

1 Article

2

Weighted negative binomial Poisson-Lindley 3 distribution with actuarial applications

4 Hossein Zamani ^{1,*}, Noriszura Ismail ² and Marzieh Shekari ¹5 ¹ Statistics Program, University of Hormozgan, Bandar Abbas, Iran; zamani.huni@hormozgan.ac.ir6 ² School of Mathematical Sciences, Universiti Kebangsaan Malaysia, Malaysia; ni@ukm.edu.my

7 * Correspondence: zamani.huni@hormozgan.ac.ir

8

9 **Abstract:** This study introduces a new discrete distribution which is a weighted version of Poisson-
10 Lindley distribution. The weighted distribution is obtained using the negative binomial weight
11 function and can be fitted to count data with over-dispersion. The p.m.f., p.g.f. and simulation
12 procedure of the new weighted distribution, namely weighted negative binomial Poisson-Lindley
13 (WNBPL), are provided. The maximum likelihood method for parameter estimation is also
14 presented. The WNBPL distribution is fitted to several insurance datasets, and is compared to the
15 Poisson and negative binomial distributions in terms of several statistical tests.16 **Keywords:** weighted distribution; Poisson-Lindley distribution; discrete distribution; weighted
17 negative binomial Poisson-Lindley distribution.

18

19

1. Introduction

20 Mixed Poisson and mixed negative binomial distributions have been considered as alternatives for
21 fitting count data with over-dispersion. Several examples of mixed Poisson and mixed negative
22 binomial distributions can be found in several statistical literatures, such as negative binomial which is
23 obtained as a mixture of Poisson and gamma, Poisson-Lindley (Sankaran 1970; Ghitany et al. 2008),
24 Poisson-lognormal (Bulmer 1974), Poisson-inverse Gaussian (Trembley 1992; Willmot 1987), negative
25 binomial-Pareto (Meng et al. 1999), negative binomial-inverse Gaussian (Gomez-Deniz et al. 2008),
26 negative binomial-Lindley (Zamani and Ismail 2010; Lord and Geedipally 2011), Poisson-exponential
27 (Cancho et al. 2011), Poisson-weighted exponential (Zamani et al. 2014), two parameter Poisson-Lindley
28 (Shanker and Mishra 2014) and Poisson-Janardan distributions (Shanker et al. 2014).29 Besides mixed distributions, weighted distributions have also been considered as alternatives for
30 fitting count data with over-dispersion, and can be generally obtained by multiplying a count
31 distribution with a weight function. To derive a new weighted distribution, let X be a count random
32 variable with p.m.f. $P(X=k)$, where $k \in N_0 = \{0, 1, 2, \dots\}$. Let $\omega(k)$ be a non-negative function on N_0 33 having a finite expectation $E[\omega(X)] = \sum_{k=0}^{\infty} \omega(k)P(X=k) < \infty$, where the weight function $\omega(k)$ can be
34 used to adjust the probability when $X = k$ occur. Thus, the weighted version of r.v. X , which is the
35 realization of count r.v. Y , has the following p.m.f:

36
$$P(Y=k) = p(k; \theta) = \frac{\omega(k)P(X=k)}{E[\omega(X)]}, \quad k \in N_0. \quad (1)$$

37 The most popular weighted count distributions are the weighted Poisson (WP) distributions which
38 are obtained when the initial count r.v., X , follows a Poisson distribution. The initial concept of WP
39 distribution was introduced in Rao (1965), which lead to several more recent and different types of WP

40 distributions derived and analyzed in other studies. Examples of a more recent WP distributions can
 41 be found in Ridout and Besbeas (2004), Shmueli et al. (2005), and Castillo and Perez-Casany (2005).

42 In recent studies, some authors used particulars weights for deriving new versions of weighted
 43 distributions. Such examples can be found in Neel and Schull (1966) who used the Poisson weight
 44 function $\omega(k; \varphi) = \varphi^k e^{-\varphi} (k!)^{-1}$, Kokonendji and Casany (2012) who utilized the binomial weight
 45 function $\omega(k; \varphi) = 1 - (1 - \varphi)^k$, and the negative binomial weight function $\omega(k; \varphi) = \binom{\varphi + k - 1}{k}$ which
 46 was applied by Hussain et. al (2016). A more detailed study of weighted distributions and weight
 47 functions can be found in Patil et. al (1986).

48 The objective of this study is to introduce a new discrete weighted distribution based on the
 49 Poisson-Lindley distribution. The weighted distribution, namely the weighted negative binomial
 50 Poisson-Lindley (WNBPL), is weighted with negative binomial weight function and can be used as an
 51 alternative for fitting count data with over-dispersion. The rest of this paper is organized as follows.
 52 Section 2 provides the p.m.f., p.g.f. and simulation procedure for the WNBPL. Maximum likelihood
 53 method for parameters estimation is provided in Section 3. Several numerical illustrations are provided
 54 in Section 4, where the Poisson, negative binomial and WNBPL are fitted to a few datasets.

55 2. Weighted Negative Binomial Poisson-Lindely (WNBPL)

56 2.1. P.m.f., p.g.f., mean and variance

57 Assume r.v. $Y|\lambda$ follows Poisson distribution with p.m.f:

$$58 p(y|\lambda) = \frac{e^{-\lambda} \lambda^y}{y!}, \quad y = 0, 1, 2, \dots \quad (2)$$

59 and parameter λ is distributed as Lindley with parameter θ :

$$60 f(y) = \frac{\theta^2}{\theta + 1} (1 + \lambda) e^{-\theta\lambda}, \quad \lambda > 0. \quad (3)$$

61 The Poisson-Lindley (PL) distribution is obtained by mixing Poisson and Lindley distributions,
 62 and the p.m.f. is:

$$63 p(y) = \frac{\theta^2 (y + \theta + 2)}{(1 + \theta)^{y+3}}, \quad y = 0, 1, 2, 3, \dots, \quad (4)$$

64 with mean $E(Y) = \frac{\theta + 2}{\theta(\theta + 1)}$ and variance $Var(Y) = \frac{\theta^3 + 4\theta^2 + 6\theta + 2}{\theta^2(\theta + 1)^2}$.

65 Using $\theta + 1 = \frac{1}{p}$ for re-parameterization, the PL p.m.f. in (4) can be re-written as:

$$66 p(y) = (1 - p)^2 p^y (1 + p + py), \quad y = 0, 1, 2, 3, \dots \quad (5)$$

67 A new discrete distribution can be easily obtained by inserting negative binomial weight
 68 function $\omega(k; r) = \binom{r + k - 1}{k}$ and PL p.m.f. (5) into the weighted equation in (1). The new
 69 distribution, namely the WNBPL, has the following p.m.f:

$$70 P(Y=k) = p(k) = \binom{r + k - 1}{k} \frac{(1 - p)^{r+1} p^k (1 + p + pk)}{(1 - p^2 + rp^2)}, \quad k = 0, 1, 2, 3, \dots, \quad 0 < p < 1, \quad (6)$$

71 with mean and variance:

$$\begin{aligned}
 72 \quad \mu &= \frac{rp^2 - p^2 - p}{1 + rp^2 - p^2} + \frac{p(r+1)}{1-p} \\
 \sigma^2 &= \frac{(rp^2 - p^2 - p)(p+1)}{(1 + rp^2 - p^2)^2} + \frac{p(r+1)}{(1-p)^2}
 \end{aligned} \tag{7}$$

73 The p.g.f. can be obtained in a closed form, and is given by:

$$74 \quad G_Y(t) = E(t^Y) = \frac{(1-p^2t + rp^2t) + p(1-t)}{1-p^2 + rp^2} \left(\frac{1-p}{1-pt} \right)^{r+1} \tag{8}$$

75 *2.2. Over-dispersion*

76 In statistics, cases of over-dispersion can be determined by comparing the mean and variance,
 77 where a distribution is known to be over-dispersed if the variance is greater than the mean. For
 78 WNBPL, the variance and mean can be written as:

$$79 \quad \sigma^2 - \mu = \frac{p^2(r+1)}{(1-p)^2} - \frac{(rp^2 - p^2 - p)^2}{(1 + rp^2 - p^2)^2},$$

80 so that we can determine whether the term $\frac{(rp^2 - p^2 - p)^2}{(1 + rp^2 - p^2)^2}$ is less than one for all values of p and

81 r . If $\frac{(rp^2 - p^2 - p)^2}{(1 + rp^2 - p^2)^2}$ is less than one, then $\frac{p^2(r+1)}{(1-p)^2}$ is greater than one, indicating that $\sigma^2 - \mu$

82 is greater than zero. Therefore, the variance of WNBPL is greater than the mean, and the distribution
 83 can be used to handle over-dispersed count data.

84 Figure 1 shows the p.m.f. of WNBPL for different values of (r, p) . The graphs indicate that the
 85 distribution can be considered as an alternative for over-dispersed count data.

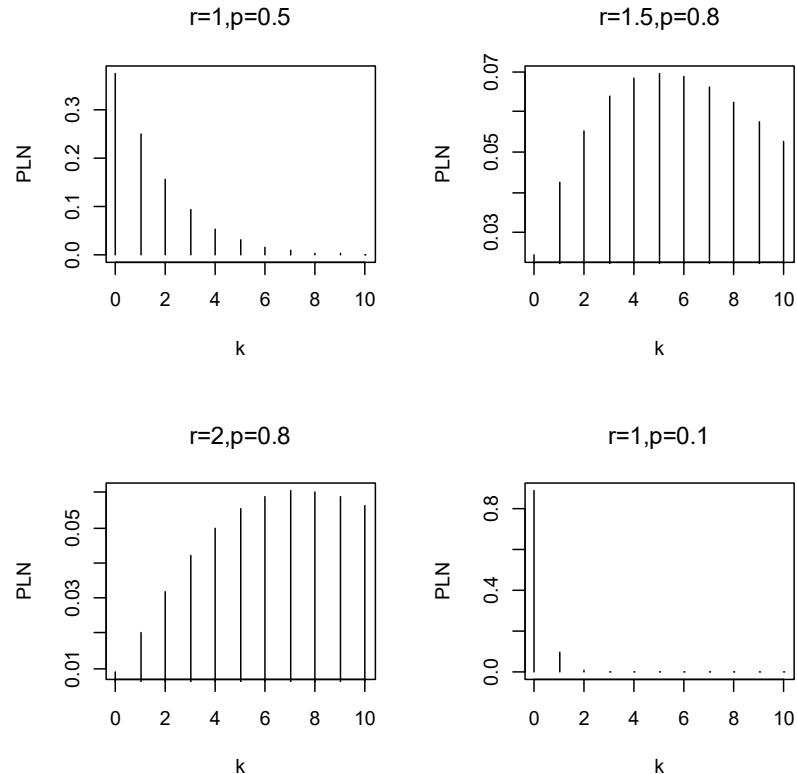
86 *2.3 Random data generation*

87 P.m.f. (6) indicates that $WNBPI(r, p)$ is a mixture of negative binomial distributions, which
 88 can be written as:

$$89 \quad p(k) = \frac{1-p^2}{1-p^2 + rp^2} NB(r, 1-p) + \frac{rp^2}{1-p^2 + rp^2} NB(r+1, 1-p) .$$

90 Therefore, the $WNBPI(r, p)$ random samples can be generated via the weighted negative
 91 binomial approach.

92 We analyze the performance of ML estimates of $WNBPI(r, p)$ based on 1000 simulations.
 93 The average estimators, average mean square errors and average standard errors of the ML
 94 estimates for several sample sizes, n , and several initial values, (r, p) , are provided in Table 1.
 95 The results show that increasing the sample size is an effective way of decreasing the standard
 96 errors of parameters. As shown in this table, the MSEs decrease when the sample size increase,
 97 and thus, suggesting the consistency of the proposed model.



98

99

Figure 1. P.m.f. of WNBPLN distribution for different values of (r, p)

100

Table 1. Average estimates, average MSE and average standard error (1000 simulation).

n	Initial values		Average estimates		Average mse		Average std	
	r	p	\hat{r}	\hat{p}	$mse(\hat{r})$	$mse(\hat{p})$	$se(\hat{r})$	$se(\hat{p})$
50	0.3	0.1	1.227	0.130	1.773	0.046	0.955	0.213
	0.6	0.6	0.629	0.567	0.105	0.010	0.323	0.094
	0.2	0.8	5.924	0.179	105.247	0.404	8.513	0.147
75	0.3	0.1	2.051	0.161	8.413	0.048	2.312	0.211
	0.6	0.6	0.594	0.572	0.062	0.006	0.249	0.076
	0.2	0.8	4.081	0.189	58.593	0.389	6.597	0.131
100	0.3	0.1	1.948	0.177	7.543	0.050	2.197	0.210
	0.6	0.6	0.581	0.575	0.041	0.005	0.203	0.066
	0.2	0.8	3.490	0.184	43.061	0.389	5.677	0.118
125	0.3	0.1	1.577	0.196	5.541	0.094	0.970	0.200
	0.6	0.6	0.567	0.577	0.027	0.004	0.163	0.058
	0.2	0.8	2.864	0.191	31.381	0.382	4.927	0.112
150	0.3	0.1	1.402	0.198	4.614	0.044	1.844	0.186
	0.6	0.6	0.555	0.581	0.021	0.003	0.140	0.050
	0.2	0.8	2.694	0.190	27.342	0.382	4.595	0.107

101

102 **3. Parameter Estimation**

103 Let Y_1, Y_2, \dots, Y_n be an i.i.d. random sample drawn from WNBPL distribution, with observed
 104 values k_1, k_2, \dots, k_n . The log-likelihood is:

$$105 \quad \ln L(r, p) = \ell(r, p) = n(r+1) \ln(1-p) + \sum_{i=1}^n k_i \ln p + \sum_{i=1}^n \ln(1+p+pk_i) \\ - n \ln(1-p^2+rp^2) + \sum_{i=1}^n \ln \binom{r+k_i-1}{k_i}$$

106 By partially differentiating the log-likelihood with respect to p and r , we obtained:

$$107 \quad \frac{\partial \ell(r, p)}{\partial p} = -\frac{n(r+1)}{1-p} + \frac{n\bar{k}}{p} + \sum_{i=1}^n \frac{1+k_i}{1+p+pk_i} - \frac{2np(r-1)}{1-p^2+rp^2}$$

$$108 \quad \frac{\partial \ell(r, p)}{\partial r} = n \ln(1-p) - \frac{np^2}{1-p^2+rp^2} + \frac{\partial}{\partial r} \sum_{i=1}^n \ln \binom{r+k_i-1}{k_i}$$

109 Klugman et.al (2012) showed that the term $\frac{\partial}{\partial r} \sum_{x=0}^k \ln \binom{r+x-1}{x}$ can be simplified into:

$$110 \quad \frac{\partial}{\partial r} \sum_{x=0}^k \ln \binom{r+x-1}{x} = \sum_{x=0}^k \sum_{m=0}^{x-1} \ln(r+m).$$

111 Therefore, the partial differentiation $\frac{\partial \ell(r, p)}{\partial r}$ can be written in a simpler form, which is:

$$112 \quad \frac{\partial \ell(r, p)}{\partial r} = n \ln(1-p) - \frac{np^2}{1-p^2+rp^2} + \sum_{i=1}^n \sum_{m=0}^{k_i-1} \ln(r+m).$$

113 ML estimates (\hat{r}, \hat{p}) can be obtained numerically using statistical packages such as R 3.3.1 with
 114 nlmnb command. Under regularity conditions, the ML estimates (\hat{r}, \hat{p}) for WNBPL has a bivariate
 115 normal distribution with mean (r, p) and variance-covariance matrix $[I(r, p)]^{-1}$, where $I(r, p)$ is
 116 the Fisher information matrix, which is given as:

$$117 \quad I(\hat{r}, \hat{p}) = \begin{pmatrix} E\left[-\frac{\partial^2 \ell(r, p)}{\partial p^2}\right] & E\left[-\frac{\partial^2 \ell(r, p)}{\partial p \partial r}\right] \\ E\left[-\frac{\partial^2 \ell(r, p)}{\partial r \partial p}\right] & E\left[-\frac{\partial^2 \ell(r, p)}{\partial r^2}\right] \end{pmatrix}.$$

118 **4. Data Applications**119 **4.1 Example 1**

120 The observed number of accident claims per contract for a total of 298 contracts are available for
 121 the data (Simon 1961, Klugman et al. 2012). Table 2 provides the observed values, fitted values and
 122 estimated parameters for the Poisson, NB and WNBPL distributions. The chi-square and log
 123 likelihood, which are considered as comparison criteria, are also provided. The results show that the
 124 WNBPL provides the largest log likelihood and the smallest chi-square. Even though the NB
 125 distribution is a strong competitor, the WNBPL distribution provides better performance because it

126 has a slightly larger log likelihood, but significantly better values for chi-square and p -value of chi-
 127 square.

128 **Table 2.** Observed values, fitted values and parameter estimates (example 1)

No. Claim	Frequency	Poisson	Negative Binomial	WNBPL
0	99	54.4	95.5	96.4
1	65	92.5	76.2	74.1
2	57	78.7	50.7	50.4
3	35	44.6	31.4	31.2
4	20	19.0	18.7	19.1
5	10	6.5	11.0	11.1
6	4	1.8	6.3	6.4
8	3	0	2.0	2.0
9	5	0	1.1	1.1
parameters		$\hat{\lambda} = 1.701$	$\hat{p} = 0.469$ $\hat{r} = 1.505$	$\hat{p} = 0.494$ $\hat{r} = 1.182$
-ln L		573.36	527.60	527.44
AIC		1148.72	1059.20	1058.88
chi-square		75.45	3.87	3.32
p -value of chi-square		0.00	0.42	0.51

129 **4.2 Example 2**

130 Another data from Klugman et al. (2012) is also considered. The data provides the number of
 131 medical claims per reported automobile accident. The Poisson, NB and WNBPL distributions are
 132 fitted, and the results are provided in Table 3. It can be seen that the WNBPL also provides the largest
 133 log likelihood and the smallest chi-square. Compared to the NB distribution, the WNBPL distribution
 134 provides a significantly better performance based on its larger log likelihood and smaller chi-square.

135 **Table 3.** Observed values, fitted values and parameter estimates (example 2)

No. Claim	Frequency	Poisson	Negative Binomial	WNBPL
0	529	216.2	474.5	486.3
1	146	376.4	274.7	259.3
2	169	327.7	171.2	166.5
3	137	190.2	109.2	109.8
4	99	82.8	70.5	72.7
5	87	28.8	45.8	48.0
6	41	8.4	29.9	31.5
7	25	2.1	19.6	20.6
parameters		$\hat{\lambda} = 1.7412$	$\hat{p} = 0.3324$ $\hat{r} = 0.8670$	$\hat{p} = 0.6202$ $\hat{r} = 0.6218$
-ln L		2532.85	2216.07	2204.73

AIC	4467.70	4436.14	4413.46
chi-square	252.56	1.50	0.92
<i>p</i> -value of chi-square	0.00	0.91	0.96

136 5. Conclusions

137 This paper introduces a new weighted Poisson-Lindley distribution which is obtained using
 138 negative binomial weight function and can be used for fitting over-dispersed count data. The p.m.f.,
 139 p.g.f. and simulation procedure are provided for the new weighted distribution, namely the weighted
 140 negative binomial Poisson-Lindley (WNBPL). The WNBPL(r, p) can also be shown to be equivalent
 141 to a mixture of negative binomial distributions, and thus, allowing the random samples to be
 142 generated via weighted approach. The estimation procedures of WNBPL parameters via the
 143 maximum likelihood are also shown. For numerical illustrations, the WNBPL distribution is fitted to
 144 two sets of insurance count data, and the results are compared to Poisson and negative binomial
 145 distributions. Based on chi-square and log likelihood of the fitted models, both negative binomial and
 146 WNBPL distributions provide significant improvements over Poisson, but WNBPL provides the
 147 largest log likelihood and the smallest chi-square. Considering the straightforward manner of
 148 obtaining its MLE estimators, the WNBPL can be considered as an alternative model for fitting over-
 149 dispersed count data.

150 **Author Contributions:** Methodology, H. Zamani, N. Ismail and M. Shekari; Writing-Original Draft Preparation,
 151 H. Zamani and M. Shekari; Writing-Review & Editing, N. Ismail; Funding Acquisition, N. Ismail.

152 **Funding:** The authors acknowledge the financial support received in the form of research university grants
 153 (GUP-2017-011 and FRGS/1/2015/SG04/UKM/02/2) from Universiti Kebangsaan Malaysia (UKM) and Ministry
 154 of Higher Education (MOHE), Malaysia.

155 **Conflicts of Interest:** The authors declare no conflict of interest.

156 References

157 (Bulmer 1974) Bulmer, M.G. 1974. On fitting the Poisson-lognormal distribution to species-abundance data.
 158 *Biometrics* 30(1): 101-110.

159 (Cancho et al. 2011) Cancho, V.G., Louzada-Neto, F., and Barriga, G.D.C. 2011. The Poisson-exponential lifetime
 160 distribution. *Computational Statistics & Data Analysis* 55(1): 677-686.

161 (Calstillo and Perez-Casany 2005) Castillo, J. and Perez-Casany, M. 2005. Overdispersed and underdispersed
 162 Poisson generalizations. *Journal of Statistical Planning and Inference* 134(2): 486-500.

163 (Denuit 1997) Denuit, M. 1997. A new distribution of Poisson-type for the number of claims. *ASTIN Bulletin* 27(2):
 164 229-242.

165 (Ghitany et al. 2008) Ghitany, M.E., Atieh B. and Nadarajah, S. 2008. Lindley distribution and its application.
 166 *Mathematics and Computers in Simulation* 78(4): 493-506.

167 (Gomez-Deniz et al. 2008) Gomez-Deniz, E., Sarabia, J.M. and Calderin-Ojeda, E. 2008. Univariate and
 168 multivariate versions of the negative binomial-inverse Gaussian distributions with applications. *Insurance:
 169 Mathematics and Economics* 42(1): 39-49.

170 (Hussain et al. 2016) Hussain, T., Aslam, M. and Ahmad, M. (2016). A two parameter discrete Lindley
 171 distribution. *Revista Colombiana de Estadística* 39(1): 45-61.

172 (Klugman et al. 2012) Klugman, S., Panjer, H. and Willmot, G. 2012. *Loss models: from data to decision*, 4th Ed. John
 173 Wiley and Sons, USA.

174 (Kokonendji and Casany 2012) Kokonendji, C.C. and Casany, M.P. 2012. A note on weighted count distributions.
 175 *Journal of Statistical Theory and Applications* 11(4): 337-352.

176 (Lord and Geedipally 2011) Lord, D. and Geedipally. S.R. 2011. The negative binomial-Lindley distribution as a
 177 tool for analyzing crash data characterized by a large amount of zeros. *Accident Analysis and Prevention* 43:
 178 1738-1742.

179 (Meng et al. 1999) Meng, S., Wei, Y. and Whitmore, G.A. 1999. Accounting for individual overdispersion in a
 180 bonus-malus system. *ASTIN Bulletin*, 29(2): 327-337.

181 (Neel and Schull 1966) Neel, J.V. and Schull, W.J. 1966. *Human Heredity*. University of Chicago Press, Chicago.

182 (Patil et al. 1986) Patil, G.P., Rao, C.R. and Ratnaparkhi, M.V. 1986. On discrete weighted distribution and their
183 use in model choice for observed data. *Communications in Statistics – Theory and Methods* 15(3): 907-918.

184 (Rao 1965) Rao, C.R. 1965. Weighted distributions arising out of methods of ascertainment: What population
185 does a sample represent? In *Classical and Contagious Discrete Distributions*, G. P. Patil (Eds). Calcuta:
186 Pergamon Press and Statistical Publishing Society, 320-332.

187 (Ridout and Besbeas 2004) Ridout, M.S. and Besbeas, P. 2004. An empirical model for underdispersed count data.
188 *Statistical Modelling* 4: 77-89.

189 (Sankaran 1970) Sankaran, M. 1970. The discrete Poisson-Lindley distribution. *Biometrics* 26(1): 145-149.

190 (Shanker and Mishra 2014) Shanker, R. and Mishra, A. 2014. A two parameter Poisson-Lindley distribution.
191 *International Journal of Statistics and Systems* 9(1): 79-85.

192 (Shanker et al. 2014) Shanker, R., Sharma, S., Shanker, U., Shanker, R., and Leonida, T.A. 2014. The discrete
193 Poisson-Janardan distribution with applications. *International Journal of Soft Computing and Engineering* 4(2):
194 31-33.

195 (Shmueli et al. 2005) Shmueli, G., Minka, T.P., Kadane, J.P., Borle, S. and Boatwright, P. 2005. A useful
196 distribution for fitting discrete data: revival of the Conway-Maxwell-Poisson distribution. *Journal of the
197 Royal Statistical Society: Series C* 54(1): 127-142.

198 (Simon 1961) Simon, L. 1961. Fitting negative binomial distributions by the method of maximum likelihood.
199 *Proceedings of the Casualty Actuarial Society* XLVIII: 45-53.

200 (Trembley 1992) Trembley, L. 1992. Using the poisson inverse-Gaussian in bonus-malus systems. *ASTIN Bulletin*
201 22(1): 97-106.

202 (Willmot 1987) Willmot, G.E. 1987. The Poisson-inverse Gaussian distribution as an alternative to the negative
203 binomial. *Scandinavian Actuarial Journal* 113-127.

204 (Zamani and Ismail 2010) Zamani, H. and Ismail, N. 2010. Negative binomial-Lindley distribution and its
205 application. *Journal of Mathematics and Statistics* 6(1): 4-9.

206 (Zamani et al. 2014) Zamani, H., Ismail, N. and Faroughi, P. 2014. Poisson-weighted exponential: Univariate
207 version and regression model with applications. *Journal of Mathematics and Statistics* 10(2): 148-154.