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Abstract: Caenorhabditis elegans (C. elegans) is a microscopic, free-living nematode widely used as a 

model organism for studying fundamental biological processes, including development. Moreover, 

because of its rapid growth and simple maintenance, C. elegans is widely used in high-throughput 

screening studies. However, conventional methods for analyzing these morphological and 

developmental characteristics often rely on manual microscopy and human evaluations. These 

methods are labor intensive, slow, prone to mistakes, and not easy to scale up, particularly for high-

throughput studies where vast amounts of information are generated. To solve these problems, 

researchers can bypass these methodologies by employing machine learning which can perform 

consistent and error-free data processing. This review analyses how various machine learning 

methods have been employed to counteract the problems faced in traditional experimental 

approaches. Their impact on the enhancement of precision, effectiveness, and scalability of 

developmental studies in C. elegans has been discussed, as well as the issues that pose constraints to 

the adoption of these technologies in low-resource laboratories.  

Keywords: Caenorhabditis elegans; morphology; development; machine learning; neural network; 

automation 

 

1. Introduction to Caenorhabditis elegans as a Model Organism 

Caenorhabditis elegans (C. elegans) are microscopic, free-living nematodes that grow around ~1 

mm in length. Regardless of its small size, C. elegans shares significant genetic similarities to higher 

living organisms including humans, and many of its key biological pathways are highly conserved 

as well[1]. C. elegans are non-sentient animals and lack pain perception, thus allowing researchers to 

adopt them as an ethical alternative animal model for preliminary research before proceeding to 

higher animal models, such as mice or rats. These attributes indicate C. elegans as a significant animal 

model for studying fundamental biological processes, disorders, and diseases.  

Studies have shown the significance of C. elegans as a model organism in investigating the 

various developmental processes, including early embryogenesis[2], cell fate determination[3], 

organogenesis[4], neuronal development[5], and aging[6]. Furthermore, the cell lineage of C. elegans 

is completely mapped[7], and the entire developmental trajectory from a single-cell zygote to a 

mature adult is completely documented[3]. This allows researchers to investigate the fundamental 

developmental questions, including how cells divide, differentiate, and contribute to the organism’s 

final morphology. C. elegans have transparent bodies and exhibit distinct and quantifiable 

phenotypes, such as body size and shape, throughout their development process[8]. These 

characteristic features provide a significant advantage over other animal models for non-invasive, 

real-time tracking of developmental and morphological changes throughout its life cycle using 

microscopic techniques.  

C. elegans has a short life cycle of ~3 days from egg to adult and a lifespan of ~2-3 weeks[8], 

allowing researchers to perform rapid experiments across generations. Furthermore, C. elegans 
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produces many offspring (up to 300 per hermaphrodite), which is an advantage for experiments that 

require extensive sample sizes for statistical robustness. Despite their rapid generation turnover, the 

maintenance of C. elegans culture is easy and inexpensive, which requires minimal space, media, and 

resources[8]. Due to its microscopic size, C. elegans can be studied in multi-well plates[9] or 

microfluidic devices[10], allowing researchers to study many worms simultaneously. These suggest 

the potential of C. elegans as a powerful animal model for high-throughput experimental assays. 

On the other hand, using C. elegans for high-throughput screening and analysis comes with 

challenges, including labor-intensive workflows, manual human errors during analysis, and the 

generation of large datasets (e.g., imaging or genetic screens) that require advanced computational 

tools for effective analysis and interpretation. This would be a big challenge, especially if the study 

results in generating a huge volume of data ranging from high-resolution images to complex cell 

lineage maps. Researchers have addressed these challenges in recent years by integrating machine 

learning approaches into their analytical workflows, automating the labor-intensive and error-prone 

processes. In the following sections, we discuss the fundamentals of machine learning, classification, 

and the role of different models in C. elegans developmental research. 

2. Overview of Machine Learning 

Machine learning is a branch of artificial intelligence that trains computers to recognize patterns 

in datasets and make predictions or decisions without explicit step-by-step programming. Instead of 

depending on logical rules, machine learning models use algorithms to predict relationships, 

correlations, and trends within the datasets which enables to improve their performance over time 

through experience[11]. Machine learning can be further classified into different types based on their 

learning paradigm and algorithm architecture (Figure 1).  

 

Figure 1. A hierarchical overview of artificial intelligence, machine learning paradigms, and algorithm 

architecture. The figure illustrates a layered representation of the relationship between Artificial Intelligence, 

Machine Learning, and its learning paradigms and architectures. The core represents artificial intelligence, 

encompassing machine learning as a subset. The next layer illustrates the primary learning paradigms in 

machine learning: supervised, unsupervised, semi-supervised, and reinforcement learning. The outermost layer 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2025 doi:10.20944/preprints202505.0891.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0891.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 21 

 

highlights specific algorithmic models and architectures within classical machine learning, such as classification 

and regression models, etc., and deep learning, such as Feedforward Neural Networks (FNN), Convolutional 

Neural Networks (CNN), and Recurrent Neural Networks, etc. 

2.1. Types of Machine Learning 

Based on the learning paradigm, machine learning models are mainly categorized into four 

types: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement 

learning. The supervised learning model uses labeled datasets, where input features are paired with 

corresponding outputs to predict the output for new unseen input. For example, using the amino 

acid sequence dataset of annotated enzymatic and structural proteins, a machine learning model can 

be trained to predict the unannotated proteins either as enzymes or non-enzymes based on their 

amino acid sequence features[12]. The unsupervised learning model predicts hidden patterns in the 

unlabelled dataset. For example, a machine learning model can be trained to learn to group proteins 

in a dataset based on their similar structural features without any functional annotation[13]. Semi-

supervised learning model uses a small proportion of labeled data along with a large proportion of 

unlabelled data to improve learning accuracy. For example, a machine learning model can be trained 

to annotate the genes with unknown functions by using the characteristic features of a small set of 

genes with known functions[14]. The reinforcement learning model is iterative in nature and learns 

through feedback, such as rewards and penalties, rather than depending on the predefined labels. 

For example, a machine learning model can be trained to optimize the drug design by iteratively 

testing modifications of drug molecules and maximizing their binding affinity to a target protein[15].  

2.2. Types of Machine Learning Architecture 

Based on algorithm architecture, machine learning models can be broadly classified into two 

categories: classical machine learning models and artificial neural networks (Figure 1). The 

architecture of classical machine learning models is usually simpler and mostly used for analyzing 

structured and smaller datasets. They depend on statistical principles and mathematical algorithms 

to analyze and make predictions from data. A few of the key types of classical models include 

Regression models: used for predicting continuous numerical values (e.g., predicting gene expression 

levels based on the transcription factors concentration)[16]; Classification models: used for predicting 

discrete categories or labels (e.g., classify diseases based on the patient data)[17]; Clustering models: 

used to group similar data points (e.g., grouping patients into clusters based on their metabolic 

profiles)[18]; Dimensionality Reduction models: used to reduce the number of features while 

retaining important information (e.g., visualizing high-dimensional multi-omics data)[19]; Instance-

based models: used to make predictions for new data based on similarities to the stored instances 

(e.g., predict drug-response phenotypes based on historical patient data)[20]; Probabilistic methods: 

used to predict outcomes by estimating the likelihood of different events or categories (e.g., 

predicting the likelihood of genetic diseases based on family history)[21]; Ensemble methods: used 

to improve accuracy, robustness, and stability by combining predictions from multiple models (e.g., 

predicting disease progression using clinical data and biomarkers)[22]; and Hybrid models: used to 

combine multiple machine learning approaches to improve flexibility and performance (e.g., identify 

patterns and relationships in clinical and pathological features, then apply classification model to 

predict cancer recurrence)[23].  

On the other hand, artificial neural networks are the modern machine learning architecture 

inspired by the structure and functioning of the human brain. They consist of interconnected layers 

of artificial neurons called nodes that analyze data, learn patterns, and are specifically used to process 

complex and large datasets. The architecture of artificial neural networks consists of three layers. The 

input layer takes the input features. The hidden layer performs computations by applying 

mathematical and non-linear activation functions to learn patterns in the data. The output layer 

generates the final prediction[24]. Deep learning is a subset of machine learning that uses artificial 

neural network architecture with multiple hidden layers. The deeper architecture enables the model 
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to analyze complex and hierarchical patterns in large datasets, making them suitable for intricate 

tasks such as image recognition, language processing, etc. A few key types of deep learning 

architectures include feedforward neural networks (FNNs)—the simplest type of artificial neural 

network used for tasks utilizing basic regression and classification (e.g., predicting disease states or 

classifying cancer subtypes based on a patient’s gene expression profiles)[25]; Convolutional Neural 

Network (CNN)—used for processing images through extracting special features (e.g., identifying 

and segmenting sub-cellular organelles in high-resolution cell images)[26]; and Recurrent Neural 

Network (RNN)—used for analyzing sequential data such as time series, text, etc. (e.g., predicting 

protein structure or function based on the amino acid sequence)[27,28]. The detailed discussion on 

specific components of machine learning, including model training, validation, deployment, 

evaluation metrics, and activation functions, is beyond the scope of this review. Readers interested 

in these aspects are encouraged to refer to comprehensive articles on machine learning 

methodologies[24]. 

3. Machine Learning in C. elegans Developmental Research 

3.1. Classification and Morphological Phenotyping of C. elegans 

Classification and phenotyping are fundamental to understanding the C. elegans developmental 

biology. These tasks can be automated using machine learning, which also helps the researcher 

recognize the various developmental stages, estimate the physiological age, and classify sexual 

phenotypes with great accuracy. Furthermore, the real-time tracking systems provide dynamic 

insights into the phenotypical changes that can be studied on a larger scale with less human 

intervention. This section discusses how these methods mitigate the phenomics data collection 

bottleneck and enhance the proficiency in accuracy and speed of C. elegans developmental studies. 

3.1.1. Classification of Developmental Stages  

It is crucial to accurately recognize and classify C. elegans at different stages to study the effect of 

a drug or gene of interest on the developmental process. This would be a tiring and challenging task 

if performed manually, especially recognizing the developmental stage from the large image datasets 

containing mixed populations of adult worms, larvae, and eggs. DevStaR (Developmental Stage 

Recognition) is an object recognition system based on a hierarchical principle developed for 

automatic recognition and classification of C. elegans developmental stages from high-throughput 

image datasets[29]. The DevStaR system consists of four hierarchical layers, each having a specific 

function and output groups of units, which are then used as the input for the consecutive layer. The 

first layer identifies the well region containing C. elegans by extracting contrast-based features using 

steerable filters. The second layer segments objects by analyzing the pixels within the area of interest 

and grouping them into connected components. The third layer deconstructs segmented objects into 

parts by analyzing their boundary contours and constructs a tree graph from boundary elements 

using a symmetry-based scoring system. The fourth layer extracts morphological features from object 

parts, including area, symmetry axis length, boundary contour length, and changes in width (Figure 

2A). These features are then classified using the support vector machine (SVM) classifier trained on 

~2000 labeled examples to categorize objects into developmental stages.  

DevStaR achieves high precision and recall for adult worm classification and overall object-

background separation. However, DevStaR has low precision and recall for larvae and eggs due to 

boundary pixel errors and clumping of eggs, respectively. Additionally, it can quantify the lethality 

and survival rates of C. elegans accurately by measuring the egg-to-larvae ratio and larvae-to-adult 

ratio, respectively. DevStaR surpasses manual annotations by efficiently processing large, high-

resolution image datasets in near real-time. However, it does show segmentation errors when objects 

overlap or occlude each other, particularly in images where worms are curled or eggs form clusters.  
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Figure 2. Machine learning workflows for developmental stage recognition and phenotypic analysis in C. 

elegans. (A) DevStaR pipeline for automated classification of developmental stages in C. elegans. A hierarchical 

model segments the image, constructs object graphs, and categorizes objects into eggs, larvae, and adults using 

SVM. (B) 3D morphological reconstruction pipeline. Low-resolution images are enhanced through super-

resolution and denoising, followed by segmentation, alignment, and volumetric reconstruction for detailed 
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phenotypic measurements. LR, low-resolution; HR, high-resolution. (C) CNN-based physiological age 

prediction of adult C. elegans. Brightfield images are normalized and fed into InceptionResNetV2, incorporating 

curvature features to estimate age at daily resolution. (D) WorMachine pipeline for sexual classification and 

fluorescence-based phenotyping. CNN (WormNet) segments individual worms, extracts morphological and 

fluorescence features, followed by SVM and dimensionality reduction (PCA, t-SNE) for classification and 

continuous phenotype mapping. (E) WormPicker robotic system integrating CNN and Mask-RCNN for real-

time phenotypic analysis and autonomous worm picking. Worms are tracked in low magnification images and 

analyzed for developmental stage, sex, and fluorescent expression at higher magnification. GFP, green 

fluorescent protein; RFP, red fluorescent protein. (F) High-throughput microfluidic embryo phenotyping using 

an AlexNet-based CNN. Embryos are loaded into microfluidic chips, imaged over time, and classified into 

developmental or viability categories (e.g., normal, dead, late hatching) based on mobility and morphology. 

3.1.2. 3-dimensional Morphological Reconstruction and Phenotyping 

Comprehensive 3-dimensional (3D) morphological visualization of C. elegans anatomy enables 

researchers to observe the spatial organization of cells and tissues and quantitative phenotyping, 

which is critical for understanding developmental processes including organ formation and tissue 

generation. However, precise morphological phenotyping remains a challenge when using widefield 

or confocal microscopy techniques. This is because, at high magnification, the image resolution often 

degrades, and the signal can blur or lose intensity, thus leading to unclear and noisy images. 

Additionally, the 3D reconstruction of C. elegans is difficult due to the nematode’s irregular, flexible 

shape and varying developmental stages, which can cause errors in aligning the images resulting in 

inaccurate 3D reconstructions.  

To overcome this challenge, a customized machine learning pipeline has been developed, 

integrated with a robotic sample rotation system, to improve the image quality, precise 3D 

morphological reconstruction, and enhance phenotyping of C. elegans embryos and worm bodies at 

different developmental stages[30]. The machine learning model enhances the image quality by 

reducing noise and improving the resolution and contrast, thus making subtle phenotypic features 

more visible. It segments the worm boundaries and aligns the 2D image stacks precisely, resulting in 

high-accuracy 3D reconstruction of C. elegans (IoU >95%) at various developmental stages (Figure 

2B). Furthermore, using the 3D models, it accurately identifies key morphological readouts, including 

volume, surface area, length, maximum width, and the ratio of length to maximum width.  

Although the system excels in static morphological phenotyping and could be adopted for high-

throughput phenotyping, drug screening, and genetic interaction analysis, real-time or dynamic cell 

interactions during development have not yet been fully explored. 

3.1.3. Physiological Age Estimation 

Due to its short lifespan and rapid developmental characteristics, C. elegans serves as an excellent 

model for aging studies, including antiaging drug screening and genetic research. However, it is a 

challenge to identify the precise physiological age of C. elegans through manual visual inspection of 

morphological changes. This limitation is addressed by a CNN-based image processing approach 

that analyzes bright-field microscopic images of C. elegans worms to measure the physiological age 

with a granularity of days rather than broader age periods by using texture entropy[31] (Figure 2C). 

Among the five CNN architectures tested (ResNet50, InceptionV3, InceptionResNetV2, VGG16, and 

MobileNet), the InceptionResNetV2 model achieved the best performance with a mean absolute error 

(MAE) of less than 1 day. Other models performed worse, with ResNet50 reaching an MAE of 1.8 

days and VGG16 at 2.38 days. The models were trained on a dataset of 913 images spanning 14 days 

of adulthood, with ~60 images per day. 

Moreover, the inclusion of the “curved_or_straight” attribute, which captures the global contour 

of nematodes (either curved or straight), significantly improved the model’s accuracy by reducing 

classification errors. Additionally, two models were proposed: a linear regression model for 

continuous age prediction and a logistic regression for discrete classification of age into specific days, 
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achieving an MAE of 0.94 days and 84.78% accuracy with a tolerance of one day, respectively. While 

logistic regression had higher accuracy, it exhibited greater variability in predictions compared to 

linear regression. However, the model’s reliance on the “curved_or_straight” attribute may introduce 

bias, as manual labeling of nematodes into curved or straight categories is subjective and influenced 

by preprocessing choices. 

3.1.4. Sexual Classification 

Existing traditional image analysis tools, including WormSizer[32], Fiji[33], Quantworm[34], 

and WormToolbox[35] lack automation and comprehensive analysis of intricate phenotypical 

features, like continuous sexual phenotypes. WorMachine, a MATLAB-based software platform 

integrated with image processing, feature extraction, and machine learning capabilities, has been 

developed to automate the analysis of C. elegans morphological features, including area, length, mid-

width, and tail/head diameter ratios (for sexual classification)[36]. WormNet, a CNN-based classifier, 

has been employed for worm identification and flagging defective or noisy images, thus enhancing 

the data quality by distinguishing valid worms from artifacts. Additionally, it quantifies RNAi-

induced gene silencing, intracellular protein aggregation, and puncta distribution using the 

fluorescence features, including corrected total worm fluorescence (CTWF), local maxima of 

fluorescence intensity, and raw integrated density, thus broadening its application beyond sexual 

classification. WorMachine employs machine learning algorithms, specifically the SVM, for the 

binary classification task of distinguishing between male and hermaphrodite worms. Moreover, it 

uses dimensionality reduction techniques like PCA and t-SNE to quantify continuous phenotypical 

features, including masculinization or developmental stages, allowing users to quantify subtle 

variations in phenotypes (Figure 2D). It demonstrated successful sexual classification of worms by 

using the morphological and fluorescence-based features extracted from the images with a high 

accuracy of up to 98%. Its modular design allows the user to adapt to various experimental needs. 

However, the software has technical limitations, such as the size of images used for analysis cannot 

be more than 1 GB due to its memory constraints, and images should be of high contrast containing 

no overlapping or occluded worms, suggesting that it’s not suitable for analyzing images with a high 

density of worms. 

3.1.5. Real-Time Tracking and Dynamic Phenotyping 

Recent technological advancements allow researchers to adopt automation in their routine 

experimental workflows. WormPicker, a versatile automated robotic system, utilizes a motorized 3D 

stage and a robotic arm to perform complex workflows in C. elegans studies, including imaging, 

phenotyping, genetic manipulations, and transferring of worms onto standard nematode agar 

media[37]. The system uses a machine vision algorithm based on CNNs and Mask-Regional CNNs 

(Mask-RCNNs) to process images at different magnifications, precisely segment C. elegans, and 

identify features such as developmental stage, morphology, sex, and fluorescence expression. 

WormPicker also employs an electrically self-sterilized wire loop for efficient and contamination-free 

worm transfer.  

The role of CNNs is to analyze low-magnification bright-field images to track worms and the 

robotic worm picks during real-time operations. On the other hand, the Mask-RCNN is used for 

detailed segmentation of worms from high-magnification bright-field images that help in the detailed 

phenotypical analysis, including developmental stage, sex, and morphology of individual worms 

(Figure 2E). Moreover, the machine vision system confirms the accuracy of phenotypical assessments 

by analyzing fluorescence intensity in specific channels (e.g., GFP, RFP) and correlating the 

fluorescence signals with the segmented worm contours captured from bright-field images.  

Importantly, the integration of deep-learning-aided segmentation demonstrated that a robotic 

system could perform complex genetic procedures such as genetic mapping, genomic transgene 

integration, and phenotype-based sorting autonomously with improved accuracy and consistency. 

The system’s throughput is comparable to that of experienced human researchers, thereby reducing 
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the need for labor-intensive manual intervention and minimizing human errors. In addition, the 

proposed system allows the flexibility of writing custom scripts to carry out tailored experimental 

workflows as well as integrating the machine vision system into various conventional genetic screens 

and analyses. However, the system does have limited capability for handling worms with unusual 

or extreme morphological variations; therefore, the algorithm may need to be custom trained for the 

efficient recognition and identification of strains with abnormal morphology and phenotypes. 

Conventional developmental and motility-associated phenotypical studies of adult nematodes 

require long culture periods, therefore making large-scale screenings time-consuming. Interestingly, 

C. elegans embryos, due to their shorter developmental periods and immobile nature, serve as an 

attractive alternative for rapid phenotyping. However, traditional methods, such as mounting 

embryos on agar pads are laborious and time-consuming. To overcome this difficulty, a high-

throughput microfluidic platform that combines machine learning and image processing has been 

developed to automate the phenotyping of C. elegans embryos[38]. The system is capable of handling 

up to 800 embryos simultaneously and employs a combination of AlexNet-based-CNN and standard 

image processing techniques to process images of embryos across different developmental stages. By 

training the CNN on labeled brightfield and fluorescent image patches, the model can classify and 

distinguish between different embryonic developmental stages, including bean stage, twitching 

stage, and hatching stage (Figure 2F). Furthermore, the model tracks temporal changes in embryo 

images to infer mobility and classify viability states, thus being able to distinguish between normal, 

dead, and late-hatching embryos. However, the model requires high-performance GPUs for optimal 

performance and the classification accuracy may decrease with fewer labeled images, suggesting 

areas for improvement, such as increased data labeling or model optimization.  

3.2. Developmental Toxicity and Tissue Analysis in C. elegans 

Evaluating developmental toxicity and evaluating tissue integrity is crucial to understanding 

the impact of environmental, genetic, and chemical factors on the developmental biology of an 

organism such as C. elegans. Machine learning plays a key role in the automation of these analyses, 

especially in high-throughput experimental procedures. From developmental toxicity screening to 

tissue damage examination and even tracking morphological changes, these techniques show the 

degree of external interference on the structural and functional integrity of the tissue. This section 

discusses the innovative machine learning solutions in these aspects, emphasizing their impact in 

minimizing biases, improving accuracy, and increasing research output. 

3.2.1. Developmental Toxicity Testing 

Developmental toxicity (DevTox) tests are experimental assays used to investigate the adverse 

effects of chemical substances on an organism’s normal development. Performing the DevTox test on 

mammalian animal models like mice, rats, and rabbits is often preferred by regulatory agencies and 

industries. Interestingly, recent scientific and technological advancements in test methodologies 

suggest that C. elegans can be used as an alternative animal model for rapid high-throughput toxicity 

testing[39,40]. Importantly, utilization of advanced microfluidic devices like vivoChip ensures rapid 

and consistent immobilization of large numbers of worms without anesthetics and eliminates overlap 

between worms[41]. Therefore, it allows us to capture clear images of individual worms without 

interference and serves as an ideal platform for high-throughput developmental toxicity studies.  

However, the manual labor-intensive morphological phenotype analysis process during the test 

poses a limitation, especially in high-throughput screenings. A custom machine learning model 

named vivoBodySeg is developed using a 2.5D U-Net architecture to automatically segment and 

analyze the morphological features of immobilized C. elegans bodies from high-resolution images 

obtained from vivoChip devices[42]. Firstly, the age-synchronized worms are treated with the 

chemical substance of interest at different concentrations, followed by the immobilization of worms 

using the vivoChip microfluidic device that comprises 960 channels per chip. Secondly, the high-

resolution time-lapse brightfield and z-stack fluorescence images of each channel are captured 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2025 doi:10.20944/preprints202505.0891.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0891.v1
http://creativecommons.org/licenses/by/4.0/


 9 of 21 

 

automatically using a customized automated microscope. Finally, the model segments individual 

immobilized worms and analyzes multiple morphological parameters, including body length, area, 

volume, and autofluorescence from the images (Figure 3A).  

The model demonstrated to perform worm segmentation with a high accuracy of 97.8% and 

analyze large image datasets rapidly at 140x faster than manual methods. Moreover, the model 

demonstrates high statistical robustness with coefficients of variance between 3.7% and 8%, ensuring 

low variability and high reproducibility. These suggest that the implementation of the model in the 

DevTox test workflow would efficiently eliminate bias and variability associated with manual 

analysis. Furthermore, the vivoChip-vivoBodySeg system offers superior performance compared to 

traditional well-plate or flow cytometry methods by reducing user bias, improving measurement 

precision, and achieving higher throughput efficiency. However, the dependence on high-resolution 

images for accurate detection of body dimensions and autofluorescence intensity distribution, and 

the high-end GPUs and memory systems for optimal performance, are a challenge for labs with 

limited resources. 

 

Figure 3. Machine learning approaches for developmental toxicity screening and tissue integrity assessment 

in C. elegans. (A) The vivoChip-vivoBodySeg platform for high-throughput developmental toxicity testing. 

Immobilized worms in vivoChip devices are imaged in z-stacks and segmented using a 2.5D U-Net to extract 

morphological parameters, including body length, area, and autofluorescence. ViT, vision transformer. (B) 

Multispectral imaging-based tissue damage and egg viability assessment. Worms and eggs treated with varying 

bleach concentrations are imaged across multiple wavelengths, followed by region of interest (ROI) extraction 

and spectral profile generation. Machine learning algorithms (PCA and SVM-DA) classify damage levels and 

predict viability. (C) Morphometric analysis of pharynx tissue during aging. Differential interference contrast 

(DIC) microscopy images of C. elegans pharynx are converted into high-dimensional feature vectors, class 

centroids are calculated for age-defined groups, and morphological transitions are tracked to assign 

physiological age and predict functional decline. 

3.2.1. Analysing Tissue Damage and Egg Viability 

Studying tissue damage and egg viability in C. elegans may provide insights into how 

environmental, genetic, and chemical factors affect tissue integrity, function, and organismal 
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development. Multispectral imaging is a powerful analytical imaging technique that captures image 

data across multiple wavelengths of the electromagnetic spectrum. Unlike traditional imaging, which 

captures information using either a single wavelength or a combination of a broad spectrum of 

wavelengths (RGB images), multispectral imaging collects detailed spectral information for each 

pixel in the image[43]. Due to its ability to collect high-resolution spectral and spatial data, 

multispectral imaging is effective in studying subtle morphological and structural changes in tissues 

or organisms in a non-invasive manner that correlate with key developmental processes, including 

embryogenesis, cell differentiation, and structural integrity.  

However, conventional approaches for assessing morphological alterations involve manual 

observation and simple measurements, which are labor-intensive, and subjective to errors. To 

address these challenges researchers have successfully implemented machine-learning approaches 

in their study to analyze tissue damage and egg viability from multispectral images[44]. In their 

study, worms and eggs were exposed to different bleaching treatment conditions, followed by 

capturing multispectral images of treated worms and eggs using 7 light wavelengths ranging 

between 450-950 nm. The captured images were then analyzed using machine learning algorithms 

like PCA to reduce the high dimensionality of multispectral imaging data to visualize and 

differentiate the tissue damage patterns. Whereas the SVM-DA has been employed to classify worms 

and eggs based on the degree of damage and to predict egg viability (Figure 3B).  

The analysis revealed that increased alkaline hypochlorite concentrations correlated with 

reduced egg viability and altered tissue morphology in eggshell layers. Moreover, the machine 

learning framework algorithm identified specific zones of damage in worm bodies such as anatomical 

orifices including the mouth, vulva, and anus, where alkaline hypochlorite penetration has been most 

pronounced. Altogether, the algorithm framework effectively correlates imaging data with tissue 

damage and egg viability (R2 of up to 0.998) and demonstrates high classification accuracy for 

treatment levels and viability prediction with >90% sensitivity and specificity. However, the 

approach heavily relies on sophisticated multispectral imaging systems and high computational 

configurations, thus it may pose a challenge for the successful adoption of this approach in labs with 

limited resources. Nevertheless, the proposed framework shows potential for application in studying 

the tissue damage of C. elegans exposed to different chemical substances.      

3.2.2. Tissue Morphological Transitions  

During development, the tissues are generated from newly synthesized biomolecules through 

morphogenic pathways, and during aging the tissues may undergo deterioration which is indicated 

via functional and structural declines[45]. Quantification of structural transition in the tissues over 

time can serve as a valuable biomarker marker in aging-related studies. However, these studies are 

laborious, and the sensitivity of analysis is limited to the user’s visual perception and expertise. This 

suggests that manual morphological analysis is limited to small-scale studies and may add significant 

variation to the study. To address these challenges, a pattern recognition-based machine learning 

algorithm has been developed to track structural changes in the pharynx across the lifespan of C. 

elegans and examine their correlation with aging and functional decline[46].  

The algorithm extracts features such as texture statistics, polynomial decompositions, 

segmentation statistics, and image transforms from differential interference contrast (DIC) 

microscopy images to analyze morphological changes between age groups. The extracted features 

were assigned weights using Fisher Discriminant scores based on their ability to distinguish between 

different age groups. A trained morphology-based classifier then identifies morphological changes 

in pharynx structure between early, mid, and late adulthood worms by converting image data into a 

high-dimensional feature space and calculating similarities to predefined class centroids. The 

analysis revealed three distinct morphological states associated with aging: early adulthood (days 0-

2), mid-life (days 4-8), and late adulthood (days 10-12) (Figure 3C). This transition suggests that the 

pharynx morphology is dynamic in nature and undergoes characteristic, stepwise changes 

throughout adulthood.  
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Identified mid-life morphological states of the pharynx were then correlated with future 

functional decline using a longitudinal lifetime pumping ability model, which measured pharynx 

pumping rates across an organism’s lifespan. Altogether, the computational approach demonstrated 

accurate identification of morphological transitions during aging and provides quantitative insights 

into how structural changes influence tissue function during aging. However, the analysis is limited 

to pharynx tissue suggesting the need for additional validation for broader application to other 

tissues. Furthermore, the performance of the algorithm depends on the quality and uniformity of 

microscopy images.  

3.2. Cellular Dynamics and Lineage Studies in C. elegans 

Analysis of cellular dynamics and lineage pattern is crucial for understanding the 

developmental processes of C. elegans. The fusion of machine learning and modern imaging 

technology has drastically changed the analysis of single cell activities, lineage tracing, and 

multicellular interactions. These approaches allow whole-body cell segmentation, embryonic 

modeling and germline stem cell division tracking with unprecedented details, thus enable high-

resolution insights into cellular behavior and fate determination. This section discusses advanced 

methodologies that enhance the understanding of C. elegans development on a cellular level and 

beyond. 

3.2.1. Cell Lineage Tracing  

Recent advances in microscopy imaging paved the way for tracking gene expression at single-

cell resolution. This can be applied to annotate and track cell lineages during C. elegans embryonic 

development. StarryNite, an automated cell lineage tracing software, has been developed to 

recognize cells by identifying nuclear divisions from the 3D confocal microscopy images of 

developing embryos captured at high spatial and temporal resolution[47]. However, the software 

produces a few error types including false positives, false negatives, incorrect positioning, diameter 

estimation errors, and tracing errors, particularly during later stages of development due to the 

increased cell density and noise. To address the errors generated by the StarryNite software, an SVM 

classifier-based machine learning model has been developed[48]. The model analyzes the images by 

extracting features such as time indices, spatial distances, nuclear sizes, fluorescence intensities, and 

angles of nuclear movements. The SVM then classifies whether detected nuclear division calls are 

valid or mis-annotated (Figure 4A), thus improving annotation accuracy (AUC scores of ~0.933) and 

reducing manual curation time up to 30%. SVM demonstrated accuracy improvements over 

StarryNite’s baseline (83.8% to 94%). However, the performance of the algorithm may deteriorate on 

analyzing datasets with varying imaging resolutions or biological conditions. Furthermore, it does 

not address error types like false negatives or diameter estimation errors. Nevertheless, this opens 

the possibility of applying the proposed framework to correct the errors generated by various image 

analysis tasks.  

Though cellular dynamics like cell division, migration, and cell fate determination are well 

studied during the developmental process, cellular morphological dynamics remain relatively under-

characterized. Therefore, it creates a significant knowledge gap that limits the comprehensive 

understanding of developmental and cell biology. To address this, CShaper- an automated software 

pipeline integrated with the DMapNet-deep learning model has been developed to quantify cellular 

morphological dimensions of developing C. elegans embryos[49]. The CShaper analyzes 3D time-

lapse confocal microscopy images of C. elegans embryos of different developmental stages ranging 

from 4-cell to 350-cell stages, and segments individual cells using fluorescently labeled membranes. 

Instead of the traditional binary segmentation, the DMapNet neural network executes the membrane 

segmentation by generating a discrete distance map to improve accuracy in identifying complex cell 

boundaries, achieving a Dice score of 95.95% albeit the densely packed cellular environment of the 

developing embryo. As a result, CShaper generates a comprehensive 3D cell morphological atlas 

containing key phenotypical metrics, including cell shape, volume, surface area, nucleus position, 
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cell-cell contact, and spatial organization (Figure 4B). The pipeline enables the precise identification 

cell identities by combining membrane segmentation with cell lineage tracing produced by tools like 

StarryNite and AceTree. Moreover, it demonstrates the efficiency of processing large image stacks in 

~30 minutes, making it suitable for high throughput studies, though it requires significant 

computational resources, particularly during distance map generation and segmentation. However, 

the lack of a user-friendly visualization platform limits the interactive exploration of cell 

morphological dynamics. 

 

Figure 4. Machine learning pipelines for single-cell lineage tracing, segmentation, and multicellular dynamics 

during C. elegans development. (A) StarryNite-based nuclear division annotation correction using SVM 

classifiers. Nuclear features (e.g., size, fluorescence, movement) are used to distinguish valid from mis-annotated 
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divisions, improving lineage tracing accuracy. (B) CShaper pipeline for nucleus and membrane segmentation. 

DMapNet performs membrane segmentation from time-lapse stacks, enabling comprehensive cell shape lineage 

tracking in developing embryos. (C) Whole-body cell segmentation and recognition using a Displacement Vector 

Field-based deep learning model. A statistical structural atlas is used for cell identification across densely packed 

3D images. (D) Integration of automated cell tracing and agent-based modeling (ABM) for simulating cell 

division and movement dynamics in embryogenesis. Data from 3D imaging informs ABM framework to model 

fate specification and spatial behavior. (E) Deep reinforcement learning integrated with ABM to optimize cell 

migration paths. Deep Q-network framework trains cells to mimic active and passive migratory behaviors 

within a developmental context. (F) CentTracker pipeline for large-scale tracking of germline stem cell (GSC) 

divisions. Modules include image registration, centrosome/Spot detection and tracking, track pair classification, 

and mitotic event scoring. DTC, distal tip cell; GFP, green fluorescent protein; mCh, monomeric cherry 

fluorescent protein; NEBD, nuclear envelop breakdown. (G) GAN-based framework for classification and 

detection of multicellular rosette structures in embryonic tissue. Feature learning is performed with unlabeled 

images, transferred to an AlexNet-style CNN for accurate classification using limited annotated data. 

3.3.2. Whole-Body Cell Segmentation and Recognition 

Accurate studies of the cell lineages, cell fates, and gene expression at the single-cell level 

resolution in C. elegans require precise segmentation and recognition of individual cells. However, it 

may be a problem due to the highly dense distribution, identical shapes, and non-uniform intensity 

profiles of whole-body cells observed in 3D fluorescence microscopy images. A novel Displacement 

Vector Field (DVF) based deep learning model has been developed for the automated segmentation 

and recognition of C. elegans whole-body cells from 3D fluorescence microscopy images[50]. The 

algorithm pipeline has been implemented using PyTorch, the algorithm consists of two key modules: 

a segmentation module that uses DVF for effective segmentation of densely packed cells with blurred 

boundaries and a recognition module that uses a statistical-structural matching-based cell 

recognition method. The recognition module generates a comprehensive statistical atlas of C. elegans 

whole-body cells, incorporating statistic priors like average spatial positions, spatial position 

variations, and topological structural variations for robust cell recognition (Figure 4C). Moreover, the 

pipeline demonstrated successful segmentation and recognition of all the 558 whole-body cells in L-

stage larvae with high performance (F1 score of 0.8956) and accuracy of 0.8879. Moreover, the 

algorithm pipeline can also be adaptable to segment and recognize cells of other animal models 

including Platynereis and rat kidney cells. However, the algorithm requires precise statistical priors 

suggesting the demand for extensive manual annotations. Additionally, the algorithm’s efficiency is 

sensitive to segmentation errors which further affect the cell recognition pipeline. Nevertheless, it 

offers a promising framework for high-throughput and accurate cell segmentation and recognition 

across different biological datasets. 

3.3.3. Modelling Cellular Dynamics in Embryogenesis 

Scientists study the early-stage embryogenesis of C. elegans to understand the intricate process 

of cellular dynamics and behavior during development. Studies have demonstrated that agent-based 

modeling (ABM), a computational approach with a set of physical and biological rules can be used 

as a powerful tool for simulating complex biological systems including developmental 

biology[51,52]. However, these simulations still lack a comprehensive understanding of the 

regulatory mechanisms of cellular dynamics and thus require optimization. An observation-driven 

framework combining ABM and deep reinforcement learning has been shown to simulate the 

movement and behavior of individual cells within the complex embryonic environment[53]. 

Observational data from C. elegans embryos-derived 3D time-lapse fluorescence confocal microscopy 

enabled the simulation of cellular behaviors including cell fate, division, and movement. By 

integrating automated lineage tracing and tissue-specific fluorescently labeled gene expression, a 

developmental landscape has been constructed to model cell fate and differentiation pathways 

(Figure 4D). Overall, the framework demonstrated the ability to combine observational mobile 
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cellular morphology data within computational models achieving a deep understanding of how these 

dynamics work at the cellular level. Nevertheless, there is still an issue with scalability in analyzing 

larger datasets or other organisms with more complex embryogenesis. The inclusion of hierarchical 

and multi-agent reinforcement learning approaches in future research may help to address these 

limitations. 

Furthermore, integration of a Deep-Q-network-based reinforcement learning with ABM has 

been shown to optimize the cell migration paths during C. elegans early-stage embryogenesis[54] 

(Figure 4E). The model demonstrated the ability of cells to learn different migratory behaviors, 

particularly distinguishing between active (reader-like) and passive (follower-like) migratory roles. 

Importantly, the application of reinforcement learning improved the robustness of the simulation 

model in exploring unknown regulatory mechanisms to hypothesize and test unknown interactions. 

However, analysis of large-scale training and simulations require high computational requirements 

including the powerful GPUs, suggesting a potential bottleneck in the workflow. 

3.3.4. Tracking Germline Stem Cell Dynamics in Embryos 

Tracking the germline stem cells (GSCs) division in developing C. elegans embryos is essential 

for understanding the stem cell interaction. However, it would be technically challenging to analyze 

the large-scale datasets of dividing GSCs. To address this challenge, CentTracker, a machine learning-

based automated image analysis tool has been developed to track the mitotic events in dividing GSCs 

in large-scale live image datasets[55]. The framework pipeline consists of four main modules: 

registration module, which corrects the sample movement during live imaging by registering images 

by identifying spindle midpoints and applying corrections that account for displacement; spot 

detection and tracking module, which identifies and tracks individual centrosomes, within the 

registered images; track pair classifier module, which uses random forest-based classifier to pairs 

centrosome tracks to true mitotic pairs; and scoring and analysis module, which analyzes paired 

tracks to extract mitotic features and enables users to score mitotic landmarks including nuclear 

envelope breakdown and anaphase onset (Figure 4F).  

The framework has been reported to identify centrosome pairs with a high precision of 94.5%, 

with a discovery rate (identification of all mitotic cells) of 82.4%. However, the discovery rate depends 

on initial tracking quality, and the performance reduces under noisy datasets or severely perturbed 

spindle dynamics. Beyond technical performance, CentTracker revealed that GSC divisions are 

spatially clustered, and that spindle orientation is biased along the distal–proximal axis of the gonad. 

The system’s generalizability to other cell types and organisms highlights its potential for future 

large-scale stem cell studies. 

3.3.5. Detection and Characterization of Multicellular Structures in Embryos 

The analysis of cellular shapes provides critical biological insights into morphogenetic events 

and mechanisms in complex tissues, including cell intercalation and tissue morphogenesis. However, 

analyzing extensive 3D time-lapse images of tissues is a labor-intensive and time-consuming task. To 

address this, a generative adversarial network (GAN)-based deep learning model has been 

developed to identify multicellular rosette structures in C. elegans embryos with fluorescently labeled 

cell membranes[56]. The model combines unsupervised feature learning using GANs with feature 

transfer to an Alex-style CNN, which is then trained on a small, labeled dataset (Figure 4G). The 

GAN-based approach utilized 11,250 unlabeled images for initial training and required only 10–15 

rosette images and 30–40 non-rosette images for supervised learning. This combined approach 

outperformed classical CNNs by achieving >80% classification accuracy and maintaining >90% of 

full-dataset performance using only 20% of the labeled data, thus demonstrating its robustness 

against data scarcity. A sliding window approach and probability heat maps further enhanced rosette 

detection within large observation images. However, performance reduces with extremely small 

training datasets (<10%) and relies significantly on high-performance GPUs. Nevertheless, the 
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framework can be adapted for other biological image classification tasks. Additionally, a public 

benchmark dataset has been created to support further research. 

4. Future Perspectives and Limitations 

Machine learning has become a powerful tool that has transformed experimental workflows into 

C. elegans research from classifying developmental stages and estimating physiological age to 

tracking cellular dynamics and phenotyping embryonic and adults. These algorithms have 

significantly improved the accuracy, reproducibility, and efficiency of data analysis. However, 

several challenges and limitations must be addressed to enable universal adoption of machine 

learning in developmental biology, especially in laboratories with limited resources. This section 

discusses the key hurdles to implementing the above-mentioned research workflows in labs with 

limited financial, technical, or computational resources. Table 1 represents the comparative summary 

of the machine learning models, input data types, pros, and cons discussed in this review.  

One of the most critical limitations is the demand for high computational power. Many machine 

learning models, especially deep learning architectures require high-performance GPUs to function 

optimally[38,42,44,54,56]. While C. elegans is a economical and easily maintained model organism, 

the computational requirements of these pipelines often exceed what typical research or academic 

labs can afford. Future technological advances may help mitigate this by either reducing the 

computational complexity of models or lowering the cost of hardware or ideally, both. Another major 

limitation is the need for sophisticated instruments, which many of the discussed workflows depend 

on. These include robotic worm handling system[37], custom-designed microfluidic chips[38,42], 

multispectral imaging system[44], and advanced microscopy systems[46,48–50,53,54]. These 

instruments are essential for specific experiments and often inaccessible to laboratories with limited 

resources. In such cases, lower-cost alternatives are currently unavailable, limiting the broader 

application of these workflows. 

Moreover, a further hurdle is the technical knowledge required to develop, adapt, or deploy 

machine learning frameworks, which often involves proficiency in programming languages 

including MATLAB, Python, and machine learning libraries like PyTorch or TensorFlow. Most 

biologists do not have practical exposure to coding, making it difficult for them to customize or 

implement these tools independently. Furthermore, many pipelines are tightly linked to code-based 

platforms, creating a steep learning curve for non-expert users. However, tools like WorMachine 

demonstrate how machine learning can be made more accessible through the implementation of a 

graphical user interface (GUI), allowing researchers with no programming experience to perform 

high-level phenotypic analysis[36]. This emphasizes the importance of user-friendly design in future 

pipeline development. Building machine learning platforms with intuitive GUIs would equalize 

access and significantly increase adoption among life science researchers. Finally, with the rise of 

open-source, code-free platforms such as KNIME[57] and Orange[58], there is an opportunity to 

develop and deploy machine learning workflows in more accessible ways. These tools provide drag-

and-drop interfaces for data analysis and machine learning, reducing the technical obstacle for users 

while maintaining high functionality. Leveraging such platforms to design pipelines specific to C. 

elegans developmental biology could accelerate the widespread use of machine learning in everyday 

experimental workflows. 

Table 1. Summary of machine learning models for phenotypic analysis in C. elegans development. 

Sl. No Phenotype Input data 
Machine 

learning model 
Pros Cons 

Referen

ce 

1 

Developmental stage 

classification (eggs, 

larvae, adult) 

High-resolution 

image datasets 

(brightfield 

microscopy) 

SVM 

High precision 

for adults, 

reduces human 

errors 

Low precision for eggs 

and larvae 
[29] 
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2 
3D worm body structure, 

key morphological traits 

Stacked 2D 

confocal or 

widefield 

microscopy 

images 

Customized 

machine 

learning 

pipeline with 

noise reduction 

and 

segmentation 

Accurate 3D 

reconstructions, 

applicable to 

drug screens 

Limited real-time 

dynamic phenotyping 
[30] 

3 
Physiological age 

estimation 

Brightfield 

images of 

worms across 

14-day lifespan 

CNN 

(InceptionResNe

tV2) 

Granular day-

level age 

prediction 

Potential bias due to 

manual preprocessing 
[31] 

4 
Sex determination (male, 

hermaphrodite) 

High-contrast 

fluorescence and 

morphological 

images 

SVM with PCA 

and t-SNE for 

dimensionality 

reduction 

High sexual 

classification 

accuracy 

Memory constraints for 

large image files 
[36] 

5 

Dynamic phenotypic 

changes during 

development 

Brightfield and 

fluorescence 

microscopy 

images 

CNN and Mask-

RCNN 

Reduces manual 

interventions 

Limited for worms with 

extreme morphologies 
[37] 

6 

Embryonic 

developmental stages, 

motility, and viability 

states 

Brightfield and 

fluorescent 

image patches of 

embryos 

AlexNet-based 

CNN with 

standard image 

processing 

Rapid 

phenotyping of 

embryos, 

suitable for 

large-scale 

screenings, 

reduces manual 

interventions 

Requires high-

performance GPUs and 

is sensitive to labelled 

data quality and 

quantity 

[38] 

7 

Morphological and 

developmental changes 

due to toxins 

High-resolution 

brightfield and 

fluorescence 

images 

2.5D U-Net for 

segmentation 

Low variability, 

high 

reproducibility 

Requires high-

performance GPUs and 

memory 

[42] 

8 

Tissue damage, egg 

viability under stress 

conditions 

Multispectral 

images (450-950 

nm) of worms 

and eggs 

PCA, SVM-DA 

(Discriminant 

Analysis) 

Non-invasive 

imaging with 

high specificity 

Sophisticated imaging 

systems needed 
[44] 

9 
Pharynx structure 

changes across lifespan 

DIC microscopy 

images of 

pharynx tissue 

Pattern 

recognition-

based machine 

learning 

algorithm 

Quantitative 

insights into 

structural aging 

Limited to pharynx 

tissue 
[46] 

10 

Cell lineage 

development, nuclear 

divisions 

3D confocal 

microscopy 

images of 

embryos 

SVM classifier 

integrated with 

StarryNite 

software 

Reduces errors 

and manual 

curation time 

Does not address false 

negatives 
[48] 

11 

Cell shape, volume, 

surface area, nucleus 

position, and spatial 

organization 

3D time-lapse 

confocal 

microscopy 

images of 

embryos (4-cell 

to 350-cell 

stages) 

DMapNet deep 

learning model 

(distance map-

based 

segmentation) 

Generates 

comprehensive 

3D 

morphological 

atlas, high 

accuracy in 

densely packed 

cellular 

environments 

Requires significant 

computational resources 

and lacks a user-

friendly visualization 

platform 

[49] 
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12 

Whole-body cell 

identification and 

segmentation 

3D fluorescence 

microscopy 

images 

DVF-based deep 

learning model 

Adaptable to 

other animal 

models 

Requires extensive 

statistical priors 
[50] 

13 
Cell migration, division, 

fate determination 

Time-lapse 3D 

confocal 

microscopy 

images 

ABM combined 

with 

reinforcement 

learning 

Provides cellular 

behavior 

insights 

High computational 

requirements 
[53,54] 

14 
Germline stem cell 

division dynamics 

Live imaging of 

germline stem 

cells 

Random forest-

based track pair 

classifier 

Spatial 

clustering 

analysis of GSCs 

Performance drops in 

noisy datasets 
[55] 

15 

Detection of 

multicellular rosette 

structures 

3D live images 

with 

fluorescently 

labeled cell 

membranes 

GAN-based 

deep learning 

model with 

feature transfer 

Efficient 

classification 

with small 

datasets 

Performance depends 

on high-performance 

GPUs 

[56] 

5. Conclusions 

Machine learning has emerged as an essential tool in advancing developmental studies of C. 

elegans. This review has covered a broad range of models and pipelines, that range from basic 

classifying algorithms to sophisticated deep learning frameworks, which have revolutionized the 

classification of developmental stages, phenotyping, estimation of physiological age, toxicity assays, 

cell lineage tracing and cellular modeling. Nonetheless, there is a gap in machine learning 

implementation for biological research due to the need for high-performance computational 

resources, specialized imaging systems, and programming expertise. Overcoming these limitations 

through affordable instruments, open-source and user-friendly interfaces will be crucial to facilitate 

the application of machine learning in biological development studies. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

CNN Convolutional Neural Network   

SVM Support Vector Machine   

GAN Generative Adversarial Network   

PCA Principal Component Analysis   

t-SNE t-distributed Stochastic Neighbor Embedding   

MAE Mean Absolute Error   

DIC Differential Interference Contrast   

IoU Intersection over Union   

GFP Green Fluorescent Protein   

RFP Red Fluorescent Protein   

GUI Graphical User Interface   

ABM Agent-Based Modeling   

DVF Displacement Vector Field   

GSC Germline Stem Cell   

CTWF Corrected Total Worm Fluorescence   

RGB Red Green Blue (color space)   

FNN Feedforward Neural Network   
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RNN Recurrent Neural Network   

AUC Area Under the Curve   

KNIME Konstanz Information Miner   

RCNN Region-based Convolutional Neural Network   

Mask-

RCNN 

Mask Region-based Convolutional Neural Network   

SVM-DA Support Vector Machine - Discriminant Analysis   

DMapNet Distance Map-based Network   

ResNet Residual Network   

DIC Differential Interference Contrast   

3D Three-Dimensional   

2D Two-Dimensional   

1GB 1 Gigabyte   

L-stage Larval Stage  
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