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ABSTRACT 

Two of the most common activation functions (AF) in deep neural networks (DNN) training are Sigmoid and 

ReLU. Sigmoid was tend to be more popular the previous decades, but it was suffering with the common 

vanishing gradient problems. ReLU has resolved these problems by using zero gradient and not tiny values for 

negative weights and the value “1” for all positives. Although it significant resolves the vanishing of the gradients, 

it poses new issues with dying neurons of the zero values. Recent approaches for improvements are in a similar 

direction by just proposing variations of the AF, such as Leaky ReLU (LReLU), while maintaining the solution 

within the same unresolved gradient problems. In this paper, the combining of the Sigmoid and ReLU in one 

single function is proposed, as a way to take the advantages of the two. The experimental results demonstrate 

that by using the ReLU’s gradient solution on positive weights, and Sigmoid’s gradient solution on negatives, has 

a significant improvement on performance of training Neural Networks on image classification of diseases such 

as COVID-19, text and tabular data classification tasks on five different datasets. 

 

 

MSC Subject Classification: 68T07, 68T45, 68T10, 68T50, 68U35  

Keywords: Activation Function Combination, dying / vanishing gradients, ReLU, Sigmoid, Neural 

Networks, Keras, Medical Image Classification 

 

1. INTRODUCTION 

 

In previous decades, neural networks have usually employed logistic sigmoid activation functions. 

Unfortunately, this type of AF is affected by saturation issues such as vanishing gradient. To 

overcome such weakness and improve accuracy results, an active area of research is trying design 

novel activation functions (Franco Manessi et al., 2019), with the ReLU appears be the most well-

established the last years. However, ReLU also suffers from ‘dying gradient’ problem and is has 

slightly impact on training. Many variations of the AF, such as LReLU are proposed, to solve this issue, 

while maintaining the solution within the same unresolved gradient problems. Although recent 

developments of AFs for Shallow and Deep Learning Neural Networks (NN), such as the QReLU/m-

QReLU (Parisi et al., 2020a), m-arcsinh (Parisi et al., 2020b), and ALReLU (Mastromichalakis, 2020) 

the repeatable and reproducible functions have remained very limited and confined to three activation 

functions regarded as ’gold standard’ (Parisi et al., 2020b). The sigmoid and tanh are well-known for 

their common vanishing gradient issues and only ReLU function seems to be more accurate and 

scalable for DNNs, despite the ’dying ReLU’ problem.  
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In this work, a new AF, SigmoReLU, is proposed, by combining the advantages of the two different 

state-of-the-art AFs, ReLU and Sigmoid. This new AF is using both gradient solutions of ReLU and 

Sigmoid, depending the negative or positive weights input. This ‘solution blending’, depending the 

inputs signs, is trying to solve the common gradient vanishing and ’dying ReLU’ problems 

simultaneously and it shows significance positive impact on training and classification accuracy of 

DNNs as it is concluded from the results of the numerical evaluation performed. The combination of 

AFs to increase NN performance appears to have remained unknown in the literature review, with an 

exception of some the recent works (Renlong Jie et al., 2020), (Franco Manessi et al., 2019). The 

outline of this paper is as follows: Section 2 contains one of the main contributions of this work, which 

includes the implementation of SigmoReLU in Keras. Section 3 presents experimental results of the 

proposed AF, including an evaluation of the accuracy of the training. Also it is compared to other well 

defined AFs in the field. Finally, discussion and the main conclusions of the work are devoted on 

Section 4. 

 

2. METHODS AND ALGORITHMS 

 
2.1 Datasets and NN models hyperparameters  

 

The following data sets for image, text and tabular data classification that were also used on ALReLU 

paper (Mastromichalakis, 2020) are employed in the experiments described and discussed in this 

study: 

 COVID-19 X-Rays and Pneumonia Datasets (Kaggle) having 372 and 5,863 X-Ray images 

respectively.(https://www.kaggle.com/bachrr/covid-chest-xray?select=images, 

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia) 

 Parkinson Detection Spiral Drawing & Waves (Kaggle) having 204 total images of Waves and 

Spirals draws images (https://www.kaggle.com/kmader/parkinsons-drawings)  

 Histopathologic Cancer Detection Dataset having 57,458 32x32 colour images and it was 

used in Kaggle competition on 2019 (https://www.kaggle.com/c/histopathologic-cancer-

detection/data) 

 Quora Insincere Questions Detection Dataset consist by 1,681,928 unique questions in total 

labeled with 0 if considered not toxic and 1 if considered toxic. It was also used in Kaggle 

competition on 2019 (https://www.kaggle.com/c/quora-insincere-questions-classification/data) 

 Microsoft Malware Prediction was used in Kaggle competition on 2019 too, and has 

16,774,736 records in tabular format (https://www.kaggle.com/c/microsoft-malware-

prediction/data) 

The CNN-related hyperparameters to train the datasets of COVID-19, Spiral Drawing & Waves and 

Histopathologic Cancer Detection data set is a deep CNN and has the following layers: 

 five convolutional layers, the first of which has kernel size of  5x5 and the four last 3x3 

 the following convolutional filters for each of the two convolutional layers respectively 

(in order from the first layer to the last one): 32, 64, 128, 256, 512 

 Max Pooling and Batch Normalization is applied after all convolutional layers; 
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 Dropout layer also after all convolutional layers leveraged with dropout rates (in order from the 

first layer to the last one): 0.1, 0.2, 0.3, 0.4, 0.5 

 The AFs were also applied after all convolution layers 

 A Global Average Pooling Layer followed by AF, Batch Normalization and dropout with rate 

0.3 

 A Dense layer of size 256  followed by AF, Batch Normalization and dropout with rate 0.4 

 a final Dense layer with softmax activation, having as size of neurons the number of output 

classes of each the dataset 

 

On Quora Insincere Questions Dataset, it was used a Bidirectional LSTM CNN, set are as follows: 

 As embedding layer, it was used the mean of both Glove and Paragram embendings (these 

embeddings are included in the Quora Kaggle Dataset that is referred before.) 

 A Spatial Dropout at 0.2 rate 

 A Bidirectional LSTM layer with 128 RNN units,  

 four convolutional layers, each of which has a kernel size 1, 2, 3, 5 and filters of 100, 90, 30, 

12 respectively 

 Each convolution layers is followed by the AF 

 four Global Max Pooling layer 

 A Dense layer of 200, followed by AF dropout (0.2) and batch normalization 

 a final Dense layer with softmax activation, having 2 neurons as for each class (toxic, not toxic) 

 

A shallow neural network model is used to train Microsoft Malware Prediction dataset with the 

following properties: 

 A Dense layer of size 100, followed by dropout rate of 0.4, Batch Normalization and AF 

 Another Dense layer of size 100 , followed by dropout rate of 0.4, Batch Normalization and AF 

 a final Dense layer with softmax activation, having 2 neurons as for each class (has malware 

detection, not has malware detection) 

 

2.2 The SigmoReLU AF  

Rectified Linear Unit, or ReLU, is commonly used on between layers to add nonlinearity in order to 

handle more complex and nonlinear datasets. Fig. 1, demonstrates the ReLU that can be expressed 

as follows (Eq. (2) is ReLU derivative): 
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Figure 1: Red: ReLU AF, Blue: ReLU Derivative 

The issues of ReLU come with the fact that it is not differentiable x=0, since ReLU sets all values < 0 

to zero. Although it can benefit on sparse data, when gradient is 0 the neurons arriving at large 

negative values and cannot recover from being stuck at 0. The neuron at this stage effectively dies. 

This is known as the ’dying ReLU’ problem and can leads the network essentially stops learning and 

underperforms. 

Current improvements to the ReLU, such as the LReLU, allow for a more non-linear output to either 

account for small negative values or facilitate the transition from positive to small negative values, 

without eliminating the problem though.  

Sigmoid on the other hand, suffers of Vanishing Gradient problem. If the Sigmoid weights input (in 

absolute value) is too large, the gradient of the sigmoid function becomes too small. The 

disadvantage of this is that if you have many layers (i.e. DNN), you will multiply these gradients, and 

the product of many smaller than 1 values goes to zero very quickly. For this reason, Sigmoid and its 

relatives such as tanh, are not suitable for training DNN. This problem has been solved by ReLU, 

which the gradient is either 0 for x<0 or 1 for x>0 meaning that you can put as many layers as you like, 

because multiplying the gradients will neither vanish nor explode. This is the reason that ReLU is 

more commonly used in DNNs the last years. In Eq. (3), Eq. (4) and Fig.2 the Sigmoid and its 

derivative are demonstrated. 
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Figure 2: Red: Sigmoid AF, Blue: Sigmoid Derivative 

 

Although ReLU is commonly more robust and useful than Sigmoid, the later has also some 

advantages in different situations. Actually, there are times that Sigmoid can perform better that ReLU. 

Consequently, this study investigates the development of a new AF that take both the best 

advantages of these two functions, to obviate the problem of the ‘dying ReLU’ and the vanishing 

gradient of Sigmoid. This is achieved by using the ReLU gradient solution if of x>0 or Sigmoid(x) < x 

and Sigmoid’s gradient solution on exp(-x) > -1 or Sigmoid(x) ≥ x (Eq. 6). Although it is obvious that 

derivative of this new function is not differentiable everywhere as it demonstrated in Fig. 3 and Eq. (6), 

it seems that is not cause serious problems, and not impact training performance. Instead, the 

experiments and results on Section 3, indicate a significance positive impact on performance of this 

functions combination.  
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Figure 3: Red: SigmoReLU AF, Blue: SigmoReLU Derivative 

 

The following code snippets, show the Keras implementation of the proposed AF, as well as its usage 

after the Convolution Layers. The derivatives and gradients of AFs are automatically calculated in 

TensorFlow (TF) 2, so they have not implemented manually. 

 

Listing 1: A snippet of code in Python (Keras) with SigmoReLU implementation and usage 

_________________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

from tensorflow.keras import backend as K 

from tensorflow.keras.layers import Input, Conv2D, Lambda 

from tensorflow.keras.utils import get_custom_objects 

def SigmoReLU(x): 

   return K.maximum(tf.keras.actications.relu(x), 

tf.keras.actications.sigmoid(x)) 

 

get_custom_objects().update({'SigmoReLU':  

tf.keras.layers.Activation(SigmoReLU)}) 

 

conv = Conv2D(32, (5, 5))(visible) 

conv_act = SigmoReLU(conv) 

conv_act_batch = BatchNormalization()(conv_act) 

conv_maxpool = MaxPooling2D()(conv_act_batch) 

conv_dropout = Dropout(0.1)(conv_maxpool) 
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Listing 2: A snippet of code in Python (Keras) with SigmoReLU usage in Bidirectional LSTM CNN 

_________________________________________________________________________________ 

 

 

 

 

3. EXPERIMENTAL RESULTS 

 

In order to estimate the performance of training and classification accuracy a 5-Fold validation used in 

every dataset. The 5-Fold validation procedure has been executed 10 times for every model and 

dataset to handle the uncertainty caused by GPU and TF. The average results are demonstrated in 

this section and it’s obvious that support the theoretical superiority of the proposed SigmoidReLU AF 

when compared to well-established ReLU and LReLU AFs. The classification performance results are 

demonstrated in Table 1 and are described above: 

 

 

 

 

 

 

 

 

 

 

 

 

x1 = Conv1D(filters=100, kernel_size=1,  

                padding='same')(x) 

x1 = Activation(SigmoReLU)(x1) 

x2 = Conv1D(filters=90, kernel_size=2,  

            padding='same')(x) 

x2 = Activation(SigmoReLU)(x2) 

x3 = Conv1D(filters=30, kernel_size=3,  

            padding='same',)(x) 

x3 = Activation(SigmoReLU)(x3) 

x4 = Conv1D(filters=12, kernel_size=5,  

            padding='same')(x) 

x4 = Activation(SigmoReLU)(x4) 

 

x1 = GlobalMaxPool1D()(x1) 

x2 = GlobalMaxPool1D()(x2) 

x3 = GlobalMaxPool1D()(x3) 

x4 = GlobalMaxPool1D()(x4) 

 

c = Concatenate()([x1, x2, x3, x4]) 

x = Dense(200)(c) 

x = Activation(SigmoReLU)(x) 

x = Dropout(0.2)(x) 

x = BatchNormalization()(x) 

x = Dense(2, activation="softmax")(x) 
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Table 1: Classification performance measures for SigmoReLU, ReLU and LReLU, various datasets 

 

 CNN train and classification on COVID-19 X-Rays: All the evaluation metrics, except AUC 

are better than original ReLU and LReLU activation functions. The most important is that the 

accuracy is 14% and 17% better that ReLU and LReLU respectively. This demonstrated in 

the Table 1 first row dataset “COVID-19 X-Rays (Kaggle)”. 

 

 CNN train and classification on Spiral Drawings and Waves for Parkinson disease 

prediction: The results show a better performance of the proposed AF on Weighted 

Accuracy, Weighted Recall, F1, and AUC. Only the Precision was a little lower (73% over 

76% and 79%) comparing with original ReLU and LReLU. The accuracy here is also 

significant improvement over ReLU (>13.7300) and LReLU (>4.54) (Table 1, second row 

“Spiral Drawings+Waves (Kaggle)”. 

 

 For CNN train and classification of Histopathologic Cancer Detection Dataset: All the 

evaluation metrics of SigmoReLU are significant improvement over other AFs. (Table 1, third 

row “Histopathologic Cancer Detection (Kaggle)”). 
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Performance measures 
SigmoReLU (this 

study) 
ReLU Leaky ReLU 

Weighted Precision 80% 46% 45% 

Accuracy 77.42% 62.9% 59.68% 

Weighted Recall 77% 63% 60% 

AUC 89.137% 91.51% 86.63% 
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Weighted Precision 73% 76% 79% 

Accuracy 68.18% 54.45% 63.64% 

Weighted Recall 68% 55% 64% 

AUC 80.99% 70.24% 71.07% 

Weighted F1  66% 43% 58% 
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Weighted Precision 88% 87% 87% 

Accuracy 88.06% 85.65% 85.32% 

Weighted Recall 88% 86% 85% 

AUC 94.93% 94.65% 95.1% 

Weighted F1  88% 85% 85% 
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Weighted Precision 96% 96% 96% 

Accuracy 96.35% 96.36% 96.36% 

Weighted Recall 96% 96% 96% 

AUC 97.29% 97.30% 97.29% 

Weighted F1  96% 96% 96% 
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Weighted Precision 65% 65% 65% 

Accuracy 64.57% 64.72% 64.74% 

Weighted Recall 65% 65% 65% 

AUC 70.73% 71% 70.88% 

Weighted F1  65% 65% 65% 
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 For LSTM CNN train and classification of Quora Insincere Questions: The 3 AF have 

almost similar performance in this case. (Table 1, third row “Quora Insincere Questions 

(Kaggle)”). 

 

 For NN train and classification of Microsoft Malware Prediction Dataset: In this tabular 

The 3 AF have almost similar performance in this case. (Table 1, third row “Microsoft Malware 

Prediction (Kaggle)”). 

 

 

4. CONCLUSION 

 

In this paper, a new AF was proposed by employing the combination of two different AFs i.e ReLU 

and Sigmoid. The technique was found to be highly effective and more accurate for training and 

classification procedures in DNNs. The proposed AF is merely centering on the improvement of the 

classification accuracy in sections wherein high accuracy and reliability is very important to be 

achieved, such as image (including tomography), text and tabular data classification. Numerous tests 

and measures were performed in order to validate the theoretical framework developed in this paper. 

The proposed method is used in several experiments of training and classification and it shows 

superiority to the state-of-the-art ReLU and LReLU in terms of ROC/AUC metrics, recall, precision, F1 

scores and accuracy, especially on image training on CNN. On the other hand, on LSTM and shallow 

NN for tabular data the results are almost similar to the compared functions. The important conclusion 

and contribution of this work is that the combination of different AFs can also combine the single 

advantages of them and achieve more accurate and robust results by using both two different AFs 

solutions, depending the input sign. By this way, they are solved both vanishing gradient and ‘dying 

ReLU’ problems at the same time. It is also important that the proposed combination has very high 

performance in terms of accuracy in COVID-19 image classification. In the future work, different 

combinations of AFs may proposed and tested, such as ReLU and tanh. 
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