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Abstract: This study introduces a new discrete distribution which is a weighted version of Poisson-9 
Lindley distribution. The weighted distribution is obtained using the negative binomial weight 10 
function and can be fitted to count data with over-dispersion. The p.m.f., p.g.f. and simulation 11 
procedure of the new weighted distribution, namely weighted negative binomial Poisson-Lindley 12 
(WNBPL), are provided. The maximum likelihood method for parameter estimation is also 13 
presented. The WNBPL distribution is fitted to several insurance datasets, and is compared to the 14 
Poisson and negative binomial distributions in terms of several statistical tests. 15 

Keywords: weighted distribution; Poisson-Lindley distribution; discrete distribution; weighted 16 
negative binomial Poisson-Lindley distribution. 17 

 18 

1. Introduction 19 
Mixed Poisson and mixed negative binomial distributions have been considered as alternatives for 20 

fitting count data with over-dispersion. Several examples of mixed Poisson and mixed negative 21 
binomial distributions can be found in several statistical literatures, such as negative binomial which is 22 
obtained as a mixture of Poisson and gamma, Poisson-Lindley (Sankaran 1970; Ghitany et al. 2008), 23 
Poisson-lognormal (Bulmer 1974), Poisson-inverse Gaussian (Trembley 1992; Willmot 1987), negative 24 
binomial-Pareto (Meng et al. 1999), negative binomial-inverse Gaussian (Gomez-Deniz et al. 2008), 25 
negative binomial-Lindley (Zamani and Ismail 2010; Lord and Geedipally 2011), Poisson-exponential 26 
(Cancho et al. 2011), Poisson-weighted exponential (Zamani et al, 2014), two parameter Poisson-Lindley 27 
(Shanker and Mishra 2014) and Poisson-Janardan distributions (Shanker et al. 2014). 28 

Besides mixed distributions, weighted distributions have also been considered as alternatives for 29 
fitting count data with over-dispersion, and can be generally obtained by multiplying a count 30 
distribution with a weight function. To derive a new weighted distribution, let X  be a count random 31 
variable with p.m.f. )( kXP = , where ,...}2,1,0{0 =∈ Nk . Let )(kω  be a non-negative function on 0N  32 

having a finite expectation ∞<==
∞

=0

)()()]([
k

kKPkXE ωω , where the weight function )(kω  can be 33 

used to adjust the probability when kX =  occur. Thus, the weighted version of r.v. X , which is the 34 
realization of count r.v. Y , has the following p.m.f: 35 
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The most popular weighted count distributions are the weighted Poisson (WP) distributions which 37 
are obtained when the initial count r.v., X , follows a Poisson distribution. The initial concept of WP 38 
distribution was introduced in Rao (1965), which lead to several more recent and different types of WP 39 
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distributions derived and analyzed in other studies. Examples of a more recent WP distributions can 40 
be found in Ridout and Besbeas (2004), Shmueli et al. (2005), and Castillo and Perez-Casany (2005). 41 

In recent studies, some authors used particulars weights for deriving new versions of weighted 42 
distributions. Such examples can be found in Neel and Schull (1966) who used the Poisson weight 43 
function 1)!();( −−= kek k ϕϕϕω , Kokonendji and Casany (2012) who utilized the binomial weight 44 

function kk )1(1);( ϕϕω −−= , and the negative binomial weight function 






 −+
=

k
k

k
1

);(
ϕ

ϕω  which 45 

was applied by Hussain et. al (2016). A more detailed study of weighted distributions and weight 46 
functions can be found in Patil et. al (1986). 47 

The objective of this study is to introduce a new discrete weighted distribution based on the 48 
Poisson-Lindley distribution. The weighted distribution, namely the weighted negative binomial 49 
Poisson-Lindley (WNBPL), is weighted with negative binomial weight function and can be used as an 50 
alternative for fitting count data with over-dispersion. The rest of this paper is organized as follows. 51 
Section 2 provides the p.m.f., p.g.f. and simulation procedure for the WNBPL. Maximum likelihood 52 
method for parameters estimation is provided in Section 3. Several numerical illustrations are provided 53 
in Section 4, where the Poisson, negative binomial and WNBPL are fitted to a few datasets. 54 

2. Weighted Negative Binomial Poisson-Lindely (WNBPL) 55 

2.1. P.m.f., p.g.f., mean and variance 56 
Assume r.v. λ|Y  follows Poisson distribution with p.m.f: 57 
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and parameter λ  is distributed as Lindley with parameter θ : 59 
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The Poisson-Lindley (PL) distribution is obtained by mixing Poisson and Lindley distributions, 61 
and the p.m.f. is: 62 
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with mean 
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Using 
p
11 =+θ  for re-parameterization, the PL p.m.f. in (4) can be re-written as: 65 
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A new discrete distribution can be easily obtained by inserting negative binomial weight 67 

function 

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);(ω  and PL p.m.f. (5) into the weighted equation in (1). The new 68 

distribution, namely the WNBPL, has the following p.m.f: 69 
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with mean and variance: 71 
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The p.g.f. can be obtained in a closed form, and is given by: 73 
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2.2. Over-dispersion 75 
In statistics, cases of over-dispersion can be determined by comparing the mean and variance, 76 

where a distribution is known to be over-dispersed if the variance is greater than the mean. For 77 
WNBPL, the variance and mean can be written as: 78 
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so that we can determine whether the term 222
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 is greater than one, indicating that μσ −281 

is greater than zero. Therefore, the variance of WNBPL is greater than the mean, and the distribution 82 
can be used to handle over-dispersed count data. 83 

Figure 1 shows the p.m.f. of WNBPL for different values of ),( pr . The graphs indicate that the 84 
distribution can be considered as an alternative for over-dispersed count data. 85 

2.3 Random data generation 86 
P.m.f. (6) indicates that ),( prWNBPL  is a mixture of negative binomial distributions, which 87 

can be written as: 88 
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Therefore, the ),( prWNBPL  random samples can be generated via the weighted negative 90 
binomial approach. 91 

We analyze the performance of ML estimates of ),( prWNBPL  based on 1000 simulations. 92 
The average estimators, average mean square errors and average standard errors of the ML 93 
estimates for several sample sizes, n , and several initial values, ),( pr , are provided in Table 1. 94 
The results show that increasing the sample size is an effective way of decreasing the standard 95 
errors of parameters. As shown in this table, the MSEs decrease when the sample size increase, 96 
and thus, suggesting the consistency of the proposed model. 97 
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 98 

Figure 1. P.m.f. of WNBPLN distribution for different values of ),( pr  99 

Table 1. Average estimates, average MSE and average standard error (1000 simulation). 100 

 Initial values Average estimates Average mse Average std 
n  r  p  r̂  p̂  )ˆ(rmse  )ˆ( pmse  )ˆ(rse  )ˆ(pse  

 
50 

0.3 0.1 1.227 0.130 1.773 0.046 0.955 0.213 

0.6 0.6 0.629 0.567 0.105 0.010 0.323 0.094 

0.2 0.8 5.924 0.179 105.247 0.404 8.513 0.147 

 
75 

0.3 0.1 2.051 0.161 8.413 0.048 2.312 0.211 

0.6 0.6 0.594 0.572 0.062 0.006 0.249 0.076 

0.2 0.8 4.081 0.189 58.593 0.389 6.597 0.131 

 
100 

0.3 0.1 1.948 0.177 7.543 0.050 2.197 0.210 

0.6 0.6 0.581 0.575 0.041 0.005 0.203 0.066 

0.2 0.8 3.490 0.184 43.061 0.389 5.677 0.118 

 
125 

0.3 0.1 1.577 0.196 5.541 0.094 0.970 0.200 

0.6 0.6 0.567 0.577 0.027 0.004 0.163 0.058 

0.2 0.8 2.864 0.191 31.381 0.382 4.927 0.112 

 
150 

0.3 0.1 1.402 0.198 4.614 0.044 1.844 0.186 

0.6 0.6 0.555 0.581 0.021 0.003 0.140 0.050 

0.2 0.8 2.694 0.190 27.342 0.382 4.595 0.107 

 101 
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3. Parameter Estimation 102 
Let nYYY ,...,, 21  be an i.i.d. random sample drawn from WNBPL distribution, with observed 103 

values nkkk ,...,, 21 . The log-likelihood is: 104 
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 105 

By partially differentiating the log-likelihood with respect to p  and r , we obtained: 106 
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Klugman et.al (2012) showed that the term 
=


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Therefore, the partial differentiation 
r

pr
∂

∂ ),(
 can be written in a simpler form, which is: 111 
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ML estimates )ˆ,ˆ( pr  can be obtained numerically using statistical packages such as R 3.3.1 with 113 
nlminb command. Under regularity conditions, the ML estimates )ˆ,ˆ( pr  for WNBPL has a bivariate 114 
normal distribution with mean ),( pr  and variance-covariance matrix 1)],([ −prI , where ),( prI  is 115 
the Fisher information matrix, which is given as: 116 
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4. Data Applications 118 

4.1 Example 1  119 
The observed number of accident claims per contract for a total of 298 contracts are available for 120 

the data (Simon 1961, Klugman et al. 2012). Table 2 provides the observed values, fitted values and 121 
estimated parameters for the Poisson, NB and WNBPL distributions. The chi-square and log 122 
likelihood, which are considered as comparison criteria, are also provided. The results show that the 123 
WNBPL provides the largest log likelihood and the smallest chi-square. Even though the NB 124 
distribution is a strong competitor, the WNBPL distribution provides better performance because it 125 
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has a slightly larger log likelihood, but significantly better values for chi-square and p-value of chi-126 
square. 127 

Table 2. Observed values, fitted values and parameter estimates (example 1) 128 

No. Claim Frequency Poisson Negative 
Binomial 

WNBPL 

0 99 54.4 95.5 96.4 
1 65 92.5 76.2 74.1 
2 57 78.7 50.7 50.4 
3 35 44.6 31.4 31.2 
4 20 19.0 18.7 19.1 
5 10 6.5 11.0 11.1 
6 4 1.8 6.3 6.4 
8 3 0 2.0 2.0 
9 5 0 1.1 1.1 
parameters  701.1ˆ =λ  

505.1ˆ
469.0ˆ

=
=

r
p  

182.1ˆ
494.0ˆ

=
=

r
p  

-ln L  573.36 527.60 527.44 
AIC  1148.72 1059.20 1058.88 
chi-square  75.45 3.87 3.32 
p-value of chi-square  0.00 0.42 0.51 

4.2 Example 2 129 

Another data from Klugman et al. (2012) is also considered. The data provides the number of 130 
medical claims per reported automobile accident. The Poisson, NB and WNBPL distributions are 131 
fitted, and the results are provided in Table 3. It can be seen that the WNBPL also provides the largest 132 
log likelihood and the smallest chi-square. Compared to the NB distribution, the WNBPL distribution 133 
provides a significantly better performance based on its larger log likelihood and smaller chi-square. 134 

Table 3. Observed values, fitted values and parameter estimates (example 2) 135 

No. Claim Frequency Poisson Negative 
Binomial 

WNBPL 

0 529 216.2 474.5 486.3 
1 146 376.4 274.7 259.3 
2 169 327.7 171.2 166.5 
3 137 190.2 109.2 109.8 
4 99 82.8 70.5 72.7 
5 87 28.8 45.8 48.0 
6 41 8.4 29.9 31.5 
7 25 2.1 19.6 20.6 
parameters  7412.1ˆ =λ  

8670.0ˆ
3324.0ˆ

=
=

r
p  

6218.0ˆ
6202.0ˆ

=
=

r
p  

-ln L  2532.85 2216.07 2204.73 
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AIC  4467.70 4436.14 4413.46 
chi-square  252.56 1.50 0.92 
p-value of chi-square  0.00 0.91 0.96 

5. Conclusions 136 
This paper introduces a new weighted Poisson-Lindley distribution which is obtained using 137 

negative binomial weight function and can be used for fitting over-dispersed count data. The p.m.f., 138 
p.g.f. and simulation procedure are provided for the new weighted distribution, namely the weighted 139 
negative binomial Poisson-Lindley (WNBPL). The WNBPL ),( pr  can also be shown to be equivalent 140 
to a mixture of negative binomial distributions, and thus, allowing the random samples to be 141 
generated via weighted approach. The estimation procedures of WNBPL parameters via the 142 
maximum likelihood are also shown. For numerical illustrations, the WNBPL distribution is fitted to 143 
two sets of insurance count data, and the results are compared to Poisson and negative binomial 144 
distributions. Based on chi-square and log likelihood of the fitted models, both negative binomial and 145 
WNBPL distributions provide significant improvements over Poisson, but WNBPL provides the 146 
largest log likelihood and the smallest chi-square. Considering the straightforward manner of 147 
obtaining its MLE estimators, the WNBPL can be considered as an alternative model for fitting over-148 
dispersed count data. 149 
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