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Abstract: The genetic variants identified by three large genome-wide association studies (GWAS) of 
educational attainment were used to test a polygenic selection model. Average frequencies of alleles 
with positive effect (polygenic scores or PS) were compared across populations (N=26) using data 
from 1000 Genomes. The PS of 161 GWAS significant SNPs in a recent meta-analysis was highly 
correlated to population IQ (r=0.863) and to the polygenic score of four alleles independently 
associated with general cognitive ability. High correlations with PISA scores for a subsample were 
observed. SNP p value predicted correlation to population IQ and factors from the two previous 
GWAS (r= -.25). Factor analysis produced similar estimates of selection pressure for educational 
attainment across the three datasets. Polygenic and factor scores computed using the top 20 
significant SNPs showed very high correlation to population IQ (r=0.88; 0.9). Similar findings were 
obtained using 52 populations from another database (ALFRED). The results together constitute a 
replication of preliminary findings and provide strong evidence for recent diversifying polygenic 
selection on educational attainment and underlying cognitive ability. 
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1. Introduction 
 

 Over the last decade, population geneticists have recognized that most traits are highly polygenic, 
and hence have moved away from the study of genetic evolution using the single-gene, Mendelian 
approach, towards models that examine many genes together (i.e. polygenic models). The origin of 
this trend can be traced back to Fisher (1918). Novel methods for identifying polygenic evolution 
were recently proposed by Piffer (2013), Berg and Coop (2014), Field et al. (2016), and Leinonen et al. 
(2013).   
The aim of this study is to replicate findings by Piffer (2013, 2015) suggesting the action of 
polygenic selection on single-nucleotide polymorphisms (SNPs) that had been associated with 
educational attainment and cognition in genome-wide association studies (GWAS). 
To date, GWA studies have identified several alleles with replicated association with intelligence 
and proxy phenotypes, such as educational attainment. However, each allele typically accounts for 
a tiny portion of the variance in IQ scores (about 0.5 IQ points per allele). Thus, more recent studies 
rely on larger and larger samples to identify the greatest possible number of significant associations. 
Piffer (2013) employed the genetic variants associated with educational attainment and general 
cognitive ability, showing population differences in allele frequencies that closely matched IQ and 
educational outcomes differences between ethnic groups and nations. Since then, two big GWAS 
carried out on independent samples have been published. Thus, a goal of this study is to test the 
results obtained by Piffer (2013, 2015) against the genetic variants found by the latest GWAS of 
educational attainment. The important question is whether the new GWAS findings support the 
results obtained by Piffer (2015) using the first GWAS of this kind (Rietveld et al., 2013) and 
subsequent studies on general cognitive ability (Davies et al., 2015; Ibrahim-Verbaas et al.,, 2015). In 
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other words, the question is: are the population frequencies of the  latest GWAS hits correlated to 
the frequencies of the original GWAS hits employed by Piffer (2013, 2015)? Can the claim (Piffer, 
2013) that they predict population IQ be substantiated? 
To this end, the hits from the two most recent and largest GWAS of educational attainment, 
measured as completed years of education (Davies et al., 2016; Okbay et al., 2016) will be used in 
the analysis. The first GWAS was carried out using the UK Biobank sample (N>100,000). Over a 
thousand SNPs reached genome-wide significance (p< 5 x 10-8), but after controlling for linkage 
disequilibrium. Genotypes were pruned for linkage disequilibrium (LD) using clumping to obtain 
SNPs in linkage disequilibrium with an r2<0.25 within a 200 kbp window. A few independent 
signals were identified (Davies et al., 2016). For the sake of simplicity, the three hits found by 
Rietveld et al. (2013) were lumped together with this polygenic score. 
The latest GWAS was carried out on a sample of >293,000 individuals (Okbay et al., 2016) and 
produced 74 independent (“LD-free”) hits. A replication of this study found that the polygenic 
score predicted 9% of the individual variance in educational achievement at age 16 (Selzam et al., 
2016). 
Population differences in allele frequencies are normally correlated to phenotypic differences. If 
there is a correlation between the population frequencies of unlinked alleles favouring a phenotype, 
this suggests diversifying selection on the phenotype. Recently, Robinson et al. (2015) used a similar 
approach and showed a correlation between average height of populations and the frequencies of 
height increasing alleles. 
IQ will be used as the phenotype of interest and main dependent variable in the analyses. This 
choice can be justified by its privileged status in psychometric research and its robust genetic 
correlation (r= around 0.7) with educational performance (Krapohl et al., 2014) and attainment 
(Bulik-Sullivan et al., 2015). Moreover, the GWAS hits identified by the three educational GWAS 
also predict general cognitive ability in their samples (Rietveld et al., 2013; Okbay et al., 2016). A re-
analysis of the Okbay et al. dataset revealed that the polygenic score also predicts general 
intelligence (3.6%) compared to 2% for the 2013 polygenic score (Selzam et al., 2016). Population-
level polygenic scores (the average population frequency of alleles with a positive GWAS Beta) will 
be calculated to test the prediction that they explain variance in population IQ. 
Factor analysis will be used to extract a factor accounting for cross-population variation in allele 
frequency, hence representing a signal of polygenic selection (Piffer, 2015). Factor loadings will be 
examined to ascertain the reliability of the factor (i.e. do most alleles with positive GWAS effect 
load positively on the factor?).  
Predictive validity will be measured by computing the correlation between factor scores and 
population IQ. If alleles with positive GWAS beta (i.e. alleles with a positive effect on a trait within 
population/between individuals) load positively on a factor that is positively correlated to 
population IQ, this is interpreted as evidence of directional selection on the phenotype (educational 
attainment or related cognitive abilities). 
The robustness of the findings will be tested against a null model using simulations with random 
SNPs. Moreover, the issue of phylogenetic autocorrelation will be addressed: genome-wide genetic 
distances (Fst index) representing a neutral evolutionary model will be tested against a polygenic 
selection model. Autocorrelation is considered problematic because it violates the assumption of 
independent observations, hence leads to false positive (Type I) errors. Demonstrating that the 
alleles predict country-level differences in cognitive ability above and beyond that predicted on the 
basis of migration, drift etc, can be taken as evidence for the hypothesis that these differences have 
been caused by diversifying polygenic selection operating on these alleles. 
If scores computed from GWAS hits predict cross-population phenotypic differences independently 
of genome-wide genetic distances, then the result is more likely to be indicative of polygenic 
selection. 
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2. Methods 
  
1000 Genomes 
  
Frequencies were calculated from VCF files belonging to the phase 3 data: ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/ 
Rietveld et al. (2013) produced 3 SNPs reaching GWAS significance for educational attainment. 
Davies et al. (2016) reported 1115 SNPs reaching GWAS significance, of which 15 were independent 
signals for educational attainment. 942 SNPs were found on 1000 Genomes. Among the 15 
independent signals, one (2:48696432_G_A) was missing.  
Okbay et al. (2016) reported 74 SNPs associated with years of education. 70 were found in 1000 
Genomes (the other 4 variants were flagged because they had more than 3 different alleles). 
Population IQs for the 1000 Genomes populations were obtained from Piffer (2015). Country-level 
average IQs were obtained from Lynn and Vanhanen (2012). The Finnish and Vietnamese IQs were 
both adjusted upwards to 101 (from 97 in Lynn & Vanhanen, 2012), to account for recent, more 
accurate estimates of the Finish population (Armstrong, Woodley, & Lynn, 2014) and a recent 
reanalysis of the Vietnamese data (Rindermann, Hoang, & Baumeister, 2013). IQ for Tuscany was 
calculatedas the average between the IQs estimated from PISA Creative 
Problem Solving (Piffer & Lynn, 2014) and from PISA Math, Science, Reading. There were three 
populations (Chinese Dai, Gujarati Indian and Indian Telegu) for which no estimates of average IQ 
were available.These populations were therefore excluded from the analyses. 
Polygenic score refers to the average frequency of alleles with positive effect at the individual level 
(i.e. GWAS beta). 
PISA 2012 results for countries matching 14 of the 26 populations of 1000 Genomes were obtained 
(OECD, 2012; OECD, 2014). The average score of performance in Mathematics, Reading and Science 
was used. For the US, scores were broken down by race (Hispanics, African-American and White) 
and data for Puerto Rico were obtained from a separate report (OECD, 2014). 
 
Statistical analyses were carried out using R (v. 3.2.3). Factor analysis used Ordinary Least Squares 
(OLS) to find the minimum residual solution (fa function in the R “psych” package) and factor 
scores were computed using the regression method. 
Fst distances (Weir & Cockerham, 1984) for Chromosome 21 and 1 (largest and smallest) will be 
utilized. These were calculated using VCFtools on the 1000 Genomes, phase 3 files. VCFtools is a 
program for working with Variant Call Format (VCF) files, like those generated by the 1000 
Genomes Project (Danecek et al., 2011). 
 
  
3.1 Results (1000 Genomes). 
  
3.1.1 Polygenic scores 
 
Rietveld et al., 2013 
 
A polygenic score was created using the top 3 SNPs in Rietveld et al. (2013). 
  
Davies et al., 2016 
  
Davies et al. (2016) reported 1115 SNPs reaching GWAS significance, of which 15 were independent 
signals for educational attainment. 942 SNPs were found on 1000 Genomes. Among the 15 
independent signals, one (2:48696432_G_A) was missing. Thus, a polygenic score (I.S. PS) was 
calculated using 14 SNPs. 
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Okbay et al., 2016 
 
Okbay et al. (2016) reported 74 loci independently associated with educational attainment (years of 
education).  
  
Polygenic scores and population IQs are reported in table 1. 
 
Table 1. Polygenic scores and population IQ. 
 
 

Population 
Rietveld et al. 
2013 

PS_Ed.Att.
Davies 

PS Ed. Att. 
Okbay et al. 
2016 

IQ SNPs

IQ 

PISA 
2012 

Afr.Car.Barbado
s 0.106 0.419 0.508 0.4248 83  

US Blacks 0.129 0.447 0.517 0.4624 85 434 

Bengali 
Bangladesh 0.227 0.516 0.507 0.6198 81  

Chinese Dai 0.418 0.610 0.547 0.7162   

Utah Whites 0.374 0.493 0.506 0.6222 99 518 

Chinese, Bejing 0.434 0.671 0.563 0.772 105 613 

Chinese, South 0.414 0.648 0.555 0.7456 105 561 

Colombian 0.252 0.500 0.509 0.6416 83.5 376 

Esan, Nigeria 0.096 0.416 0.507 0.4048 71  

Finland 0.387 0.560 0.523 0.6526 101 519 

British, GB 0.397 0.526 0.512 0.6296 100 494 

Gujarati Indian, 
Tx 0.311 0.498 0.508 0.6302   

Gambian 0.085 0.438 0.507 0.3868 62  

Iberian, Spain 0.366 0.512 0.519 0.6066 97 484 

Indian Telegu, 
UK 0.229 0.510 0.502 0.6048   

Japan 0.417 0.652 0.556 0.6982 105 536 

Vietnam 0.461 0.618 0.552 0.7314 99.4 511 

Luhya, Kenya 0.079 0.425 0.502 0.369 74  

Mende, Sierra 
Leone 0.127 0.416 0.509 0.401 64  

Mexican in L.A. 0.237 0.499 0.505 0.6392 88 413 

Peruvian, Lima 0.196 0.477 0.488 0.68 85 368 

Punjabi, 
Pakistan 0.257 0.511 0.513 0.5926 84  

Puerto Rican 0.279 0.489 0.503 0.604 83.5 382 

Sri Lankan, UK 0.222 0.506 0.501 0.5754 79  
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Toscani, Italy 0.354 0.501 0.518 0.642 99 485 

Yoruba, Nigeria 0.097 0.421 0.512 0.3824 71  
 
The polygenic scores have strong intercorrelations (r= 0.68-0.88) and are also strongly correlated to 
population IQ (r= 0.65-0.92) and PISA 2012 scores (r= 0.80-0.83). The correlation between PISA 2012 
and population IQ is r= 0.949. 
 
3.1.2. Factor analysis 
The 17 hits from the two earlier GWAS (Rietveld et al., 2013 and Davies et al., 2016) were lumped 
together and one hit from Davies et al., 2016 (rs1906252) was removed because it was in LD with 
rs9320913 from Rietveld et al., 2013. This yielded a set of 16 LD-free SNPs. 
A factor analysis (function “fa”, package “psych”) was carried out using Ordinary Least Squares to 
find the minimum residual solution. The proportion of variance explained was 0.54. This factor was 
correlated to population IQ (r= 0.89). 14/16 alleles loaded positively and the average loading was 
0.494. 
 
A factor analysis was carried out for 7 sets of 10 SNPs belonging to the 74 Okbay et al. (2016) 
independent hits (4 were missing). The number 10 was chosen for two reasons: 1) To follow the 
recommendation that the subject to item ratio be >2:1; 2) Because 70 (the total number of SNPs) is a 
multiple of 10. 
These were sorted by p value, with the first group having the lowest p value (i.e. highest GWAS 
significance).  
 
 
3.1.3 Spatial Autocorrelation (SAC) 
  
Spatial (phylogenetic) correlation was calculated using the procedure illustrated in a previous 
paper (Piffer, 2015), which was based (then unknown to the author) on the Mantel test (Mantel, 
1967). Regression analysis applied to the Mantel test enables estimation of polygenic selection 
pressures (Piffer, 2015). 
A total of 325 pairwise comparisons were obtained for the 26 populations from the 1000 Genomes 
database utilized in the present study. Distances were calculated as the absolute value of the 
difference between population pairs on the selected variables (country IQ, GWAS hit metagene and 
polygenic score) (Piffer, 2015).Two matrices with N unique pairwise comparisons are generated, 
where N = n*(n − 1)/2. One matrix represents genetic distance, and the other matrix represents 
average population IQ. The country IQ variable had missing values, so a total of 253 distances was 
calculated.  Fst distances were used as a measure of population differentiation due to genetic 
structure, which is based on the partitioning of genetic diversity within and between populations. 
The vast majority of random SNPs all over the genome are believed not to be associated with 
specific phenotypes and therefore not to have been subject to selection. They rather represent 
population structure resulting from random genetic drift, migration, admixture, and similar 
processes. Fst is calculated as the ratio of genetic variance in allele frequencies between populations 
to the sum of variance between gametes within individuals and within populations (Holsinger & 
Weir, 2009; Weir & Cockerham, 1984). 
Regression of phenotypic distances on factor distances coupled with genome-wide Fst distances is 
carried out. If factor distances have an independent positive effect on the dependent variable 
(phenotypic distances), then the result is more likely to be indicative of polygenic selection. 
The SAC-free effect size (standardized beta) of polygenic and factor scores on population IQ are 
reported in tables 2 and 3. 
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Table 2 . SAC control for polygenic scores: Betas. 

Source Fst PS 

P.S. Davies et al. 2016. Β=  0.385 0.294 

P.S. Davies et al. 2016 + Rietveld et al. 2013. 
Β= 

 0.329 0.361 

P.S. Okbay et al. 2016  0.540 0.154 

  
  
 Table 3. SAC control for factor scores: Betas. Factor scores extracted from Okbay et al. 2016 GWAS. 
7 sets of 10 SNPs sorted by p value and factor score extracted from Rietveld et al. (2013) and Davies 
et al. (2016). 
  
 

Source Fst Factor 

Fac_Rietveld_Davies. B= -0.162 0.861 

Fac_1. B= 0.516 0.122 

Fac_2. B= 0.650 -0.076 

Fac_3. B= 0.598 -0.011 

Fac_4. B= 0.622 -0.090 

Fac_5. B= 0.699 -0.138 

Fac_6. B= 0.557 0.095 

Fac_7. B= 0.428 0.204 

 
 
3.1.4 MCV  
 
The method of correlated vectors (MCV) originated in psychometric research to assess the validity 
of items in psychometric batteries (Jensen & Weng, 1994). It consists of a meta-correlation, that is 
computing the correlation between two sets of correlation coefficients. Applied to GWAS results, 
the correlation between allele frequencies and the average phenotypes of different populations is 
computed; then, the resulting correlation coefficients are correlated with the corresponding alleles’ 
genome-wide significance (Piffer, 2016). 
MCV was applied to the 70 SNPs from Okbay et al. (2016): the vector of the correlation of each 
SNP’s GWAS p value was correlated to the vector of the correlation between each SNP’s frequency 
and population IQ (r x IQ) and the vector of the correlation with the factor extracted from the two 
previous GWAS. Negative correlations of the p value were found with r x IQ and with r x 
Rietveld_Davies factor (r= -0.26; -0.25). Smaller, non-significant correlations (although in the right 
direction) were found for effect size (0.079 and 0.087 for population IQ and R_D factor). 
 
Four indicators of factor reliability were devised: 1) Average factor loading (mean loading of the 10 
SNPs on the factor calculated from all 70 SNPs); 2) correlation to the factor scores obtained from 
Rietveld et al. (2013) and Davies et al. (2016); 3) Correlation with population IQ; 4) SAC-free Beta 
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(“SAC Beta” for short). The values of these indicators are reported in table 4 for each of the 7 SNPs 
sets, along with their p value rank. 
 
Table 4. Validity of factor scores from 7 subsets of the Okbay et al. (2016) SNPs, ranked by their 
p values 

SNP set 
Average Fac. 
Loading 

r x Fac 
Rietv_Dav r x IQ SAC Beta P value rank

Set 1 0.39 0.608 0.698 0.122 1 

Set 2 0.221 0.896 0.715 -0.076 2 

Set 3 0.051 -0.847 -0.720 -0.011 3 

Set 4 0.152 0.199 0.094 -0.090 4 

Set 5 0.199 0.684 0.643 -0.138 5 

Set 6 0.046 0.560 0.394 0.096 6 

Set 7  0.269 -0.813 -0.782 0.204 7 

Mean 0.190 0.184 0.149 0.015  
 
Table 5 reports the intercorrelations between the accuracy measures and p value rank. 
 
Table 5. Intercorrelations between the accuracy measures and p value rank 

 
 
A novel measure of factor accuracy (“meta-accuracy”) was calculated as the mean between the four 
indicators. In turn, the Spearman-rank correlation between the meta-accuracy vector and p value 
rank was computed. A negative correlation was found: r= -0.408. 
With the aim of validating the meta-accuracy measure, a meta-factor was created by factor 
analyzing the scores of the 7 factors. The factor loadings (“meta-loadings”) were in turn correlated 
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to the meta-accuracy vector, thus producing a “meta-Jensen coefficient”. The correlation between 
the two meta-vectors was r= 0.969. 
 
Figure 1a. Regression of population IQ on factor extracted from the Okbay et al. (2016) dataset. 
 

 
 
Figure 1b. Regression of population IQ on factor extracted from the Rietveld et al. (2013) & 
Davies et al. (2016) datasets. 
 

 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2016                   doi:10.20944/preprints201611.0047.v1

http://dx.doi.org/10.20944/preprints201611.0047.v1


9 

 
There were substantial intercorrelations between the meta-factor, the Rietveld+Davies factor scores 
and IQ. SAC-control was applied to the meta-factor. This produced a very weak SAC-free effect (B= 
0.097; Fst B= 0.508). 
 
To extract a reliable estimate of polygenic selection, the average of the two factors (“average factor”) 
was computed. The correlation between the average factor and population IQ was r= 0.858. 
 
 
3.1.5 LD pruning 
 
Cross-GWAS linkage was checked by feeding SNPSNAP with the list of 86 SNPs, with LD 
thresholds of 500kb and r= 0.5. 
In total, 8 SNP pairs were found to be in LD. One SNP was present in two GWAS datasets 
(rs9320913). 
A list of replicated or pseudo-replicated (in LD across studies) SNPs was created, composed of one 
of the two linked SNPs (one for each pair) and the 8 SNPs in LD across GWAS (table 13). The 
polygenic scores from the linked SNPs are reported in table 6. The correlation between the two 
scores is r= 0.919. 
 
Table 6. Pseudo-replicated and replicated SNPs. Sites in LD (r>0.5). 
 

Publication Index SNP Publication Linked SNP 

Davies et al., 2016 rs12042107  rs1008078  Okbay et al., 2016 

Rietveld et al., 2013 rs11584700  rs11588857 Okbay et al., 2016 

Rietveld et al., 2013 rs4851266 rs12987662 Okbay et al., 2016 

Davies et al., 2016 rs13086611 rs148734725 Okbay et al., 2016 

Davies et al., 2016 rs11130222 rs11712056 Okbay et al., 2016 

Davies et al., 2016 rs55686445 rs62263923 Okbay et al., 2016 

Davies et al., 2016 rs12553324   rs13294439 Okbay et al., 2016 

Davies et al., 2016 rs4799950 rs12969294 Okbay et al., 2016 

Rietveld et al., 2013 rs9320913* rs9320913  Okbay et al., 2016 

*Replicated 
 
 
Frequencies of the replicated hits were also calculated for the 5 super-populations (i.e. races) of 1000 
Genomes for both SNP sets. A boxplot is shown in figures 2a and 2b. 
 
Figure 2a. PS of linked/replicated SNPs by race. SNPs from Rietveld et al. (2013) and Davies et al. 
(2016). 
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Figure 2b. PS of linked/replicated SNPs by race. SNPs from Okbay et al. (2016). 
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The replicated SNPs were factor analyzed. The two factors were almost identical (r= 0.998). 
Finally, a list of cross-GWAS clumped SNPs was created by keeping only one SNP for each LD pair 
(e.g. rs12042107 (Davies) - rs1008078 (Okbay). Only the latter (rs1008078) was preserved). Obviously, 
the replicated SNP (rs9320913) was counted only once.This resulted in a list of “LD-clumped” (86-8-
1)= 77 SNPs. 
LD-clumped polygenic score (LD clumping across independent hits from three GWAS. Pre-
clumping N=86; Post clumping and overlap: N=77). 
 
The LD-clumped PS had the following correlations with the other variables: r x IQ: 0.766; r x 
FactorRietvDavies: 0.835; r x Metafactor: 0.475. 
 
The population IQ variable had some missing cases so the correlations are reported both with and 
without IQ (table 7a and 7b, respectively). 
 
Table 7a. Correlation plot (all polygenic and factor scores). With IQ, N = 26 countries. 

 
 
 
 
Table 7b.Correlation plot (all polygenic and factor scores). Without IQ, N =23 countries. 
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Okbay et al. (2016) reported 162 independent SNPs that reached genome-wide significance (P < 
5*10-8) in the pooled-sex EduYears meta-analysis of the discovery and replication samples (N 
=405,072) and 7 SNPs that replicated across the discovery and replication sample at p <5*10-8). 
 
161 SNPs were found in 1000 Genomes. The polygenic score was computed (table 8). Its correlation 
to population IQ was r= 0.856 (scatterplot figure 3) and PISA 2012 (r=0.851). The polygenic score of 
the 7 hits that replicated with a genome-wide significant p value had a correlation r= 0.833 with 
population IQ and PISA 2012 (r= 0.681). 
 
Table 8. Polygenic scores from the meta-analysis. Pooled polygenic score with 161 SNPs (PS_161) 
and 7 SNPs replicating across samples (PS_7). 
 
Population PS_161 PS_7

Afr.Car.Barbados 0.485 0.256

US Blacks 0.483 0.286

Bengali Bangladesh 0.503 0.360

Chinese Dai 0.516 0.361

Utah Whites 0.503 0.383

Chinese, Bejing 0.529 0.399

Chinese, South 0.522 0.387

Colombian 0.498 0.356

Esan, Nigeria 0.479 0.263

Finland 0.516 0.449
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British, GB 0.506 0.390

Gujarati Indian, Tx 0.506 0.363

Gambian 0.484 0.243

Iberian, Spain 0.513 0.389

Indian Telegu, UK 0.504 0.350

Japan 0.528 0.359

Vietnam 0.522 0.381

Luhya, Kenya 0.477 0.251

Mende, Sierra Leone 0.473 0.263

Mexican in L.A. 0.495 0.329

Peruvian, Lima 0.474 0.298

Punjabi, Pakistan 0.505 0.364

Puerto Rican 0.498 0.339

Sri Lankan, UK 0.501 0.364

Toscani, Italy 0.513 0.389

Yoruba, Nigeria 0.482 0.267
 
 
Figure 3. Relationship between P.S. computed from hits by Okbay et al. (2016)’s pooled meta-
analysis and population IQ. 

 
Mean scores for 4 populations representing four super-populations/races were calculated and are 
reported in figure 4. 
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Figure 4. Boxplot of polygenic scores for four populations. BEB= Bengali in Bangladesh; GBR= 
British in Great Britain; CHS= Chinese South; YRI= Yoruba in Nigeria.  

 
Method of correlated vectors 
 
For the 161 significant SNPs in the meta-analysis, the correlations of p value and GWAS effect size 
with the IQ correlation (meta-correlation) were r= -0.009 and -0.048, respectively. 
 
Spatial autocorrelation (SAC): clumped and replicated SNPs 
 
Spatial autocorrelation analysis was run on the three scores. The effect size (Standardized beta) is 
reported in table 9.  
 
Table 9. SAC control for polygenic and factor scores. 
 

Source Fst Factor/PS 

PS clumped. B= 0.476 0.250 

PS replicated_Rietv_Davies. B= 0.395 0.352 

PS replicated_Okbay. B= -0.062 0.791 

PS meta-analysis_Okbay. B= 0.273 0.458 

Factor pseudo-replicated. B= 0.002 0.695 

 
 
3.1.6 Simulation 
 
Factor loadings 
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In order to show that factors formed from educational attainment SNPs are more coherent (i.e. have 
higher loadings) than factor formed from random SNPs, a simulation was carried out. 
100 sets of 10 SNPs matched to the top significant SNPs in Okbay et al. (2016) were obtained from 
SNPsnap (http://www.broadinstitute.org/mpg/snpsnap/). After removal of problematic SNPs 
(when frequency was 0 for a population, that population was not counted, creating mismatch 
between rows, hence these had to be removed). Among those, the first 200 sets (to speed up 
computation) of 10 random SNPs were chosen for a simulation. Factor analysis was iterated over 
each set. The average factor loading was 0.268 (SD=0.176). 
The distribution was non-normal, with a strong positive skew (figure 5). 
 
Figure 5. Distribution of mean of factor loadings (N=200). 

 
 
This information was used as a baseline, null model to test against polygenic selection.  
 
Factor scores 
The correlations between the factor scores for the 200 sets of 10 random SNPs and population IQ 
were computed. The average Pearson’s r was 0.22 (95% CI= -0.757; 0.823; 99% CI= -0.826; 0.886). 
Thus, the correlations between the factors (pseudoreplicated hits) and IQ (r=0.89) is significant 
according to the conventional p value (0.05). 
 
Polygenic scores 
The set of 7914 random SNPs was divided into 52 sets of 150 SNPs. N=150 was chosen because it is 
close to the number of SNPs in the pooled Okbay et al. (2016) sample. 
The average correlation between the polygenic scores for 52 sets of 150 SNPs and IQ was 0.467 (95% 
CI= -0.100; 0.817). The upper limit of the 95 % CI was almost identical to that obtained for the factor 
scores simulation (0.823). Hence, the correlation between the 152 SNPs GWAS hits polygenic score 
and population IQ (r= 0.863) is significant according to the conventional p value (0.05). 
 
Meta-accuracy 
 
The 161 SNPs were divided into 32 sets of 5. Factor analysis was carried out on each set. The 
average factor loadings for each set and the correlation of the factor scores to population IQ are 
reported in table 20. The average factor loading was 0.225, and the average corr x IQ was 0.112. 
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The correlations of factor loadings and corr x pop IQ with p value were  r= -0.273 and -0.008, 
respectively. Moreover, the two vectors (factor loadings and corr x pop IQ) were intercorrelated (r= 
0.223). 
 
 
The top 4 significant sets were chosen because their loadings, p value and correlation with 
population IQ suggested the presence of stronger signal (average corr x population IQ= 0.83; 
average loading= 0.383). The correlation between population IQ with the average factor score and 
the polygenic score were r=0.923 and  0.867. 

 

3.1.7 Controlling for baseline population differences in derived allele frequencies 

At a theoretical level, an ancestral allele is the allele that was carried by the last common ancestor 
between humans and other primates whereas an allele is derived when it arose in the human 
lineage after the split from other primates. In practice, this allele is usually ascertained via 
comparison with chimpanzees. One limitation of this procedure is that if a mutation arose in 
chimpanzees after the split from humans, then the ancestral allele is not the chimp allele. Thus, 1000 
Genomes infers ancestral alleles via alignment with 6 primate species (Ensembl, 2015).  
Allele status could be ascertained for 156 out of 162 trait-increasing alleles in the Okbay et al. (2016) 
pooled meta-analysis. Of those, 86 and 70 were derived (55.13%) and ancestral, respectively. Since 
this is not an equal representation, it creates a potential confounding factor. Average derived and 
ancestral allele frequencies for positive effect alleles (DAF and AAF, respectively) were computed. 
These indeed confirmed previous findings that non-African populations have higher frequencies of 
derived alleles (Henn et al., 2015). A new polygenic score was computed by averaging the two 
scores. This gives equal weights to derived and ancestral alleles, hence eliminating the potential 
bias due to different baseline levels of derived alleles among populations. The correlation between 
this “corrected” score and population IQ was r= 0.828. The derived and ancestral polygenic scores 
had opposite correlations to population IQ (r= 0.848 and - 0.516, respectively). 
 
3.1.8 Do “educational” SNPs population frequencies reflect selection pressures on general intelligence? 
 
Piffer (2015) analysed 9 GWAS hits of educational attainment and IQ. Five of these were related to 
general cognitive function (rs10457441 C; rs17522122 G; rs10119 G; rs236330 C; rs17518584 T), as 
reported in two recent studies (Davies et al, 2015; Ibrahim-Verbaas, 2015) . The polygenic score is 
reported in table 1 (col. 5). Its correlation to population IQ is r= 0.847. Its correlations to the four 
educational attainment polygenic scores (in the order reported in the table) are:  0.896; 0.822; 
0.655;0.856. 
 
3.2. ALFRED 
 
3.2.1 Polygenic scores 
 
The analysis was replicated using ALFRED (lhttps://alfred.med.yale.edu/), which contains more 
populations than 1000 Genomes (52 after pairwise deletion of missing values) but has smaller 
samples and much lower coverage. Thus, only a minority of the SNPs available in 1000 Genomes 
are present in ALFRED. In order to overcome this limitation, two strategies were used: 1) For the 
SNPs reported in Rietveld et al. (2013) and Davies et al. (2016), the full list of significant hits was 
searched, comprising also the non-independent hits. Then, the hits in LD (r>0.5) were removed. 2) 
Okbay’s 162 independent hits (pooled meta-analysis) were searched for those in LD (r>0.9) using 
SNPSnap. In total, 12 SNPs from Rietveld + Davies and 72 SNPs from Okbay et al. (2016) were 
found in ALFRED. 
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Polygenic scores were computed for both datasets and are reported in table 10. No valid IQ 
estimates are available for those populations, so this is not reported. 
The correlation between the two polygenic scores was r=0.781 (Figure 6). 
Seven racial groups were identified and average polygenic scores computed for them (table 11). 
 
 
Table 10. Polygenic scores calculated using ALFRED. SNPs published by Okbay et al. (2016) + 
Rietveld et al. (2013) and Davies et al. (2016). N=72 and 16, respectively. 
 

Population 
PS_Alfred_Okba
y PS_Alfred_R_D 

Bantu speakers_SA 0.455 0.438

Bantu speakers_Kenya 0.441 0.412

Biaka 0.440 0.501

Mandenka 0.465 0.459

Mbuti 0.440 0.471

Mozabite 0.491 0.470

San 0.422 0.404

Yoruba 0.449 0.440

Balochi 0.48 0.473

Bedouin 0.470 0.423

Brahui 0.477 0.442

Burusho 0.511 0.476

Druze 0.490 0.449

Hazara 0.518 0.548

Kalash 0.498 0.438

Mongolian 0.541 0.598

Oroqen 0.528 0.574

Palestinian 0.511 0.473

Pashtun 0.504 0.441

Sindhi 0.499 0.470

Cambodians, Khmer 0.507 0.508

Dai 0.515 0.615

Daur 0.549 0.658

Han 0.532 0.603

Hezhe 0.528 0.607

Japanese 0.550 0.615

Koreans 0.535 0.623

Lahu 0.515 0.571

Miao 0.534 0.653

Naxi 0.535 0.566
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She 0.509 0.614

Tu 0.527 0.616

Tujia 0.517 0.612

Uyghur 0.521 0.549

Xibe 0.525 0.614

Yi 0.543 0.597

Adygei 0.494 0.454

Basque 0.516 0.466

French 0.502 0.438

Italians_Tosc 0.496 0.493

Italians_North 0.518 0.481

Orcadian 0.492 0.535

Russians 0.496 0.445

Sardinian 0.489 0.447

Maya, Yucatan 0.468 0.443

Pima, Mexico 0.465 0.454

Melanesian, Nasioi 0.508 0.542

Papuan New Guinean 0.499 0.569

Yakut 0.528 0.556

Amerindians 0.448 0.411

Karitiana 0.453 0.429

Surui 0.446 0.473
 
Table 11. Polygenic scores for racial groups. 
 

Racial 
group 

Polygenic 
Score 

 
Ethnic group 
 

African 0.446 Bantu, Biaka,Mandenka,Mbuti,San,Yoruba 

Middle 
Eastern 0.469 Palestinian, Bedouin, Druze 

Central 
Asian 0.484 Burusho, Kalash,Pashtun,Balochi.Brahui,Hazara, Sindhi 

East Asian 0.568 
Dai,Daur,Han,Hezhe,Japanese,Koreans,Lahu,Miao,Nazi,She,
Tu,Tujia 

European 0.490 Basque, French, Italian, Orcadian, Russian 

Native 
American 0.449 Maya,Pima,Amerindians,Karitiana,Surui 

Papuan 0.529 Papuan New Guinea, Melanesian Nasioi 
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Figure 6. Scatterplot showing the correlation between the polygenic scores obtained from three 
GWAS publications. ALFRED populations. r= 0.781 
 

 
 
3.2.2 Spatial Autocorrelation and distance from Africa. 
 
Lawson-Handley et al. (2007) calculated geographic distance from Addis Ababa (AA), regarded as 
the centre of the human expansion, assuming an origin of modern humans in Eastern Africa.  
Geographic distances for the ALFRED populations were obtained from an analysis of genetic 
variation using the HGDP-CEPH data, which showed that 77% of the genetic variance (Fst) could 
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be explained by geographic distance between populations (Lawson Handley, Manica, Goudet and 
Balloux, 2007). There were 54 and 52 populations in the HGDP and ALFRED datasets, respectively. 
Of these, 49 were overlapping and were used for calculation of PS distances (N= 1177). Correlations 
are reported in table 12. 
 
Table 12. Measures of spatial autocorrelation (correlation coefficient between pairwise distances). 
N= 1176. 
 

 PS Okbay PS Rietveld + Davies 

r x Fst 0.46 0.161 

r x Geo 0.377 0.164 

r x Distance from AA 0.065 0.207 

 
 
The two polygenic scores were averaged. The correlation between the average PS and distance from 
AA is r=0.171, indicating little effect of neutral population history on polygenic scores (Fig. 7). 
 
Figure 7. Scatterplot showing correlation between geographic distance from Addis Ababa and 
averaged polygenic scores. 
 

 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2016                   doi:10.20944/preprints201611.0047.v1

http://dx.doi.org/10.20944/preprints201611.0047.v1


21 

4. Discussion 
 
The two largest GWAS of educational attainment, published in 2016, appear to confirm the 
population-level findings based on the first large GWAS of this kind (Rietveld et al., 2013). 
Specifically, higher frequencies of alleles with a positive effect on educational attainment are 
observed among East Asians than in Europeans, and the latter have higher frequencies than 
Africans. Moreover, the polygenic scores obtained from two independent samples are strongly 
correlated (table 2) to those obtained from the first GWAS (r= 0.68-0.88). 
The frequencies of 4 SNPs associated with general cognitive ability in previous studies (reviewed 
by Piffer, 2015) are strongly correlated to the educational attainment polygenic scores. 
The genetic variants identified by three large genome-wide association studies (GWAS) of 
educational attainment were used to test a polygenic selection model. 
Strong inter-correlations among population-level polygenic scores of alleles found by three 
independent GWAS to be associated with educational attainment were observed. Moreover, these 
polygenic scores were substantially correlated to estimates of average population IQ (table 2). 
The polygenic score of 161 SNPs that reached genome-wide significance in the meta-analysis by 
Okbay et al. (2016) of the discovery and replication samples (N =405,072) was highly correlated to 
population IQ (r=0.854). A similar correlation was produced when using only the 7 SNPs that 
reached significance in both datasets separately (r= 0.833). 
Using the hits by Okbay et al. (2016), the method of correlated vectors revealed the presence of a 
“Jensen effect” (meta-correlation) of SNP p value on population IQ and factor from the two 
previous GWAS (r= -.25). That is, frequencies of alleles with lower p value (more GWAS 
significance and higher likelihood of being true positives) had stronger correlations to population 
IQ and a factor extracted from an independent dataset. Factor analysis produced similar estimates 
of polygenic selection strength for educational attainment across the three datasets. The SNPs from 
the largest GWAS (Okbay et al., 2016) were subset by p value (N= 7) and factor analyzed. Variables 
indicating reliability (factor loadings), predictive (r x population IQ and SAC-free Beta) and 
convergent validity (r x factor extracted from previous GWAS) were computed. The correlation 
with p value rank was in the expected direction in three out of four (except p value rank x SAC Beta) 
instance and of low magnitude. A composite index was created by calculating the average of the 
four variables. This index substantially correlated to SNP set’s P value rank (r= -0.4). There was also 
a positive correlation between average factor loading and corr. x IQ, corr. x factor, corr. x SAC-free 
effect. 
This result also highlights a potential problem, that is the high noise present in the data. Some of the 
SNPs with very small effects on educational attainment may have been subject to such minimal 
selection that chance rather than selection is the main reason for their present allele frequencies. In 
other cases, very small effects on education may indicate that their main phenotypic effect is 
somewhere else. There could be small effects on the risk of psychiatric and other diseases, for 
example, that were more important than the marginal effects on learning ability or interest in 
learning. 
 
Factor analysis was carried out on the 7 factors belonging to the 7 sets. The loadings on this “meta-
factor” were strongly correlated to the composite index of factor accuracy (r=0.96). 
That is, the factors’ independent correlations to measures of accuracy were in turn correlated to 
their loadings on the “meta-factor”.  The factor extracted from the hits of the first two GWAS 
(Rietveld et al., 2013; Davies et al,, 2016) survived control for phylogenetic correlation using Fst 
distances (test of the hypothesis that random factors such as drift or migration confound the results, 
see Piffer, 2015) quite well (B= 0.861), but among the Okbay et al. 2016 hits, only the top 10 
significant ones had some residual predictive validity (B= 0.122). This discrepancy was also 
reflected in the average factor loadings, which were much higher in the former than in the latter 
(0.49 vs. 0.19). 
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There were substantial intercorrelations (r= 0.77-0.89) between the meta-factor, the Rietveld+Davies 
factor scores and IQ (table 7a). 
LD clumping was performed on the entire SNPs set from the three GWAS (N=86). This produced 77 
LD-clumped SNPs, 1 SNP in common between two publications and 8 linked SNPs. The polygenic 
score calculated from the LD-clumped SNPs was correlated to population IQ (r=0.77) and to the 
factor (r= 0.85) and polygenic scores extracted from the 9 replicated/linked SNPs (r= 0.94 and 0.8) 
(tables 7a and 7b). The two PS obtained from the cross-publication linked/replicated hits, were 
strongly correlated to population IQ (r=0.82; 0.9). The two factors of the replicated/linked hits were 
similarly correlated to population IQ (r=0.89). 
All four vectors survived control for spatial autocorrelation by partialling out of Fst distances (table 
9), reaching Betas= 0.25; 0.35; 0.79; 0.69). The PS obtained from the 161 SNPs of the Okbay et al. 
(2016) meta-analysis had “SAC-free” B=0.500. Another PS was created using 7 hits that reached 
genome-wide significance of p<5 x 10-8 in Okbay et al. 2016’s study using the UK Biobank 
replication sample and this had a similar correlation to population IQ (r= 0.83). 
The correlation between polygenic, factor scores and population IQ exceeded the confidence 
interval obtained via simulations with hundreds of random SNPs. Factor analysis also produced 
more coherent factors than those extracted from random sets of SNPs. The average factor loadings 
for random SNPs was 0.268, but it was generally higher for the replicated loci or the hits from 
Rietveld et al. (2013) and Davies et al. (2016). However, the SNPs from Okbay et al. (2016) did not 
produce loadings higher than chance expectations. 
Both controlling for spatial autocorrelation (SAC) via regression analysis and simulations with 
random SNPs revealed that the high correlation coefficients between polygenic scores and IQ are 
inflated due to population history mechanisms (drift, migrations, etc.) unrelated to natural selection. 
That is, both random SNPs and Fst distances had substantial correlations to population IQ and to 
polygenic scores, although not as strong as the correlation between the latter two. Thus, the 
reported effects are overestimates and the magnitude of the real effect is probably closer to the 
"SAC-free" estimate ranging from 0.25-0.79 obtained with polygenic scores (table 9).It should also 
be pointed out that it is most likely not the SNPs or the polygenes per se that explain the group 
differences in IQ. These are probably only indicators, picking up signal of differential selection 
strength, supposedly acting on many other genes, scattered across the genome, whose association 
with IQ is not known yet. A prediction is thus that as future GWAS will produce more hits, they 
will fit the pattern found by this study. This study is important because it confirms the prediction of 
an earlier one (Piffer, 2015) - which used fewer SNPs - that cognition-enhancing alleles identified by 
future GWAS would show similar population frequencies. The fact that the addition in the present 
study of over 150 SNPs to the original analysis carried out by Piffer using only 9 SNPs produced 
very similar polygenic scores is remarkable and suggests that the selection signal is robust and 
relatively independent of the variance explained by the polygenic score. 
However, since the SNPs themselves only contribute to a small % of phenotypic IQ, it is still 
possible that discovery of additional SNPs could substantially change the PS-group IQ correlations. 
Factor analysis carried out on 32 sub-sets (N=5) of the 161 SNPs from Okbay et al. (2016) confirmed 
a tendency for lower p value (more significant) SNPs to have higher loadings (r= -0.23) and a 
stronger correlation of their factor scores to population IQ (r= -0.22). Moreover, the two vectors 
(factor loadings and corr x pop IQ) were intercorrelated (r= 0.27). Polygenic and factor scores 
computed using the top 20 significant SNPs showed very high correlation to population IQ (r=0.88; 
0.9). 
 
Controlling for differing frequencies of derived alleles across populations due to drift or GWAS 
ascertainment bias and the overrepresentation of derived alleles among alleles with positive effect 
did not significantly alter the polygenic score nor its relationship to population IQ. A new polygenic 
score was computed by averaging the two scores. This gives equal weights to derived and ancestral 
alleles, hence eliminating the potential bias due to different baseline levels of derived alleles among 
populations. The correlation between this “corrected” score and population IQ was r= 0.851. 
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However, there is a possibility that giving equal weight to derived and ancestral alleles leads to 
overcorrection if intelligence-enhancing alleles tend to be derived. This is likely because the increase 
in intelligence during evolution of the Homo lineage has been favoured by mutations that arose after 
the split from the last common ancestor with chimpanzees. 
The major difference was an attenuation of the African-Eurasean differences due to derived alleles 
being in general at lower frequencies among Africans, and derived alleles being also 
overrepresented among those with positive GWAS effect. Previous findings that non-African 
populations have higher frequencies of derived alleles were confirmed within this sample of SNPs 
(Henn et al., 2015). 
The replicated/linked SNPs exhibit a clear clustering of alleles across 5 major racial groups (figure 2), 
showing a pattern matching cross-racial differences in IQ: East Asians>Europeans>South Asians> 
Hispanics>Africans. 
A replication of the analysis using 52 populations from ALFRED revealed a similar pattern (figure 
6). 
Surprisingly, distance from the putative ancestral environment in Eastern Africa (Addis Abeba) 
was not correlated to polygenic score (table 12), suggesting that selection rather than drift due to 
geographic distance or isolation is responsible for the observed pattern (figure 7). This is reflected 
also in the lower polygenic scores obtained by Native Americans, despite their genetic similarity to 
East Asians. If genuine, this finding would suggest that selection pressures on higher IQ for East 
Asians date after the split from Americans ca. 13Kya and are thus relatively recent. Lower 
population density in America could account for relaxed selection pressure, possibly mediated by 
lower social or sexual competition. 
Another potential issue raised by one reviewer is that “the extrapolation to non-European 
populations is still problematic because the accuracy of the polygenic score declines in such 
populations as a result of differing LD patterns (Scutari et al., 2015)”. 
In fact differences in LD should simply reduce the frequency differences at the tag SNPs between 
populations, compared to the real causal SNPs. This is due to a phenomenon called “attenuation”. 
Indeed, correction for attenuation is used “to rid a correlation coefficient from the weakening effect 
of measurement error (Jensen, 1998). This scenario works in the case that the frequency differences 
between tag and causal SNPs are due to random error, so that the mean frequency of the cognitive 
ability alleles is equal to the (genome-wide) background frequency (which for a mathematical 
reasons, is 50%). If a non-European population’s tag SNPs (GWAS hits) are at frequencies lower 
than 50%, LD decay implies that the causal SNPs are at even lower frequencies because attenuation 
will push frequencies up towards the baseline frequency of 50%.Conversely, if tag SNPs are at 
frequencies >0.5, then the frequency of causal SNPs will be underestimated by the tag SNPs. Hence, 
controlling for LD decay would actually increase frequency differences when non-European 
populations exhibit frequencies that markedly differ from 50%. For example, the average 
frequencies of the replicated sites are all markedly lower than 50% (CEU= 38%; Chinese: 39%, 
Nigerian: 26%), suggesting the causal SNPs are at even lower frequencies, and this effect will be 
stronger for populations whose frequencies are farther away from the mean of 50%. Future studies 
should examine which of the SNPs predict educational attainment in non-European populations, 
because the linkage phase between tag SNP and causal SNP will in some cases be different in 
different populations. In some cases, the causal SNP may even be monomorphic in some parts of 
the world, especially if it arose recently. Initially, this means that comparisons between populations 
should be limited to those SNPs that reliably predict educational attainment or related traits in all 
populations. In addition, different linkage phase in different populations is not only a nuisance 
factor that limits the reproducibility and usefulness of reported associations. It is also a great tool 
for trying to find the causal polymorphism among clusters of SNPs that may have very high linkage 
disequilibrium in any one population or haplotype.  
Another potential problem is that of population stratification in the original GWAS. Population 
stratification refers to the "allele frequency differences between cases and controls due to systematic 
ancestry differences" (Liu et al., 2013). Obviously controlling for population stratification is 
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important because if the putatively causal SNPs were actually ancestry markers, the cross-
population differences in allele frequencies would be due to population stratification signal picked 
by the GWAS, instead of genetic variants which are causally related to the phenotype. Fortunately, 
the GWAS publications dealt with the issue of population stratification, and identified stratification 
effects that were small in magnitude, about 8% of the signal due to population stratification and not 
to polygenic signal (Okbay et al., 2016). Okbay et al. (2016) also employed within-family analysis, 
which is a more direct approach to isolate polygenic association signal from population 
stratification but is not powered for individual SNP association testing. 
Overall, this study provides strong evidence that there has been recent polygenic and diversifying 
selection on educational attainment, hence producing different levels of cognitive capacity and 
other traits related to educational attainment among populations. The fuzzy nature of the results is 
expected given the highly polygenic nature of the trait, the small effect sizes associated with each 
SNPs and the likely presence of many false positives. Pleiotropy, random genetic drift, different 
linkage equilibrium patterns and differential distribution of ancestral and derived alleles are also 
expected to increase the noise in the data. Given all these factors, it is remarkable that a relatively 
clear pattern emerged, especially when focusing on the associations produced by the largest sample 
or the replicated SNPs and loci. 
A limitation of this study is the reliance on GWAS hits for a complex phenotype such as educational 
attainment, which shares the majority of additive genetic variation with general intelligence, but 
also other personality and health-related traits (Krapohl et al., 2014 and 2015). 
It is possible that there are other SNPs affecting cognitive variables unrelated to educational 
attainment and these may not necessarily be subject to the same selection pressures. Future studies 
should carry out “deep phenotyping” with SNPs from each chromosomal region that has produced 
hits in the educational attainment studies, to find out which of them are related to IQ (and its 
components, such as long-term memory, working memory, and abstract reasoning), and which are 
related to non-cognitive traits such as ambition, self-control, preference for abstract thinking, or 
incompetence in practical pursuits. There are reports indicating that school success is as much 
related to preferences and personality as to intelligence, and that these non-cognitive traits, if 
properly measured, are as heritable as IQ (Kovas et al., 2015). 
Another limitation is the reliance on estimates of population IQ as the phenotypic variable, which 
are not perfectly accurate, besides reflecting environmental and economic differences between 
populations. 
 
Appendix 
 
Raw data and code can be downloaded from: osf.io/z5nju 
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