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Abstract: Tracking an unmanned aerial vehicle (UAV) in the infrared video is an essential technology
for the anti-UAV task. Given the frequent UAV target disappearance caused by occlusion or moving
out of view, the global tracker, which has the unique advantage of recapturing the target, is widely
used in infrared UAV tracking. However, the global tracker performs poorly when dealing with large
target scale variation, because it cannot maintain the approximate consistency between the target
sizes in the template and the search region. To enhance the scale adaptation of global trackers, we
propose a plug-and-play scale adaptation enhancement module (SAEM). It can generate a scale
adaptation enhancement kernel according to the target size in the previous frame, and then perform
implicit scale adjustment on the extracted target template features. To optimize the training, we
introduce an auxiliary branch to supervise the learning of SAEM, and add Gaussian noise to the input
size to improve the robustness of SAEM. In addition, we propose a one-stage anchor-free global
tracker (OSGT), which has a more concise structure than other global trackers to meet the real-time
requirement. Extensive experiments on three Anti-UAV Challenge datasets and the Anti-UAV410
dataset demonstrate the superior performance of our method, and verify that our proposed SAEM
can effectively enhance the scale adaptation of existing global trackers.

Keywords: infrared target tracking; scale adaptation; global tracker; UAV tracking; deep learning

1. Introduction

Infrared UAV tracking is to continuously locate a specific UAV in an infrared video and estimate
its scale [1]. Benefiting from the excellent imaging ability of infrared cameras under all-weather and
low-light conditions, this technology is widely applied to the anti-UAV task to protect individual
privacy and public safety [2,3]. In essence, infrared UAV tracking belongs to the research field of
single object tracking [4]. However, different from tracking generic objects such as pedestrians and
vehicles, tracking high-speed moving UAVs in infrared videos needs to deal with more challenges:

(1) The infrared UAV tracking is susceptible to occlusion, thermal crossover and interference in
complex scenarios such as trees, buildings, heavy clouds, and strong clutter.

(2) Due to the rapid movement of the UAV target or the instability of the infrared camera
platform, the position of the UAV target will change drastically between two adja-

cent frames or even move out of view.

(3) The target scale variation is dramatic when the camera adjusts its focal length or the target
moves rapidly closer or farther away, especially in the UAV-to-UAV task [5].

According to the size of the search region, single object trackers can be categorized into local
trackers [6,7] and global trackers [8-10]. The local tracker crops a small patch from the current frame
(Frame T) as the search region according to the target position and size in the previous frame, as
shown in Figure 1(a). This is beneficial to reduce the computation and the background clutter.
However, the local tracker relies on tracking a target stably. When the target disappears, it is liable to
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select the wrong local search region, which leads to the failure of subsequent tracking. The global
tracker uses the whole current frame as the search region, as shown in Figure 1(b), so it has the
advantage of recapturing the disappeared target. For the above challenge (1) and (2), where targets
frequently disappear due to occlusion or moving out of view, global trackers demonstrate greater
robustness than local trackers, making them the preferred choice for the infrared UAV tracking. Table

1 shows the comparison of the two categories of trackers.
Frame 1 Frame 1 (Template)

| __Template

[hy_y , Wyl

3X192x192

Local ‘ 3xHxW
Tracker B " Frame T (Search Region)

__Frame T
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Figure 1. Comparison of the local tracker and the global tracker in handling target scale variation. (a) The local

tracker can use the resizing operation in the preprocessing to cope with target scale variation; (b) The global
tracker performs poorly when dealing with target scale variation. The red arrow indicates that our method uses

the previous target size to implicitly resize the template to improve the scale adaptation.

Table 1. Comparison of local and global trackers in the infrared UAV tracking task.

Occlusion or

Search . Scale . Fast target or
Scheme . Efficiency . moving out of .
region adaptation . camera motion
view
Local tracker Local patch  High v x x
Global tracker Whole Low x v v
frame

For challenge (3), the key to achieving scale adaptation is to maintain the approximate
consistency between the sizes of the target in the template and the search region, which is beneficial
to match the features of both for robust tracking. Traditional local trackers [11,12] employ pyramid
sampling to obtain multi-scale search regions to deal with the target scale variation. Local trackers
[13,14] based on deep learning adjust the template and the search region to the fixed sizes by resizing
operation, as shown in Figure 1(a). This operation makes the target size in the search region
approximately consistent with the target size in the template, which avoids the undesirable effect of
target scale variation on tracking. However, global trackers cannot follow the above methods. On the
one hand, if the whole current frame is resized according to the target scale change factor, the size of
the image input to the model will increase dramatically, which leads to a sharp increase in the
computation. On the other hand, if the target template is directly resized, the features of the resized
template must be extracted every frame during online tracking, which also leads to a serious
reduction in the running efficiency. Therefore, the existing global trackers have poor scale adaptation
and cannot handle the target scale variation well, especially when the scale changes drastically. As
shown in Figure 1(b), the global tracker incorrectly identifies the tower structure as the target, because
the labeled target in the template is more approximate in size to the tower structure rather than the
ground truth in the search region.

Inspired by the scale-arbitrary image super-resolution [15,16], which can adaptively adjust
model parameters to generate image features based on the required scaling factor, we propose an
implicit scale adjustment method for the target template using the target size in the previous frame
as a guide, as shown in Figure 1(b). Specifically, we propose a scale adaptation enhance module
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(SAEM), which can generate a scale adaptation enhance kernel according to the previous target size,
and then directly process the scale information of the extracted target template features. This method
has less computation than the explicit method, which need to first resize the target template and then
extract its features every frame. During training, we set up an auxiliary branch that adopts the above
explicit method to supervise the learning of SAEM, and we also add Gaussian noise to the input size
to improve the robustness of SAEM to handle the inaccurate input size in complex scenarios. During
the online tracking, an adaptive threshold is proposed to more accurately judge whether the target is
disappearing. This is used to prevent SAEM from receiving the incorrect size input caused by target
disappearance. Moreover, SAEM is a plug-and-play module, which can be embedded into other
global trackers to enhance their scale adaptation, especially when the typical scale change is more
than 10 in infrared UAV tracking.

In addition, we propose a concise one-stage anchor-free global tracker (OSGT) to meet the real-
time requirement of the infrared UAV tracking task. It is superior to the complex and inefficient two-
stage anchor-based structure commonly used in existing global trackers [10,17]. In detail, it combines
the feature fusion module of GlobalTrack [8] improved by using hierarchical cross-correlation and
the output head of FCOS [18] without the centerness branch. OSGT can run in real time at 30.9 fps in
the infrared video with a resolution of 512x640. After SAEM is embedded, it can still run at 27.3 fps.

In summary, the main contributions of the work in this paper are:

(1) We propose a plug-and-play scale adaptation enhancement module, which can implicitly
resize the target template to enhance the scale adaptation of existing global trackers for the infrared
UAV tracking task.

(2) During the training, we design an auxiliary branch to supervise the learning of SAEM and
add Gaussian noise to the input size to enhance its robustness. During the online tracking, an
adaptive threshold is proposed to accurately judge target disappearance and avoid SAEM being
affected by the incorrect input size.

(3) We propose a one-stage anchor-free global tracker with a simpler structure, which can track
UAVs in real time.

The rest of this paper is organized as follows. In Section 2, we briefly review the related works.
In Section 3, we describe the proposed method in detail. In Section 4, experimental results are
presented and analyzed. Finally, we conclude this paper in Section 5.

2. Related Work

This section focuses on approaches closely related to our work, including single object tracking,
global tracker, infrared UAV tracking and scale-arbitrary image super-resolution.

2.1. Single Object Tracking

Single object tracking requires a target labeled in the first frame to be continuously located and
scale-estimated in subsequent video frames. The target types are not limited, and the types of videos
are usually RGB and infrared. Traditional target tracking algorithms use particle filtering [19],
structured SVM [20] and correlation filter [21]. Among them, the correlation filter tackles the visual
tracking by solving the ridge regression in Fourier domain, which has been widely developed
because of its high efficiency. Benefiting from the development of deep learning, researchers have
designed many high-performance deep trackers. These trackers usually adopt the Siamese network
[22,23] to extract the features of the target template and the search region respectively, and then fuse
them to search the target. According to the feature fusion methods, deep trackers can be roughly
categorized into CNN-based and Transformer-based. The former mostly uses cross-correlation
[22,24] and discriminative filtering [25,26], which has a simpler network structure and faster running
speed. The latter utilizes the attention mechanism of Transformer to fuse the features [27,28], which
exhibits attractive performance. However, these trackers need to use multiple Transformer modules
in series, which leads to more computation and memory occupation. OSTrack [7] and MixFormer
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[29] design Transformer-based one-stream frameworks, which combine feature extraction and
feature fusion into one stage to deeply explore more suitable visual features for tracking. Moreover,
ARTrack [30] and AQATrack [31] have used the autoregressive method to introduce the temporal
motion information into the tracking model and achieve excellent performance.

2.2. Global Tracker

Different from the local tracker which uses a small image patch as the search region, the global
tracker searches for the target over the entire current frame [8,32]. Therefore, the global tracker has
the ability to recapture the target, which can effectively deal with the rapid target movement and the
temporary target disappearance caused by occlusion and moving out of view. This advantage makes
it perform well when tracking UAVs in complex infrared scenarios [9,10,17,33,34]. In contrast, the
local tracker needs to attach a global detection module to recapture the reappearing target [35,36],
which makes the model structure so complex that it needs to be trained in modules or stages. In fact,
the global tracker is also often used as the global detection module of the local tracker, for example,
LTMU [36] uses GlobalTrack to recapture the reappearing target. Nevertheless, the existing global
trackers have poor scale adaptation, because they cannot keep the approximate consistency between
the target sizes in the template and the search region, which makes them unable to cope well with
the drastic target scale variation.

2.3. Infrared UAV Tracking

Compared with RGB cameras, infrared cameras are more suitable for the anti-UAV task because
they can work well under all-weather and low-light conditions. However, tracking UAVs in infrared
video is still challenging due to the complex and various application scenarios. In order to accurately
track small UAV targets, TransIST [37] combines multi-scale attention and side window filter into a
Transformer-based tracking model. Considering the camera motion, Zhao et al. [38] extracts feature
points and calculates the homography matrix to compensate for the motion between frames. For the
problem of background interference, Fang et al. [9] adopts Kalman filtering to estimate target motion,
while SiamDT [34] detects and memorizes interference objects in the scene to exclude wrong
candidate targets. In the common case where the target disappears during UAV tracking, Wu et al.
[39] searches for the target by expanding the search region, Zhao et al. [38] and Yu et al. [40] use the
global detection module to recapture the target, as well as SiamSTA [17], CAMTracker [10] and
SiamDT adopt the global tracking scheme. When the target scale changes, our work solves the
problem of poor scale adaptation of global trackers to track UAVs more robustly.

2.4. Scale-Arbitrary Image Super-Resolution

Our proposed SAEM refers to some research results on image super-resolution, which are briefly
introduced here. Image super-resolution aims to reconstruct a high-resolution image from a low-
resolution one, which is widely used in remote sensing, medical, surveillance, etc. Recently,
researchers have proposed some deep super-resolution models such as EDSR [41] and SwinIR [42].
However, these methods usually need to set a fixed scale factor, such as x2 or x4, which lacks
flexibility. To address this problem, MetaSR [15] generates convolution kernels based on the desired
factor and pixel coordinates for achieving image super-resolution with arbitrary magnification.
ArbRCAN [16] combines the experts learned during training based on the desired factor and then
generates a convolution kernel to achieve scale-arbitrary super-resolution. Inspired by these
methods, we improve the scale-aware convolutional layer of ArbRCAN to implicitly resize the target
template of the global tracker.

3. Methodology
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We propose an efficient one-stage anchor-free global tracker (OSGT), and introduce a scale
adaptation enhancement module (SAEM) to implicitly resize the target template to solve the problem
that global trackers do not cope well with target scale variation. As shown in Figure 2, our proposed
OSGT adopts Siamese network: firstly, the multi-level features of the first frame (Frame 1, template)
and the current frame (Frame T, search region) are extracted by parameter-shared ResNet50 and FPN
(feature pyramid network); secondly, the feature fusion part fuses the features of the target template
and the search region; finally, the output heads generate the multi-level score maps and regression
maps, and the bounding box corresponding to the position with the largest score is taken as the
tracking result of the current frame. In addition, our proposed SAEM is embedded into the feature
fusion part, and directly processes the extracted target template features with the input of the initial
target size and the target size in the previous frame (Frame T-1). During the training, an auxiliary
branch is designed to supervise the learning of SAEM, and Gaussian noise is added to the input size
to enhance its robustness. During the online tracking, an adaptive threshold is proposed to more
accurately judge target disappearance and effectively avoid SAEM being affected by the incorrect
input size.
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Figure 2. The overall framework of OSGT consists of feature extraction, feature fusion and output head. In
addition, our proposed SAEM is embedded into the feature fusion part, as shown in the red dashed box.

3.1. One-stage Anchor-free Global Tracker

GlobalTrack, SiamSTA and SiamDT, based on RCNN [43], adopt the two-stage anchor-based
framework, including the region proposal stage and the target regression stage. These methods have
complex structures and require two rounds of feature fusion between the target template and the
search region, making them unable to run in real time. In the field of object detection, one-stage
anchor-free detection algorithms such as FCOS and CenterNet [44] use simpler structures that can
run faster and perform well. Therefore, we combine the feature fusion module of GlobalTrack and
the output head of FCOS to propose a concise and efficient one-stage anchor-free global tracker.

3.1.1. Feature Extraction
ResNet50 is used to extract the features of the first and current frame for obtaining four levels of
features with different resolutions, and their sizes are [H/I,W/I], where [ {4,8,16,32}, and then

FPN is used for multi-scale feature enhancement. Note that the features of the first frame are extracted
only once as the template during the online tracking.
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Our OSGT is trained to use feature maps with different resolutions to track UAV targets of
corresponding sizes, as shown in Figure 2, where the feature map of level L; (i=0,1,2,3 correspond
to [ ) processes the targets with sizes belonging to [0,10), [10,20) , [20,40) and [40,+x) ,
respectively. In this way, small targets with fewer appearance features can be tracked using low-level
texture features, while large targets with rich appearance features can be tracked using high-level
semantic features.

3.1.2. Feature Fusion

The feature fusion part of GlobalTrack uses Rol Align [45] (region of interest) based on the
ground truth to extract a level of the target features, and the level index is determined by the target

R¥™ | and then fuse z and the

size. Instead, we extract all four levels of the target features z; €
features of the current frame x; € R¥*//W/l" yging hierarchical cross-correlation to obtain the fusion
feature x; € R»¢H/>W/l When SAEM is not embedded, the above process is calculated as follows:

JACi:Ci(Ziaxi):fz‘-IXI (£7X7(Zi)®xi) i=0,1,2,3 1)

where £77is a 7x7 convolutional layer with padding 0 for converting z; to a 256x1x1
convolutional kernel, ®is the convolutional operation and A" is a 1x1 convolutional layer for
transforming the number of channels. The hierarchical cross-correlation fuses the features of the
target template and the search region separately according to the feature depth, which avoids the

semantic confusion caused by correlating features from different levels. In addition, extracting all
levels of the target features can provides our proposed SAEM with rich multi-scale information.

3.1.3. Output Head

Our proposed OSGT adopts the head of FCOS, but removes the centerness branch and some
convolutional layers. In detail, the fusion feature X; is processed with two CGRs
(Conv+GroupNorm+ReLU) instead of the four CGRs used in FCOS, which is sufficient for the
infrared UAV tracking task and conducive to improving the running speed. Then, a classification
branch (consisting of a 3x3 convolutional layer) is set up to obtain the score map s; e R*"/*#/ ‘and a
regression branch (consisting of a 3x3 convolutional layer) is set up to obtain the bounding box
b; e R®HIMIL \yhere the first dimension denotes the upper left and lower right corner points of the
target (x,,¥,,%,)) - Finally, we adopt the Top-1 prediction to take the bounding box corresponding

to the position with the highest score as the tracking result of the current frame.

3.2. Enhancing the Scale Adaptation of Global Tracker

Figure 3 shows the changes in four levels of the target features z; after 2x upsampling and 2x

downsampling. It indicates that the target features not only contain appearance information such as
shape, texture and brightness, but also are closely related to the target size. Therefore, the global
tracker tends to search for the object in the current frame that is close in size to the target template.
However, when the target scale changes greatly, existing global trackers cannot adjust the target
template based on the scale change, resulting in tracking failure in case of being disturbed by other
objects of similar size.
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Upsampling X 2

Downsampling X2

Figure 3. Visualization feature maps of the target template with different scales. For the convenience of display,
we arrange the 256x7x7 tensor into 16x16 small squares with the size 7x7.

In order to enhance the scale adaptation of global trackers, the target templates need to be
dynamically adjusted to keep approximately the same size as the target in the search region. Inspired
by the scale-arbitrary image super-resolution, we propose a plug-and-play scale adaptation
enhancement module that can be embedded in the feature fusion part, as shown in Figure 2. It can
generate the scale adaptation enhancement kernel according to the target size of the previous frame,
and then directly process the extracted features of the target template to resize it implicitly, as shown

in Figure 4.
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Figure 4. Our proposed scale adaptation enhancement module.

3.2.1. Scale Adaptation Enhancement Module

SAEM aims to directly adjust the scale information of the target template features based on the
target size of the previous frame [/, W], as shown in the upper part of Figure 4. Firstly, the four
levels of the target template features z; are concatenated into Z e R!*77_ Next, Z is convolved
with a scale adaptation enhancement kernel (SAEK) to obtain Z . Finally, we divide Z into
2, e R®*7™7 The concatenation operation can ensure that each Z; can obtain information from all
four levels of z;. After SAEM is embedded, the feature fusion is calculated as follows:

)fe_i :Ci(éi,xi):£1X1(£7X7(2i)®Xi) l=0 1 2 3 (2)

SAEK is obtained based on the initial size of the target template [/, W] and the target size of
the previous frame [/, wr,]. Referring to ArbRCAN for scale-arbitrary super-resolution, SAEK is
designed to contain M (the default value is 12) experts, and each expert is a learnable tensor with a

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202506.0960.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2025 d0i:10.20944/preprints202506.0960.v1

dimension 1024x1024x3x3, as shown in the lower part of Figure 4. During training, the experts learn
and save knowledge that can be used to adjust the scale information of target template features. In
addition, [A#,w] and [/, w;,] are input to the fully connected network to obtain the expert
weight, and then the experts are weighted and summed to obtain SAEK. Therefore, the parameters
of SAEK can change dynamically according to the input target size.

As mentioned above, we concatenate [/, w] and [/, w,] as the input, which is different
from the ratio input [Ay,/h,wy, /W] in ArbRCAN. The advantage of our method is that it can
provide a base scale for the model to avoid confusion. For example, a target with a size [8,10] is
upsampled x2 to [16,20], and the other target with a size [32,40]is also upsampled =2 to [64,80].
Although these two operations have the same magnification factor, different experts (learned
knowledge) should be used and their SAEKs should also be different.

3.2.2. Supervision and Gaussian Noise

The essence of SAEM is to map the template features with the initial size [/#,w] to a new
template features with the size [/, wp,]. The latter can also be obtained through an explicit method
that involves: (1) resizing the template according to the target size in the previous frame, and (2)
extracting its target features. These extracted features can serve as the ground truth for training the
SAEM. In this way, we set up an auxiliary branch to supervise the learning of SAEM, as shown by
the red flowline in Figure 5. Firstly, Template is resized by a factor of [hy, /B s we, /W] to obtain
Template®; then, the target features in Template* are extracted to obtain z; ; finally, we take z; as the
ground truth and use the smooth L1 loss to calculate the loss L., between Z; and z; .For training
our model, the loss is calculated as follows:

Loy = %i [ Loy (5.5)) + Loy (b5 + Ly, (,.2)) |

, ©

where Lg(e) is the focal loss for classification, Lwe(s) is the giou loss for regression,

s; e RMHPWIE and b e R™H/PWIE denote the ground truth of score and bounding box at the i-th

layer, respectively. The total loss L is the average of four-layer losses.
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Figure 5. The auxiliary branch for supervising the learning of SAEM and Gaussian noise is added to the previous

target size to enhance the robustness of SAEM.

During online tracking, the previous target size [/,w,] input to SAEM may be inaccurate
due to occlusion and background clutter. To enhance the robustness of SAEM, [A;,wr,] is

multiplied by a random value to simulate the size bias during the training. Considering that some
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trackers [7,27] employing the Gaussian corner heatmap as imprecise annotations of target bounding
boxes, we use the random value that follow a Gaussian distribution with mean g =1.0 and standard
deviation o =0.1. And we perform a clamp operation to limit its range within [¢-30,u+30] to
avoid extreme values with small probability, as shown below:

[Ar Wi 1= Wiy 1% G i , 8uoise €14 —30, u+30] (4)

where [A;,,wp,] is the previous target size after adding Gaussian noise, as shown in Figure 5.
The above process can be regarded as adding noise to the exact [/,wr,] to achieve a data
augmentation, which can effectively reduce the sensitivity of SAEM to the input size.

3.2.3. An Adaptive Threshold for Judging Target Disappearance

During the online tracking, the previous target size [/, w,] entered into SAEM is initialized
with the target annotation in the first frame, and it is updated frame by frame in the subsequent
tracking. However, [A,,w,] should stop updating when the target disappears due to occlusion or
moving out of view. Otherwise, if the wrong [/, wy,] is input to SAEM, it will lead to tracking
failure and incorrect recapture. Therefore, it is important to accurately judge whether the target exists
for online tracking. A common way is to set a specific threshold for the maximum score s™, for

max

example, if s™ > 0.5, the target is present, and vice versa. Nevertheless, as shown in Figure 6, the
smaller the target size, the harder it is to be tracked, and the lower the maximum score s™ .If 0.51is
used as the threshold, targets with the size less than 10 will be misjudged as disappearance; if a small
threshold is used, such as 0.3, there will be more false positive cases when judging larger targets.
Therefore, a fixed threshold is not appropriate. To address this problem, we propose an adaptive
method to judge whether a target exists or not, as follows:

. {1, s> 0,55

0, otherwise 5)

where ‘1" means the target is present, ‘0’ means the target is absent, and s7% represents the

target score obtained by inputting the first frame into the tracker, which is typically the maximum

max

value. s7%f provides a base value for the threshold, which can avoid misjudging the existence of

small and dim targets compared with directly using 0.5 as the threshold.

1

Max Score
o o
L% (=]

o
e

max
——- (.55

0 10 20 30 40 50 60 70 80
Size [pixels]

Figure 6. The red line shows the relationship between the target size and the maximum score s™, the green
dashed line represents the threshold of 0.5, the blue dashed line represents our proposed adaptive threshold,
and the gray shaded area shows the misjudgment when using 0.5 as the threshold.

4. Experiment

4.1. Datasets and Evaluation Metrics

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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We use the public datasets of the Anti-UAV Challenge and the Anti-UAV410 dataset for training
and testing. These datasets are closely related to the infrared UAV tracking task.

Our proposed OSGT is trained on the most comprehensive 3rd Anti-UAV training dataset,
which contains 150 infrared videos, and tested on the 1st [1], 2nd Anti-UAV test-dev [46] and 3rd
Anti-UAYV validation datasets. These three test datasets contain 100, 140 and 50 infrared videos,
respectively, with increasing scene complexity and tracking difficulty. Each video contains 1000 to
1500 frames, and the resolution of each frame is 512x640. These datasets cover UAVs at different
scales and in various scenarios such as cloudy skies, cities and mountains.

The Anti-UAV410 dataset [34] is augmented with a large number of diverse and complex
scenarios based on the 1st and 2nd Anti-UAV datasets. These scenarios included a wide range of
backgrounds such as buildings, mountains, forests, urban areas, clouds, water surfaces, and others.
The Anti-UAV410 dataset is divided into three sets: the train set, which consists of 200 videos; the
validation set, which consists of 90 videos; and the test set, which consists of 120 videos. These videos
contain 1069 frames on average and their resolution is 512x640. There are some differences in the data
distribution between the Anti-UAV410 dataset and the 3rd Anti-UAV dataset. The latter has a higher
proportion of difficult scenarios, which increases the difficulty of tracking UAVs.

On three Anti-UAV Challenge test datasets, two commonly used evaluation metrics, namely
precision plot and success plot, are utilized to assess the performance of location and scale estimation
of all trackers through One-Pass Evaluation (OPE). Specifically, the precision plot calculates the
percentage of frames in which the estimated target location falls within a given distance threshold
from the ground truth. Precision (P, with a threshold of 20 pixels) and normal precision (PNorm) can
be used to measure the accuracy of locating the target. The success plot measures the fraction of
successful frames where the Intersection over Union (IoU) between the predicted bounding box and
the ground truth is greater than a threshold ranging from 0 to 1. Area Under Curve (AUC) of the
success plot and 50% overlap precision (OP50) can be used to evaluate the accuracy of estimating the
target scale. The above metrics are widely used in tracking benchmarks.

According to [34], on the Anti-UAV410 dataset, we use the state accuracy (SA) to
comprehensively evaluate the performance of all trackers, which is calculated as follows:

S Z]oUt xv, +(1-¢)x(1-v,)

f ! , ©)
where v, and e are the ground truth and predicted value of whether the target exists in the ¢-

th frame, respectively. This metric not only requires the tracker to accurately predict the position and
scale of the target, but also to determine the state of the target’s presence in the current frame, and
make a judgment when the target disappears from the field of view.

4.2. Implementation Details

We use the SGD optimizer to train our proposed model for 24 epochs, and each epoch contains
about 1200 iterations. The initial learning rate is 0.005, and is divided by 10 at the 8th and 16th epochs.
The batch size is set to 12. We use 4 NVIDIA RTX 2080Ti GPUs for training and use one of them for
testing.

During training, we use common data augmentation techniques such as horizontal flipping and
photometric distortion, and also use random scaling to increase the data proportion of target scale
variation. Our proposed auxiliary branch supervision and Gaussian noise are only used to train
SAEM, while they are removed during testing.

4.3. Quantitative Evaluation

Our method is tested against 17 high-performance deep trackers, including 11 local trackers,
ATOM [25], DiMP [26], PrDiMP [47], KYS [48], STARK [27], AiATrack [49], TOMP [28], MixFormer
[29], OSTrack [7], SeqTrack[50], AQATrack [31], and 6 trackers with target redetection capability
DaSiamRPN [24], SiamSTA [17], LTMU [36], GlobalTrack [8], CAMTracker [10], SiamDT [34]. Among

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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them, SiamSTA, GlobalTrack and SiamDT are global trackers; DaSiamRPN is able to expand its
search region when the target disappears; LTMU is attached with a global search module; SiamSTA,
CAMTracker and SiamDT are specifically designed for the infrared UAV tracking task. For a fair
comparison, these trackers are retrained on the 3rd Anti-UAV training dataset and Anti-UAV410
training dataset, respectively.

4.3.1. Comparison Results on Anti-UAV Challenge Datasets

Table 2 shows the quantitative comparison results between our proposed method and 14 deep
trackers. Figure 7 shows the corresponding precision plots (ranked based on P) and success plots
(ranked based on AUC). Overall, the trackers with target recapture capability perform better than
local trackers, and it proves that global search is essential for handling challenging scenarios in the
infrared UAV tracking task. In addition, OSTrack is the best local tracker; DaSiamRPN expands the
search region to recapture the target, and its performance is lower than that of other trackers that
directly redetect the target over the whole frame. Our proposed OSGT outperforms state-of-the-art
SiamDT in almost all four evaluation metrics on three test datasets. Specifically, P is improved by
1.8% on 2nd Anti-UAYV test-dev; AUC is improved by 1.9% and P is improved by 1.6% on the most
difficult 3rd Anti-UAV val. After SAEM is embedded, the performance of OSGT is further improved,
and it reaches the best place in most of the metrics on the three test datasets. In particular, AUC,
OP50, P and Pnorm are improved by 1.3%, 1.5%, 1.5% and 1.2% on 3rd Anti-UAV val, respectively. It
indicates that the proposed SAEM is beneficial to improve the performance of OSGT.

Table 2. Quantitative comparison results of our method and 14 deep trackers on three Anti-UAV challenge test

datasets.
L 1st Anti-UAYV test-dev 2nd Anti-UAYV test-dev 3rd Anti-UAV val
Method Publication
AUC OP50 P Pnom AUC OP50 P Pnom AUC OP50 P  Pnom
ATOM [25] CVPR 2019 616 779 793 789 541 688 725 695 431 547 585 57.6
DiMP [26] ICCV 2019 668 840 852 849 591 746 777 753 474 588 644 621
PrDiMP [47] CVPR 2020 692 877 891 887 613 781 822 790 490 621 664 642
KYS [48] ECCV 2020 673 845 858 855 596 753 784 760 490 609 671 635
STARK [27] ICCV 2021 695 874 894 885 620 783 822 791 488 621 69.0 64.0
TOMP [28] CVPR 2022 658 820 830 828 578 721 743 729 438 552 608 57.8
OSTrack [7] ECCV 2022 724 913 936 927 627 795 834 799 519 648 687 672
SeqTrack [50] CVPR 2023 553 714 732 729 501 637 669 652 435 553 620 579
AQATrack [31] CVPR 2024 703 889 909 899 609 770 80.7 780 475 596 662 623
DaSiamRPN [24] ECCV 2018 68.7 881 907 879 577 745 772 748 420 530 59.6 b55.7
GlobalTrack [8] AAAT 2020 756 955 975 964 655 831 893 852 530 663 747 705
LTMU [36] CVPR 2020 758 953 967 962 686 864 883 881 554 692 733 723
SiamSTA # [17] ICCVW 2021 726 — 9.9 — 65.5 — 888 — — — — —
SiamDT [34] PAMI 2024 764 962 977 972 685 871 894 891 533 671 750 703
OSGT - 762 96.6 980 973 686 883 912 898 552 705 766 752
OSGT+SAEM — 764 962 979 973 694 889 917 905 565 720 781 764

* The best three results are shown in red, blue, and green fonts. The gray background indicates the results of

trackers with target redetection capability. # means the values are taken from their publications.

Precision plot on 1st Anti-UAV test-dev

80-

60-

40

Distance Precisian [%]

0 1o

—— 0S5GT [98.0]
—— OSGT+SAEM [97.9]
— SlamDT [97.7]
— GlobalTrack [97.51
—— MU [96.7]
0STrack [92.6]
—— AQATrack [90.9]
—— DaslamRPN [90.7]
STARK [89.4]
—— PrDiMP [89.1]
— KY5[85.8]
DIMP [85.2]
— TOMP [83.0]
—— ATOM [79.3]
—— SeqTrack [73.2]

20 30 40
Lacation error threshold [pixels]

Distance Precision [%]

Precision plot on 2nd Anti-UAV test-dev

0STrack [83.4]
—— PrDIMP [82.2]
—— STARK [82.2]

— OSGTSAEM[GLII]
/—_——'— 056T[91.2] H
/ — SiamDT [85.4]

— GlobalTrack [89.3]

— MU (88.3]

AQATrack [80.7]

—— KIS [78.4]

—— DIMP77.7]
DaSlamReN [77.2]

— TOMP(74.3]

—— ATOM [72.5]

—— SeqTrack [66.9]

20 30 a0
Location error threshold [pixels]

Distance Precision [%]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

80+

60

40-

Precision plot on 3rd Anti-UAV val

—— OSGT+5AEM [73.1][J
—— 0SGT[76.6]
y—— 5iamDT [75.0]

74.7]

— MU [73.3]

STARK [69.0]
—— OSTrack [66.7]
— KYs[67.1]
PIOIMP [66.4]
—— AQATrack [66.2]
— DiMP (64.4]
SeqTrack [62.0]
— TOMP [60.8]
—— DaSiamRPN [59.6]
—— ATOM [58.5]

20 30 40
Location error threshold [pixels]



https://doi.org/10.20944/preprints202506.0960.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2025 d0i:10.20944/preprints202506.0960.v1

12

Success plot on 2nd Anti-UAV test-dev Success plot on 3rd Anti-UAV val

Success plot on 1st Anti-UAV test-dev 100

80 80, = 80

S OSGI+SAEM169.4]
- —— LTMU68.6]
— osGT(68.6]
" —— SiamDT [68.5]
—— GlobalTrack [65.6]
OSTrack [62.7]
—— STARK [62.0]
40— PrDIMP [61.3]
AQATrack [60.9]
— KYS[59.6]

— SiamDdT [76.4]

—— OSGT+SARM [76.4]

— 05GT[76.2]

— TMU [75.8]

— GlohalTrack [75.6]
osTrack [72.41

—— AQATrack [70.31

407 — STARK [69.5]
PrDIMP [6.2]

—— DaSlamRPN (68.7)

— Krs[67.3]

20 DIMP [66.5]

—— TOMP [65.8]

—— ATOM [61.6]

—— SeqTrack [55.3]

B0 0.2

N OSGT+SAEM [56.5]
e LTMU [55.4]
— Os6TIs5:2]

i,

60 slampT 53,31 —_—
—— Globallrack [53.01
OSTrack (51.9]
—— KrS [40.0]
40— ProiMP [49.0)
STARK [48.8]
—— AQATrack [47.5]
— DiMP [59.1] — DIMP[47.4]
20- TOMP[57.8] 20- TOMP [43.7]
—— DaSiamRPN [57.7] —— SeqTrack [43.5]
—— ATOM [54.1] —— ATOM[43.1]
—— SeqTrack [50.1] —— DaSiamRPN [42.0]

Overlap Precision [%]

Overlap Precision (%]
Overlap Precision [%]

0.8 1o 0.0 02 04 06 08 10 0.0 02 04 06 08 10
Overlap threshold Overlap threshold

0.4 06
Overlap threshold
Figure 7. Precision plots and success plots of our method and 13 deep trackers on three Anti-UAV Challenge
test datasets.

It is noted that OSGT has a slight performance degradation on the 1st test-dev dataset after
embedding SAEM. This is because this dataset consists mostly of simple scenarios without obvious
target scale variation, but the template features still change slightly through SAEM, which affects the
precision of location and scale estimation to a certain extent.

4.3.2. Comparison Results on Anti-UAV410 Dataset

Table 3 shows the quantitative comparison results between our proposed method and 8 deep
trackers. OSGT outperforms the baseline GlobalTrack. After embedding SAEM, OSGT achieves the
state-of-the-art performance, outperforming SiamDT with improving SA by 0.79%. OSGT and
SiamDT respectively focus on solving different problems of global trackers in the infrared UAV
tracking task. SiamDT attempts to enhance the anti-interference ability of global trackers in complex
backgrounds. To be specific, it detects and memorizes interference objects in the scene to exclude
wrong candidate targets. In contrast, OSGT attempts to improve the scale adaptation of global
trackers by implicitly resizing the template when the target scale changes. These two algorithms
effectively improve the performance of global trackers from different aspects.

Table 3. Quantitative comparison results of our method and 8 deep trackers on the Anti-UAV410 test dataset.

PrDiM STAR AiATra OSTracMixForm GlobalTra CAMTracke SiamD OSGT
Method P K ck k er ck ri T# OSGT +SAE
[471 1271 [49] [7] [29] [8] [10] [34] M
Publicati CVPR ICCV ECCV ECCV CVPR AAAI RS PAMI
on 2020 2021 2022 2022 2023 2020 2024 2024 a
SA 54.69 57.15 59.56 60.15 59.65 66.45 67.10 68.19 67.03 68.98

4.3.3. Inference Performance Comparison

Table 4 shows the inference performance of our proposed OSGT compared to four trackers with
target redetection capability on an NVIDIA RTX 2080Ti GPU. These statistics include the
preprocessing time (about 10ms) for image loading, normalization, etc. The running speed of OSGT
reaches 30.9 fps, which meets the real-time requirement, and far exceeds SiamDT and LTMU. After
SAEM is embedded, OSGT can still run in real time at 27.3 fps. It verifies that OSGT and SAEM are
efficient.

Table 4. Inference performance of our method compared to 4 trackers with target redetection capability on an
NVIDIA RTX 2080Ti GPU.

Method DaSiamRPN GlobalTrack LTMU SiamDT OSGT OSGT+SAEM
Speed (fps) 22.7 22.3 1.5 9.1 30.9 27.3
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4.4. Qualitative Evaluation

Figure 8 shows the visualization results of our method, OSTrack, GlobalTrack, LTMU and
SiamDT in four different scenarios. The first row shows that OSGT can robustly track targets in
complex backgrounds, especially it can estimate the size of the target more accurately. The second
row shows that OSGT can track small targets well: in detail, the first two images show the case where
the target position changes rapidly caused by camera movement, and the last two images show the
case where the target temporarily disappears due to moving out of view, both of which are better
handled by the global tracker than the local tracker by utilizing global search mechanism. The target
scales in the third and fourth rows change from small to large and from large to small, respectively.
GlobalTrack, SiamDT and OSGT without SAEM track wrong targets such as flying birds and towers
that are similar in size and appearance to the target template. OSTrack and LTMU have good scale
adaptation by resizing the search region, but they still fail to track targets when the target scale
changes drastically, as shown in the fourth row. After SAEM is embedded, OSGT can timely adjust
the scale information of the target template features according to the target size change, which
improves the scale adaptation of OSGT. In addition, it can also be regarded as a specific scale
constraint, which allows OSGT to effectively avoid being distracted by other objects with undesired
scales.

#0102 20190525 12:4538)
c

fﬂ(24

a1

-

wesss Ground Truth OSTrack === GlobalTrack LTMU  wss= SiamDT = OSGT === OSGT+SAEM

Figure 8. Visualization results of our method, OSTrack, GlobalTrack, LTMU and SiamDT.

4.5. Model Analysis
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4.5.1. Ablation Study

Table 5 shows the effect of SAEM, supervision and Gaussian noise on OSGT’s performance, and
the latter two are used during training SAEM. The role of Gaussian noise is to simulate the inaccurate
input to SAEM. Obviously, training without Gaussian noise causes AUC and OP50 to severely
decrease by 3.2% and 2.2%, respectively. This is because occlusion and background clutter lead to
imprecise estimation of the target size in previous frames during online tracking, as shown in Figure
9. If SAEM processes the target template features according to the imprecise size, it will increase the
error of the estimated bounding box. More seriously, if the auxiliary branch is used to supervise
module training, SAEM will be more dependent on the exact input size, and the reduction in AUC
and OP50 will be larger and reach 4.6% and 3.9%, respectively. This proves the importance of
Gaussian noise to improve the robustness of estimating bounding boxes.

Under the premise of introducing Gaussian noise, using the auxiliary branch to supervise SAEM
training can further improve the performance of OSGT. To be specific, AUC, OP50, P and Pnom are
improved by 0.6%, 0.5%, 0.9% and 0.8%, respectively. Compared with SAEM which implicitly adjusts
the scale information of the extracted target template features, the auxiliary branch adopts a more
intuitive approach of first resizing the target template and then extracting its features. It can provide
a ground truth for the output of SAEM during training, which significantly reduces the difficulty of
module training. In summary, SAEM can better improve the scale adaptation of the global tracker
only when both the supervision and Gaussian noise are used during training.

Table 5. The influence of SAEM, supervision, and Gaussian noise on model performance. The model is tested
on 3rd Anti-UAV val.

OSGT SAEM  Supervision Gaussian noise AUC OP50 P PNorm
v 552 705 76,6 752

v v 527 693 768 753
v v v 519 681 768 745
v v v 559 715 770 75.6
v v v v 565 720 781 764

mess Ground Truth === w Gaussian noise = w/o Gaussian noise

Figure 9. Using Gaussian noise during training enhances the performance of our model to accurately estimate

the target size.

4.5.2. Effectiveness of SAEM

The purpose of SAEM is to implicitly adjust the scale information of the extracted template
features according to the target scale change. There is an explicit way to achieve this goal is to first
resize the template and then extract its target features, which is also how the auxiliary branch
supervision works for training SAEM. Figure 10 visualizes the template features obtained using the
two methods. The results of both are approximately the same, which proves that SAEM achieves the
expected effect.
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Figure 10. The template feature maps are obtained by using SAEM and the explicit method, respectively. Some
feature variations are shown in the black dashed circle.

4.5.3. Compatibility of SAEM

Our proposed SAEM is a plug-and-play module, which can be compatible with other global
trackers to improve their scale adaptation. Table 6 shows the impact of embedding SAEM into
accessible global trackers, such as GlobalTrack and SiamDT. After SAEM is embedded, all metrics of
GlobalTrack and SiamDT are significantly improved. To show the increment of scale adaptation, we
test 3 global trackers using SAEM in the scale variation scenario, as shown in Figure 11. To be specific,
P and AUC of GlobalTrack are improved by 2.1% and 4.1%, respectively; P and AUC of SiamDT are
improved by 3.7% and 2.7%, respectively; P and AUC of OSGT are improved by 5.9% and 2.7%,
respectively. It not only verifies the effectiveness of SAEM in improving the scale adaptation of OSGT,
but also proves that SAEM can be embedded into other global trackers to effectively improve their
ability to cope with the target scale variation.

Table 6. The impact of embedding SAEM into different global trackers.

. GlobalTrack ) SiamDT OSGT
Metrics GlobalTrack +SAEM SiamDT +SAEM OSGT +SAEM
AUC 53.0 54.4 (1.41) 533  553(2.01) 552  56.5(1.31)
OP50 66.3 68.2 (1.91) 671  69.5(241) 705  72.0(151)
P 74.7 76.1 (1.41) 750  76.1(1.171) 766  78.1(151)
Porm 70.5 73.1(2.61) 703  728(251) 752  76.4(1.21)
100 Precision plot - Scale Variation 100 Success plot - Scale Variation
80 80
:g 60 é 60
% 40 E‘ 40
% —— OSGT+SAEM [83 3] g —— OSGT+SAEM [49.6]
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—— SiamDT [74.8] —— O0SGT [46.9]
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% 10 20 30 40 50 bo 0.2 0.4 0.6 0.8 1.0
Location error threshold [pixels] Overlap threshold

Figure 11. The enhanced scale adaptation of OSGT, GlobalTrack and SiamDT after embedding SAEM.
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4.5.4. Number of Experts in SAEM

In of Section 3.2.1, the expert in SAEK is the knowledge learned during training to adjust the
scale information of the extracted target template features, and its specific form is the learnable model
parameters. The impact of the number of experts on the model and its performance is shown in Table
7. When four more experts are added to SAEK, the number of model parameters increases by 0.13K,
the calculation amount increases by 0.28K, the time consumption increases by about 0.8ms, and the
running speed decreases by about 0.6 fps. The more experts, the higher the tracking performance of
the model, but too many experts degrade the performance due to model overfitting and increased
training difficulty. The tracker performs best when the number of experts is 12. Overall, SAEM
requires very little computation and time consumption.

Table 7. The impact of the number of experts on the model and its performance.

Experts Params. FLOPs Time AUC OP50 P Pnorm  Speed

4 1.35K 2.58K 1.72ms 55.6 70.6 76.9 74.6 28.5
8 1.48K 2.86K 2.53ms 55.8 71.4 76.9 76.0 27.9
12 1.61K 3.14K 3.31ms 56.5 72.0 78.1 76.4 27.3
16 1.74K 3.42K 4.11ms 56.2 72.0 77.5 75.2 26.6

4.5.5. Different Input Forms in SAEM

SAEM requires the change information of the target scale as input. There are usually two input
forms, one is the ratio form [A. /h,w;;/w] in ArbRCAN, and the other is our proposed
concatenation form [A,w,, /. ,wy,]. Table 8 shows the influence of these two input forms on the
model performance. Compared with the ratio form, the concatenation form can provide the model
with a base scale to avoid confusion and get better results.

Table 8. The influence of different input forms in SAEM on model performance.

Input forms AUC OP50 P PNorm
Ratio form 56.2 72.0 77.4 75.6
Concatenation form 56.5 72.0 78.1 76.4

4.5.6. Using Different Thresholds to Judge the Target Disappearance

In of Section 3.2.3, considering the target is occluded or out of view, the algorithm needs to
accurately judge the disappearance of the target and stop updating the previous target size input to
SAEM. Otherwise, when the target reappears, it cannot be recaptured correctly due to inputting the
wrong size to SAEM. Table 9 shows the effect of using different thresholds to judge the target
disappearance on the model performance. When the threshold is 0, it means that the algorithm does
not judge whether the target exists and updates the input of SAEM every frame. In this case, the
performance of the tracker decreases drastically. As shown in the left of Figure 12, the previous target
size is inaccurate due to the target disappearance, and if the size input of SAEM is updated, the
tracker cannot track the target correctly when the target reappears. Our proposed adaptive threshold

max

takes the maximum score of the first frame s; as the base value, which can more accurately judge
whether the small and dim target exists. Compared with using 0.5 as the threshold, our method
improves AUC, OP50 and Pnorm by 0.5%, 0.9% and 0.2%, respectively. As shown in the right of Figure
12, the target size is small and its maximum score is 0.3531. If 0.5 is used as the threshold, the tracker
will misjudge that the target has disappeared and stop updating the input of SAEM, and it causes
that the target size cannot be correctly estimated in the subsequent tracking. In contrast, our method
can adjust the threshold to 0.1766 and correctly determine the existence of small targets.

Table 9. The effect of using different thresholds to judge the target disappearance on model performance.
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Threshold AUC OP50 P Pnorm
0.0 55.4 70.5 77.0 74.3
0.5 56.0 71.1 78.4 76.2
0.55™ 56.5 72.0 78.1 76.4

mm= Ground Truth = Threshold =0 Threshold = (0.5 == Adaptive Threshold

Figure 12. The influence of using different thresholds to judge the target disappearance on tracking results.

4.5.7. Comparison Results of Different Template Update Methods

Template update is a commonly used trick to deal with target appearance variations during
online tracking. It is typically a temporal appearance update method, where the tracker replaces the
original template with the tracking result every N frames [27]. Different from it, we only update the
scale information of the target template feature, including an explicit update method (first resize the
target template and then extract its features) and an implicit update method (using our proposed
SAEM).

Table 10 shows the effect of different template update methods on the OSGT’s tracking results.
The temporal appearance update (with N=100) causes the degradation of the tracking performance.
This is because most infrared UAV tracking scenarios are highly complex and prone to disturbing
the tracking result, which makes the updated template unreliable, leading to subsequent tracking
failure. In contrast, both scale update methods significantly improve the OSGT’s performance by
enhancing it scale adaptation. However, compared with our proposed implicit scale update, the
explicit scale update exhibits lower efficiency, because it need to extract features from the resized
template every frame.

Table 10. Comparison results of different template update methods.

Template update methods AUC OP50 P PNorm Speed
None 55.2 70.5 76.6 75.2 30.9
Temporal appearance update 54.9 70.2 76.4 74.7 29.9
Explicit scale update 56.2 714 77.7 76.0 19.3
Implicit scale update (SAEM) 56.5 72.0 78.1 76.4 27.3

4.5.8. Tracking Failure Cases

The global tracker inherently possesses the ability to recapture targets due to taking the whole
frame as its search region. This advantage enables it to effectively handle target disappearance caused
by occlusion and moving out of view. However, a large search region introduces more background
interference, especially in extremely complex scenarios, leading to tracking failures, as shown in
Figure 13. Therefore, in addition to the poor scale adaptation, anti-interference is another critical
research issue for global trackers.
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Figure 13. Tracking failure cases due to background interference.

5. Conclusions

This paper focuses on solving the problem of poor scale adaptation of global trackers in the
infrared UAV tracking task. To address this problem, we propose a plug-and-play scale adaptation
enhancement module, which can implicitly resize the target template according to the target size in
the previous frame. Moreover, we optimize the learning of SAEM by setting the auxiliary branch
supervision and Gaussian noise. During the online tracking, an adaptive threshold is proposed to
judge target disappearance and avoid SAEM being affected by the wrong input size. In addition, we
propose a one-stage anchor-free global tracker, which has a concise structure to track UAVs in real
time in infrared videos. On three Anti-UAV Challenge datasets and the Anti-UAV410 dataset, our
proposed tracker is compared with 17 deep trackers and shows excellent performance, especially
when dealing with the dramatic target scale variation.

Our future work will explore combining the anti-interference and scale adaptation of the global
tracker to deal with more complex tracking scenarios.
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