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Article

There Are Infinitely Many Mersenne Primes

Michael Mark Anthony

Independent Researcher, USA; uinvent@aol.com

Abstract

This paper explores Mersenne primes of the form 2P —1 where, p is a prime. By extension, the
paper also explores Perfect numbers. An insight into these numbers is explored using novel methods
that involve the trigonometric functions with integer factorable arguments. Rational functions play a
part in the behavior of many functions including regular primes, Mersenne Primes, and Perfect
numbers. The paper first determines relationships for primes, and then procedes to show how Perfect
number relations can be derived from trigonometric relations. The relationships of trigomentric
functions involving the sum of divisors, provide a novel approach to prove that that the analytic
structure of cot(x), when split into Mersenne and non-Mersenne classes through the Bernoulli
framework, forces a coupling between the two infinite subsets of integers and the contradiction
(negative ratio despite all positive terms) is a proof of necessity for infinite balance between both
classes.

Keywords: Mersenne primes; perfect numbers; abondant numbers; deficient numbers; trigonometric
functions; primes; cot; trigonometry; sums of divisors; invariance

1. Introduction

The search for a general formula to determine the n‘" Mersenne prime is an ongoing challenge
in mathematics. Mersenne primes are of the form M, = 2P —1 , where p is a prime number, and
M, is also a prime number. Not all primes p, can generate a Mersenne prime M,. For example, the
primes, 11, 23, 29, are examples that do not generate Mersenne Primes, M,, they generate what I refer
to as Mersenne Numbers M, that have the Mersenne form M, = 2P —1, where p is a non-
generating prime, and M,, isnot. It is extremely difficult to find the Mersenne primes, M, without
tedious factorization, since the known set of Mersenne primes M, are separated by long distances of
non-primes, M,.

Perfect numbers, N,, are numbers defined by the product N, = (2P — 1)2P~1, where, p is a
prime that generates a Mersenne prime, . They have the Sum of Divisors relation, (N,) = 2N,.
These numbers are related to Mersenne primes, M,, = 2P — 1, by the relation, N, = (2Pt — DM,
Hence the search for Mersenne primes, M,, is also the search for Perfect numbers, N,. It is not
known in current art if there are infinitely many Perfect Numbers, N, and also if there is infinitely
many Mersenne primes, M,.So far, all N,, are even numbers, and it is still not yet determined if there
are any odd N,.The approach used in this paper on Mersenne Primes, M,, and Perfect numbers, N,
is so far as I know, has not yet been used by researchers.

The Gamma-function, denoted as I'(s), was first introduced by Swiss mathematician Leonhard
Euler [1] 1729. Euler’s deep insights into I'-function led to numerous results that provide key insights
into many fields of mathematics including Probability theory and Statistics. Other major
contributions to the development of the I'-function used in this paper were developed by Carl
Freidman Gauss [2]. Gauss’s work led to the famous reflection formula of the {-function. A key
insight into the I'-function is its multiplicative nature. New results will be presented in this paper
resulting from the properties of the I'-function . So far, there has been little development in the
additive representation of the I'-function as a series of simple terms. The form of the I'-function [3],
p.895:
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for s real and positive is well known. Here, the remainder of the series (1) is less than the last term
that is retained.
Similar series exists for InT'(s). It will be significant if other forms of these series can be found.
The product-form of the T'-function due to Gauss, provides further insights into many relations
that will be developed in this paper. The product form is given by, [4], p. 896:

y-1
1-y 1 k
Ty-n)=Cn)z y™ 72| |r(n+- 2.
[ [r(e+3) (2)

Certain invariant relations of the product I'-function will be developed in this paper to show the
connections of the I'-function to other functions, particularly the Riemann-Zeta function, denoted by
{(s). The ¢-function, is defined by the additive series:

11 1 C
{(S)=F+§+§ +---=Zn‘5,IR{(s)>1 (3)
n=1

The importance of the {-function is its relation to the distribution of primes and the Riemann
hypothesis. There is a one-on-one correspondence between the non-trivial roots of the function and
the primes. The {-function also has a product relation for primes p, given by [4], p. 1037;

OF ]:[ (5 _1p_5). R(s) > 1 (4)

Both the {-function, and the I'-function are factorable. These two functions are related by the ¢-

function reflection formula developed by Gauss given by [4], p.1038:
S\ _S 1—s\ s-1
I‘(E)n 20(s) = F(T)n 2 ¢((1—s) (5)
These relations are well studied, and they provide a wealth of information in Number theory
and many disciplines in Mathematics. In this article, I show new relations that govern Mersenne

primes and twin primes. All these special integer relations are connected in precious way by powers
of 2m.

2. Mersenne Numbers

Mersenne primes were named after the French philosopher and number theorist, Marin
Mersenne (1588-1648). Marin Mersenne was also a monk and a theologian, and he had an important
influence on many academics such as Fermat, Pascal, Huygens, Descartes and Galileo. He also
inspired the invention of the pendulum clock.

Only a few Mersenne primes, My, are known to exists. It is an ardous task to determine whether
a Mersenne number, Mn is either a Mersenne prime, Mp prime or a Mersenne number Mn, since
the computation of factors of large Mersenne numbers, M), is very difficult. When P is a prime, not
all M,, = 2P — 1 are Mersenne primes, and it is not known whether there are infinitely many
Mersenne primes, Mp. The Great Internet Mersenne Prime Search (GIMPS) has discovered a new
Mersenne prime number, Mp = 282,589,933 - 1. The first few Mersenne primes are Mp €
3,7,31,127,8191,131071,524287,2147483647,... (Online Encyclopedia of Integer
Sequences, (OEIS) #A000668), corresponding to indices n € 2, 3, 5,7, 13, 17, 19, 31, 61, 89, 107, 127,
521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243,
110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917,
20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161... (OEIS
A000043).

It is conjectured that there exist an infinite number of Mersenne primes. In Wolfram, we find the
best fit line through the origin to the asymptotic number of Mersenne primes M,with p <Inx, for
the first 51 known Mersenne primes. The best-fit line gives C(x) = 2.51763 Inx . This fit is illustrated
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below in Figures 1 and 2. It has been conjectured without any particularly strong evidence, that the
constant is given by e?v2 = 2.518.,, where 1 is the Euler-Mascheroni constant.
In this paper, I will give strong relations for this constant.

The distribution of Mersenne primes.
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Literature on Mersenne primes is mainly dedicated to the search for new Mersenne primes, and
very few attempts have made progress on the actual theoretical work. In [8], Zhaodong Cai, Matthew
Faust, A.J. Hildebrand, Junxian Li, and Yuan Zhang studied theleading digits of the Mersenne
primes. They attempted to show that leading digits of Mersenne numbers behave in many respects
more regularly than some sequences of powers of logs of 2. Further information on Mersenne primes
can be found in [8-11]. In [12] ]. Aust yield bounds on the sums of exponents of Mersenne primes.

Most of this research is related to the present work only in an attempt to categorize properties
that Mersenne primes may have found to have, however, the present paper does not rely on any of
the current work known on Mersenne primes, but starts a new trend in expoloring the properties of
Mersenne primes. To begin, let us explore the concepts that lead to the final proof.
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3. The Invariance of the GAMMA Function to Substitution 6(m) —» a(m + j)

I first want to introduce the curious fact that any function with a relational product {n - ¥}, can
be represented by the Sums of Divisor function, o (m). Here is a simple example:

log(n-y) =logn+ logy, (6)
Then,ifn-y =m, wecanput n =o(m),y = %, and so,
log(m) =1 + log— (7)
og(m) =loga(m) ogm .
Then,ifn-y = N,, we can put n = J( Np), y = %, then, a Perfect number N,, has the
p
relation:
log( N,) = log (a( Np)) + log <L> (8)
0( Np)

log( N,) = log (o( Np)) + log G) (9.)

Here is another example:
Ifn-y=m, wecanput n=0(m),y = %, and so, applied to the formula [3], p.41:

sin(n - x) = nsin(x) cos(x) l_[ 1- Sl (]2
. = o (W) ,  [niseven]  (10.)
cos(n - x) = 1_[ 1= Sz;k(i)l)n
k=1 sin? (T)
. _ Z sin?(x)
sin(n-x) = nsm(x)l_[ I-——R
-1 in2 [ —
- k= o ( n ) , [nis odd] (11)
2 2
cos(n - x) = cos(x) 1_[ 1- Szrzlk(i)l)n
eer | sine (ST

Interestingly, (10) € even, and (11) € odd, differentiate between odd and even values of n.
Since primes have o(p) = p + 1, an even number, and p + 1 is always even except for the prime 2,
the relations (11) € odd anddoes not apply to primes! Since o(2) = 3. For example,

1 .o (2
2) = 2 1 o (g) 2) is odd 12
COS( )—COS(g)l_[ —m , [O'( )lSO ] ( )
k=1 s ————m
6
0.4161468365 ... = 0.7858872608 (1 0'3823812134"') = —0.4161468365 ... (13.)
' T h 0.2500000000 / '

By using the sum of divisor function, for Perfect numbers, N,, the even trigonometric relations
[(10),(11)] € even, apply, but the relations, [(12),(13)] € odd do not apply, so we can put,
cr( Np) = 2 N,. The fact that the sum of divisor function o(m), can be manipulated this way leads to
some interesting formulas that can produce significant and unexpected results.
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4. Application of the Trigonometric Function to Perfect Numbers

A Perfect Number N,, is defined as a number for which O'(Np) = 2N,. A list of some known

Perfect numbers is
N, € {6,28,496,8128, 33550336, 8589869056,137438691328, 2305843008139952128,2658455991569831744654692615953842176, ...}

Hence for, example, in (10), putting n = o(j), (n even), x = % then, we have

. U(jg_z sin® (1)
sin( “2) = oysin () oos(3) [ ] | 1-— s
= o (—) [6(j) iseven] (14.)

=1 sin? (M)

e in (1 '
()1

20(j)
a(j)-2 sin (l
0(])sm( )cos( )Hk1 1- 51n2<;)
tan (G(,j)> = ) [a(j) is even] (15.)
j o ()
e (e

LEMMA 1: The rational trigonometric functions sm( oy )),cos (Q) determine

Perfect Numbers.
Proof:

a() in2(1
tan (G(}))Hk 1( szs((zk(]()lgn)>
N 20(j
o) = @ swz(l) (16
S‘“(])COS( )Hk 1( Sin2((2k—1)n)>
20())

(22 0)>H"<” . sin? (7)
M=

1 1) 22 sin® (l)
oo (| -

a(j) = 2 (17.)

[ o) # sin? (l)
an ()| 1= Som i(11))n)

sin (2) HZU; 1-— —Sif;zk(]l-)l
sint (“3577)

o(j) =2 (18))

If j = N, is a Perfect number, then, the equality applies only when.
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2| —
tan J(Np) HU(Isz) (1_ st (Np) \l
Ny k=1 Rk —Dm
\ sin? < )/
20(N.
N, = o) (19.)
1
O'(Np) sin? .
sin (N ) 1,2 1- < p) )
2
(56
Taking the limits:
M( sin? \|
2 —
My |1 5 (2k— 1)7‘[
sin
\ 20( /
lim N, = lim | tan(2) [ ’ (20.)
v () n (57
a(N sSin“ | +—
. (2 FP-1 N,
sin (5~ I, 1-—FF—"
( p) = sin2< kn )
(Np)

Now, for large values of y, sin N l, and so we can approximate the product for large values
g y 5 y pp P g

of N, as follows:

Ny

tan(2
lim N, = lim %(1

p 2
N,y—co N,y—co .
p p SH1<——

| BRI

Np(o(Np) = 1)) )| 4] (1 - (%))

o) (| _ (_20(Ny) )
tan(2) | T N,(2k — Drn

lim N, = lim | N,—— . (22.)
s M (- ()
P
PtU(Np)—x—Z
Np
_t (2) °°( (2k4(x1))2 )
an H —1)* (23.)

L@

For the infinite product we have,

[oe]

0 _TT(- () s =] ] (1~ = tyms) (24)

k=1 k=0

(25.)

_tan(Z) 2 cos(2) _q
2 {sin(Z) }_
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o(Np)-2 _
an(P02) - o)) o ) ( (ﬁf,’l)>
o(Ny) 2( 1) (1) . |o(N,)iseven] (26.)

OS<GSQ?)) _ I_I 1__gn2((éi2?13">

It is clear that there if there exists a continued set of infinitely large Perfect Numbers then,

sin(2) — o(N,) sin (Nip) cos <Nip) [ (1 ;11((1&)))

)

cos(2) — 1_[ 1—-—
_ Qk-Drm
i k 51n2< 20( ) )) —0 [a(Np) is even],(l=) forn € N, 27
( \‘ o otherwise forn & N, (27)
a(Ny) sin?
Hk z 1- /

=1 Sln2<(2k-—1)n>
\ 20(

w2, )
)

J
Each of these three relations is only true when N, is a Perfect number.

N, — tan(2)

Figure 2 shows the correletion of the relation (27) with Perfect Numbers.
From symmetry, and considering the form for the divisor function:

.2(1)
N Sin N_
tan(Z) szl 1-— T—pl)ﬂ'
sin? (741\, )
4
N, = 1
sin? (—)
sin( 2 ) Npt _ %)

sin? (szn)
P

(28)

Since Np = (2P — 1)2P~1, where p is a prime, we can factor the perfect number N, as
follows:
N, = (2P - 1)2P~1 = (2P — 1)P, where P = 2P~ This factorization leads to the

following results:
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o) 1
tan (@) Hkil 1 San S<l(nzk(f)1)n-)
F(P) = P 2(1()’3 )
alP)_, sin? (5
sin(3)[ M2, 1- ﬁ
o(P) (29.)

1
o(zpP-1) sin? (55—
tan (G(ZP )) 1,2 1— (ZP = 1)

2P - ( Qk—1Dn )
G(P)=2P—1— za(zf D)
' ) o(2P-1) _, sin2 (F)
sin (z5=) | Meert’ L=k
s (a(ZP = 1))

It is clear that the there is a direct correspondence between the Perfect Number N,, and P. The
graphs of the two functions is shown in Figure 3.

. (a(P)>HZ“’1) s (p)

i (o)

F(P)=P— (30.)
@_1 sin? (%)
L4 | 1-—Fjas

sin (F) o ( % )

Graphs of the two functions, showing that the zeroes are strictly on the
correspondence Perfect Numbers .~ P.
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F(P) LY

rrrrrr
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300.0000000000 1
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100.0000000000
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—100.0000000000 -

e
S
£

P—>

—200.0000000000 - x

FIGURE 3

Figure 4 shows the correspondence F(P) — N,.
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Graphs of the two functions, showing that the zeroes of F(P) are strictly on

the correspondence Perfect Numbers .~ P.

F(P) ouf L7 dl—,I ‘FL_ "“'[ 7 J
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e,
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sin
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R
P=6

FIGURE 4

/Tv | Al

FIGURE 5 shows the symmetry of the odd and even product expressions.

alP)

o(pP)
20

FIGURE 5

The relations (19) hold for all Perfect Numbers. The right hand side of (19) does not depend on
implicit rational relationships between o(n,) and n,. Itis clear that the basic rational trigonometric
functions capture the properties of integers. We now explore the general forms of trinometric and
exponential forms that capture Perfect numbers, Abondant numbers and deficient numbers in one
relation.

5. The General Relation That Captures the Behavior of Abondant Numbers,
Perfect Numbers and Deficient Numbers

Definition 1: An Abundant number is a positive integer for which the sum of its proper divisors excluding
itself is greater than the number itself.

Definition 2: A Perfect number is a number for which the sums of all divisors is equal to twice the number.
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Definition 3: A Deficient number is a number for which the sums of all divisors is less than twice the number.

LEMMA: If n is a Perfect number, then,

=-1 (31)

Proof: for a Perfect number, o(n) = 2n. Hence,
cos(m) _

—=—1 (32)
sin (3)

The distribution of perfect numbers, abondant numbers and deficient numbers is captured by the

general relation:

2nm . [ nm
cos (a(n)) +sin (a(n)) =0 (33.)
a. For perfect numbers, % =1, and the relation (33) vanishes.
b. For abondant numbers, —— < 1, and the relation does not vanish but generates negetaive imaginary
o(n)

values for n € abondant numbers.
2n

c. For deficient numbers, < 1, and the relation does not vanish but generates positive imaginary

a(n)
values for n € deficient numbers.
To see this, put the relation (33) in the form:

2N1
cos(m) _ ) i
) 1 sin (ﬁ) £0, (34)

Obviously, the zeros of the function (34) occur at the Perfect numbers. However, for clarity we
convert this relation to the exponential form:

inm 2inm 3inm

F(n)=1—ie oW —¢ o) — jgo(m (35.)

Figure 6 shows the complex map of the function F(n), over the range n = 0..20,000.

The map of the first 20,000 integers showing the origin as the point for which n is a Perfect Number.
Using the function:
inmw 2inmw 3inmw
F(n)=1- ie on) — ¢ oln) — jeo(n)

HEE) ]

> e(F(n)

— 0.5

FIGURE 6
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The zeros of the function F(n), occur at the values 6, 28, 496, 8124....
NOTE*: The Mersenne primes and the perfect numbers can only exist on the upper right quadrant
corrsponding to deficient numbers. Perfect numbers are the zeros of the function F(n).

The general locations of primes and Mersenne primes are shown in Figure 7. As can be seen, the
oprimes do not generate negative imaginary values, and are located on the top-right quadrant of the
complex plane.

Integers that produce Mersenne primes and the Mersenne primes do
not generate negative values for either real or complex values of the
function: _inmw _2inm inm
F(n) =1—ie o — ¢ alm) — jgatn)

HEM)

T T T 1
oo 0 040 040 050 100

FIGURE 7 ° e(Fm)

Hence, o(n) > 2n. Itis clear that the sequence of abundant numbers,
[12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114,
120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210,
216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272, 276, 280, 282, 288, 294, 300, 304, 306,
308, 312, 318, 320, 324, 330, 336, 340, 342, 348, 350, 352, 354, 360, 364, 366, 368, 372, 378, 380, 384, 390,
392, 396, 400, 402, 408, 414, 416, 420, 426, 432, 438, 440, 444, 448, 450, 456, 460, 462, 464, 468, 474, 476,
480, 486, 490, 492, 498, 500],

produce values of F (n) in (35) that lie on the lower right quadrant of the complex plane. This
distinct observation for the first 500, abondant numbers provides a clue as to their distribution.
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The map of the first set of Abondant Numbers to the right lower quadrant of the function:

_inm _2inw 3inm
F(n) =1—je o) —pg on) —jes(n)

HE(N)) = e(F(n))

e, 020 11 040 050 0.0 07

-010 4
~020 4
—030 o
~040 4

—0.50

FIGURE 8

It is clear the first numbers between 0 and 500 that generate a sequence of deficient numbers:
[2,3,4,5,7,8,9,10,11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43,
44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81,
82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109, 110, 111, 113, 115, 116, 117,
118, 119, 121, 122, 123, 124, 125, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145,
146, 147, 148, 149, 151, 152, 153, 154, 155, 157, 158, 159, 161, 163, 164, 165, 166, 167, 169, 170, 171, 172,
173,175, 177,178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 193, 194, 195, 197, 199, 201, 202,
203, 205, 206, 207, 209, 211, 212, 213, 214, 215, 217, 218, 219, 221, 223, 225, 226, 227, 229, 230, 231, 232,
233, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 247, 248, 249, 250, 251, 253, 254, 255, 256, 257, 259,
261, 262, 263, 265, 266, 267, 268, 269, 271, 273, 274, 275, 277, 278, 279, 281, 283, 284, 285, 286, 287, 289,
290, 291, 292, 293, 295, 296, 297, 298, 299, 301, 302, 303, 305, 307, 309, 310, 311, 313, 314, 315, 316, 317,
319, 321, 322, 323, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 337, 338, 339, 341, 343, 344, 345, 346,
347, 349, 351, 353, 355, 356, 357, 358, 359, 361, 362, 363, 365, 367, 369, 370, 371, 373, 374, 375, 376, 377,
379, 381, 382, 383, 385, 386, 387, 388, 389, 391, 393, 394, 395, 397, 398, 399, 401, 403, 404, 405, 406, 407,
409, 410, 411, 412, 413, 415, 417, 418, 419, 421, 422, 423, 424, 425, 427, 428, 429, 430, 431, 433, 434, 435,
436, 437, 439, 441, 442, 443, 445, 446, 447, 449, 451, 452, 453, 454, 455, 457, 458, 459, 461, 463, 465, 466,
467, 469, 470, 471, 472, 473, 475, 477, 478, 479, 481, 482, 483, 484, 485, 487, 488, 489, 491, 493, 494, 495,
497,499 ],

produce values of F(n) that lie on the upper right quadrant of the complex plane. This distinct
observation for the first 500, defficient numbers and abondant numbers provides a clue as to their
distributions.
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The map of the first set of Dificient Numbers , from 0-500, to the right upper quadrant of the
function:
inm _zmrr Jinm
F(n) =1 —je on) —pg o) — jealn)
#F(n)) 2=
\"«-
\2
1.5 :
].' F
J(/
0.5 ’
-
- /
U -"-- : i T T b T ¥ T v T
0 0.2 0.4 06 0.8 1 (F(n))

Between the abondant numbers and the deficient numbers, are the Perfect Numbers, [6, 7, 28,
496, 8128, 33550336, ....], that generate the zeros of the function:

inm 2inm 3inm

F(n)=1—ie o —e (W) — jec) =0, (36.)

Hence, the imaginary part of the function F(n) determines if a number is an abondant number,
a perfect number or a deficient number.

i 2inm 3inm <0, n € abondant numbers
R (1 —je o) — g o) — iea(n)> =0, n € perfect numbers (37.)
>0, n € deficient numbers

The first set of even numbers from 0..500 that lie on the defient number curve but are not
abondant numbers are:
[2,4,6,8,10, 14, 16, 22, 26, 28, 32, 34, 38, 44, 46, 50, 52, 58, 62, 64, 68, 72, 74, 76, 82, 86, 92, 94, 98, 106,
110, 116, 118, 122, 124, 128, 130, 134, 136, 142, 146, 148, 152, 154, 158, 164, 166, 170, 172, 178, 182, 184,
188, 190, 194, 202, 206, 212, 214, 218, 226, 230, 232, 236, 238, 242, 244, 248, 250, 254, 256, 262, 266, 268,
274,278, 284, 286, 290, 292, 296, 298, 302, 304, 310, 314, 316, 322, 326, 328, 332, 334, 338, 344, 346, 356,
358, 362, 370, 374, 376, 382, 386, 388, 394, 398, 404, 406, 410, 412, 418, 422, 424, 428, 430, 434, 436, 442,
446, 452, 454, 458, 466, 470, 472, 478, 482, 484, 488, 494, 496].
These numbers are clearly defined by (37).

Figure 10 shows the 2D plot of the function covering both odd and even numbers in the range
n = 0..500.
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The map of the first set of odd numbers (blue) and even numbers (red) . The even numbers that generate points
that fall on both the deficient numbers and the abondant numbers. Hence the graphs are dense with no gaps.

_inm _2inm 3inmw
F(‘.’l) =1—ie o) —g on) — jecln)
o oooo © o ooe
;%(F(neven"ﬂdd) -’,,.ao&-:: oo = o S
24 o
] Q\%

&
1 /
%
0.5 - ° o®

] E
: mﬁ@’*’&’

0 ‘Mo¢ o e(F(neven+odd)
] 'M% 06 " 08 ) 1
] e C oo

— 0.5+ e -
FIGURE 10

It is clear that the even numbers (red points) can fall on both the deficient number curve and the
abondant number curve. The deficient numbers seem to be bounded by the line

1.05629905839783049963 + 1.37659573355141432857i and a maximum imaginary
value of 0.43293432010231995809 + 2.19494797760015472936i.

Definition 4: An Deficient disturbing number , (DDN), is a deficient number which:

_inm _2inm 3inm
3 (1 —ie oM —¢ o) — ierf(ﬂ)) >0 €DDN (38))

These are the red points on Figure 10 that intermingle with the blue odd number points.
DDN €
[2,4,8,10,14,16,22,26,32,34,38,44,46,50,52,58,62,64,68,74,76,82,86,92,94,98,106,110,116,118,122,124,128,130,134,136,142,146,148,15
2,154,158,164,166,170,172,178,182,184,188,190,194,202,206,212,214,218,226,230,232,236,238,242,244,248,250,254,256,262,266,268,
274,278,284,286,290,292,296,298,302,310,314,316,322,326,328,332,334,338,344,346,356,358,362,370,374,376,382,386,388,394,398,40
4,406,410,412,418,422,424,428,430,434,436,442,446,452,454,458,466,470,472,478,482,484,488,494.....].
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The map of the first set of even numbers (red) . The even numbers generate points that fall on both the deficient
numbers and the abondant numbers.

_inm _2Zinm 3inmw
F(‘.’l) =1—ie on) — g oln) — jecln)

;S’:{F(neven)u'3 _ &DM

0.2 <

0.1 <

@ © 0® = e(F(neven+odd)

0 W v T T T T T T T v T T
® 5 2 03 04 0.5 0.6 0.7

—0.3 1

—04 @

—0.5 <

FIGURE 11

The extent to which the even numbers infiltrate the deficient number space for up to n =
150000 seems to be confined to the approximate range,

inm 2inm 3inm
0 < <1 —je oM — ¢ oW — ie“(")> < 0.98575151303581662431 + 0.36599952081502975396i ,DDN < 150000 (39.)

The extent to which the even numbers penetrate the abondant number space is unknown.
However it is known that there exists in infinite number of abundant numbers. It has been shown
that every multiple 6(n = 6) is either an abondant number, or taking more multiples of 6 of such
numbers leads to an bondant number. Since there is an infinite number of multiples of 6, then there
are an infinite number of abondant numbers. Erdos &Graham, 1980, [], showed that even numbers
greater than 46 are either abundant numbers or the sum of two abondant numbers.
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The map of the first 8000 odd numbers (blue) and the first 8000 odd numbers. The prime density for F(n) increases
as F(n) approaches 0+2i. The primes also seem to follow the curve in order.
_ inm _2inm 3inm
F(n) =1—je an) — g on) — jes(n)
Prime, 7
sk e e s e
%(F(nprimeww*— W T Prime, 5
1 NTJQ*"\-.
154
Prime, 3
-
t”‘
,/
Prime, 2 -
..—//
15 ’/
0 = ‘I“—-. T T T T T T T T
0 02 ! [} [ 1
8 e(F(nprimes)
Figure 13 shows the distribution of the Mersenne primes with the regular primes.
The map of the first 8 Mersenne primes (diamonds) and the fregular primes (dots) .Mersenne primes higher than
127 are concentrated close to 0+2i.
inm 2inmw 3inm
F(T.l) =1—je o(n) —e aln) — jpa(n)
. Mersenne Prime, 31
™ T
TR CL emmET T e L,
2o gz e,
%F(nprimes) \ t. .
Mersenne Prime, 127 .
150 = o‘
Mersenne Prime, 3
100+ ﬁ\
- ’.
05 . JSL
oo U‘.‘LI JLD UItJ D‘EII ]‘JU
e e(F(nprimes)
6. The Extension of TH Function F(n) to A General Series Form
The function
_inm _2inm 3inm
F(n)=1—ie o0 —¢ () — jgo®) (40.)

behaves like a CyclotomicPolynomial. CyclotomicPolynomialare the minimal polynomials of
primitive roots of unity with rational coefficients. The first few CyclotomicPolynomial are shown
below:
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) (x)=x-1 (5)
® (0)=x+1 (6)
Oy ()=x* +x+1 (7)
Dy (JC):Xz +1 (8}
Os () =x"+x +F +x+1 (9)
B () =x" —x+1 (10)
O )=x°+xr +x '+ + P +x+1 (11)
By () =x" +1 (12)
Dy () =x"+x° +1 (13)
Q) =x* -+ -x+1. (14)
An example of a Cyclotomic polynomials are the
distribution of the roots of unity on the circle, for x=50
D(x)
o o
. 0.5

®

’ o

-& -0.5 0.5 ‘

e s 9 "
€
.\___4_‘_._.
FIGURE 14
A cyclotomic polynomial is of the product form:
() = | JOr= (41)
k=1

where, {,,, are the roots of unity in the complex plane, C . In general, the circle, {, =
i k
e™(©®) ywhere w(x) = v and k is taken over integers relative prime to m. It is clear that the

function

inm 2inm 3inm

Fn)=1—ie @ —¢ 0@ — jec® (42.)

is composed of functions of cyclotomic polynomials for the the special case of an expansion of some

n
function over the function —.
o(n)

Looking at exponential terms with the sequence, 0, —i, 2i, 3i, we determine the first difference
in the powers to be
8 - —i,3i,0, (43.)
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The second difference gives,
8, - 4i,-2i, (44.)

The second difference points to the function F(n), following a sequence of powers that is
purely linear, but quadratic or alternating in some manner. We assume a quadratic relation, of the
form, Ak? + Bk + C. However, the second differences are not the same constants, and so a
recurrence relation of the form, by = f(byg_1, by, ) must be used to expand F(n,m) as a series
of higher powers for m recurrenses. The sequence of powers in F (1, m), follows the recurrence,
with initial conditions,

by = —bx_y — 7by_y, by = 0,b, = —i (45.)

The characteristic equation for the recurrence then yeilds,
r2+2r+7=0 (46.)

This yields, the two solutions,
= -1- l\/g (47 )
rz = _1 + i\/g .

Since the recurrence (46) follows a second order linear form, the general solution of the
recurrence is

by = Ciry* + Gk, C,, C, are constants. (48.)

Solcing for C;, and C,, we get:

V6 i V6 i
Cl=—h—, C=—t— (49.)
84 14 84 14
Hence we get
V6 i k V6 i k
bk=<—8—4+ﬁ>(—1—\/5) +<8—4+ﬁ)(—1+@) (50)
Hence we have the general form for m terms:
F(n,m)
k-1
V6 i k (V6 i k
- Z k—1 e (51.)
k=1
This sum produces the first four terms giving the same function:
_fnm - _2inmw 3inm
F(n,4) =1—ie o) —eg o) —jeo(n) (52.)
The function,
m
b k=1 minb;
F(n,m) =Z(k—kl> e(ﬂ(n)) (53.)
k=1

will only have coefficients that are +1, or —i, for the first 4 terms, m = 4. The remaining terms m >
4 have large coefficients that blow up quickly. For example for m=7,

_inm _2inm 3inm _20inm 2476099 19inm
F(n,7)=1—ie oM —¢ o) —jec(m) 4 625¢ o) + —3125 ¢ o(n)
102inm
—24137569¢ (W (54.)
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In general, for Perfect numbers,
_inm _2inm 3inm
F(n,4) =1—ie o) —¢g o) —jec(n) =,
_20inm 2476099 19inm 102inm
F(n=5..0) = 625e W) +———¢ 0 —24137569¢ ()
3125
b k=1 rminby
4o (k k 1) Lot (55.)

In general, we have:

[oe]

Fro) = ) e, (56.)

k=1
k B
1 0
) 1 n
2 o)
3 1+ 2n
o(n)
4 1 4 3n
2 o)
. 20n  ilog5®
o(n) s
1 19n  [log19®° +log5°
6 =+ —i
2 o) T
102n log17°
7 —1
o(n) T
1 337n i 337y
8 2 )
2 on) =w 7
9 40n i log(5®)
o) m ®
0 [, 24390 1 271y
2 on =m 8

A 3-d plot of the function, shows that the function F(n,4) = 0, is the axis of an infinite cylinder
,where the rest of the terms m > 4 lie.

Figure 15 shows the cylinderical form with the axis approaching a line when the cylinder radius
approaches infinity. The axis of the cylinder becomes the solutions for Perfect numbers,

inm 2inm 3inm

1—ie oM —¢ o — jeo® =, (57.)

Now, from (18), for some integer N,
Hence for a Perfect number N, (57) gives:

sin? <Nip>
- ((2k4& 1)1‘[)
N, = — (pi) (58.)
sin <i) Npt _ M%)

1-
N, k=1 km
p in2 (=2
sin (ZNp)

Theorem 1: There are an infinite number of Mersenne Primes.

tan(2) 1,7, [ 1 -
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Distribution of F(n) showing distinct regions for the first 4 terms, (red axis), and the
cylindral orbit of the remaining terms on the cylinder (blue). Perfect numbers occur when
F(n,4)=0 at the exact axial symmetry of remaining terms higher than the fourth term.

—200 \

4007 F(n,m>5)

— 600 n

o 0w~
Re(P(n) 2 40 S5m0
FIGURE 15
Analytic Mersenne Density and Infinitude.
Setup:
Let
o 2%%|B
Boil 21 [22 < %] (59.)

cot(x) = 5~ Wx )

Fix xy € (0,7) with cot(x,) € R\{0}.
Partition N, into disjoint classes %, and X = N\, where % is the set of Mersenne exponents

p, with (227 — 1) a prime.
Define

227, | o 22P|By, |
2nl _onq 2vl 2p-1

Saun) = Wx , Sme) = Zp)!

nx1 PEP

, SN(x) = Sall(x) - SM(x) (60')

Note Sall(x) = % — cot(x) and SN(x):SM(x) > 0 for x € (0, ).
Definition (analytic Mersenne density).
2p
S e $20) (5
= SM(X) - D (’;)Zn [0 < pu <1] (61.)
W St (7)

With the set up above, at a fixed Xy € (0, ), supposew the following holds true:

(H1) (Regularity/positivity of coefficients).
Each summand is positive and satisfies the classical Bernoulli-Zeta representation:
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2(2n)!

|Ban| = W((znl (62.)

Hence, Sgy1(x) € (0, ).
(H2): (Analytic density at X(). The decomposition of cot(x,) through Sy(y), Su(x) Vields a
normalized quadratic identity in the tan(x,) as shown in LEMMA 2, only if LEMMA1 holds.
(H2): (Single valuedness/discriminat collapse). Since tan(x,) is single valued, the discriminat of
the quadratic in LEMMA 2 vanishes.
Proof Sketch:
Absolute positivity and conditional subtraction.

By (H1), Sauw) = Zf{;lmxzn_l, and Sy(x) = L %xzz’_l. The analytic

217 o) PER  (2p)!

value cot(x,) may be negative (e.g. cot(xy, = 2) < 0), which arises from subtracting the strictly
positive Sgyi(x) from 1/xq .
Quadratic normalization.

(H2) encodes the partition into a quadratic in X = tan(x,):

X_—BiVBZ—4A

AX?*+BX+1=0,
24

Since cot(xy) # 0 and Sy(y) > 0, we have A and B finite and nonzero.
Discriminant collapse and consistency.

By (H3), B> — 44 = 0. Solve for X: the two roots coincide, so the quadratic exactly reproduces
X = tan(x,).

Contradiction from finiteness.

Assume §, is finite. Then Sy, > 0 is a fixed positive constant, hence A is fixed. Meanwhile
SN = Sauix) — Smx > 0 is also fixed. The identity B* = 44 becomes a rational equality among
strictly positive finite constants. But this equality must be compatible with the sign of cot(x,) (e.g.
negative at X = 2); when the decomposition is realized by finite sets, the resulting rational
combination cannot produce the required analytic sign/phase (it stays on the “algebraic” positive
side). This contradicts the actual value of cot(x,).

A symmetric argument applies if X, is finite: then Sy is fixed and Sy () = Saux) — Swx) must
bear the entire analytic burden; again the finite rational identity cannot reproduce the analytic sign
at xy. Therefore, both classes must be infinite.

Interpretation via classical pillars.

Pringsheim (nonnegative coefficients = real singular control): Positivity of coefficients yields
rigid real-axis behavior of generating series; finite truncations cannot emulate the required analytic
sign at x,.

Gap/lacunary theorems (Fabry/Hadamard): Attempting to realize the analytic function from a
set with “large gaps” (finite or too-sparse) obstructs continuation/phase needed at x,; an infinite
contribution from both parts is necessary.

Tauberian philosophy (Wiener-lkehara): Analytic constraints (here, the discriminant identity at
a real point) force “density/infinity-type” conclusions for the underlying index sets. Thus both
N,and  must be infinite.

Corollary A (Intrinsic analytic density)
Under the hypotheses of Theorem A, the intrinsic analytic Mersenne density

S Zieel0 (2)”

SanGo Ypep¢(2n) (%)zn

[0 <py <1]

is well-defined with 0 < py, < 1. In particular, py(x,)cannot be realized by a finite index set on
either side.
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THEOREM: There exists an infinite number of Mersenne Primes.

Proof:
I start with the relationship between Perfect numbers and their sums of divisors. Let p be a
prime number such that B, = (27 — 1)2P~' is a perfect number Npep,- Then the following applies.

Lemma 1: IprEPp is a Perfect number, then,

1
sin? <—)
N,

iz ((Zkz& l)n)

p

tan(2) [T,7, | 1 -

Nyer, = —
sin( 2 ) M T —Sm <N_p)
k=1 L (km
2 —=—
sin <2Np)

Proof of LEMMA 1: See equation (19) for Perfect numbers.

(63.)

Ny

Lemma 2: Let p be a prime that generates a Mersenne prime and a Perfect Number N, then, there exits a unique
decomposition of cot(xy) into a quadratic identity

A(x,) tan?(xg) + B(xp) tan(xy) +1 =10 (64.)
Proof (LEMMA 1):

Now, from [4], p.42, 1.411 (7) we find an expressions for cot(x):
cot(x) = 2 — x| [x? < m?] (65.)
- !

Factoring this form into

« )_1 ixk—l(zk—1)22k|32k| .
" @ -DehT

[x? < m?] (66.)
k=1
We find that by chosing Xy = 2, since (66) holds for {22 < ?}, the expression can be
modifed and separated into two class , one over the sum over Mersenne primes to include Perfect
numbers, N, = 2P71(2P — 1), when p €EP,, a prime for which P, = 2P — 1 is a Mersenne
prime, and the class of non-Mersenne primes, for k & P,

1 2P-1(2P — 1)22P|B 241
cot(2) =5 - Z ( )27 |Byy| 2P — Z 2 1Bl [22 < 72 (67.)
p

(27 - 1D(2p)! @t

PEPy k&P,
Put N, = 2P71(2P — 1),p € P, in (67), then,

1 2%?P|B,, | 241 1B, |

cot(2) == — E N, Pl _ E , 22 < 12 68.

@ 2 4 P (2P — 1)(2p)! P (2k)! [ ] (68)
14

€Pp

From (19), LEMMA 1,
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sin? <Nl)
tan(2) [] 1-— Tk —pl)n
s (3, )
Npep, = — (69.)
2 Np—1 sin <_)
— P . \vp/
-
2N,
P
I 1
sin® (—)
Np 1— Np
k=1 — ((Zk - 1)n)
(@) =5~ tan(@) Y. ( 2| By, | ) T,
co =_——tan
2 (27 — 1) (2p)! sin2 1
PEPp .2 Np-1 N,
sin (w—) k=1 (177 km
p sin? (—)
2N,

24k—1|B |
B Z (2k)!2k (70)

k@Py

Divide by cot(2).

|[ w () sin? (N_,,) ]|
[ 3p = sin? (7(21( — 1)7t) l Q4k—1
( 2% |Byy | ) 4N _ tan(2) Z | Byl ( )

1 2
1= Etan(Z) — tan®(2) Z 7 - 1D (2p) 2k)!

i i | sin 2 Mt g - i’ <Np) >>
| @)= -2) |

k ) M <1 4(&9
4k-1 2%7|B, 4N,
1= <%— Z %}liﬂ) tan(2) — tan?(2) Z <(2p — |1)(p2|p)!> : :(i) (72)
pePp sin (i) e sin N,
Ny = sin? (k_n)

. sin? (N_) )
I 21 1——— P’
(2 Z ( 27|, | ) k < sin? ((2k4—N—1)”-) + Z 24611, | 1 tan(2) + 1= 0 (73 )
5 [\@ - DCp)! ( ( sin? ( 1 ) )) 5 @k 2 :
pelp (2 11— N, kelp

kePp

kePp

sin (= i
Ny = sin? (szn)
14
Now, we reduce (73) further with the following identities [[4],page 41]:
n
B 2 . sin?(x) ]
cos(nx) = 1_[ - ((Zk — 1)7[) nis even
k=1 sin
n—2 1 (74.)
2 sin? (N_)
sin(nx) = n sin(x) cos(x) 1_[ 1- k; nis even
k=1 sin? (2—)
P
1
Putting n = 2N, x = ~PE P,
p
() ()
. 1—p[ . sin (N,, sin2) (1 1 1"—[ . sin® (w7, s
cos(2) = » @k—Dm | 2N, sin N cos N - (k_T[) (75.)
k=1 sin 4Np k=1 ZNp

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0673.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2025

d0i:10.20944/preprints202510.0673.v1

Substitute expressions (74) into (73):
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2°7|Byy |
((2” -1 (210)!)

sin <£) cos <£)
Ny Ny

tan?(2) z

PEPp

2*%=11B,, |

a0 2 tan(2)+1=0 (76.)

|2,
K&P,

p

[ 2%7|B,, | cos(Z)] 2%1|B,, |
2 P
e 2 !((2v—1)(2p)'> sm(2)| Z @0
€Cp
297|B,,| 21, |
fan?(2) Z K(Z" o2 p>cot(2)]+<zp o
k¢ p

Byl

23 |B2 | ~ 24k
tan®(2) Z [((2” D 2 2’ 1> cot(Z)] +<;

(2k)!

2% By, |
2!

{p;p [(24:2 If)z!p|> COt(Z)]}tanz(Z) + {k;p

1
—E}tan(Z) +1=0

- %) tan(2)+1=0 (77.)

- %) tan(2)+1=0 (78)

—%) tan(2)+1=0 (79)

(80.)

Note that the sum for the Perfect Numbers expressed in Mersernne Primes require a
modification with a factor 2 - 2*P~1 that is lost in (80) for the original sum defoinition for p € Py.

This is where the result of & (Npe pp) = 2Ny¢ p,in (19) comes into play.
Put

X =tan2

AT (oo}
rePp P
2% Byl 1
B ={Z 20! _E}

kePp
AX?+BX+1=0

~B+VBZ - 44

X =
24

However, by (H3),
B? =44

Then,

tan(2) can only have one value, hence, we get:

(81)

(82.)

(83.)

(84.)
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2
2By | 1 _ 2'%|Byy|
z i 4; K o )cot(Z)] (85.)

k&P

Inserting the factor of 2 for the Mersenne primes again to make the sums as per the original
cot(x = 2) formula,

2

Z 24k_1|BZk| _ 1
ke T (2k)1 2

t(2) = 86.
oy == (2 ) (¢)
PETp (2p)!
(ZkEP 24k_llBIZkl _1)2
P_@R 2 36612604350 (87
24771 Byy |
Zoer, |\ " py

This is not possible since the sums are all positive quantities. It is clear that the contradiction
results in negative sum of the Mersenne primes p € F,. The reasons are given below.
a) Discriminant condition.

For a single-valued analytic function tan(2), both roots of (83) must coincide, giving the
constraint (84), i.e. B% = 4A.
b) Finite-set contradiction.

2
Suppose either % or R is finite. If  is finite, then A is bounded and f—A is strictly positive;

hence cot(2) > 0, contradicting the analytic value cot(2) =~ —0.4576... .

If X is finite is finite, A diverges, destroying convergence and violating the finite analytic value of
cot(2).

Therefore, both subsets must extend infinitely.

c) Analytic necessity.

The negative finite value of cot(2) arises from the conditional convergence of the full series. Only
infinite, interleaved contributions from both classes can reproduce the correct analytic continuation
through the real axis.

Finite truncations cannot yield the required sign reversal because all partial sums are positive.
d) Conclusion.

e) Hence, the equality (84) can hold with finite cot(2) only if [@]| = [R]| = oco.
Therefore, both the Mersenne-prime and non-Mersenne classes are infinite classes.

Now an estimate of the Mersenne prime sum can be obtained if we consider:

(Z 2Y By | 1)
keP, 2
X=tan2=— acl)) = —2.185039863 ... (88.)

25 per, [(2("2|—f),”|) cor)|

Now, 2 cot(2)tan 2 = 2, hence,

Z 24k_1|82k| _ 1
kePp — (2k)! 2

[(247|B,
e )

24—p—1|sz| 1 24—k—1|BZk| B 1
( @p)! ) 3 @2 (%0)

PEPp - kSEPp

2=-—

(89.)
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2771 By, | 24771 By, | 2% Byl 1\
3 Z [( 2p)! )] Z K 2p)! )] Z e z) 70 (91)

4p—-1
3 Z [(2(2—11;3'2}”)] —cot(2) =0 (92.)

pEPp

27 By [\] _
Z [(T)'p)] — —0.1525525181 ... (93)

PEPy

Again a contradiction.

7. Interpretative Remark

Suppose Equation (87) represents an analytic equilibrium between a sparse harmonic lattice (the
Mersenne indices) and the complementary dense continuum (non-Mersenne integers). The finiteness
of either subset would destroy the analytic balance and invert the sign of cot(2). Thus, the very
existence of a finite negative cotangent value enforces the infinitude of both classes -a remarkable
intersection of trigonometric analysis and arithmetic structure.

Remarks and positioning
a) Novelty.

Theorem 1 is not a re-statement of any single classical result; it’s a fusion: positivity + analytic
identity + discriminant collapse = infinitude of each class. The closest analogues are Pringsheim
(positivity constraints), Fabry/Hadamard (sparsity <> analytic behavior), and Tauberian methods
(analytic facts = density/infinitude).

b. The normalization that produces a quadratic in tan(x,) encapsulates the single-valuedness
of the trigonometric function at x,; the vanishing discriminant is precisely the statement that the two
algebraic branches coincide with the analytic branch. For finite partitions, that coincidence cannot
match the true sign/phase unless both classes are infinite.

Robustness. The argument isn’t tied to x, = 2; any x, € (0,m) with cot(x,) # 0, yields the same
conclusion under (H1), (H2) and (H3).
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