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Abstract

Large Language Models (LLMs) have demonstrated remarkable abilities to solve problems requiring
multiple reasoning steps, yet the internal mechanisms enabling such capabilities remain elusive.
Unlike existing surveys that primarily focus on engineering methods to enhance performance, this
survey provides a comprehensive overview of the mechanisms underlying LLM multi-step reasoning.
We organize the survey around a conceptual framework comprising seven interconnected research
questions from how LLMs execute implicit multi-hop reasoning within hidden activations to how
verbalized explicit reasoning remodels the internal computation. Finally, we highlight five research
directions for future mechanistic studies.

Keywords: large language models; multi-step reasoning; mechanistic interpretability; literature review

1. Introduction
Large Language Models (LLMs) have demonstrated an impressive ability to carry out multi-step

reasoning, which involves the process of drawing conclusions through a sequence of intermediate
steps, where each step builds on the previous one. Multi-step reasoning has been widely regarded as
one of the most fundamental forms of reasoning Guo et al. (2025); Hou et al. (2023a). It serves as the
backbone of advanced tasks such as deep question answering, mathematical problem solving, logical
deduction, code generation, and planning Chen et al. (2021); DeepSeek-AI et al. (2025); Dubey et al.
(2024); Guo et al. (2024); OpenAI (2023); Wei et al. (2022); Yang et al. (2024).

Multi-step reasoning in LLMs generally takes on two distinct forms. Implicit reasoning involves
performing multi-hop inference entirely within the model’s hidden activations, delivering a correct
final answer without verbalizing intermediate steps. In contrast, explicit reasoning, exemplified by
Chain-of-Thought (CoT) Wei et al. (2022), instructs the model to externalize the reasoning process into a
sequence of natural language tokens. Remarkably, modern LLMs have exhibited strong performance
in both paradigms Chen et al. (2025); Chu et al. (2024a); Li et al. (2025). Building on this empirical
success, the internal mechanisms that enable such capabilities become scientifically intriguing. For
implicit reasoning, a key puzzle is how multi-step reasoning capabilities emerge from simple next-token
prediction training, and how LLMs internally carry out multi-step computations. For explicit CoT
reasoning, critical questions persist about why CoT can elicit superior reasoning capabilities and whether
the generated rationale faithfully reflects the model’s actual decision-making process. Understanding
these mechanisms is not only a matter of scientific curiosity but also a prerequisite for building more
reliable, controllable, and human-aligned reasoning systems.

Although we still lack a unified mechanistic theory, a growing body of literature seeks to open
the black box of LLM multi-step reasoning and has made significant progress. In this paper, we aim to
provide a comprehensive overview of these works. Unlike existing surveys Chen et al. (2025); Chu et al.
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(2024b); Huang and Chang (2023) that primarily focus on enhancing reasoning (e.g., through tool use,
retrieval augmentation, or self-correction), our survey explicitly focuses on understanding mechanisms,
a perspective that has been largely overlooked in previous reviews. As illustrated in Figure 1, we
identify seven pivotal, interconnected, and progressive research questions (RQs) to form the cognitive
framework of our survey. These questions form a cohesive narrative, covering analytical methods and
key findings from the hidden internal dynamics of latent reasoning to the visible mechanisms of explicit
CoT reasoning. We end by pointing out five open research questions that remain under-explored but
are essential for the future roadmap of mechanistic understanding.
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Figure 1. The cognitive framework and organizational structure of this survey. We explore the mechanisms of
multi-step reasoning through two distinct paradigms: Implicit Reasoning and Explicit Reasoning, through seven
interconnected Research Questions. The bottom panel highlights five strategic directions for future research.

2. Implicit Multi-Step Reasoning
Multi-hop implicit reasoning is the process of answering a question by combining multiple pieces

of information across several steps. Unlike explicit reasoning, the intermediate links are not directly
stated and must be inferred using background knowledge or context. Mechanistic study of multi-hop
implicit reasoning is important because it reveals whether models truly perform step-by-step reasoning
or rely on shallow shortcuts. Such understanding improves interpretability and trust in LLMs, and it
guides the development of models that generalize more reliably.

2.1. What Are the Internal Mechanisms of Latent Multi-Step Reasoning?

Recent mechanistic studies have begun to unveil how LLMs carry out latent multi-hop computa-
tion entirely in their hidden states Biran et al. (2024); Brinkmann et al. (2024a); Yang et al. (2024). These
studies employing causal probing, mechanistic tracing, and representational analysis have collectively
revealed a staged internal process in which intermediate results are computed and transformed layer
by layer, ultimately contributing to the final output. In essence, transformers appear to implement an
internal chain-of-thought spread across their depth.

Functional specialization of layers.

A major body of work explores layer specialization, aiming to identify the distinct computational
roles each layer plays during multi-hop inference. Using Patchscopes Ghandeharioun et al. (2024)
together with a novel intervention technique termed back-patching, Biran et al. (2024) uncovered
a sequential computation pathway in which early layers identify the bridge entity, which is then
propagated forward and exploited by later layers to complete the inference. Complementarily, Li et al.
(2024) applied logit lens analysis nostalgebraist (2020) and found that implicit reasoning representations
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emerge in intermediate layers and have a causal influence on generating the final answer. Extending
this perspective, Yu et al. (2025) traced logits through the network via a neuron-level logit flow
method and observed that even a single-hop query is solved in multiple distinct stages—entity
subject enrichment, entity attribute extraction, relation subject enrichment, and relation attribute
extraction—each of which is localized to different layers. More recently, Yang et al. (2025) showed
that this layer-wise reasoning also applies at the task level: for composite instructions, models execute
different subtasks at different depths, forming a staged computation across layers. All the above
studies provided evidence of functional specialization of transformer layers in multi-hop reasoning.

Uncovering fine-grained reasoning structures.

Beyond layer specification, another line of work aims to recover more fine-grained implicit
reasoning structures from model internals. MechanisticProbe Hou et al. (2023b) introduced an attention-
probing technique to extract latent reasoning trees from transformer activations. They showed that
on synthetic and natural tasks with GPT-2 and LLaMA, models often perform procedural reasoning
layer by layer, with lower layers selecting statements and higher layers executing reasoning steps.
Complementing these findings, Brinkmann et al. (2024b) analyzed a small transformer trained on a
symbolic tree path-finding task, finding that it implements a backward chaining algorithm: deduction
heads climb trees one level per layer, register tokens act as working memory for parallel subpaths,
and a one-step lookahead heuristic compensates when chaining is insufficient. Together, these studies
demonstrate that transformers can adopt structured, algorithm-like reasoning strategies beyond
memorization, albeit within the limits of the model’s depth (to be discussed below).

Layer depth as the primary bottleneck for implicit reasoning.

Theoretical and empirical studies indicate that the number of reasoning steps a model can perform
implicitly is strictly limited by its depth. Merrill and Sabharwal (2024) theoretically demonstrated
that a standard Transformer with constant depth cannot solve inherently serial problems that require
computation scaling with input size, e.g., parity or graph connectivity. In practice, Yu (2025) and Guo
et al. (2025) found that specific multi-hop reasoning tasks require a minimum threshold of layers to
resolve; if a model is too shallow, the “latent chain” is cut short, and the reasoning fails. Saunshi
et al. (2025) formally established that an L-layer Transformer can simulate an m-step explicit reasoning
process, provided L is sufficiently large to accommodate the iterative forward passes required. All
these works revealed a close correlation between layer depth and the implicit reasoning capabilities of
the model.

Why implicit reasoning sometimes fails.

Identifying how and why implicit reasoning sometimes fails has also been illuminating. Biran et al.
(2024) discovered that many failures stem from delayed resolution of the first hop, and showed that
rerunning computations via back-patching can correct these errors. Li et al. (2024) found that failures
frequently arise from the improper generation or utilization of implicit reasoning results. To address
this, they proposed CREME, a lightweight model-editing technique that patches specific multi-head
self-attention modules, leading to improved compositional reasoning generalization with minimal
disruption to unrelated predictions. In the context of two-hop queries (“e1’s r1’s r2 is e3”), Yu et al.
(2025) showed that errors often occur when high-layer features at the r1 position overemphasize the
intermediate entity e2, outweighing the logits for the correct final entity e3. This finding revealed that
LLMs internally build and combine entity–relation representations in a staged manner, but positional
interference can derail multi-hop reasoning. To fix this, they introduced a back-attention mechanism
allowing lower layers to reuse higher-layer information from other positions, which substantially
improved multi-hop accuracy. However, even with such interventions, certain transformers still
struggle to reliably chain more than one reasoning step. For example, Yang et al. (2024) found that
LLaMA-2 models, while reliably recalling a needed bridge entity, often fail to apply it to the second
hop, highlighting limits in architecture that impede consistent multi-step chaining.
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Takeaway: Implicit multi-hop reasoning in LLMs is not a monolithic capability but rather an
orchestrated, layered process, with distinct modules and pathways specializing in different phases
of the reasoning chain. For example, probing and intervention studies showed that intermediate
results, e.g., bridge entities, are computed and passed along inside the network. Nevertheless, such
implicit reasoning is constrained by the inherent architecture of transformers, for example, their
fixed depth.

2.2. How Latent Multi-Step Reasoning Capability Is Acquired During Training?

Models do not possess latent reasoning capabilities at initialization. If multi-hop reasoning is
implemented via specialized internal circuits discussed in Section 2.1, a critical question arises: how do
these circuits emerge in the first place? Research into training dynamics reveals that implicit reasoning is
an acquired behavior that emerges during the training process through distinct phase transitions.

Grokking marks the shift from memorization to reasoning.

Recent studies Abramov et al. (2025); Wang et al. (2024); Ye et al. (2025); Zhang et al. (2025)
suggested that LLMs do not learn multi-step reasoning gradually; instead, they often undergo phase
transitions during training where reasoning capabilities appear suddenly rather than continuously. In
other words, a model might spend many updates seemingly memorizing or floundering, then “grok”
the underlying reasoning algorithm after a certain point. This phenomenon, known as “grokking”,
was initially observed in deep networks trained on other tasks such as modular arithmetic, where
generalization performance spikes long after training accuracy has saturated Olsson et al. (2022);
Power et al. (2022); Wei et al. (2022).

In the context of multi-hop implicit reasoning, this phenomenon of transformers transitioning
from early-stage memorization to later-stage generalization was first observed by Wang et al. (2024)
through training transformers from scratch on symbolic reasoning tasks. They found that the multi-
hop reasoning capability emerges only through grokking, where an early memorizing circuit is gradually
replaced by a more efficient generalizing circuit due to optimization bias and weight decay. Ye et al.
(2025) corroborated this phase transition, proposing a three-stage trajectory: (i) rapid memorization, (ii)
delayed in-distribution generalization, and (iii) slower cross-distribution generalization, with persistent
OOD bottlenecks at the second hop. Mechanistically, they employed cross-query semantic patching to
localize the “bridge” entity and a cosine-based representational lens to reveal that generalization coincides
with mid-layer clustering of intermediate entity representations.

Factors influencing the emergence of reasoning.

The transition from memorization to generalization is not random; studies revealed that it is
governed by specific properties. One of the primary determinants is the training data distribution.
Wang et al. (2024) demonstrated that the speed of grokking correlates strongly with the ratio of inferred
to atomic facts ϕ in training. A higher ratio of compositional examples forces the model to abandon
inefficient memorization in favor of the generalizing circuit. Expanding this to real-world scenarios,
Abramov et al. (2025) found that natural corpora often lack sufficient connectivity (low ϕ) to trigger
this transition, but data augmentation with synthetic inferred facts can artificially raise ϕ above the
critical threshold required for circuit formation. Beyond data distribution, the scale of the training data
also matters. Yao et al. (2025) revealed a scaling law: the data budget required to learn implicit k-hop
reasoning grows exponentially with k, though curriculum learning can significantly mitigate this
cost. From an optimization perspective, Zhang et al. (2025) identified complexity control parameters
as crucial factors. They found that smaller initialization scales and stronger weight decay bias the
optimization process toward low-complexity, rule-like solutions rather than high-complexity, memory-
based mappings, thereby accelerating the emergence of reasoning capabilities. Finally, Li et al. (2025)
observed that in large-scale pretraining, grokking is asynchronous and local; different domains and data
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groups undergo this memorization-to-generalization transition at different times depending on their
inherent difficulty and distribution heterogeneity.

Takeaway: Implicit multi-hop reasoning capability is an acquired capability that emerges via
grokking—a phase transition from surface-level memorization to structured reasoning. This transi-
tion is not automatic; it is governed by critical factors, including the training data distribution, the
data scale, and complexity control via optimization biases.

2.3. To What Extent Does Multi-Step Reasoning Rely on Shortcuts?

While the training dynamics discussed in § 2.1 suggest that structured reasoning circuits can
emerge, growing mechanistic evidence has also uncovered a more complex and often discouraging
reality regarding model internals. Models frequently bypass genuine multi-step reasoning, relying
instead on “shortcuts”—statistical correlations or surface-level heuristics that mimic reasoning without
performing the underlying computation Elazar et al. (2024); Kang and Choi (2023); Yang et al. (2025a).

Factual shortcuts bypass intermediate reasoning.

A primary form of shortcutting involves exploiting direct associations between the subject and
the final answer, effectively skipping the intermediate steps. Ju et al. (2024) investigated this in the
context of knowledge editing, finding that failures often stem from “shortcut neurons” that encode
a direct link between the first and last entities, ignoring the multi-hop structure. Mechanistically,
Yang et al. (2025b) used Patchscopes Ghandeharioun et al. (2024) to distinguish valid reasoning from
shortcuts. They observed that genuine implicit reasoning coincides with the model constructing a
hidden representation of the intermediate bridge entity. In contrast, shortcut-prone queries bypass this
internal construction entirely. When these direct shortcuts are removed, model performance drops by
nearly a factor of three, revealing that much of the perceived reasoning capability is illusory.

Shortcuts based on surface-level pattern matching.

Beyond factual associations, models also latch onto structural regularities in the training data. Lin
et al. (2025) analyzed implicit arithmetic reasoning and found that models often adopt a “bag-of-words”
heuristic, treating operations as commutative even when they are not. While this shortcut works
for fixed-template examples, performance collapses when premise order is randomized, proving
the model had not learned the robust sequential logic. Similarly, Guo et al. (2025) found that in the
presence of context distractors, pretrained models default to a heuristic of guessing based on surface
plausibility. However, they also noted a positive trajectory: fine-tuning can force a phase transition
where the model shifts from this shallow guessing behavior to a sequential query mechanism that
explicitly retrieves intermediate entities.

Takeaway: LLMs frequently bypass the “latent reasoning chain” via factual shortcuts (direct input-
output associations) or structural heuristics (exploiting surface patterns like commutativity). This
underscores the need for shortcut-free evaluation protocols and training setups that force models
to construct and reuse intermediate representations.

3. Explicit Multi-Step Reasoning
Implicit reasoning operates entirely within the fixed computational budget of the model’s hidden

states; therefore, it is bounded by the depth bottleneck and frequently falls prey to shortcuts. Explicit
multi-step reasoning fundamentally alters this paradigm. By prompting an LLM to produce a step-by-
step Chain-of-Thought (CoT), the reasoning process is externalized into a sequence of natural language
tokens, effectively extending the computational capacity beyond the model’s layers. CoT has been
shown to unlock significantly better performance on tasks that require reasoning. In this section, we
dissect the mechanisms of this paradigm through four progressive research questions (§ 3.1-§ 3.4).
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3.1. Where and When Does CoT Help?

On which tasks does CoT help?

To uncover this, Sprague et al. (2025) conducted a large-scale meta-analysis across 20 benchmarks
and found that prompting with CoT yields large gains primarily on math and symbolic logic tasks, with
far smaller or even negative gains on other domains. Suzgun et al. (2023) similarly showed that
many BIG-Bench Hard tasks Srivastava et al. (2023), which had stumped standard few-shot prompts,
become solvable with CoT. These were precisely tasks requiring multi-step reasoning, e.g., symbolic
manipulation, compositional logic. However, for knowledge-heavy tasks like MMLU Hendrycks
et al. (2021) or commonsense reasoning, CoT often provides negligible improvement Sprague et al.
(2025). In certain cases, CoT can even degrade accuracy. For example, Liu et al. (2024) examined
cognitive-psychology tasks where additional deliberation harms human performance, e.g., certain
trick riddles or intuitive judgment problems. They found that CoT substantially degraded accuracy on
such tasks, and it tends to distract the model into over-complicating a problem that might have been
solved via intuition. A complementary study on Blocksworld planning Stechly et al. (2024) found that
CoT helps only when the prompt examples closely match the test distribution, and the gains quickly
deteriorate if the test problem’s complexity exceeds that seen in the exemplars.

What factors influence the efficacy of CoT?

Beyond task-level evaluations, empirical studies have shown that CoT performance can be
dramatically influenced by many features of the CoT prompt. First, studies Madaan et al. (2023); Wang
et al. (2023); Ye and Durrett (2022) reveal that the relevance and ordering of exemplars matter more than
their semantics; models can still derive correct answers from invalid rationales if the prompt maintains
a coherent structure. Second, the length of reasoning is another critical factor, with Jin et al. (2024)
identifying that the number of reasoning steps significantly modulates model performance. Finally,
CoT is surprisingly sensitive to phrasing; minor input perturbations can substantially bias models’
answers Sadr et al. (2025); Turpin et al. (2023).

Why do these factors influence CoT efficacy?

To explain the mechanisms underlying these factors, recent research provided theoretical and
mechanistic groundings. Tutunov et al. (2023) proposed that CoT efficacy stems from the model’s ability
to approximate the true conditional distribution of reasoning, where structured exemplars help the
model infer the task’s latent logic and reduce generation ambiguity. Prabhakar et al. (2024) refined this
view through a controlled case study, characterizing CoT as a probabilistic process heavily modulated
by output probability, task memorization in training data, and step-wise complexity. Mechanistically,
Wu et al. (2023) revealed how specific components of the CoT prompt drive model generation via
gradient-based feature attribution.

Takeaway: CoT prompting yields significant gains primarily in tasks involving mathematical,
logical, or symbolic reasoning. Its efficacy depends more on the structural coherence and relevance of
exemplars, the length of reasoning, and the prompt phrasing. Several theoretical and mechanistic
frameworks were proposed to understand such driving factors.

3.2. How Does Chain-of-Thought Remodel Internal Computation?

Chain-of-thought prompting does more than just alter an LLM’s output format. Growing evidence
shows that it fundamentally changes the model’s internal computation into a “reasoning mode”, where
the model retrieves and updates information in a stepwise fashion, leveraging the intermediate
computational steps as external memory.

The emergence of iteration heads.

First, Cabannes et al. (2024) identified the “iteration head” — an attention head that emerges
during CoT. These heads explicitly focus on the model’s previously generated tokens to carry forward
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interim results. For example, in a loop counter task, an iteration head attends to the token “Step 4” to
generate “Step 5”. This effectively allows the model to create a virtual recurrent neural network (RNN)
where the hidden state is externalized as text. In another study of a Llama-2 model Touvron et al. (2023)
solving multi-step ontology queries, Dutta et al. (2024) also identified early-layer attention heads that
“move information along ontological relationships” in the contexts that are relevant to the current
sub-problem. The emergence of iteration heads provides supporting evidence that CoT enables the
model to internally utilize generated text as an external memory for sequential reasoning.

Evidence of state maintenance and update.

Besides the access to external memory, studies show that LLMs with CoT can also maintain and
update dynamic internal states to track the reasoning process. Zhang et al. (2025) found that when
using CoT for state-tracking tasks, LLMs embed an implicit finite state automaton in their hidden
layers. Specific feed-forward neurons in later layers were found to correspond directly to discrete
problem states, forming a circuit that reliably updates with each new reasoning step. This internal
state representation is highly robust and works correctly even with noisy or incomplete CoT steps,
suggesting the model learns a resilient state-updating algorithm. By probing individual neurons
of LLMs, Rai and Yao (2024) offered more granular evidence of state maintenance. They identified
specific “reasoning neurons” in Llama-2’s feed-forward layers that activate to hold partial results, such
as carried values during arithmetic. Their activation helps explain why including particular steps
(e.g., an explicit breakdown of a sum) in the CoT prompt is effective: they reliably trigger the neurons
responsible for maintaining the intermediate state.

Computational depth matters more than token semantics.

Notably, the internal process of sequential reasoning appears to persist even when the CoT
rationale lacks semantic meaning. For example, Pfau et al. (2024) replaced the meaningful CoT text
with filler tokens (e.g., “...”). Surprisingly, models could still solve complex reasoning tasks simply
by generating these dots. Similarly, Goyal et al. (2024) found that introducing a learnable “pause”
token significantly boosts performance on tasks from QA to math. These findings suggest that the
semantic content of reasoning steps may be secondary to the computational time they buy. The sheer
act of generating extra tokens (regardless of their meaning) provides necessary computational depth;
each token grants the model an additional forward pass through all its layers. This extra “think time”
enables the model to implement complex reasoning algorithms that cannot be executed in a single
pass. Bharadwaj (2024) reinforced this interpretation through a mechanistic study. They found that
even when CoT steps are replaced by placeholders, the model’s deeper layers still encode the missing
steps, which can be recovered to their correct semantic content via a logit lens probe.

Parallelism and reasoning shortcuts.

Finally, although growing evidence reveals the sequential nature of CoT’s internal computation,
other studies have found that LLMs often run multiple reasoning pathways in parallel during CoT, meaning
that the model’s internal reasoning process is not strictly sequential. For example, Dutta et al. (2024)
identified a “functional rift” where the model simultaneously tries to solve the problem directly from
the question (“reasoning shortcuts”) while also following the step-by-step procedure, and these parallel
approaches then converge in later layers. Nikankin et al. (2025) found that models perform arithmetic
via a “bag of heuristics” (many simple feature detectors) rather than a single step-by-step algorithm.
Arcuschin et al. (2025) observed that the models can still arrive at the correct answer, even if they might
make a mistake in an early step internally. The above evidence on parallelism and shortcuts reveals
that CoT’s internal workings are more complicated. It is a combination of sequential step-by-step
reasoning, parallel associative shortcuts, and occasional after-the-fact rationalizations.
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Takeaway: CoT activates a robust “reasoning mode” where models leverage generated tokens
as external memory to execute stepwise internal computation, including fetching and carrying
forward intermediate results and updating internal states. This core process persists even when
CoT rationales are hidden or nonsensical. Yet, this internal computation is not strictly sequential
but a parallel process involving multiple pathways and shortcuts.

3.3. Why CoT Enhances Reasoning Abilities?

Empirically, explicit reasoning with CoT often solves complex tasks more accurately than implicit
latent reasoning. Several reasons have been identified for why CoT prompting dramatically improves
reasoning performance.

CoT augments computational expressiveness.

Recent theoretical studies demonstrate that CoT enhances transformers’ expressiveness and
computational capacity, enabling them to solve problems in higher complexity classes. A standard
transformer decoder without CoT performs constant-depth computation per token, limiting it to the
complexity class TC0 Chiang et al. (2023); Merrill and Sabharwal (2023a,b). Such models theoretically
cannot solve inherently serial problems because the required computation depth grows with input
size, while the model’s depth is fixed. CoT breaks this limit. By feeding the output back into the
input, CoT allows the transformer to simulate an RNN or a Turing Machine. The effective depth
of the computation becomes proportional to the length of the generated chain. This elevates the
transformer’s expressiveness to Polynomial Time (P) Merrill and Sabharwal (2024), making inherently
serial or recursive computations solvable where they otherwise are not Bavandpour et al. (2025); Feng
et al. (2023); Kim and Suzuki (2025); Li et al. (2024).

CoT introduces modularity that reduces sample complexity.

CoT decomposes complex tasks into granular, independent sub-problems. This modularity
provides an inductive bias that matches the structure of complex, multi-step problems, enabling the
model to master tasks with significantly less data. Through both experimental and theoretical evidence,
Li et al. (2023) demonstrated that CoT decouples in-context learning into a “filtering” phase and a
“learning” phase that significantly reduces the sample complexity required to learn compositional
structures like MLPs. Extending this learnability perspective, Yang et al. (2025) demonstrated that CoT
can render inherently “unlearnable” tasks efficiently learnable by reducing the sample complexity of
the overall task to that of its hardest individual reasoning step. Wen et al. (2025) further identified that
this efficiency stems from the sparse sequential dependencies among tokens. CoT induces interpretable,
sparse attention patterns that enable polynomial sample complexity, whereas implicit reasoning
requires exponentially many samples to disentangle dense dependencies.

CoT enables more robust reasoning.

First, evidence has been found that CoT promotes robust generalization by encouraging models to
learn generalizable solution patterns rather than overfitting to surface-level statistical shortcuts. For
example, Yao et al. (2025) demonstrated that CoT-trained models induce a two-stage generalizing
circuit that internalizes the reasoning process, leading to strong OOD generalization even in the
presence of training noise. Complementing this, Li et al. (2025) provided a theoretical guarantee
for CoT generalization, showing that CoT maintains high performance even when context examples
are noisy or erroneous, as it relies on step-by-step pattern matching rather than fragile input-output
mappings. Second, CoT helps reduce the propagation of errors during reasoning. Gan et al. (2025)
identified a “snowball error effect” in implicit reasoning, where minor inaccuracies accumulate into
significant failures. They demonstrated that CoT-based strategies mitigate this by expanding the
reasoning search space, which effectively lowers the probability of cumulative information loss and
prevents errors from cascading through the reasoning chain.
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Takeaway: CoT enhances LLM reasoning capabilities through three primary mechanisms: 1) It
breaks the constant-depth limitation of the standard transformer, extending its effective com-
putational depth. 2) It introduces modularity and inductive bias more aligned with multi-step
reasoning, thus reducing the sample complexity required to learn complex tasks. 3) It facilitates
robust generalization to OOD data and mitigates error propagation.

3.4. Does Chain-of-Thought Equate to Explainability?

Explicit reasoning appears to provide transparency, leading users to assume that CoT explanations
accurately reveal how the model arrived at an answer. However, substantial evidence indicates that
CoT outputs often do not faithfully reflect the model’s actual decision-making process Barez et al.
(2025); Chen et al. (2025); Lanham et al. (2023); Turpin et al. (2023), a phenomenon referred to as the
unfaithfulness of CoT reasoning.

Evidence of CoT unfaithfulness.

Recent studies reveal that CoT frequently functions as post-hoc rationalization rather than the causal
driver of predictions Arcuschin et al. (2025); Kudo et al. (2024); Lewis-Lim et al. (2025). For instance,
Turpin et al. (2023) demonstrated that models often alter their predictions based on spurious cues, such
as the reordering of multiple-choice options. In such cases, the models still tend to confabulate logical-
sounding CoT rationales that hide the actual spurious cause of their decision. Similarly, when correct
answers are injected as hints, models often invent spurious derivations to support the injected answer
without acknowledging the hint’s influence Chen et al. (2025). Furthermore, mechanistic analyses
uncovered “silent error corrections”, where models internally correct mistakes without updating the
CoT rationale Arcuschin et al. (2025). Unfaithfulness is also evident in sycophancy, where models
prioritize agreement with user beliefs over truthfulness. Even when models possess the correct internal
knowledge, they frequently concede to incorrect user premises and generate plausible rationales
to justify these compliant responses Sharma et al. (2024). Collectively, these findings highlight a
fundamental disconnect between verbalized rationales and internal computations, challenging the
premise that CoT equates to explainability.

Mechanistic understanding of CoT unfaithfulness.

Recent mechanistic analyses attribute this unfaithfulness to a fundamental mismatch between the
distributed, parallel nature of transformer computation and the sequential nature of explicit reason-
ing. As discussed in Section 3.2, many works have revealed the distributed nature of LLMs’ internal
reasoning; transformer-based LLMs frequently employ multiple redundant computational pathways
to process information, e.g., simultaneously leveraging memorization, heuristics, and algorithmic
circuits Dutta et al. (2024); McGrath et al. (2023); Nikankin et al. (2025). Consequently, CoT only
acts as a “lossy projection” of high-dimensional internal states, often capturing only a fraction of the
model’s actual decision process Dutta et al. (2024). Because computation is highly distributed, a single
CoT rationale can capture at most one of many simultaneous causal pathways. As a result, CoTs
typically omit influential factors and serve only as partial, post-hoc rationalisations of the model’s
underlying distributed, superposed computation Barez et al. (2025). This architectural dissonance
makes unfaithfulness difficult to mitigate. Tanneru et al. (2024) demonstrated that even when training
objectives explicitly penalize inconsistency, models still revert to plausible-but-not-causal explanations
on complex tasks, highlighting the inherent difficulty in eliciting faithful CoT reasoning from LLMs.

Takeaway: While chain-of-thought offers the appearance of transparency, it does not equate to
faithful explainability. CoT often functions as post-hoc rationalization rather than a true reflection
of the model’s internal processing. Mechanistically, this unfaithfulness stems from a structural
mismatch between the distributed, parallel computation of transformers and the sequential nature
of explicit reasoning.
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4. Future Research Directions
Rigorous causal analysis in real-world settings.

A fundamental challenge in current mechanistic research is the disparity between idealized experi-
mental settings and the complexities of real-world reasoning. First, the reliance on toy models and synthetic
data limits the generalizability of current findings. For example, while the “grokking” phenomenon
has been identified as a potential pathway for the emergence of implicit multi-hop reasoning, most
empirical evidence is derived from toy models trained from scratch on synthetic tasks (§ 2.2). Con-
sequently, it remains an open question whether the phase transitions observed in these controlled
environments truly govern the development of reasoning capabilities in foundation models trained on
large-scale, naturalistic corpora.

Second, the field should move beyond correlational analysis, which only proves information pres-
ence, to rigorous causal verification within these complex settings. Unlike clean synthetic environments,
real-world data is ubiquitous with spurious cues, making it difficult to distinguish genuine reasoning
circuits from robust shortcut heuristics (§ 2.3). Therefore, causal interventions are crucial for proving
that identified internal representations are truly drivers of correct inference in the wild. This under-
standing should ideally translate into robust training-time interventions that penalize such shortcuts,
forcing models to learn generalizable algorithms despite the noisy data distribution. Ultimately, future
work must aim to synthesize these insights into a unified theoretical framework that explains how
diverse components, from memorization circuits to reasoning heads, interact within the massive scale
of foundation models.

Bridging the faithfulness gap of explicit CoT reasoning.

As discussed in § 3.4, a critical bottleneck in current LLMs is the “functional rift” Dutta et al.
(2024) between the model’s internal, parallel processing and its sequential, explicit CoT reasoning. This
structural mismatch forces models to compress high-dimensional, distributed latent states into a low-
bandwidth stream of discrete tokens, often resulting in CoT that functions as a post-hoc rationalization
rather than a causal driver. To address this, future research must explore white-box alignment methods that
enforce a causal link between implicit and explicit reasoning. Promising avenues include developing
training objectives that penalize discrepancies between the model’s hidden states (its true decision
process) and its generated rationale Wang et al. (2025,?), imposing architectural constraints that compel
the model to rely solely on the generated CoT for subsequent steps Viteri et al. (2024), as well as
“self-explaining” dense internal representations into faithful natural language steps Sengupta and
Rekik (2025). Further exploration of these directions is critical for aligning explicit outputs with internal
dynamics, ensuring CoT serves as a valid window into the model’s computation.

Mechanistic understanding of Latent CoT reasoning.

Beyond the dichotomy of implicit and explicit CoT, an emerging paradigm is latent CoT rea-
soning Chen et al. (2025); Li et al. (2025), where models are designed to simulate explicit reasoning
trajectories entirely within hidden states. Unlike standard implicit reasoning, which relies on the fixed
depth of a standard transformer, latent CoT architectures often introduce additional computational
capacity via continuous “thought tokens”, iterative refinement, or recurrent state updates, frequently
learning these behaviors by distilling explicit CoT data into latent representations. This approach theo-
retically offers the best of both worlds: it broadens the model’s expressive capacity and computational
depth while eliminating the redundant decoding costs of natural language tokens.

While various latent CoT architectures have been proposed Hao et al. (2024); Mitra et al. (2024);
Shen et al. (2025), mechanistic interpretability has lagged significantly behind these innovations. While
a vast body of work has explored the latent reasoning mechanisms of standard transformers (§ 2.1),
research into the internal dynamics of these novel latent CoT models remains limited Wang et al. (2025);
Zhang and Viteri (2024); Zhang et al. (2025). Critical open questions remain: Does distilling explicit
CoT truly force the model to internalize a sequential, step-by-step reasoning process, or does the model
collapse the teacher’s rationale into high-dimensional statistical shortcuts? Therefore, gaining more
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mechanistic insights is crucial for designing next-generation latent CoT architectures and training
objectives that effectively combine the interpretability of explicit reasoning with the efficiency of
implicit computation.

White-box evaluation metrics for LLM reasoning.

As we gain a deeper mechanistic understanding of multi-step reasoning, it should guide the
development of evaluation protocols that go beyond simple end-task accuracy. Current black-box
metrics (e.g., final accuracy) are increasingly insufficient, as models frequently arrive at correct answers
via non-robust shortcuts, statistical heuristics, or “bag-of-words” processing (§ 2.3). To rigorously
distinguish genuine reasoning from sophisticated pattern matching, the field requires “white-box”
evaluation metrics that integrate model internals into the evaluation protocol. Pioneering efforts have
begun to explore this direction. For example, Cao et al. (2025) introduced a mechanism-interpretable
metric (MUI) that quantifies the “effort” required to solve a task, defined as the proportion of activated
neurons or features. A truly capable model should achieve higher performance with lower effort.
While this area remains under-explored, developing metrics that not only score the final output but
also verify the presence of necessary internal computational signatures, such as the formation of bridge
entities in intermediate layers (Yang et al. 2025b), is a crucial future trend. By defining reasoning
not just as the correct outcome but as the execution of a verified internal process, we can prevent
the overestimation of model capabilities and ensure that improvements on leaderboards reflect true
algorithmic generalization.

From mechanistic interpretation to model control.

While current research has successfully identified various reasoning circuits, such as iteration
heads or deduction heads, most work remains observational. A major frontier for future study is
the shift towards pragmatic interpretability Nanda et al. (2025,?), moving from passively explaining
mechanisms to actively leveraging them for model control and editing, a paradigm closely aligned
with Representation Engineering (RepE) Wehner et al. (2025). For example, if we can reliably identify the
specific components responsible for multi-step logic, e.g., the state-maintenance neurons identified by
(Rai and Yao 2024), we can potentially intervene in real-time to correct reasoning errors or suppress
shortcut neurons (Ju et al. 2024). Such interventions enable the development of “self-correcting”
architectures that actively monitor internal states to detect and resolve failures like “silent errors” on
the fly. Ultimately, this enables a transition from interpretability as a passive analysis tool to an active,
foundational component for robust and safe reasoning systems.

5. Conclusion
In this survey, we provided a comprehensive overview of the mechanisms underlying multi-step

reasoning in large language models. We structured our analysis around two fundamentally distinct
computational paradigms: implicit reasoning and explicit reasoning. Through a framework of seven
interconnected research questions, we systematically explored the internal dynamics of latent inference,
the emergence of reasoning capabilities, and the mechanistic impact of chain-of-thought prompting
on model computation and expressiveness. Despite significant progress in opening the black box,
critical challenges remain. Looking ahead, we outlined a roadmap for future research, emphasizing the
necessary shift from passive observation to causal intervention and the need for rigorous verification
in real-world settings to build more reliable reasoning systems.

Limitations
This survey concentrates strictly on the mechanistic understanding of multi-step reasoning

within transformer-based LLMs. Consequently, we do not cover other aspects of reasoning, such
as probabilistic inference, creative planning, or commonsense reasoning, which may operate under
different mechanistic principles. Additionally, our scope is limited to the current paradigm of text-
based transformers; we do not extensively address reasoning mechanisms in Multimodal LLMs
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(MLLMs), alternative architectures like Diffusion Language Models (DLMs), or neural networks that
predate the modern era of large language models.
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