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Article 

There Are Infinitely Many Mersenne Primes 

Michael Mark Anthony 

Independent Researcher, USA; uinvent@aol.com 

Abstract 

This paper explores Mersenne primes of the form  2𝑝 − 1 where, 𝑝 is a prime. By extension, the 

paper also explores Perfect numbers. An insight into these numbers is explored using novel methods 

that involve the trigonometric functions with integer factorable arguments. Rational functions play a 

part in the behavior of many functions including regular primes, Mersenne Primes, and Perfect 

numbers. The paper first determines relationships for primes, and then procedes to show how Perfect 

number relations can be derived from trigonometric relations. The relationships of trigomentric 

functions involving the sum of divisors, provide a novel approach to prove that that the analytic 

structure of cot(x), when split into Mersenne and non-Mersenne classes through the Bernoulli 

framework, forces a coupling between the two infinite subsets of integers and the contradiction 

(negative ratio despite all positive terms) is a proof of necessity for infinite balance between both 

classes. 

Keywords: Mersenne primes; perfect numbers; abondant numbers; deficient numbers; trigonometric 

functions; primes; cot; trigonometry; sums of divisors; invariance 

 

1. Introduction 

The search for a general formula to determine the 𝑛𝑡ℎ Mersenne prime is an ongoing challenge 

in mathematics. Mersenne primes are of the form 𝑀𝑝 = 2𝑝 − 1 , where  𝑝 is a prime number, and 

𝑀𝑝 is also a prime number. Not all primes 𝑝, can generate a Mersenne prime 𝑀𝑝. For example, the 

primes, 11, 23, 29, are examples that do not generate Mersenne Primes, 𝑀𝑝, they generate what I refer 

to as Mersenne Numbers 𝑀𝑛 ,  that have the Mersenne form 𝑀𝑛 = 2
𝑝 − 1,  where 𝑝  is a non-

generating prime, and 𝑀𝑛 is not.  It is extremely difficult to find the Mersenne primes, 𝑀𝑝, without 

tedious factorization, since the known set of Mersenne primes 𝑀𝑝 are separated by long distances of 

non-primes,  𝑀𝑛 .  

Perfect numbers, 𝑁𝑝,  are numbers defined by the product  𝑁𝑝 = (2
𝑝 − 1)2𝑝−1 , where, 𝑝  is a 

prime that generates a Mersenne prime, . They have the Sum of Divisors relation, 𝜎(𝑁𝑝) = 2𝑁𝑝. 

These numbers are related to Mersenne primes , 𝑀𝑝 = 2𝑝 − 1,  by the relation, 𝑁𝑝 = (2𝑝−1 − 1)𝑀𝑝. 

Hence the search for Mersenne primes, 𝑀𝑝,  is also the search for  Perfect numbers, 𝑁𝑝 . It is not 

known in current art if there are infinitely many Perfect Numbers, 𝑁𝑝 and also if there is infinitely 

many Mersenne primes, 𝑀𝑝. So far, all 𝑁𝑝 are even numbers, and it is still not yet determined if there 

are any odd 𝑁𝑝.The approach used in this paper on Mersenne Primes, 𝑀𝑝 and Perfect numbers, 𝑁𝑝 

is so far as I know, has not yet been used by researchers.  

The Gamma-function, denoted as Γ(𝑠), was first introduced by Swiss mathematician Leonhard 

Euler [1] 1729. Euler’s deep insights into Γ-function led to numerous results that provide key insights 

into many fields of mathematics including Probability theory and Statistics. Other major 

contributions to the development of the Γ -function used in this paper were developed by Carl 

Freidman Gauss [2]. Gauss’s work led to the famous reflection formula of the 𝜁 -function. A key 

insight into the Γ-function is its multiplicative nature. New results will be presented in this paper 

resulting from the properties of the Γ -function . So far, there has been little development in the 

additive representation of the Γ-function as a series of simple terms. The form of the Γ-function [3], 

p.895: 
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Γ(𝑠)~𝑧𝑠−
1
2𝑒−𝑠√2𝜋 {1 +

1

12𝑧
+

1

288𝑠2
−

139

51840𝑠3
−

571

2488320𝑠4
+ 𝑂(𝑠−5)} , [|arg 𝑠| < 𝜋]               (1.) 

for 𝑠 real and positive is well known. Here, the remainder of the series (1) is less than the last term 

that is retained.  

Similar series exists for ln Γ(𝑠). It will be significant if other forms of these series can be found.  

The product-form of the Γ-function due to Gauss, provides further insights into many relations 

that will be developed in this paper. The product form is given by, [4], p. 896: 

 Γ(𝑦 ∙ 𝑛) = (2𝜋)
1−𝑦
2 𝑦

(𝑛∙𝑦)−
1
2∏Γ(𝑛 +

𝑘

𝑦
)

𝑦−1

𝑘=0

                                       (2.) 

Certain invariant relations of the product Γ-function will be developed in this paper to show the 

connections of the Γ-function to other functions, particularly the Riemann-Zeta function, denoted by 

𝜁(𝑠). The 𝜁-function, is defined by the additive series: 

𝜁(𝑠) =
1

1𝑠
+
1

2𝑠
+
1

3𝑠
 + ⋯ =∑𝑛−𝑠

∞

𝑛=1

, ℝ(𝑠) > 1                                                    (3.) 

The importance of the 𝜁-function is its relation to the distribution of primes and the Riemann 

hypothesis. There is a one-on-one correspondence between the non-trivial roots of the function and 

the primes. The 𝜁-function also has a product relation for primes 𝑝, given by [4], p. 1037; 

𝜁(𝑠) =∏(
1

1 − 𝑝−𝑠
)

𝑝

,      ℝ(𝑠) > 1                                                                          (4.) 

Both the 𝜁-function, and the Γ-function are factorable. These two functions are related by the 𝜁-

function reflection formula developed by Gauss given by [4], p.1038: 

Γ (
𝑠

2
)𝜋−

𝑠
2𝜁(𝑠) = Γ (

1 − 𝑠

2
)𝜋

𝑠−1
2 𝜁(1 − 𝑠)                                                   (5.) 

These relations are well studied, and they provide a wealth of information in Number theory 

and many disciplines in Mathematics. In this article, I show new relations that govern Mersenne 

primes and twin primes. All these special integer relations are connected in precious way by powers 

of 2𝜋.  

2. Mersenne Numbers 

Mersenne primes were named after the French philosopher and number theorist, Marin 

Mersenne (1588-1648). Marin Mersenne was also a monk and a theologian, and he had an important 

influence on many academics such as Fermat, Pascal, Huygens, Descartes and Galileo. He also 

inspired the invention of the pendulum clock. 

Only a few Mersenne primes, 𝑀𝑝 are known to exists. It is an ardous task to determine whether 

a Mersenne number,  𝑀𝑛 is either a Mersenne prime,  𝑀𝑝 prime or a Mersenne number  𝑀𝑛, since 

the computation of factors of large Mersenne numbers,  𝑀𝑛 is very difficult. When 𝑝 is a prime, not 

all 𝑀𝑛 = 2
𝑝 − 1  are Mersenne primes, and it is not known whether there are infinitely many 

Mersenne primes, 𝑀𝑝. The Great Internet Mersenne Prime Search (GIMPS) has discovered a new 

Mersenne prime number, 𝑀𝑝   282,589,933 - 1. The first few Mersenne primes are 𝑀𝑝 ∈

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, . ..  (Online Encyclopedia of Integer 

Sequences, (OEIS) #A000668), corresponding to indices 𝑛 ∈ 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 

521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 

110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 

20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161…  (OEIS 

A000043). 

It is conjectured that there exist an infinite number of Mersenne primes. In Wolfram, we find the 

best fit line through the origin to the asymptotic number of Mersenne primes 𝑀𝑝with 𝑝 ≤ ln 𝑥,   for 

the first 51 known Mersenne primes. The best-fit line gives 𝐶(𝑥) = 2.51763 ln 𝑥 . This fit is illustrated 
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below in Figures 1 and 2. It has been conjectured without any particularly strong evidence, that the 

constant is given by 𝑒𝜆√2 = 2.518.., where 𝜆 is the Euler-Mascheroni constant.  

In this paper, I will give strong relations for this constant. 

The distribution of Mersenne primes.

C(x) C(x)

log(x)
x

FIGURE 1

 

0, 6

0, 28

FIGURE 2  

Literature on Mersenne primes is mainly dedicated to the search for new Mersenne primes, and 

very few attempts have made progress on the actual theoretical work. In [8], Zhaodong Cai, Matthew 

Faust, A.J. Hildebrand, Junxian Li, and Yuan Zhang studied theleading digits of the Mersenne 

primes. They attempted to show that leading digits of Mersenne numbers behave in many respects 

more regularly than some sequences of powers of logs of 2. Further information on Mersenne primes 

can be found in [8–11]. In [12] J. Aust yield bounds on the sums of exponents of Mersenne primes.    

Most of this research is related to the present work only in an attempt to categorize properties 

that Mersenne primes may have found to have, however, the present paper does not rely on any of 

the current work known on Mersenne primes, but starts a new trend in expoloring the properties of 

Mersenne primes. To begin, let us explore the concepts that lead to the final proof.  
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3. The Invariance of the GAMMA Function to Substitution 𝝈(𝒎) → 𝝈(𝒎 + 𝒋) 

I first want to introduce the curious fact that any function with a relational product {𝑛 ∙ 𝑦}, can 

be represented by the Sums of Divisor function, 𝜎(𝑚). Here is a simple example: 

 log(𝑛 ∙ 𝑦) = log 𝑛 + log 𝑦,                                            (6.)  

Then, if 𝑛 ∙ 𝑦 = 𝑚, we can put 𝑛 = 𝜎(𝑚), 𝑦 =
𝑚

𝜎(𝑚)
,  and so,  

 log(𝑚) = log 𝜎(𝑚) + log
𝑚

𝜎(𝑚)
                                           (7.) 

Then, if 𝑛 ∙ 𝑦 =  𝑁𝑝,  we can put 𝑛 = 𝜎( 𝑁𝑝), 𝑦 =
 𝑁𝑝

𝜎( 𝑁𝑝)
,   then, a Perfect number  𝑁𝑝,  has the 

relation: 

log( 𝑁𝑝) = log (𝜎( 𝑁𝑝)) + log (
 𝑁𝑝

𝜎( 𝑁𝑝)
)                                           (8.) 

log( 𝑁𝑝) = log (𝜎( 𝑁𝑝)) + log (
1

2
)                                           (9.) 

Here is another example: 

If 𝑛 ∙ 𝑦 = 𝑚, we can put 𝑛 = 𝜎(𝑚), 𝑦 =
𝑚

𝜎(𝑚)
,  and so, applied to the formula [3], p.41: 

sin(𝑛 ∙ 𝑥) = 𝑛 sin(𝑥) cos(𝑥)∏(1 −
sin2(𝑥)

sin2 (
𝑘𝜋
𝑛
)
)

𝑛−2
2

𝑘=1

cos(𝑛 ∙ 𝑥) =∏(1 −
sin2(𝑥)

sin2 (
(2𝑘 − 1)𝜋

2𝑛
)
)

𝑛
2

𝑘=1

, [𝑛 is even]         (10.) 

sin(𝑛 ∙ 𝑥) = 𝑛 sin(𝑥)∏(1 −
sin2(𝑥)

sin2 (
𝑘𝜋
𝑛
)
)

𝑛−1
2

𝑘=1

cos(𝑛 ∙ 𝑥) = cos(𝑥)∏(1 −
sin2(𝑥)

sin2 (
(2𝑘 − 1)𝜋

2𝑛
)
)

𝑛−1
2

𝑘=1

, [𝑛 is odd]         (11.) 

Interestingly, (10) ∈ 𝑒𝑣𝑒𝑛,  and (11) ∈ 𝑜𝑑𝑑 , dieerentiate between odd and even values of 𝑛. 

Since primes have 𝜎(𝑝) = 𝑝 + 1, an even number, and 𝑝 + 1  is always even except for the prime 2, 

the relations (11) ∈ 𝑜𝑑𝑑  𝑎𝑛𝑑does not apply to primes! Since 𝜎(2) = 3. For example,  

 cos(2) = cos (
2

3
)∏(1 −

sin2 (
2
3
)

sin2
(2𝑘 − 1)𝜋

6

)

1

𝑘=1

, [𝜎(2) is odd]                 (12.) 

−0.4161468365… = 0.7858872608. . (1 −
0.3823812134…

0.2500000000
) = −0.4161468365…     (13.)  

By using the sum of divisor function, for Perfect numbers,  𝑁𝑝, the even trigonometric relations 

[(10), (11)] ∈ 𝑒𝑣𝑒𝑛,  apply, but the relations, [(12), (13)] ∈ 𝑜𝑑𝑑  do not apply, so we can put, 

𝜎( 𝑁𝑝) = 2 𝑁𝑝. The fact that the sum of divisor function 𝜎(𝑚), can be manipulated this way leads to 

some interesting formulas that can produce significant and unexpected results.  
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4. Application of the Trigonometric Function to Perfect Numbers 

A Perfect Number 𝑁𝑝, is defined as a number for which 𝜎(𝑁𝑝) = 2𝑁𝑝. A list of some known 

Perfect numbers is  

𝑁𝑝 ∈ {6, 28, 496, 8128, 33550336, 8589869056,137438691328, 2305843008139952128,2658455991569831744654692615953842176, … } 

Hence for, example, in (10), putting 𝑛 = 𝜎(𝑗), (𝑛 𝑒𝑣𝑒𝑛), 𝑥 =
1

𝑗
: then, we have 

sin (
𝜎(𝑗)

𝑗
) = 𝜎(𝑗) sin (

1

𝑗
) cos (

1

𝑗
) ∏ (1−

sin2 (
1
𝑗
)

sin2 (
𝑘𝜋
𝜎(𝑗)

)
)

𝜎(𝑗)−2
2

𝑘=1

cos (
𝜎(𝑗)

𝑗
) =∏(1−

sin2 (
1
𝑗
)

sin2 (
(2𝑘 − 1)𝜋
2𝜎(𝑗)

)
)

𝜎(𝑗)
2

𝑘=1

, [𝜎(𝑗) is even]    (14.) 

tan (
𝜎(𝑗)

𝑗
) =

𝜎(𝑗) sin (
1
𝑗
) cos (

1
𝑗
)∏ (1 −

sin2 (
1
𝑗
)

sin2 (
𝑘𝜋
𝜎(𝑗)

)
)

𝜎(𝑗)−2
2

𝑘=1

∏ (1 −
sin2 (

1
𝑗
)

sin2 (
(2𝑘 − 1)𝜋
2𝜎(𝑗)

)
)

𝜎(𝑗)
2

𝑘=1

                   [𝜎(𝑗) is even]    (15.) 

LEMMA 1: The rational trigonometric functions sin (
𝜎(𝑗)

𝑗
) , cos (

𝜎(𝑗)

𝑗
)  determine 

𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑁𝑢𝑚𝑏𝑒𝑟𝑠. 

Proof:                          

 𝜎(𝑗) =

[
 
 
 
 tan(

𝜎(𝑗)

𝑗
)∏ (1−

sin2(
1
𝑗
)

sin2(
(2𝑘−1)𝜋
2𝜎(𝑗)

)
)

𝜎(𝑗)
2

𝑘=1

 sin(
1

𝑗
)cos(

1

𝑗
)∏ (1−

sin2(
1
𝑗
)

sin2(
(2𝑘−1)𝜋
2𝜎(𝑗)

)
)

𝜎(𝑗)
2

𝑘=1
]
 
 
 
 

                                                                           (16.) 

𝜎(𝑗) = 2

[
 
 
 
 
 
 
 

tan (
𝜎(𝑗)
𝑗
)∏ (1 −

sin2 (
1
𝑗
)

sin2 (
(2𝑘 − 1)𝜋
2𝜎(𝑗)

)
)

𝜎(𝑗)
2

𝑘=1

2 sin (
1
𝑗
) cos (

1
𝑗
)∏ (1 −

sin2 (
1
𝑗
)

sin2 (
(2𝑘 − 1)𝜋
2𝜎(𝑗)

)
)

𝜎(𝑗)
2

𝑘=1

]
 
 
 
 
 
 
 

                                           (17.) 

𝜎(𝑗) = 2

[
 
 
 
 
 
 
 
tan (

𝜎(𝑗)
𝑗
)∏ (1 −

sin2 (
1
𝑗
)

sin2 (
(2𝑘 − 1)𝜋
2𝜎(𝑗)

)
)

𝜎(𝑗)
2

𝑘=1

sin (
2
𝑗
)∏ (1 −

sin2 (
1
𝑗
)

sin2 (
(2𝑘 − 1)𝜋
2𝜎(𝑗)

)
)

𝜎(𝑗)
2

𝑘=1

]
 
 
 
 
 
 
 

                                           (18.) 

If 𝑗 = 𝑁𝑝 is a Perfect number, then, the equality applies only when.   
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𝑁𝑝 =

tan(
𝜎(𝑁𝑝)
𝑁𝑝

)∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋

2𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)

2
𝑘=1

 sin (
2
𝑁𝑝
)

(

 
 
∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋

𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)

2
−1

𝑘=1

)

 
 

                                    (19.) 

Taking the limits: 

lim
𝑁𝑝→∞

𝑁𝑝 = lim
𝑁𝑝→∞

(

 
 
 
 
 
 
 

tan(2)

{
 
 
 
 

 
 
 
 

∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋

2𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)

2
𝑘=1

 sin (
2
𝑁𝑝
)

(

 
 
∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋

𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)

2 −1

𝑘=1

)

 
 

}
 
 
 
 

 
 
 
 

)

 
 
 
 
 
 
 

                              (20.) 

Now, for large values of 𝑦,  sin (
1

𝑦
) →

1

𝑦
, and so we can approximate the product for large values 

of 𝑁𝑝 as follows: 

lim
𝑁𝑝→∞

𝑁𝑝 = lim
𝑁𝑝→∞

(

  
 tan(2)

sin (
2
𝑁𝑝
)
(1

− (
2𝜎(𝑁𝑝)

𝑁𝑝(𝜎(𝑁𝑝) − 1)𝜋
)

2

)

{
 
 

 
 

∏

(1 − (
2𝜎(𝑁𝑝)

𝑁𝑝(2𝑘 − 1)𝜋
)

2

)

(1 − (
𝜎(𝑁𝑝)
𝑁𝑝𝑘𝜋

)

2

)

𝜎(𝑁𝑝)

2
−1

𝑘=1

}
 
 

 
 

)

  
 
               (21.) 

lim
𝑁𝑝→∞

𝑁𝑝 = lim
𝑁𝑝→∞

(

  
 
𝑁𝑝
tan(2)

2

{
 
 

 
 

∏

(1 − (
2𝜎(𝑁𝑝)

𝑁𝑝(2𝑘 − 1)𝜋
)

2

)

(1 − (
𝜎(𝑁𝑝)
𝑁𝑝𝑘𝜋

)

2

)

𝜎(𝑁𝑝)

2
−1

𝑘=1

}
 
 

 
 

)

  
 
               (22.) 

Put 
𝜎(𝑁𝑝)

𝑁𝑝
= 𝑥 = 2, 

1 =
tan(2)

2
{∏

(1 −
4(𝑥)2

(2𝑘 − 1)2𝜋2
)

(1 −
(𝑥)2

𝑘2𝜋2
)

∞

𝑘=1

}                                             (23.) 

For the infinite product we have,  

sin(𝑥)

𝑥
=∏(1 − (

𝑥

𝑘𝜋
)
2

)

∞

𝑘=1

,       cos(𝑥) =∏(1 −
4(𝑥)2

(2𝑘 − 1)2𝜋2
)

∞

𝑘=0

                               (24.) 

1 =
tan(2)

2
{
 2  cos(2)

sin(2)
} = 1                                                                 (25.) 
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sin (
𝜎(𝑁𝑝)

𝑁𝑝
) = 𝜎(𝑁𝑝) sin (

1

𝑁𝑝
) cos (

1

𝑁𝑝
) ∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋

𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)−2

2

𝑘=1

cos (
𝜎(𝑁𝑝)

𝑁𝑝
) = ∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋

2𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)

2

𝑘=1

, [𝜎(𝑁𝑝) is even]    (26.) 

It is clear that there if there exists a continued set of infinitely large Perfect Numbers then,  

sin(2) − 𝜎(𝑁𝑝) sin (
1

𝑁𝑝
) cos (

1

𝑁𝑝
) ∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋

𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)−2

2

𝑘=1

cos(2) − ∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋

2𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)

2

𝑘=1

𝑁𝑝 − tan(2)

∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋

2𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)

2
𝑘=1

 sin (
2
𝑁𝑝
)

(

 
 
∏

(

 
 
1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋

𝜎(𝑁𝑝)
)
)

 
 

𝜎(𝑁𝑝)

2 −1

𝑘=1

)

 
 

}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

= 0,
[𝜎(𝑁𝑝) is even], (⊨)  𝑓𝑜𝑟 𝑛 ∈ 𝑁𝑝

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑓𝑜𝑟 𝑛 ∉ 𝑁𝑝
    (27.) 

Each of these three relations is only true when 𝑁𝑝 is a Perfect number.  

Figure 2 shows the correletion of the relation (27) with Perfect Numbers.  

From symmetry, and considering the form for the divisor function:  

𝑁𝑝 =

tan(2)∏ (1 −
sin2 (

1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝
𝑘=1

 sin (
2
𝑁𝑝
)(∏ (1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1 )

 

                                    (28.) 

Since 𝑁𝑝 = (2
𝑝 − 1)2𝑝−1 , where 𝑝  is a prime, we can factor the perfect number 𝑁𝑝,  as 

follows: 

𝑁𝑝 = (2𝑝 − 1)2𝑝−1 = (2𝑃 − 1)𝑃 , where 𝑃 = 2𝑝−1.  This factorization leads to the 

following results: 
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𝐹(𝑃) = 𝑃 −

tan (
𝜎(𝑃)
𝑃

)∏ (1 −
sin2 (

1
𝑃
)

sin2 (
(2𝑘 − 1)𝜋
2𝜎(𝑃)

)
)

𝜎(𝑃)
2

𝑘=1

 sin (
2
𝑃
)(∏ (1 −

sin2 (
1
𝑃
)

sin2 (
𝑘𝜋
𝜎(𝑃)

)
)

𝜎(𝑃)
2

−1

𝑘=1 )

𝐺(𝑃) = 2𝑃 − 1 −

tan (
𝜎(2𝑃 − 1)
2𝑃 − 1

)∏ (1 −
sin2 (

1
2𝑃 − 1

)

sin2 (
(2𝑘 − 1)𝜋
2𝜎(2𝑃 − 1)

)
)

𝜎(2𝑃−1)
2

𝑘=1

 sin (
2

2𝑃 − 1
)(∏ (1 −

sin2 (
1
𝑃
)

sin2 (
𝑘𝜋

𝜎(2𝑃 − 1)
)
)

𝜎(2𝑃−1)
2

−1

𝑘=1 )

                        (29.) 

It is clear that the there is a direct correspondence between the Perfect Number 𝑁𝑝, and 𝑃. The 

graphs of the two functions is shown in Figure 3. 

𝐹(𝑃) = 𝑃 −

tan (
𝜎(𝑃)
𝑃

)∏ (1 −
sin2 (

1
𝑃
)

sin2 (
(2𝑘 − 1)𝜋
2𝜎(𝑃)

)
)

𝜎(𝑃)
2

𝑘=1

 sin (
2
𝑃
)(∏ (1 −

sin2 (
1
𝑃
)

sin2 (
𝑘𝜋
𝜎(𝑃)

)
)

𝜎(𝑃)
2

−1

𝑘=1 )

                                           (30.) 

Graphs of the two functions, showing that the zeroes are strictly on the

correspondence Perfect Numbers   P.

FIGURE 3

P

F(P)
G(P)

 

Figure 4 shows the correspondence 𝐹(𝑃) → 𝑁𝑝. 
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Graphs of the two functions, showing that the zeroes of F(P) are strictly on

the correspondence Perfect Numbers   P.

FIGURE 4

P

F(P)

P=6 P=28

 

FIGURE 5 shows the symmetry of the odd and even product expressions.

FIGURE 5

 

The relations (19) hold for all Perfect Numbers. The right hand side of (19) does not depend on 

implicit rational relationships between 𝜎(𝑁𝑝)  and 𝑁𝑝.  It is clear that the basic rational trigonometric 

functions capture the properties of integers. We now explore the general forms of trinometric and 

exponential forms that capture Perfect numbers, Abondant numbers and deficient numbers in one 

relation.   

5. The General Relation That Captures the Behavior of Abondant Numbers, 

Perfect Numbers and Deficient Numbers 

Definition 1: An Abundant number is a positive integer for which the sum of its proper divisors excluding 

itself is greater than the number itself.  

Definition 2: A Perfect number is a number for which the sums of all divisors is equal to twice the number.  
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Definition 3: A Deficient number is a number for which the sums of all divisors is less than twice the number.  

LEMMA: If 𝑛 is a Perfect number, then,  

cos (
2𝜋𝑛
𝜎(𝑛)

)

sin (
𝜋𝑛
𝜎(𝑛)

)
= −1                                                                               (31.) 

Proof: for a Perfect number, 𝜎(𝑛) = 2𝑛. Hence,  

cos(𝜋)

sin (
𝜋
2
)
= −1                                                                               (32.) 

The distribution of perfect numbers, abondant numbers and deficient numbers is captured by the 

general relation: 

  cos (
2𝑛𝜋

𝜎(𝑛)
) + sin (

𝑛𝜋

𝜎(𝑛)
) = 0                                                                            (33.) 

a. For perfect numbers, 
2𝑛

𝜎(𝑛)
= 1, and the relation (33) vanishes.  

b. For abondant numbers, 
2𝑛

𝜎(𝑛)
< 1, and the relation does not vanish but generates negetaive imaginary 

values for 𝑛 ∈ 𝐚𝐛𝐨𝐧𝐝𝐚𝐧𝐭 𝐧𝐮𝐦𝐛𝐞𝐫𝐬. 

c. For deficient numbers, 
2𝑛

𝜎(𝑛)
< 1, and the relation does not vanish but generates positive imaginary 

values for 𝑛 ∈ 𝐝𝐞𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐧𝐮𝐦𝐛𝐞𝐫𝐬. 

To see this, put the relation (33) in the form: 

  
cos(

2𝑛𝜋

𝜎(𝑛)
)

sin(
𝑛𝜋

𝜎(𝑛)
)
= −1              sin (

𝑛𝜋

𝜎(𝑛)
) ≠ 0,                                                              (34.) 

Obviously, the zeros of the function (34) occur at the Perfect numbers. However, for clarity we 

convert this relation to the exponential form: 

𝐹(𝑛) = 1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛)                                                               (35.) 

Figure 6 shows the complex map of the function 𝐹(𝑛), over the range 𝑛 = 0. .20,000. 

FIGURE 6

The map of the first 20,000 integers showing the origin as the point for which n is a Perfect Number. 
Using the function: 

(F(n))

 e(F(n))
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The zeros of the function 𝐹(𝑛), occur at the values 6, 28, 496, 8124…. 

NOTE*: The Mersenne primes and the perfect numbers can only exist on the upper right quadrant 

corrsponding to deficient numbers. Perfect numbers are the zeros of the function 𝐹(𝑛). 

The general locations of primes and Mersenne primes are shown in Figure 7. As can be seen, the 

oprimes do not generate negative imaginary values, and are located on the top-right quadrant of the 

complex plane.  

FIGURE 7

Integers that produce Mersenne primes and the Mersenne primes do
not generate negative values for either real or complex values of the
function:

(F(n))

 e(F(n))

 

Hence,  𝜎(𝑛) > 2𝑛.   It is clear that the sequence of abundant numbers,  

[12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 

120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 

216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272, 276, 280, 282, 288, 294, 300, 304, 306, 

308, 312, 318, 320, 324, 330, 336, 340, 342, 348, 350, 352, 354, 360, 364, 366, 368, 372, 378, 380, 384, 390, 

392, 396, 400, 402, 408, 414, 416, 420, 426, 432, 438, 440, 444, 448, 450, 456, 460, 462, 464, 468, 474, 476, 

480, 486, 490, 492, 498, 500],  

produce values of 𝐹(𝑛)  in (35) that lie on the lower right quadrant of the complex plane. This 

distinct observation for the first 500, abondant numbers provides a clue as to their distribution.   
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FIGURE 8

The map of the first set of Abondant Numbers to the right lower quadrant of the function:

(F(n))  e(F(n))

 

It is clear the first numbers between 0 and 500 that generate a sequence of deficient numbers: 

[2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 

44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 

82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109, 110, 111, 113, 115, 116, 117, 

118, 119, 121, 122, 123, 124, 125, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 

146, 147, 148, 149, 151, 152, 153, 154, 155, 157, 158, 159, 161, 163, 164, 165, 166, 167, 169, 170, 171, 172, 

173, 175, 177, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 193, 194, 195, 197, 199, 201, 202, 

203, 205, 206, 207, 209, 211, 212, 213, 214, 215, 217, 218, 219, 221, 223, 225, 226, 227, 229, 230, 231, 232, 

233, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 247, 248, 249, 250, 251, 253, 254, 255, 256, 257, 259, 

261, 262, 263, 265, 266, 267, 268, 269, 271, 273, 274, 275, 277, 278, 279, 281, 283, 284, 285, 286, 287, 289, 

290, 291, 292, 293, 295, 296, 297, 298, 299, 301, 302, 303, 305, 307, 309, 310, 311, 313, 314, 315, 316, 317, 

319, 321, 322, 323, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 337, 338, 339, 341, 343, 344, 345, 346, 

347, 349, 351, 353, 355, 356, 357, 358, 359, 361, 362, 363, 365, 367, 369, 370, 371, 373, 374, 375, 376, 377, 

379, 381, 382, 383, 385, 386, 387, 388, 389, 391, 393, 394, 395, 397, 398, 399, 401, 403, 404, 405, 406, 407, 

409, 410, 411, 412, 413, 415, 417, 418, 419, 421, 422, 423, 424, 425, 427, 428, 429, 430, 431, 433, 434, 435, 

436, 437, 439, 441, 442, 443, 445, 446, 447, 449, 451, 452, 453, 454, 455, 457, 458, 459, 461, 463, 465, 466, 

467, 469, 470, 471, 472, 473, 475, 477, 478, 479, 481, 482, 483, 484, 485, 487, 488, 489, 491, 493, 494, 495, 

497, 499 ], 

produce values of 𝐹(𝑛) that lie on the upper right quadrant of the complex plane. This distinct 

observation for the first 500, defficient numbers and abondant numbers provides a clue as to their 

distributions.   
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FIGURE 9

The map of the first set of Dificient Numbers , from 0-500, to the right upper quadrant of the
function:

(F(n))

 e(F(n))

 

Between the abondant numbers and the deficient numbers, are the Perfect Numbers, [6, 7, 28, 

496, 8128, 33550336,….], that generate the zeros of the function: 

𝐹(𝑛) = 1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛)  = 0.                                                             (36.) 

Hence, the imaginary part of the function 𝐹(𝑛) determines if a number is an abondant number, 

a perfect number or a deficient number. 

ℑ(1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛))

            < 0,               
 = 0,    
> 0,   

 

𝑛 ∈ 𝑎𝑏𝑜𝑛𝑑𝑎𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 
𝑛 ∈ 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟𝑠     

𝑛 ∈ 𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟𝑠
         (37.) 

The first set of even numbers from 0..500 that lie on the defient number curve but are not 

abondant numbers are: 

[2, 4, 6, 8, 10, 14, 16, 22, 26, 28, 32, 34, 38, 44, 46, 50, 52, 58, 62, 64, 68, 72, 74, 76, 82, 86, 92, 94, 98, 106, 

110, 116, 118, 122, 124, 128, 130, 134, 136, 142, 146, 148, 152, 154, 158, 164, 166, 170, 172, 178, 182, 184, 

188, 190, 194, 202, 206, 212, 214, 218, 226, 230, 232, 236, 238, 242, 244, 248, 250, 254, 256, 262, 266, 268, 

274, 278, 284, 286, 290, 292, 296, 298, 302, 304, 310, 314, 316, 322, 326, 328, 332, 334, 338, 344, 346, 356, 

358, 362, 370, 374, 376, 382, 386, 388, 394, 398, 404, 406, 410, 412, 418, 422, 424, 428, 430, 434, 436, 442, 

446, 452, 454, 458, 466, 470, 472, 478, 482, 484, 488, 494, 496]. 

These numbers are clearly defined by (37). 

Figure 10 shows the 2D plot of the function  covering both odd and even numbers in the range 

𝑛 = 0 . .500. 
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FIGURE 10

The map of the first set of odd numbers (blue) and even numbers (red) . The even numbers that  generate points
that fall on both the deficient numbers and the abondant numbers.  Hence the graphs are dense with no gaps. 

(F(neven+odd)

 e(F(neven+odd)

 

It is clear that the even numbers (red points) can fall on both the deficient number curve and the 

abondant number curve. The deficient numbers seem to be bounded by the line  

1.05629905839783049963 + 1.37659573355141432857𝑖  and a maximum imaginary 

value of 0.43293432010231995809 + 2.19494797760015472936𝑖.  

Definition 4: An Deficient disturbing number , (DDN), is a deficient number which: 

ℑ(1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛)) > 0      ∈ 𝑫𝑫𝑵                    (38.) 

These are the red points on Figure 10 that intermingle with the blue odd number points.   

𝐷𝐷𝑁 ∈ 

[2,4,8,10,14,16,22,26,32,34,38,44,46,50,52,58,62,64,68,74,76,82,86,92,94,98,106,110,116,118,122,124,128,130,134,136,142,146,148,15

2,154,158,164,166,170,172,178,182,184,188,190,194,202,206,212,214,218,226,230,232,236,238,242,244,248,250,254,256,262,266,268,

274,278,284,286,290,292,296,298,302,310,314,316,322,326,328,332,334,338,344,346,356,358,362,370,374,376,382,386,388,394,398,40

4,406,410,412,418,422,424,428,430,434,436,442,446,452,454,458,466,470,472,478,482,484,488,494…..]. 
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FIGURE 11

The map of the first set of even numbers (red) . The even numbers generate points that fall on both the deficient
numbers and the abondant numbers.  

(F(neven)

 e(F(neven+odd)

 

The extent to which the even numbers infiltrate the deficient number space for up to 𝑛 =

 1𝟓𝟎𝟎𝟎𝟎 seems to be confined to the approximate range, 

0 ≤ (1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛)) ≤ 0.98575151303581662431 +  0.36599952081502975396𝑖  , 𝑫𝑫𝑵 ≤ 𝟏𝟓𝟎𝟎𝟎𝟎          (39.) 

The extent to which the even numbers penetrate the abondant number space is unknown. 

However it is known that there exists in infinite number of abundant numbers. It has been shown 

that every multiple 6(𝑛 ≥ 6) is either an abondant number, or taking more multiples of 6 of such 

numbers leads to an bondant number. Since there is an infinite number of multiples of 6, then there 

are an infinite number of abondant numbers. Erdos &Graham, 1980, [], showed that even numbers 

greater than 46 are either abundant numbers or the sum of two abondant numbers.  
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FIGURE 12

The map of the first 8000 odd numbers (blue) and the first 8000 odd numbers. The prime density for F(n) increases
as F(n) approaches 0+2i.  The primes also seem to follow the curve in order.

(F(nprimes)

 e(F(nprimes)

Prime, 2

Prime, 3

Prime, 5

Prime, 7

 

Figure 13 shows the distribution of the Mersenne primes with the regular primes. 

 e(F(nprimes)

Mersenne Prime, 3

Mersenne prime 7

Mersenne Prime, 31

Mersenne Prime, 127

Mersenne Prime, 8191, 131071,
524287, 2147483647

FIGURE 13

The map of the first 8 Mersenne primes (diamonds) and the fregular primes (dots) .Mersenne primes higher than
127 are concentrated close to 0+2i. 

(F(nprimes)

 

6. The Extension of TH Function F(n) to A General Series Form 

The function 

𝐹(𝑛) = 1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛)                                                                (40.) 

behaves like a CyclotomicPolynomial. CyclotomicPolynomialare the minimal polynomials of 

primitive roots of unity with rational coefficients. The first few CyclotomicPolynomial are shown 

below: 
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An example of a Cyclotomic polynomials are the
distribution of the roots of unity on the circle, for  x=50 

log(x)
x

FIGURE 14

Φ(x)

 

A cyclotomic polynomial is of the product form: 

Φ𝑚(𝑥) =∏(𝑥 − 𝜁𝑚)

𝑚

𝑘=1

                                                                  (41.) 

where, 𝜁𝑚 , are the roots of unity in the complex plane, ℂ  . In general, the circle, 𝜁𝑚 =

𝑒𝜋𝑖(𝜔(𝑥)) 𝑤ℎ𝑒𝑟𝑒 𝜔(𝑥) =
𝑘

𝑚
,  and 𝑘 is taken over integers relative prime to 𝑚. It is clear that the 

function  

𝐹(𝑛) = 1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛)                                                                (42.) 

is composed of functions of cyclotomic polynomials for the the special case of  an expansion of some 

function over the function 
𝑛

𝜎(𝑛)
.  

Looking at exponential terms with the sequence, 0,−𝑖, 2𝑖, 3𝑖, we determine the first dieerence 

in the powers to be  

𝛿1  → −𝑖, 3𝑖, 𝑖,                                                                                 (43.) 
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The second dieerence gives, 

𝛿2  → 4𝑖, −2𝑖,                                                                                (44.) 

The second dieerence points to the function 𝐹(𝑛),  following a sequence of powers that is 

purely linear, but quadratic or alternating in some manner. We assume a quadratic relation, of the 

form,  𝐴𝑘2 + 𝐵𝑘 + 𝐶.  However, the second dieerences are not the same constants, and so a 

recurrence relation of the form, 𝑏𝑘 = 𝑓(𝑏𝑘−1, 𝑏𝑘−2 ) must be used to expand 𝐹(𝑛,𝑚) as a series 

of higher powers for 𝑚 recurrenses. The sequence of powers in  𝐹(𝑛,𝑚), follows the recurrence, 

with initial conditions, 

𝑏𝑘 = −𝑏𝑘−1 − 7𝑏𝑘−2,    𝑏0 = 0, 𝑏2 = −𝑖                                                                      (45.) 

The characteristic equation for the recurrence then yeilds,  

 𝑟2 + 2𝑟 + 7 = 0                                                                                              (46.) 

This yields, the two solutions,  

𝑟1 = −1 − 𝑖√6

𝑟2 = −1 + 𝑖√6
                                                                                        (47.) 

Since the recurrence (46) follows a second order linear form, the general solution of the 

recurrence is 

𝑏𝑘 = 𝐶1𝑟1
𝑘 + 𝐶2𝑟2

𝑘   ,              𝐶1, 𝐶2 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠.                                     (48.) 

Solcing for 𝐶1, and 𝐶2, we get: 

𝐶1 = −
√6

84
+
𝑖

14
 ,      𝐶2 =

√6

84
+
𝑖

14
                                                                    (49.) 

Hence we get  

𝑏𝑘 = (−
√6

84
+
𝑖

14
) (−1 − √6)

𝑘
 + (

√6

84
+
𝑖

14
) (−1 + √6)

𝑘
                       (50.) 

Hence we have the general form for 𝑚 terms:  

𝐹(𝑛,𝑚)

= ∑

(

 
 
(−

√6
84

+
𝑖
14
) (−1 − √6)

𝑘
 + (

√6
84

+
𝑖
14
) (−1 + √6)

𝑘

𝑘 − 1

)

 
 

𝑘−1

𝑒
(
𝜋𝑖𝑛
𝜎(𝑛)

)(−
√6
84
+
𝑖
14
)(−1−√6)

𝑘
 +(

√6
84
+
𝑖
14
)(−1+√6)

𝑘𝑚

𝑘=1

    (51.) 

This sum produces the first four terms giving the same function: 

𝐹(𝑛, 4) = 1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛)                                                                (52.) 

The function,  

𝐹(𝑛,𝑚) = ∑(
𝑏𝑘
𝑘 − 1

)
𝑘−1

𝑒
(
𝜋𝑖𝑛𝑏𝑘
𝜎(𝑛)

)
𝑚

𝑘=1

                                                                                                 (53.) 

will only have coefficients that are ±1, or −𝑖, for the first 4 terms, 𝑚 = 4. The remaining terms 𝑚 >

4 have large coefficients that blow up quickly. For example for m 7,  

𝐹(𝑛, 7) = 1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛)    + 625𝑒

−
20𝑖𝑛𝜋
𝜎(𝑛)  +

2476099

3125
𝑒
19𝑖𝑛𝜋
𝜎(𝑛)

− 24137569𝑒
102𝑖𝑛𝜋
𝜎(𝑛)                (54.) 
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In general, for Perfect numbers,  

𝐹(𝑛, 4) = 1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛)   = 0,  

𝐹(𝑛 = 5. .∞) =  625𝑒
−
20𝑖𝑛𝜋
𝜎(𝑛)  +

2476099

3125
𝑒
19𝑖𝑛𝜋
𝜎(𝑛) − 24137569𝑒

102𝑖𝑛𝜋
𝜎(𝑛)

+⋯(
𝑏𝑘
𝑘 − 1

)
𝑘−1

𝑒
(
𝜋𝑖𝑛𝑏𝑘
𝜎(𝑛)

)
               (55.) 

In general, we have: 

𝐹(𝑛,∞) =  ∑𝑒𝑖𝜋𝛽𝑘

∞

𝑘=1

 ,                                                                         (56.)  

𝑘 𝛽𝑘 
1 0 

2 −
1

2
−

𝑛

𝜎(𝑛)
 

3 1 +
2𝑛

𝜎(𝑛)
 

4 −
1

2
+

3𝑛

𝜎(𝑛)
 

5 −
20𝑛

𝜎(𝑛)
−
𝑖 log 55

𝜋
 

6 
1

2
+
19𝑛

𝜎(𝑛)
− 𝑖 (

log 195 + log 55

𝜋
) 

7 1 +
102 𝑛

𝜎(𝑛)
− 𝑖

log 176

𝜋
 

8 
1

2
−
337 𝑛

𝜎(𝑛)
−
𝑖

𝜋
log (

337

7
)
7

 

9 −
40 𝑛

𝜎(𝑛)
−
𝑖

𝜋
log(58) 

10 
1

2
+
2439 𝑛

𝜎(𝑛)
−
𝑖

𝜋
log(271)9 

A 3-d plot of the function, shows that the function 𝐹(𝑛, 4) = 0, is the axis of an infinite cylinder 

,where the rest of the terms 𝑚 > 4 lie. 

Figure 15 shows the cylinderical form with the axis approaching a line when the cylinder radius 

approaches infinity. The axis of the cylinder becomes the solutions for Perfect numbers,  

1 − 𝑖𝑒
−
𝑖𝑛𝜋
𝜎(𝑛) − 𝑒

−
2𝑖𝑛𝜋
𝜎(𝑛) − 𝑖𝑒

3𝑖𝑛𝜋
𝜎(𝑛) = 0,                                                        (57.) 

Now, from (18), for some integer 𝑁,  

Hence for a Perfect number 𝑁, (57) gives: 

𝑁𝑝 =

tan(2)∏ (1 −
sin2 (

1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝
𝑘=1

 sin (
2
𝑁𝑝
)(∏ (1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1 )

                                                      (58.) 

Theorem 1: There are an infinite number of Mersenne Primes. 
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F(n,4)

n

Re(F(n)

Im(F(n)

F(n,m>5)

Distribution of F(n) showing distinct regions for the first 4 terms, (red axis), and the
cylindral orbit of the remaining terms on the cylinder (blue).  Perfect numbers occur when
F(n,4)=0 at the exact axial symmetry of remaining terms higher than the fourth term. 

F(n,4)

FIGURE 15

n

Re(F(n)

Im(F(n)

F(n,m>5)

 

Analytic Mersenne Density and Infinitude. 

Setup:  

Let 

cot(𝑥) =
1

2
−∑

22𝑘|𝐵2𝑘|

(2𝑘)!
𝑥2𝑘−1

∞

𝑘=1

   , [22 < 𝜋2]                                                                      (59.) 

Fix 𝑥0 ∈ (0, 𝜋) 𝑤𝑖𝑡ℎ cot(𝑥0) ∈ ℝ\{0}. 

Partition ℕ, into disjoint classes ℘, and ℵ = ℕ\℘, where ℘ is the set of Mersenne exponents 

𝑝, with (22𝑝 − 1) a prime.  

Define 

𝑆𝑎𝑙𝑙(𝑥) =∑
22𝑛|𝐵2𝑛|

(2𝑛)!
𝑥2𝑛−1

∞

𝑛≥1

, 𝑆𝑀(𝑥) = ∑
22𝑝|𝐵2𝑝|

(2𝑝)!
𝑥2𝑝−1

∞

𝑝∈℘

, 𝑆𝑁(𝑥) = 𝑆𝑎𝑙𝑙(𝑥) − 𝑆𝑀(𝑥)          (60.) 

Note 𝑆𝑎𝑙𝑙(𝑥) =
1

𝑥
− cot(𝑥) and 𝑆𝑁(𝑥), 𝑆𝑀(𝑥) > 0 for 𝑥 ∈ (0, 𝜋). 

Definition (analytic Mersenne density). 

𝜌𝑀 = 
𝑆𝑀(𝑥)

𝑆𝑎𝑙𝑙(𝑥)
=  

∑ 𝜁(2𝑝) (
𝑥
𝜋
)
2𝑝

∞
𝑝∈℘

∑ 𝜁(2𝑛) (
𝑥
𝜋
)
2𝑛

∞
𝑝∈℘

      [0 < 𝜌𝑀 < 1]                                 (61.) 

With the set up above, at a fixed 𝑥0 ∈ (0, 𝜋), supposew the following holds true: 

(H1) (Regularity/positivity of coefficients).  

Each summand is positive and satisfies the classical Bernoulli-Zeta representation: 
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|𝐵2𝑛| =
2(2𝑛)!

(2𝜋)2𝑛
𝜁(2𝑛),                                                                       (62.)  

Hence, 𝑆𝑎𝑙𝑙(𝑥) ∈ (0,∞). 

(H2): (Analytic density at 𝑥0 ). The decomposition of cot(𝑥0)  through 𝑆𝑁(𝑥), 𝑆𝑀(𝑥) 𝑦 ields a 

normalized quadratic identity in the tan(𝑥0) as shown in LEMMA 2, only if LEMMA1 holds. 

(H2): (Single valuedness/discriminat collapse). Since tan(𝑥0) is single valued, the discriminat of 

the quadratic in LEMMA 2 vanishes. 

Proof Sketch:  

Absolute positivity and conditional subtraction. 

By (H1), 𝑆𝑎𝑙𝑙(𝑥) = ∑
22𝑛|𝐵2𝑛|

(2𝑛)!
𝑥2𝑛−1∞

𝑛≥1  , and 𝑆𝑀(𝑥) = ∑
22𝑝|𝐵2𝑝|

(2𝑝)!
𝑥2𝑝−1∞

𝑝∈℘  . The analytic 

value cot(𝑥0) may be negative (e.g. cot(𝑥0 = 2) < 0), which arises from subtracting the strictly 

positive 𝑆𝑎𝑙𝑙(𝑥) from 1/𝑥0 . 
Quadratic normalization. 

(H2) encodes the partition into a quadratic in X = tan(𝑥0):  

𝐴𝑋2 + 𝐵𝑋 + 1 = 0, 𝑋 =
−𝐵 ± √𝐵2 − 4𝐴

2𝐴
. 

Since cot(𝑥0) ≠ 0 and 𝑆𝑀(𝑥) > 0, we have 𝐴 and 𝐵 finite and nonzero. 

Discriminant collapse and consistency. 

By (H3), 𝐵2 − 4𝐴 = 0. Solve for 𝑋: the two roots coincide, so the quadratic exactly reproduces 

X = tan(𝑥0). 

Contradiction from finiteness. 

Assume ℘, is finite. Then 𝑆𝑀(𝑥) > 0 is a fixed positive constant, hence 𝐴 is fixed. Meanwhile 

𝑆𝑁(𝑥) = 𝑆𝑎𝑙𝑙(𝑥) − 𝑆𝑀(𝑥) > 0  is also fixed. The identity 𝐵2 = 4𝐴  becomes a rational equality among 

strictly positive finite constants. But this equality must be compatible with the sign of cot(𝑥0) (e.g. 

negative at 𝑋 = 2 ); when the decomposition is realized by finite sets, the resulting rational 

combination cannot produce the required analytic sign/phase (it stays on the “algebraic” positive 

side). This contradicts the actual value of cot(𝑥0). 

A symmetric argument applies if ℵ,  is finite: then 𝑆𝑁  is fixed and 𝑆𝑀(𝑥) = 𝑆𝑎𝑙𝑙(𝑥) − 𝑆𝑁(𝑥)  must 

bear the entire analytic burden; again the finite rational identity cannot reproduce the analytic sign 

at 𝑥0. Therefore, both classes must be infinite. 

Interpretation via classical pillars. 

Pringsheim (nonnegative coefficients ⇒ real singular control): Positivity of coefficients yields 

rigid real-axis behavior of generating series; finite truncations cannot emulate the required analytic 

sign at 𝑥0. 

Gap/lacunary theorems (Fabry/Hadamard): Attempting to realize the analytic function from a 

set with “large gaps” (finite or too-sparse) obstructs continuation/phase needed at 𝑥0 ; an infinite 

contribution from both parts is necessary. 

Tauberian philosophy (Wiener–Ikehara): Analytic constraints (here, the discriminant identity at 

a real point) force “density/infinity-type” conclusions for the underlying index sets.  Thus both 

ℕ, and  ℘ must be infinite. 

Corollary A (Intrinsic analytic density) 

Under the hypotheses of Theorem A, the intrinsic analytic Mersenne density 

𝜌𝑀(𝑥) =  
𝑆𝑀(𝑥)

𝑆𝑎𝑙𝑙(𝑥)
=  

∑ 𝜁(2𝑝) (
𝑥
𝜋
)
2𝑝

∞
𝑝∈℘

∑ 𝜁(2𝑛) (
𝑥
𝜋
)
2𝑛

∞
𝑝∈℘

      [0 < 𝜌𝑀 < 1]             

is well-defined with 0 < 𝜌𝑀 < 1 . In particular, 𝜌𝑀( 𝑥0) cannot be realized by a finite index set on 

either side. 
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THEOREM: There exists an infinite number of Mersenne Primes. 

Proof:  

I start with the relationship between Perfect numbers and their sums of divisors. Let 𝑝 be a 

prime number such that  𝑃𝑝 = (2
𝑝 − 1)2𝑝−1 𝑖𝑠 𝑎 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑁𝑝∈𝑃𝑝 . Then the following applies. 

Lemma 1:  If 𝑁𝑝∈𝑃𝑝𝑖𝑠 𝑎 𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑡ℎ𝑒𝑛, 

𝑁𝑝∈𝑃𝑝 =

tan(2)∏ (1 −
sin2 (

1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝
𝑘=1

 sin (
2
𝑁𝑝
)(∏ (1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1
)

                                                (63.) 

Proof of LEMMA 1: See equation (19) for Perfect numbers. 

Lemma 2: Let p be a prime that generates a Mersenne prime and a Perfect Number N, then, there exits a unique 

decomposition of 𝐜𝐨𝐭(𝒙𝟎) into a quadratic identity 

𝑨(𝒙𝟎) 𝐭𝐚𝐧
𝟐(𝒙𝟎) + 𝑩(𝒙𝟎) 𝐭𝐚𝐧(𝒙𝟎) + 𝟏 = 𝟎                                                                    (64.) 

Proof (LEMMA 1): 

Now, from [4], p.42, 1.411 (7) we find an expressions for cot(𝑥): 

cot(𝑥) =
1

𝑥
−∑

22𝑘|𝐵2𝑘|

(2𝑘)!
𝑥2𝑘−1

∞

𝑘=1

   , [𝑥2 < 𝜋2]                                                               (65.) 

Factoring this form into  

cot(𝑥) =
1

𝑥
−∑

𝑥𝑘−1(2𝑘 − 1)22𝑘|𝐵2𝑘|

(2𝑘 − 1)(2𝑘)!
𝑥𝑘

∞

𝑘=1

 , [𝑥2 < 𝜋2]                                              (66.) 

We find that by chosing 𝑥0 = 2 , since (66) holds for  {22 < 𝜋2},  the expression can be 

modifed and separated into two class , one over the sum over Mersenne primes to include Perfect 

numbers, 𝑁𝑝 = 2
𝑝−1(2𝑝 − 1),  when 𝑝 ∈ 𝑃𝑝 ,  a prime  for which 𝑃𝑝 = 2

𝑝 − 1  is a Mersenne 

prime, and the class of non-Mersenne primes, for 𝑘 ∉ 𝑃𝑝   

cot(2) =
1

2
− ∑

2𝑝−1(2𝑝 − 1)22𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
2𝑝

𝑝∈𝑃𝑝

− ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

   , [22 < 𝜋2]           (67.) 

Put 𝑁𝑝 = 2𝑝−1(2𝑝 − 1), 𝑝 ∈ 𝑃𝑝 in (67), then,  

cot(2) =
1

2
− ∑  𝑁𝑝

23𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
𝑝∈𝑃𝑝

− ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

   , [22 < 𝜋2]           (68.) 

From (19), LEMMA 1, 
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𝑁𝑝∈𝑃𝑝 =

tan(2)∏ (1 −
sin2 (

1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝
𝑘=1

 sin (
2
𝑁𝑝
)(∏ (1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1 )

                                                (69.) 

cot(2) =
1

2
− tan(2) ∑

[
 
 
 
 
 
 
 

(
23𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
)

∏ (1 −
sin2 (

1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝
𝑘=1

sin (
2
𝑁𝑝
)(∏ (1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1 )

]
 
 
 
 
 
 
 

𝑝∈𝑃𝑝

− ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

        (70.) 

Divide by cot(2). 

1 =
1

2
tan(2) − tan2(2) ∑

[
 
 
 
 
 
 
 

(
23𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
)

∏ (1 −
sin2 (

1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝
𝑘=1

sin (
2
𝑁𝑝
)(∏ (1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1
)

]
 
 
 
 
 
 
 

𝑝∈𝑃𝑝

− tan(2) ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

 (71.) 

1 = (
1

2
− ∑

24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

)tan(2) − tan2(2) ∑

[
 
 
 
 
 
 
 

(
23𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
)

∏ (1 −
sin2 (

1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝
𝑘=1

sin (
2
𝑁𝑝
)(∏ (1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1
)

]
 
 
 
 
 
 
 

𝑝∈𝑃𝑝

   (72.) 

tan2(2) ∑

[
 
 
 
 
 
 
 

(
23𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
)

∏ (1 −
sin2 (

1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝
𝑘=1

sin (
2
𝑁𝑝
)(∏ (1−

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1
)

]
 
 
 
 
 
 
 

𝑝∈𝑃𝑝

+( ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

−
1

2
) tan(2) + 1 = 0    (73.) 

Now, we reduce (73) further with the following identities [[4],page 41]: 

 cos(𝑛𝑥) =∏(1 −
sin2(𝑥)

sin2 (
(2𝑘 − 1)𝜋

2𝑛
)
)

𝑛
2

𝑘=1

𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

sin(𝑛𝑥) = 𝑛 sin(𝑥) cos(𝑥)

(

 ∏(1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑛−2
2

𝑘=1
)

 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

                                 (74.) 

Putting 𝑛 = 2𝑁𝑝, 𝑥 =
1

𝑁𝑝
, 𝑝 ∈ 𝑃𝑝,  

cos(2) =∏(1 −

sin2 (
1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝

𝑘=1

,
sin(2)

2𝑁𝑝
= sin (

1

𝑁𝑝
) cos (

1

𝑁𝑝
)(∏ (1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1

)      (75.) 
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Substitute expressions (74) into (73): 

tan2(2) ∑

[
 
 
 
 
 
 
 

(
23𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
)

∏ (1 −
sin2 (

1
𝑁𝑝
)

sin2 (
(2𝑘 − 1)𝜋
4𝑁𝑝

)
)

𝑁𝑝
𝑘=1

sin (
2
𝑁𝑝
) cos (

2
𝑁𝑝
)(∏ (1 −

sin2 (
1
𝑁𝑝
)

sin2 (
𝑘𝜋
2𝑁𝑝

)
)

𝑁𝑝−1

𝑘=1 )

]
 
 
 
 
 
 
 

𝑝∈𝑃𝑝

+ (∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

−
1

2
) tan(2) + 1 = 0     (76.) 

tan2(2) ∑

[
 
 
 
 
 

(
23𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
)
cos(2)
sin(2)
2𝑁𝑝 ]

 
 
 
 
 

𝑝∈𝑃𝑝

+( ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

−
1

2
) tan(2) + 1 = 0      (77.) 

tan2(2) ∑ [(
23𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
2𝑁𝑝)cot(2)]

𝑝∈𝑃𝑝

+( ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

−
1

2
) tan(2) + 1 = 0      (78.) 

tan2(2) ∑ [(
23𝑝|𝐵2𝑝|

(2𝑝 − 1)(2𝑝)!
2(2𝑝 − 1)2𝑝−1)cot(2)]

𝑝∈𝑃𝑝

+ (∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑝

−
1

2
) tan(2) + 1 = 0      (79.) 

{ ∑ [(
24𝑝|𝐵2𝑝|

(2𝑝)!
)cot(2)]

𝑝∈𝑃𝑝

}tan2(2) + { ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

−
1

2
} tan(2) + 1 = 0                           (80.) 

Note that the sum for the Perfect Numbers expressed in Mersernne Primes require a 

modification with  a factor 2 ∙ 24𝑝−1 that is lost in (80) for the original sum defoinition for 𝑝 ∈𝑃𝑝. 

This is where the result of  𝜎 (𝑁𝑝∈𝑃𝑝) = 2𝑁𝑝∈𝑃𝑝 in (19) comes into play. 

Put 

𝑋 = tan 2

 𝐴 = {∑ [(
24𝑝|𝐵2𝑝|

(2𝑝)!
) cot(2)]

𝑝∈𝑃𝑝

}   

𝐵 = {∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

−
1

2
}             

]
 
 
 
 
 
 
 

                                                                                       (81.)  

𝐴𝑋2 + 𝐵𝑋 + 1 = 0                                                                                           (82.) 

𝑋 =
−𝐵 ± √𝐵2 − 4𝐴

2𝐴
                                                                                           (83.) 

However, by (H3),  𝐭𝐚𝐧(𝟐) can only have one value, hence, we get: 

𝐵2 = 4𝐴                                                                             (84.) 

Then,  
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(∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

−
1

2
)

2

= 4 ∑ [(
24𝑝|𝐵2𝑝|

(2𝑝)!
) cot(2)]

𝑝∈𝑃𝑝

                                                        (85.) 

Inserting the factor of 2 for the Mersenne primes again to make the sums as per the original 

cot(𝑥 = 2) formula, 

cot(2) =
(∑

24𝑘−1|𝐵2𝑘|
(2𝑘)!𝑘∉𝑃𝑝

−
1
2
)
2

8∑ [(
24𝑝−1|𝐵2𝑝|
(2𝑝)!

)]𝑝∈𝑃𝑝

                                                        (86.) 

(∑
24𝑘−1|𝐵2𝑘|
(2𝑘)!𝑘∉𝑃𝑝 −

1
2
)
2

∑ [(
24𝑝−1|𝐵2𝑝|
(2𝑝)!

)]𝑝∈𝑃𝑝

= −3.6612604350                                     (87.) 

This is not possible since the sums are all positive quantities. It is clear that the contradiction 

results in negative sum of the Mersenne primes 𝑝 ∈ 𝑃𝑝 . The reasons are given below. 

a) Discriminant condition. 

For a single-valued analytic function tan(2), both roots of (83) must coincide, giving the 

constraint (84), i.e. 𝐵2 = 4𝐴 . 

b) Finite-set contradiction. 

Suppose either ℘ or ℵ is finite. If ℘ is finite, then 𝐴 is bounded and 
𝐵2

4𝐴
 is strictly positive; 

hence cot(2) > 0, contradicting the analytic value cot(2) ≈ −0.4576… . 

If ℵ is finite is finite, 𝐴  diverges, destroying convergence and violating the finite analytic value of 

cot(2). 

Therefore, both subsets must extend infinitely. 

c) Analytic necessity. 

The negative finite value of cot(2) arises from the conditional convergence of the full series. Only 

infinite, interleaved contributions from both classes can reproduce the correct analytic continuation 

through the real axis. 

Finite truncations cannot yield the required sign reversal because all partial sums are positive. 

d) Conclusion. 

e) Hence, the equality (84) can hold with finite cot(2) only if  |℘| = |ℵ| = ∞.   

Therefore, both the Mersenne-prime and non-Mersenne classes are infinite classes. 

Now an estimate of the Mersenne prime sum can be obtained if we consider: 

𝑋 = tan 2 = −
(∑

24𝑘−1|𝐵2𝑘|
(2𝑘)!𝑘∉𝑃𝑝 −

1
2
)

2∑ [(
24𝑝|𝐵2𝑝|
(2𝑝)!

) cot(2)]𝑝∈𝑃𝑝

= −2.185039863….                             (88.) 

Now, 2 cot(2) tan 2 = 2, hence, 

2 = −
(∑

24𝑘−1|𝐵2𝑘|
(2𝑘)!𝑘∉𝑃𝑝

−
1
2
)

∑ [(
24𝑝|𝐵2𝑝|
(2𝑝)!

)]𝑝∈𝑃𝑝

                                                                 (89.) 

4 ∑ [(
24𝑝−1|𝐵2𝑝|

(2𝑝)!
)]

𝑝∈𝑃𝑝

+ ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

=
1

2
                                                  (90.) 
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3 ∑ [(
24𝑝−1|𝐵2𝑝|

(2𝑝)!
)]

𝑝∈𝑃𝑝

+ (∑ [(
24𝑝−1|𝐵2𝑝|

(2𝑝)!
)]

𝑝∈𝑃𝑝

+ ∑
24𝑘−1|𝐵2𝑘|

(2𝑘)!
𝑘∉𝑃𝑝

−
1

2
) = 0                     (91.) 

3 ∑ [(
24𝑝−1|𝐵2𝑝|

(2𝑝)!
)]

𝑝∈𝑃𝑝

− cot(2) = 0                                                                (92.) 

∑ [(
24𝑝−1|𝐵2𝑝|

(2𝑝)!
)]

𝑝∈𝑃𝑝

= −0.1525525181…                                               (93.) 

Again a contradiction.  

7. Interpretative Remark 

Suppose Equation (87) represents an analytic equilibrium between a sparse harmonic lattice (the 

Mersenne indices) and the complementary dense continuum (non-Mersenne integers). The finiteness 

of either subset would destroy the analytic balance and invert the sign of cot(2). Thus, the very 

existence of a finite negative cotangent value enforces the infinitude of both classes -a remarkable 

intersection of trigonometric analysis and arithmetic structure. 

Remarks and positioning 

a) Novelty.  

Theorem 1 is not a re-statement of any single classical result; it’s a fusion: positivity + analytic 

identity + discriminant collapse ⇒ infinitude of each class. The closest analogues are Pringsheim 

(positivity constraints), Fabry/Hadamard (sparsity ↔ analytic behavior), and Tauberian methods 

(analytic facts ⇒ density/infinitude). 

b.  The normalization that produces a quadratic in tan(𝑥0) encapsulates the single-valuedness 

of the trigonometric function at 𝑥0; the vanishing discriminant is precisely the statement that the two 

algebraic branches coincide with the analytic branch. For finite partitions, that coincidence cannot 

match the true sign/phase unless both classes are infinite. 

Robustness. The argument isn’t tied to 𝑥0 = 2; any 𝑥0 ∈ (0, 𝜋) with cot(𝑥0) ≠ 0, yields the same 

conclusion under (H1), (H2) and (H3). 
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