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Abstract

In this work we study the following problem, from a computational
point of view: If three points are selected in the unit square at random,

what is the probability that the triangle obtained is obtuse, acute or right?

We provide two convergent strategies: the �rst derived from the ideas
introduced in [2] and the second built on the combinatorics theory. The
combined use of these two methods allows us to address the random tri-
angle theory from a new perspective and, we hope, to work out a general
method of dealing with some classes of computational problems.

Keywords: Random Triangle; Quasiorthogonal Dimension; Combinatorics; 
Computational Problems

1 Introduction

In [1]  we read: � We hope to encourage others to look again (and di�erently) at 
triangles�.  Following this encouragement we study random triangle generation from a 
merely computational point of view. The square triangle problem is de�ned in [5]  as �
The selection of triples of points (corresponding to the endpoints of a triangle) 
randomly placed inside a square (for simplicity here we consider the unit square)�. 
Given three points chosen inside a unit square at random, one may evaluate the 
average area of the triangle determined by these points [5]  or study the probability that 
the related random triangle is acute, both from a historical and from a modern point 
of view [1]; or obtuse [3, 4, 5]. Using computational lenses, we study a more general 
problem: if three points are selected in a unit square at random, how can we compute 
the probability that the triangle obtained is obtuse, acute or right? And what error may 
occur in this calculation? To the purpose we introduce two convergent computational 
methods. The �rst is based
on a simple idea: in R2we  allow a tolerance in angle measurement, to obtain a new 
way of classifying angles and then geometrical �gures. This approach
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Figure 1: Angles, segments and triangles with measurement tolerance

also �nds its elegant mathematical foundation in [2]. The second method is
built on combinatorics, that allow us to enumerate (count) speci�c structures
like triangles. The paper is organized as follows: Sections 2 and 3 de�ne the
�rst and second computational environment and provide experimental results;
Section 4 highlights some links between the two approaches. Section 5 focuses
on discussion and open problems.

2 Inexact angle �computations�

In [2] Kainen and K�urková, introduce the notion of dimension when an angle is
subject to a measurement tolerance. We use the idea of inexact angle measure-
ment1 in Euclidean space and its generalization for the inexact measurement of
a segment to classify a random triangle on a plane. To explain how the concept
of �inexact angle measurement� is used here, consider for example a right angle;
in geometry and trigonometry it is an angle of exactly 90°: now, suppose we are
not able to measure this angle exactly.

We can set, for example, a tolerance of 1° in right angle measurement: angles
whose measure is included between 89° and 90° (symmetrically 90° and 91°) are
right (Figure 1). From this assumption we obtain a new way of classifying angles:

1Here �measure� and �computation� can be considered synonyms.
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Figure 2: A random triangle in a unit square with its relative notation.

angles with degree between [89° 90°] and [90° 91°] are right angles; with degree
between [1° 89°] and [91° 179°] are acute; if they have a value > 91° (< 89°) they
are obtuse. We observe that angle tolerance also introduces a tolerance in the
length of the related segments2. Since triangles can be classi�ed according to
their angles (with the Dot product or Cosine Law) or to their sides (with the
Pythagorean Theorem), we have a new schema to classify them: for example
all triangles shown in Figure 1 are rectangle. We can generalize this idea. For
any ε, l ≥ 0 and for any three random points (p1, p2,p3)n, n=1,2, .., N, in a unit
square, corresponding to the endpoints of triangles △n, we classify the resulting
triangles (Figure 2) in three ways:

Method 1 (Pythagorean Theorem). Given a triangle in which c denotes the
length of the hypotenuse and a and b denote the length of the other two sides:

if
(
a2 + b2 − l ≤ c2

)
∧
(
c2 ≤ a2 + b2 + l

)
=⇒ △ is a Right Triangle,

if
(
c2 < a+ b2 − l

)
=⇒ △ is an Acute Triangle,

if
(
c2 > a+ b2 + l

)
=⇒ △ is an Obtuse Triangle.

Method 2 (Dot product-scalar product). We compute:

θ1 = arccos
a · b

∥a∥ ∥b∥
,θ2 = arccos

a · c
∥a∥ ∥c∥

,θ3 = arccos
b · c

∥b∥ ∥c∥
2We use ε to indicate a tolerance in angle measurement and l to indicate the segment

length.
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and use the following classi�cation:

if
[(π

2
− ε ≤ θ1

)
∧
(
θ1 ≤ π

2
+ ε

)]
∨[(π

2
− ε ≤ θ2

)
∧
(
θ2 ≤ π

2
+ ε

)]
∨[(π

2
− ε ≤ θ3

)
∧
(
θ3 ≤ π

2
+ ε

)]
=⇒ △ is a Right Triangle, (1)

if
(
θ1 <

π

2
− ε

)
∨
(
θ2 <

π

2
− ε

)
∨
(
θ3 <

π

2
− ε

)
=⇒ △ is an Acute Triangle,

(2)

if
(
θ1 >

π

2
+ ε

)
∨
(
θ2 >

π

2
+ ε

)
∨
(
θ3 >

π

2
+ ε

)
=⇒ △ is an Obtuse Triangle.

(3)

Method 3 (Cosine Law). We compute:

θ1 = arccos

(
a2 + b2 − c2

2 · a · b

)
,

θ2 = arccos

(
a2 + c2 − b2

2 · a · c

)
,

θ3 = arccos

(
b2 + c2 − a2

2 · b · c

)
and then apply the same classi�cation rules (Equation 1,2 and 3) used in Method
2.

The right triangles in R2 are �impossible�; however, the concept of �Qua-
siorthogonal Triangle� introduced above allows inaccuracy in angle and segment
measurement, making the right triangle in R2 �possible�!

Method 1 classi�es triangles using segment measures; it uses l to introduce
a tolerance in segment measurement. On the other side, Method 2 and 3
classify triangles using angle measures and ε to allow inexact measure for angles.

In this scenario we generate 1,2 ... N triplets of random points (p1, p2,p3)n;
then we compute the average area and classify these triangles using the three
above formulas as functions of ε and l. The main objectives are:

� replicate the theoretical results known until now;

� verify the numerical convergence of the three methods;

� empirically �nd a relation between ε, l and the probability to have an
obtuse, acute or right triangle.

In more detail, we compute the probability of having an obtuse, acute or right
triangle in this way: given a �xed ε (or l) and N, we generate 1,2 ... N triplets
of random points (p1, p2,p3)n: for each triplet we use one of the above methods
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Probability Method 1 Method 2 Method 3

Right Triangle 0 0 0
Acute Triangle 0.27471 0.27471 0.27471
Obtuse Triangle 0.72529 0.72529 0.72529

Sum 1 1 1

Table 1: Experimental results for ε= l = 0 and N=1.000.000

Probability Method 2 Method 3

Right Triangle 0.000427 0.000427
Acute Triangle 0.27496 0.27496
Obtuse Triangle 0.72461 0.72461

Sum 1 1

Table 2: Experimental results for Method 2 with ε= 0.0175 and N=1.000.000

to classify the related triangle on the plane. At the end of the classi�cation
procedure we will have nr right triangles, no obtuse triangles and na acute
triangles, with nr + no + na = N . Then we can compute

P (△ = right) =
nr

N
,

P (△ = obtuse) =
no

N
,

P (△ = acute =
na

N
(4)

Implementing our code with MATLAB (or Octave), we obtain the following
results for ε= l = 0 (no tolerance in measure is allowed) and N=1.000.000:

Average Triangle Area= 0.076405 ~ 11
144 ,

Probability: (Table 1).
For the Average Triangle Area and for Probability, the three methods provide

the same results, that are in accord with the previous theoretical analysis (mean
area = 0.07638 and probability that three points form an obtuse triangle =
0.72520 [3, 4, 5]). Furthermore, Method 2 and Method 3 use ε to introduce
a tolerance in angle measurement: for example, we set ε=0.0175 (assuming a
tolerance of 1 degree in angle measurement); the results can be seen in Table
2. For ε=0.025 the results are in Table 3 , and so on. As expected, Method 2
and Method 3 behave in the same way: for the sake of simplicity, in the next
we consider only Method 1 and Method 2.

Finally, to empirically �nd a relation between l and the probability of having
an obtuse, acute or right triangle, we consider l=0, l=0.01, l=0.02, ... l=1; then
we generate N=10.000 random triangles (random points (p1, p2,p3)n) for each
value of l and classify them using Method 1. The results are shown in Figure
3. In the same way, using Method 2 we consider ε=0, ε=0.0175, ..., ε = π

2 ,
and N=10.000 (Figure 4). With the results in Figures 3 and 4 it is possible to
�nd an approximation for the probability of obtaining an obtuse triangle. There
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Probability Method 2 Method 3

Right Triangle 0.000646 0.000646
Acute Triangle 0.27427 0.27427
Obtuse Triangle 0.72508 0.72508

Sum 1 1

Table 3: Experimental results for Method 2 with ε= 0.025 and N=1.000.000
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Figure 3: Probability of having an obtuse, acute or right triangle, as a function
of l, using Method 1
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Figure 4: Probability of having an obtuse, acute or right triangle, as a function
of ε, using Method 2

are di�erent approximation methods: if we use a 4th polynomial (in MATLAB
tools, the Norm of residuals is 0.031396) for the curve in Figure 3, we have:

f(l) = 2.523 · l4 − 7.451 · l3 + 8.176 · l2 − 3.968 · l + 0.7229 (5)

If we use a cubic polynomial (in MATLAB tools, the Norm of residuals is
0.041426), for obtuse triangle probability in Figure 3, we obtain:

f(l) = −0.077 · l3 + 0.308 · l2 − 0.756 · l + 0.7228 (6)

Equations 4 and 5 can be seen as reformulations and generalizations of the
results in [3, 4]: as a matter of fact, for l=0:

f(0) = 0.7228(9) ∼ 97

150
+

1

40
· π

Better approximations may be found and used instead of equations 5 and 6,
either with a more accurate step for l and ε or with a increase in the value of
N. In the same way it is very easy to derive an approximation function for the
probability of having acute and right triangles.
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Figure 5: A grid with step g=1 on a unit square

3 Triangle Counting

In this section we try to count triangles starting from basic combinatorial con-
cepts. The strategy is the following: we consider a unit square3 and set a grid
with a di�erent step length (the distance between adjacent points in the grid):
g=1, g = 1

2 , ... etc. When g=1, we have the square vertex; when g → 0 we have
the continuum. Given a g on a square, we select three random points, trying to
answer our initial question: What is the probability that the triangle obtained is
obtuse, acute or right? For g=1 (Figure 4) we have a grid with only four points
(the square vertices):

3coord(0,1) 4coord(1,1)

1coord(0,0) 2coord(1,0)

If three of these points are selected at random, we can generate the following
triangles4:

�△124� �△142� �△123� �△132� �△134� �△143�

The same happens when starting from vertices 2, 3 and 4: we have 6*4=24
triangles, many of which are the same (for example �△124� and �△421�, �△134�
and �△143� . . . or �△321� and �△123�). To compute the number of distinct
triangles, we need to compute the combination without an repetitions of k (=3)
objects from n (=4):

Cn,k =
n!

k!(n− k)!
=

4!

3!1!
= 4

3Simply square in the next.
4With the string �△124� we indicate the triangle that has point vertices in 1 2 4 nodes in

the grid.
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Figure 6: A grid with step g = 1
2 in a unit square

For example, if we consider node 1 as the starting vertex, the triangles are:
�△123� �△124� �△134� and �△234�.

In this case (g=1), all possible triangles are right! In the opposite situation,
when g → 0, no right triangle can exist: it is the same situation as the one
described in Section 2, with ε (or l)=0. Finally, we observe that for g=1 all
triangles have the same area.

For g = 1
2 (Figure 6), we have a grid with nine points:

7coord(0,1) 8coord( 1
2 ,1)

9coord(1,1)

4coord(0, 12 )
5coord( 1

2 ,
1
2 )
6coord(1, 12 )

1coord(0,0) 2coord( 1
2 ,0)

3coord(1,0)

In this case, to count the number of di�erent triangles we can use a �recur-
sive� approach counting the distinct rectangles (or squares) that we can have
on this grid (for example the rectangle with vertices �1793�, �2893�, �5698�) and
then use the method described above for g=1. Alternatively we can compute the
combination without repetitions of k (=3) objects from n (=9) and remove from
this value the number of possible aligned random numbers on the grid (given
three random points, from the above grid, these can be aligned, for example
�159� or �654�, so we have no triangles).
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Algorithm 1 Pseudo-code used for counting triangles.

Input: a grid with step g in unit square, a number N;

1. extract three random points from the grid for N times, obtaining N pseudo-
random triangles;

2. from these pseudo-random N triangles remove the identical ones (if exist),
obtaining the setN1 (detail: from n we remove: - 1 the identical extraction;
for example if for g=1 the string �△412� is repeated several times, we consider it only

once. - 2 identical triangles; for example. if g=1, and triangle �△421� has already

been generated, we remove the other �ve identical triangles: �△124�, �△142� etc.);

3. remove the aligned points (if exist), from set N1, obtaining the set of
random triangles N2;

4. compute the mean area for the triangles in set N2, and classify them as
right, obtuse or acute with the above Method 1(2), with l=0 (ε = 0);

Output: number of distinct triangles considered (the cardinality of N2), mean
triangle area, and probability of having obtuse, acute or right triangle (frequency
of triangles in N2).

Only 76 distinct triangles remain:

Cn,k =
n!

k!(n− k)!
−#AlignedPointCombinations =

9!

3!6!
− 8 = 76 (7)

Some are not right, like triangle �△126�. Using this schema, we can easily count
triangles for g = 1

4 , g = 1
5 , . . . etc; an algorithm for this is the Algorithm 1.

We implement the pseudo-code in Alghoritm1 using MATLAB (Octave), and
perform some preliminary experiments to verify the convergence of our method
on the known theoretical values (Table 4).

In Table 4 , both g and N vary, so the mean area rapidly converges on its the-
oretical value: 11

144=0.07638; the same for the probabilities (relative frequency)
of having obtuse, acute or right triangles6.

In this scenario many other experiments can be performed. We may �x g
and vary N or vice versa. Given a g, one can study whether the related value
of N allows generating any distinct triangles or not. As an example of the
experiments that can be performed within this setting, we may �x N=10000
and vary g, starting from 1/10. From Table 4 and Equations 6, for g=1/100,
corresponding to 100 points in the grid, we can have more than 10000 di�erent
triangles. This situation is similar to what happens in R2, but it allows us to
estimate of the probability of getting right triangles. The results are shown in
Table 5.

5Relative frequency/Probability. The same for Acute and Right triangles.
6To compute the probability we use the equations (4)
7Relative frequency/probability. The same for acute and right triangles.
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g N N2 Area (mean) Obtuse5 Acute Right

1 50000 4 0,5 0 0 1
1
2 50000 76 0,23026 0,31579 0,10526 0,57895
1
3 50000 516 0,16451 0,45736 0,15504 0,3876
1
4 50000 2156 0,13677 0,53618 0,18738 0,27644
1
5 50000 6769 0,12195 0,58133 0,20535 0,21333
1
10 100000 82598 0,09552 0,67205 0,24422 0,08373
1
15 100000 96854 0,0892 0,69298 0,2601 0,04691
1
20 150000 148004 0,08507 0,70751 0,26303 0,02945
1
40 150000 149514 0,0806 0,71969 0,27052 0,00979
1
50 200000 199606 0,07964 0,72132 0,27192 0,00676
1
75 200000 199812 0,07858 0,72489 0,27163 0,00348
1

100 250000 249871 0,07826 0,72306 0,27494 0,002
1

100 350000 349791 0,07803 0,72333 0,2746 0,00206

Table 4: Algorithm 1, preliminary experimental results.

g N N2 Area (mean) Obtuse7 Acute Right
1
10 10000 9591 0.094381 0.67668 0.24179 0.24179
1
50 10000 9981 0.078779 0.72848 0.2644 0.007113
1

100 10000 9995 0.077257 0.72146 0.27664 0.001901
1

150 10000 9998 0.078521 0.72414 0.27495 0.0009
1

200 10000 10000 0.075715 0.7371 0.2625 0.0004
1

250 10000 9998 0.077453 0.71964 0.28016 0.0002
1

300 10000 9997 0.076193 0.73202 0.26748 0.0005

Table 5: Triangle counting with N �xed to 10000 and g variable.
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Figure 7: Probability of having an obtuse, acute or right triangle, as a function
of g.

If g = 1
50 there is a good approximation for the mean Area and a probability

(frequency) of obtaining an obtuse triangle. If we assume this as a plausible
scenario (a good approximation for R2) we can say that there is a probability,
though little (0.007), of having right triangles!

4 Inexact Triangle �Computations� vs Triangle

�Counting�

This section sketches some links between the methods8 described in Sections 2
and 3. Both methods converge on the theoretical values known for the mean
triangle area and on the probability of having an obtuse triangle (0.07638 and
0.72520 [5]). In other words, ε= l = 0 corresponds to (g,N) → ∞ (so we are
in R2) and vice versa; l =1 or ε = π

2 corresponds to g = 1 for N su�ciently
large. In the �rst case no right triangle can exist; in the second case there
are only right triangles. Furthermore, if the probabilities in Table 4 and g are
plotted in reverse order (Figure 7), the behavior is the same as in Figures 3
and 4. The di�erences between the graphs are not conceptual: they are due to
the di�erent ranges of ε, l and g and to di�erent experiment settings. In this
case too we can easily derive three approximant functions for the probability
(relative frequency) of getting acute, obtuse or right triangles.

8For the sake of simplicity we call them �Quasiorthogonal Method� and �Counting Method�.

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2022                   doi:10.20944/preprints202205.0023.v1

https://doi.org/10.20944/preprints202205.0023.v1


5 Conclusion and Open Problems

In this work we have introduced a general framework, made up of two convergent
methods, to study the probability that a triangle is obtuse, acute or right.
This is preliminary research, so a lot of questions remain open. It may be
very interesting to study the behavior of the mean triangle area within the
Quasiorthogonal Method. Once obtained a good approximation for the mean
area of triangles, the related probabilities may reach their correct value (see
end of Section 3). The concept of �Quasiorthogonal �gure� can be extended in
many useful ways. It would be interesting to give a formal demonstration of
Equations 4 and 5 and of the other four related equations, or to �nd a more
elegant alternative. The concept could also be useful for real applications for
example in arti�cial vision.

The curves in Figures 3 and 4 must have punctual sum 1. This constraint
may be used to derive a single comprehensive approximant function. With the
Counting method one may estimate the optimal relation for g and N(N2), to
see what happens when, given a g, we consider fewer or more triangles for that
g than the possible ones. The Counting method may also be used to exactly
count the number of right, obtuse or acute triangles generated according to g.

The connections between the two methods sketched in Section 4 could be
studied in a more detailed and formalized way. In principle the two methods
may be collapsed into one. Furthermore, given a little or a great value for g, we
may use Method 1, 2 or 3 with ε, l as variables (Algorithm 1). Our framework
could be easily generalized to manage di�erent geometrical �gures (rectangles,
pentagons, etc) used beyond random triangle theory, to study a generic problem
from a computational perspective.
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