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Abstract: This study introduces a new discrete distribution which is a weighted version of Poisson-
Lindley distribution. The weighted distribution is obtained using the negative binomial weight
function and can be fitted to count data with over-dispersion. The p.m.f., p.g.f. and simulation
procedure of the new weighted distribution, namely weighted negative binomial Poisson-Lindley
(WNBPL), are provided. The maximum likelihood method for parameter estimation is also
presented. The WNBPL distribution is fitted to several insurance datasets, and is compared to the
Poisson and negative binomial distributions in terms of several statistical tests.

Keywords: weighted distribution; Poisson-Lindley distribution; discrete distribution; weighted
negative binomial Poisson-Lindley distribution.

1. Introduction

Mixed Poisson and mixed negative binomial distributions have been considered as alternatives for
fitting count data with over-dispersion. Several examples of mixed Poisson and mixed negative
binomial distributions can be found in several statistical literatures, such as negative binomial which is
obtained as a mixture of Poisson and gamma, Poisson-Lindley (Sankaran 1970; Ghitany et al. 2008),
Poisson-lognormal (Bulmer 1974), Poisson-inverse Gaussian (Trembley 1992; Willmot 1987), negative
binomial-Pareto (Meng et al. 1999), negative binomial-inverse Gaussian (Gomez-Deniz et al. 2008),
negative binomial-Lindley (Zamani and Ismail 2010; Lord and Geedipally 2011), Poisson-exponential
(Cancho et al. 2011), Poisson-weighted exponential (Zamani et al, 2014), two parameter Poisson-Lindley
(Shanker and Mishra 2014) and Poisson-Janardan distributions (Shanker et al. 2014).

Besides mixed distributions, weighted distributions have also been considered as alternatives for
fitting count data with over-dispersion, and can be generally obtained by multiplying a count
distribution with a weight function. To derive a new weighted distribution, let X be a count random
variable with p.m.f. P(X =k), where ke Ny ={0,1,2,...}.Let @(k) beanon-negative functionon N,

having a finite expectation E[aXX)]= Za)(k)P(K =k) <o, where the weight function @(k) can be
k=0

used to adjust the probability when X =k occur. Thus, the weighted version of r.v. X, which is the

realization of count r.v. Y, has the following p.m.f:

(k)P(K = k)
E[a(X)]
The most popular weighted count distributions are the weighted Poisson (WP) distributions which

are obtained when the initial count r.v., X, follows a Poisson distribution. The initial concept of WP
distribution was introduced in Rao (1965), which lead to several more recent and different types of WP

P(Y =k)= p(k;0) = , keN,. 1)
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40  distributions derived and analyzed in other studies. Examples of a more recent WP distributions can
41  be found in Ridout and Besbeas (2004), Shmueli et al. (2005), and Castillo and Perez-Casany (2005).

42 In recent studies, some authors used particulars weights for deriving new versions of weighted
43  distributions. Such examples can be found in Neel and Schull (1966) who used the Poisson weight
44 function w(k;p)=¢*e?(k!)"', Kokonendji and Casany (2012) who utilized the binomial weight

+k-1
45  function w(k;p)=1-(1-¢)", and the negative binomial weight function w(k;¢) = (q) ; j which

46  was applied by Hussain et. al (2016). A more detailed study of weighted distributions and weight
47  functions can be found in Patil et. al (1986).

48 The objective of this study is to introduce a new discrete weighted distribution based on the
49  Poisson-Lindley distribution. The weighted distribution, namely the weighted negative binomial
50  Poisson-Lindley (WNBPL), is weighted with negative binomial weight function and can be used as an
51  alternative for fitting count data with over-dispersion. The rest of this paper is organized as follows.
52 Section 2 provides the p.m.f,, p.g.f. and simulation procedure for the WNBPL. Maximum likelihood
53 method for parameters estimation is provided in Section 3. Several numerical illustrations are provided
54 in Section 4, where the Poisson, negative binomial and WNBPL are fitted to a few datasets.

55 2. Weighted Negative Binomial Poisson-Lindely (WNBPL)

56  2.1. P.m.f, p.g.f., mean and variance
57 Assumer.v. Y|4 follows Poisson distribution with p.m.f:

_lﬂy
58 PN =T =0l @

59  and parameter A is distributed as Lindley with parameter ¢ :

2

4 -1
= 1+4 A>0.
60 SO =g AFHe ™, 4> )
61 The Poisson-Lindley (PL) distribution is obtained by mixing Poisson and Lindley distributions,
62  and the p.m.f.is:
6*(y+6+2

63 r() =(y—+3), y=0,1,23,., (4)

(1+6)”

6’ +46” +66+2
64  withmean E(Y)= 0+2 and variance Van(Y)= 5 5
6(6+1) 0°(6+1)

1
65  Using 6@+1=— for re-parameterization, the PL p.m.f. in (4) can be re-written as:
p

66 PN =0=p)’p" (4 p+py), y=0123,. )

67 A new discrete distribution can be easily obtained by inserting negative binomial weight
+k-1

68  function a)(k;r)=(r L j and PL p.m.f. (5) into the weighted equation in (1). The new

69  distribution, namely the WNBPL, has the following p.m.f:

r+k—lJ (1-p)™' p* 1+ p+ pk)
k (1-p* +rp”)

70 P(Y:k):p(k):( . k=0,1,2.3,., 0<p<l, ©)

71 with mean and variance:
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_m’=p’=p  pr+D)
l+mp?-p> 1-p

s )
o2 =P =p" =p)p+D)  p(r+

(+p*=pH*  (-p)’

The p.g.f. can be obtained in a closed form, and is given by:
_ 2 2 _ _ r+l
G, =EQ" = AP 1+ 0+ t)[l p] ®
Y 2 2
l-p“+rp 1-pt

2.2. Over-dispersion

In statistics, cases of over-dispersion can be determined by comparing the mean and variance,
where a distribution is known to be over-dispersed if the variance is greater than the mean. For
WNBPL, the variance and mean can be written as:

2, Pt -p*-p)’
(1-p)*  (+p*=p*)*~°

(o3

2_ .2 2
r — —_—
so that we can determine whether the term —((lp f f))z is less than one for all values of p and
Trpt—p
2_ .2 2 2
rpT—p° - r+1
r.If —((lp f f))z is less than one, then —1(91 ( )2) is greater than one, indicating that ¢? —
trpT—p -p

is greater than zero. Therefore, the variance of WNBPL is greater than the mean, and the distribution
can be used to handle over-dispersed count data.
Figure 1 shows the p.m.f. of WNBPL for different values of (r, p). The graphs indicate that the

distribution can be considered as an alternative for over-dispersed count data.

2.3 Random data generation

P.m.f. (6) indicates that WNBPI(r,p) is a mixture of negative binomial distributions, which
can be written as:

1-p? m*
plk)=————NB(r)l-p)+ ———5 NB(r+L1-p) .
1-p“+mp I-p“+mp
Therefore, the WNBPI(r,p) random samples can be generated via the weighted negative
binomial approach.

We analyze the performance of ML estimates of WNBPI(r, p) based on 1000 simulations.
The average estimators, average mean square errors and average standard errors of the ML
estimates for several sample sizes, n, and several initial values, (r, p), are provided in Table 1.
The results show that increasing the sample size is an effective way of decreasing the standard
errors of parameters. As shown in this table, the MSEs decrease when the sample size increase,
and thus, suggesting the consistency of the proposed model.
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99 Figure 1. P.m.f. of WNBPLN distribution for different values of (, p)
100 Table 1. Average estimates, average MSE and average standard error (1000 simulation).
Initial values Average estimates Average mse Average std
n r p 7 p mse(r)  mse(p) se(r)  se(p)
0.3 0.1 1.227 0.130 1.773 0.046 0.955 0.213
50 0.6 0.6 0.629 0.567 0.105 0.010 0.323 0.094
0.2 0.8 5.924 0.179  105.247 0.404 8.513 0.147
0.3 0.1 2.051 0.161 8.413 0.048 2.312 0.211
75 0.6 0.6 0.594 0.572 0.062 0.006 0.249 0.076
0.2 0.8 4.081 0.189 58.593 0.389 6.597 0.131
0.3 0.1 1.948 0.177 7.543 0.050 2.197 0.210
100 0.6 0.6 0.581 0.575 0.041 0.005 0.203 0.066
0.2 0.8 3.490 0.184 43.061 0.389 5.677 0.118
0.3 0.1 1.577 0.196 5.541 0.094 0.970 0.200
125 0.6 0.6 0.567 0.577 0.027 0.004 0.163 0.058
0.2 0.8 2.864 0.191 31.381 0.382 4927 0.112
0.3 0.1 1.402 0.198 4.614 0.044 1.844 0.186
150 0.6 0.6 0.555 0.581 0.021 0.003 0.140 0.050
0.2 0.8 2.694 0.190 27.342 0.382 4.595 0.107

101
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102 3. Parameter Estimation

103 Let Y},Y,,....Y, beanii.d. random sample drawn from WNBPL distribution, with observed
104  values ky,k,,...,k, . The log-likelihood is:

InL(r, p) = ((r, p) = n(r+1)In(l= p)+ Y _k; In p+ > In(l+ p+ pk;)
i=1 i=1

o r+k; —1
—nln(l—p* +rp?)+ Y 1 !
nin(—p~ +rp”) ;r{ K, J

105

106 By partially differentiating the log-likelihood with respectto p and 7, we obtained:

ko~ 14k —
107 ol(r, p) __n(r+l) +ﬁ+z i 2np2(r 1)2
dp I-p p “F'l+p+pki 1-p°+mp
2 z +k; —1
108 M=nln(l—p)—L+izm T
or 1-p*+mp? % ki
0 k r+x-1
109 Klugman et.al (2012) showed that the term 8—21 can be simplified into:
ey x

k : ko x-l
110 % 1{”)’5 IJZZZln(r+m).

=0 x=0 m=0
. .. dlr,p) L o
111 Therefore, the partial differentiation 3 can be written in a simpler form, which is:
-

f 2 n k,»—l

112 J (r’p):nln(l—p)—%+zzm(r+m).
ar l_p +rp i=1 m=0

113 ML estimates (7,p) can be obtained numerically using statistical packages such as R 3.3.1 with

114  nlminb command. Under regularity conditions, the ML estimates (7,p) for WNBPL has a bivariate
115  normal distribution with mean (r, p) and variance-covariance matrix [/(r, p)]~', where I(r,p) is

116  the Fisher information matrix, which is given as:

E{_ 3%4(r, p)} E{_ 924(r, p)}

. op? dpor
117 1G.p)=| £ 7 , .
g9 rp) | 97U p)
ordp o2
118 4. Data Applications
119 4.1 Example1
120 The observed number of accident claims per contract for a total of 298 contracts are available for

121 the data (Simon 1961, Klugman et al. 2012). Table 2 provides the observed values, fitted values and
122 estimated parameters for the Poisson, NB and WNBPL distributions. The chi-square and log
123 likelihood, which are considered as comparison criteria, are also provided. The results show that the
124 WNBPL provides the largest log likelihood and the smallest chi-square. Even though the NB
125  distribution is a strong competitor, the WNBPL distribution provides better performance because it
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129

130
131
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135

has a slightly larger log likelihood, but significantly better values for chi-square and p-value of chi-
square.

Table 2. Observed values, fitted values and parameter estimates (example 1)

No. Claim Frequency Poisson Negative WNBPL
Binomial
0 99 54.4 95.5 96.4
1 65 925 76.2 74.1
2 57 78.7 50.7 50.4
3 35 44.6 314 31.2
4 20 19.0 18.7 19.1
5 10 6.5 11.0 11.1
6 1.8 6.3 6.4
8 0 2.0 2.0
9 0 11 11
parameters A=1701  p=0469  p=0.49
F=1.505 F=1.182
-InL 573.36 527.60 527.44
AIC 1148.72 1059.20 1058.88
chi-square 75.45 3.87 3.32
p-value of chi-square 0.00 0.42 0.51

4.2 Example 2

Another data from Klugman et al. (2012) is also considered. The data provides the number of
medical claims per reported automobile accident. The Poisson, NB and WNBPL distributions are
fitted, and the results are provided in Table 3. It can be seen that the WNBPL also provides the largest
log likelihood and the smallest chi-square. Compared to the NB distribution, the WNBPL distribution

provides a significantly better performance based on its larger log likelihood and smaller chi-square.

Table 3. Observed values, fitted values and parameter estimates (example 2)

No. Claim Frequency Poisson Negative WNBPL
Binomial
0 529 216.2 474.5 486.3
1 146 376.4 274.7 259.3
2 169 327.7 171.2 166.5
3 137 190.2 109.2 109.8
4 99 82.8 70.5 72.7
5 87 28.8 45.8 48.0
6 41 8.4 29.9 31.5
7 25 2.1 19.6 20.6
parameters A=1.7412 5 =03324 p =0.6202
7=0.8670 7 =0.6218

-InL 2532.85 2216.07 2204.73
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AIC 4467.70 4436.14 4413.46
chi-square 252.56 1.50 0.92
p-value of chi-square 0.00 0.91 0.96

136 5. Conclusions

137 This paper introduces a new weighted Poisson-Lindley distribution which is obtained using
138  negative binomial weight function and can be used for fitting over-dispersed count data. The p.m.f.,
139 p.g.f. and simulation procedure are provided for the new weighted distribution, namely the weighted
140  negative binomial Poisson-Lindley (WNBPL). The WNBPL (7, p) can also be shown to be equivalent

141  to a mixture of negative binomial distributions, and thus, allowing the random samples to be
142 generated via weighted approach. The estimation procedures of WNBPL parameters via the
143 maximum likelihood are also shown. For numerical illustrations, the WNBPL distribution is fitted to
144 two sets of insurance count data, and the results are compared to Poisson and negative binomial
145  distributions. Based on chi-square and log likelihood of the fitted models, both negative binomial and
146  WNBPL distributions provide significant improvements over Poisson, but WNBPL provides the
147  largest log likelihood and the smallest chi-square. Considering the straightforward manner of
148 obtaining its MLE estimators, the WNBPL can be considered as an alternative model for fitting over-
149  dispersed count data.
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