of global trackers in complex 
backgrounds. To be specific, it detects and memorizes interference objects in the scene to exclude 
wrong candidate targets. In contrast, OSGT attempts to improve the scale adaptation of global 
trackers by implicitly resizing the template when the target scale changes. These two algorithms 
effectively improve the performance of global trackers from different aspects. 

Table 3. Quantitative comparison results of our method and 8 deep trackers on the Anti-UAV410 test dataset. 

Method 
PrDiM

P 
[47] 

STAR
K 

[27] 

AiATra
ck 

[49] 

OSTrac
k 

[7] 

MixForm
er 

[29] 

GlobalTra
ck 
[8] 

CAMTracke
r # 

[10] 

SiamD
T # 
[34] 

OSGT 
OSGT 
+SAE

M 
Publicati

on 
CVPR 
2020  

ICCV 
2021 

ECCV  
2022 

ECCV 
2022 

CVPR  
2023 

AAAI  
2020 

RS 
2024 

PAMI 
2024 

— — 

SA 54.69 57.15 59.56 60.15 59.65 66.45 67.10 68.19 67.03 68.98 

4.3.3. Inference Performance Comparison 

Table 4 shows the inference performance of our proposed OSGT compared to four trackers with 
target redetection capability on an NVIDIA RTX 2080Ti GPU. These statistics include the 
preprocessing time (about 10ms) for image loading, normalization, etc. The running speed of OSGT 
reaches 30.9 fps, which meets the real-time requirement, and far exceeds SiamDT and LTMU. After 
SAEM is embedded, OSGT can still run in real time at 27.3 fps. It verifies that OSGT and SAEM are 
efficient. 

Table 4. Inference performance of our method compared to 4 trackers with target redetection capability on an 
NVIDIA RTX 2080Ti GPU. 

Method DaSiamRPN GlobalTrack LTMU SiamDT OSGT OSGT+SAEM 
Speed (fps) 22.7 22.3 1.5 9.1 30.9 27.3 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 June 2025 doi:10.20944/preprints202506.0960.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0960.v1
http://creativecommons.org/licenses/by/4.0/


 13 

 

4.4. Qualitative Evaluation 

Figure 8 shows the visualization results of our method, OSTrack, GlobalTrack, LTMU and 
SiamDT in four different scenarios. The first row shows that OSGT can robustly track targets in 
complex backgrounds, especially it can estimate the size of the target more accurately. The second 
row shows that OSGT can track small targets well: in detail, the first two images show the case where 
the target position changes rapidly caused by camera movement, and the last two images show the 
case where the target temporarily disappears due to moving out of view, both of which are better 
handled by the global tracker than the local tracker by utilizing global search mechanism. The target 
scales in the third and fourth rows change from small to large and from large to small, respectively. 
GlobalTrack, SiamDT and OSGT without SAEM track wrong targets such as flying birds and towers 
that are similar in size and appearance to the target template. OSTrack and LTMU have good scale 
adaptation by resizing the search region, but they still fail to track targets when the target scale 
changes drastically, as shown in the fourth row. After SAEM is embedded, OSGT can timely adjust 
the scale information of the target template features according to the target size change, which 
improves the scale adaptation of OSGT. In addition, it can also be regarded as a specific scale 
constraint, which allows OSGT to effectively avoid being distracted by other objects with undesired 
scales. 

    

    

    

    

 

Figure 8. Visualization results of our method, OSTrack, GlobalTrack, LTMU and SiamDT. 

4.5. Model Analysis 
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4.5.1. Ablation Study 

Table 5 shows the effect of SAEM, supervision and Gaussian noise on OSGT’s performance, and 
the latter two are used during training SAEM. The role of Gaussian noise is to simulate the inaccurate 
input to SAEM. Obviously, training without Gaussian noise causes AUC and OP50 to severely 
decrease by 3.2% and 2.2%, respectively. This is because occlusion and background clutter lead to 
imprecise estimation of the target size in previous frames during online tracking, as shown in Figure 
9. If SAEM processes the target template features according to the imprecise size, it will increase the 
error of the estimated bounding box. More seriously, if the auxiliary branch is used to supervise 
module training, SAEM will be more dependent on the exact input size, and the reduction in AUC 
and OP50 will be larger and reach 4.6% and 3.9%, respectively. This proves the importance of 
Gaussian noise to improve the robustness of estimating bounding boxes. 

Under the premise of introducing Gaussian noise, using the auxiliary branch to supervise SAEM 
training can further improve the performance of OSGT. To be specific, AUC, OP50, P and PNorm are 
improved by 0.6%, 0.5%, 0.9% and 0.8%, respectively. Compared with SAEM which implicitly adjusts 
the scale information of the extracted target template features, the auxiliary branch adopts a more 
intuitive approach of first resizing the target template and then extracting its features. It can provide 
a ground truth for the output of SAEM during training, which significantly reduces the difficulty of 
module training. In summary, SAEM can better improve the scale adaptation of the global tracker 
only when both the supervision and Gaussian noise are used during training. 

Table 5. The influence of SAEM, supervision, and Gaussian noise on model performance. The model is tested 
on 3rd Anti-UAV val. 

OSGT SAEM Supervision Gaussian noise AUC OP50 P PNorm 
    55.2 70.5 76.6 75.2 
    52.7 69.3 76.8 75.3 
    51.9 68.1 76.8 74.5 
    55.9 71.5 77.0 75.6 
    56.5 72.0 78.1 76.4 

 

 

  

 

 

Figure 9. Using Gaussian noise during training enhances the performance of our model to accurately estimate 
the target size. 

4.5.2. Effectiveness of SAEM 

The purpose of SAEM is to implicitly adjust the scale information of the extracted template 
features according to the target scale change. There is an explicit way to achieve this goal is to first 
resize the template and then extract its target features, which is also how the auxiliary branch 
supervision works for training SAEM. Figure 10 visualizes the template features obtained using the 
two methods. The results of both are approximately the same, which proves that SAEM achieves the 
expected effect. 
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Figure 10. The template feature maps are obtained by using SAEM and the explicit method, respectively. Some 
feature variations are shown in the black dashed circle. 

4.5.3. Compatibility of SAEM 

Our proposed SAEM is a plug-and-play module, which can be compatible with other global 
trackers to improve their scale adaptation. Table 6 shows the impact of embedding SAEM into 
accessible global trackers, such as GlobalTrack and SiamDT. After SAEM is embedded, all metrics of 
GlobalTrack and SiamDT are significantly improved. To show the increment of scale adaptation, we 
test 3 global trackers using SAEM in the scale variation scenario, as shown in Figure 11. To be specific, 
P and AUC of GlobalTrack are improved by 2.1% and 4.1%, respectively; P and AUC of SiamDT are 
improved by 3.7% and 2.7%, respectively; P and AUC of OSGT are improved by 5.9% and 2.7%, 
respectively. It not only verifies the effectiveness of SAEM in improving the scale adaptation of OSGT, 
but also proves that SAEM can be embedded into other global trackers to effectively improve their 
ability to cope with the target scale variation. 

Table 6. The impact of embedding SAEM into different global trackers. 

Metrics GlobalTrack 
GlobalTrack 

+SAEM 
SiamDT 

SiamDT 
+SAEM 

OSGT 
OSGT 

+SAEM 
AUC 53.0 54.4 (1.4↑) 53.3 55.3 (2.0↑) 55.2 56.5 (1.3↑) 
OP50 66.3 68.2 (1.9↑) 67.1 69.5 (2.4↑) 70.5 72.0 (1.5↑) 

P 74.7 76.1 (1.4↑) 75.0 76.1 (1.1↑) 76.6 78.1 (1.5↑) 
PNorm 70.5 73.1 (2.6↑) 70.3 72.8 (2.5↑) 75.2 76.4 (1.2↑) 

 

  

Figure 11. The enhanced scale adaptation of OSGT, GlobalTrack and SiamDT after embedding SAEM. 
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4.5.4. Number of Experts in SAEM 

In of Section 3.2.1, the expert in SAEK is the knowledge learned during training to adjust the 
scale information of the extracted target template features, and its specific form is the learnable model 
parameters. The impact of the number of experts on the model and its performance is shown in Table 
7. When four more experts are added to SAEK, the number of model parameters increases by 0.13K, 
the calculation amount increases by 0.28K, the time consumption increases by about 0.8ms, and the 
running speed decreases by about 0.6 fps. The more experts, the higher the tracking performance of 
the model, but too many experts degrade the performance due to model overfitting and increased 
training difficulty. The tracker performs best when the number of experts is 12. Overall, SAEM 
requires very little computation and time consumption. 

Table 7. The impact of the number of experts on the model and its performance. 

Experts Params. FLOPs Time AUC OP50 P PNorm Speed 
4 1.35K 2.58K 1.72ms 55.6 70.6 76.9 74.6 28.5 
8 1.48K 2.86K 2.53ms 55.8 71.4 76.9 76.0 27.9 

12 1.61K 3.14K 3.31ms 56.5 72.0 78.1 76.4 27.3 
16 1.74K 3.42K 4.11ms 56.2 72.0 77.5 75.2 26.6 

4.5.5. Different Input Forms in SAEM 

SAEM requires the change information of the target scale as input. There are usually two input 
forms, one is the ratio form T-1 1 T-1 1[ , ]h h w w  in ArbRCAN, and the other is our proposed 
concatenation form 1 1 T-1 T-1[ , , , ]h w h w . Table 8 shows the influence of these two input forms on the 
model performance. Compared with the ratio form, the concatenation form can provide the model 
with a base scale to avoid confusion and get better results. 

Table 8. The influence of different input forms in SAEM on model performance. 

Input forms AUC OP50 P PNorm 
Ratio form 56.2 72.0 77.4 75.6 

Concatenation form 56.5 72.0 78.1 76.4 

4.5.6. Using Different Thresholds to Judge the Target Disappearance 

In of Section 3.2.3, considering the target is occluded or out of view, the algorithm needs to 
accurately judge the disappearance of the target and stop updating the previous target size input to 
SAEM. Otherwise, when the target reappears, it cannot be recaptured correctly due to inputting the 
wrong size to SAEM. Table 9 shows the effect of using different thresholds to judge the target 
disappearance on the model performance. When the threshold is 0, it means that the algorithm does 
not judge whether the target exists and updates the input of SAEM every frame. In this case, the 
performance of the tracker decreases drastically. As shown in the left of Figure 12, the previous target 
size is inaccurate due to the target disappearance, and if the size input of SAEM is updated, the 
tracker cannot track the target correctly when the target reappears. Our proposed adaptive threshold 
takes the maximum score of the first frame max

1=Ts  as the base value, which can more accurately judge 
whether the small and dim target exists. Compared with using 0.5 as the threshold, our method 
improves AUC, OP50 and PNorm by 0.5%, 0.9% and 0.2%, respectively. As shown in the right of Figure 
12, the target size is small and its maximum score is 0.3531. If 0.5 is used as the threshold, the tracker 
will misjudge that the target has disappeared and stop updating the input of SAEM, and it causes 
that the target size cannot be correctly estimated in the subsequent tracking. In contrast, our method 
can adjust the threshold to 0.1766 and correctly determine the existence of small targets. 

Table 9. The effect of using different thresholds to judge the target disappearance on model performance. 
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Threshold AUC OP50 P PNorm 
0.0 55.4 70.5 77.0 74.3 
0.5 56.0 71.1 78.4 76.2 

max
10.5 Ts =  56.5 72.0 78.1 76.4 

 

 
 

 

 

 

Figure 12. The influence of using different thresholds to judge the target disappearance on tracking results. 

4.5.7. Comparison Results of Different Template Update Methods 

Template update is a commonly used trick to deal with target appearance variations during 
online tracking. It is typically a temporal appearance update method, where the tracker replaces the 
original template with the tracking result every N frames [27]. Different from it, we only update the 
scale information of the target template feature, including an explicit update method (first resize the 
target template and then extract its features) and an implicit update method (using our proposed 
SAEM). 

Table 10 shows the effect of different template update methods on the OSGT’s tracking results. 
The temporal appearance update (with N=100) causes the degradation of the tracking performance. 
This is because most infrared UAV tracking scenarios are highly complex and prone to disturbing 
the tracking result, which makes the updated template unreliable, leading to subsequent tracking 
failure. In contrast, both scale update methods significantly improve the OSGT’s performance by 
enhancing it scale adaptation. However, compared with our proposed implicit scale update, the 
explicit scale update exhibits lower efficiency, because it need to extract features from the resized 
template every frame. 

Table 10. Comparison results of different template update methods. 

Template update methods AUC OP50 P PNorm Speed 
None 55.2 70.5 76.6 75.2 30.9 

Temporal appearance update 54.9 70.2 76.4 74.7 29.9 
Explicit scale update 56.2 71.4 77.7 76.0 19.3 

Implicit scale update (SAEM) 56.5 72.0 78.1 76.4 27.3 

4.5.8. Tracking Failure Cases 

The global tracker inherently possesses the ability to recapture targets due to taking the whole 
frame as its search region. This advantage enables it to effectively handle target disappearance caused 
by occlusion and moving out of view. However, a large search region introduces more background 
interference, especially in extremely complex scenarios, leading to tracking failures, as shown in 
Figure 13. Therefore, in addition to the poor scale adaptation, anti-interference is another critical 
research issue for global trackers. 
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Figure 13. Tracking failure cases due to background interference. 

5. Conclusions 

This paper focuses on solving the problem of poor scale adaptation of global trackers in the 
infrared UAV tracking task. To address this problem, we propose a plug-and-play scale adaptation 
enhancement module, which can implicitly resize the target template according to the target size in 
the previous frame. Moreover, we optimize the learning of SAEM by setting the auxiliary branch 
supervision and Gaussian noise. During the online tracking, an adaptive threshold is proposed to 
judge target disappearance and avoid SAEM being affected by the wrong input size. In addition, we 
propose a one-stage anchor-free global tracker, which has a concise structure to track UAVs in real 
time in infrared videos. On three Anti-UAV Challenge datasets and the Anti-UAV410 dataset, our 
proposed tracker is compared with 17 deep trackers and shows excellent performance, especially 
when dealing with the dramatic target scale variation. 

Our future work will explore combining the anti-interference and scale adaptation of the global 
tracker to deal with more complex tracking scenarios. 
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