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Article 

Demand-Weighted Initialization for Network-Based 
Uncapacitated Facility Location Problem: Enhancing 
Neighborhood Search and Scalability in Large-Scale 
Networks 
Jayson Lin 1,2,4, Shuo Yang 1,*, Kai Huang 2,3,*, Kun Wang 1 and Sunghoon Jang 4 

1 School of Civil Engineering, Anhui JianZhu University, Hefei, China 
2 School of Instrument Science and Engineering, Southeast University, China 
3  Wuxi Campus, Southeast University, China 
4 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, 

Hong Kong 
* Correspondence: yang_shuo@ahjzu.edu.cn (Shuo Yang); kaihuang@seu.edu.cn (Kai Huang) 

Abstract: Optimizing networks under large-scale, multidimensional, and dynamic demand presents 
a significant challenge. This complexity is further amplified when solving network-based 
Uncapacitated Facility Location Problems (UFLP), which are well-known for their NP-hardness. 
Current large-scale analytical approaches, such as Neighborhood Search (NS) and Variable 
Neighborhood Search (VNS), face limitations in either solution quality or computational efficiency, 
predominantly due to their reliance on either unstable Random Initialization (RI) or computationally 
expensive Greedy Initialization (GI). Considering demand intensity and network topology, this 
research proposes the Demand-Weighted Roulette Wheel Initialization (DWRWI) strategy. This 
novel initialization method strategically prioritizes high-demand and centrally located network 
nodes, thereby creating high-potential initial facility configurations for improvement algorithms. 
Scenario-based testing demonstrates several distinctive strengths of DWRWI: Compared to RI and 
GI, DWRWI better identifies high-demand, central network nodes, yielding superior initial solutions 
early in optimization. For example, in the large-scale network, DWRWI-initialized NS achieved a 
higher Silhouette score (0.3859) than RI (0.3833) and GI (0.3752). Additionally, DWRWI reduces 
computation time by about 28% compared to Greedy-initialized NS while maintaining competitive 
costs. By integrating demand-weighted distance and stochastic optimization theory, DWRWI 
significantly reduces computation time while ensures more uniform customer-to-facility assignments 
aligned closely with spatial demand distributions. 

Keywords: stochastic optimization; heuristic algorithm; network-based Uncapacitated Facility 
Location Problem; Demand-Weighted Roulette Wheel Initialization; demand intensity; network 
topology 
 

1. Introduction 

Facility-location problems constitute a cornerstone of operational research, seeking optimal 
placement of candidate sites to curb transportation and facility costs while sustaining high service 
efficiency. Their relevance permeates logistics, supply-chain design, and urban planning, where 
strategic choices must weigh distance, time, capacity, and the comparative expenses of building 
versus leasing warehouses. Given the multitude of potential demand nodes and the problem's 
inherent complexity, mathematical models and advanced algorithms have become indispensable, 
driving extensive academic inquiry and delivering data-driven guidance for real-world decision-
makers [1–3]. The p-median problem (pMP) and its derivative, the uncapacitated facility location 
problem (UFLP), exemplify Discrete Location Problems (DLP) concerned with choosing facility sites 
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from finite candidates to minimize service costs [3]. The study of DLP has its roots in several key 
milestones. Originating with Weber's planar warehouse model [4] , formal network treatment 
emerged when Hakimi [5] defined the pMP, sparking systematic research into optimal facility 
placement and customer assignment. Tansel’s 1983 survey refined this field by classifying network 
variants and outlining efficient solution techniques [6]. In the same year, Krarup and Pruzan 
incorporated fixed and variable cost elements, transforming the pMP into what is now recognized as 
the UFLP. Subsequent scholarship has broadened UFLP applications—from uncapacitated 
warehouse siting [7] to urban service deployment [8]—solidifying these models as foundational tools 
in contemporary location analysis. 

In 1979, Kariv and Hakimi proved that the pMP is NP-hard [9], indicating its computational 
complexity. This result highlighted the difficulty of solving general instances of the problem on 
arbitrary networks. Therefore, pMP and UFLP are recognized as generalized mathematical problems 
that have been extensively studied in recent years through the lens of optimization theory. The 
primary problem has motivated significant methodological advancements across exact, heuristic, and 
metaheuristic approaches. Traditional exact algorithms remain indispensable for small-to-medium 
scale instances (<1,000 nodes) due to their rigorous optimality guarantees. Enhanced branch-and-
bound techniques [10–12] and decomposition methods—particularly Lagrangian relaxation [13–15] 
and Benders decomposition [16,17—have demonstrated success in decoupling facility selection from 
customer allocation decisions. Heuristic approaches address scalability limitations through 
computationally efficient strategies. GPU-accelerated parallel vertex substitution algorithms achieve 
linear time complexity for large-scale networks [18], while classical interchange heuristics [19] and 
greedy algorithms [20,21] provide rapid feasible solutions. Atta et al. [22] report that these methods 
maintain computational efficiency within ±15% optimality thresholds for ORLib benchmarks, though 
they risk local optimum entrapment through path dependency—a limitation requiring 23% 
additional iterations on average to mitigate [23]. Metaheuristics excel in handling complex UFLP 
variants through global exploration capabilities. Genetic algorithms [24–27] and hybrid evolutionary 
learning frameworks [28] outperform deterministic methods by 13% in non-convex fixed-cost 
scenarios through multi-modal optimization. Recent advancements like discrete evolutionary 
algorithms [29] demonstrate accelerated convergence rates while maintaining solution quality. 
Despite these strengths, parameter sensitivity in population-based methods (e.g., particle swarm 
optimization [30]) and memory-intensive operations in tabu search [31] present implementation 
challenges for resource-constrained environments. 

For pMP-type problems, increasing data scale, customer counts, and the expansion of potential 
facility locations considerably complicate the solutions. Conventional exact methods like the branch-
and-bound algorithm have high exponential increases in computational time and complexity as 
problem size grows [23]. Meanwhile, heuristic methods, like genetic algorithms, are prone to 
entrapment in local optima [32]. However, in real-world applications, location problems tend to 
appear in the form of more complex networks, such as express logistics companies needing real-time 
responses for daily distribution hub strategies, typically manifest as extremely large-scale and 
complex networks involving substantial numbers of demand points and network nodes, further 
complicating solution methods. In response, recent advancements in Neighborhood Search (NS) and 
Variable Neighborhood Search (VNS) have facilitated progress in addressing these challenges. The 
classic NS [33] systematically reassigns facility-customer pairs within predefined spatial clusters. 
While it achieves local optimality, it suffers from limited global search capabilities due to its myopic 
exploration. The latest VNS [34] improves upon the earlier NS method by incorporating the 
interchange technique into an iterative structure that involves shaking, local search, and evaluating 
swaps. This approach has been demonstrated to perform effectively in large-scale cases. 
Subsequently, Ghosh [23] refined the local search phase of the VNS method. Amrani et al. [35] 
proposed a hybrid heuristic combining VNS with tabu search to optimize multi-product production-
distribution network design problems involving alternative facility configurations and concave 
inventory costs. Their framework was tested on cases ranging from 500 to 1,000 demand areas and 
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60 to 100 potential distribution centers. Hansen et al. [36] introduced a primal–dual VNS, which 
leverages dynamic neighborhood structure adjustments and heuristic optimization techniques to 
enhance algorithmic efficiency and scalability. Irawan & Salhi [37] proposed a novel approach 
integrating demand point aggregation with multi-stage optimization to tackle large-scale p-median 
problems. Their method combines mini-VNS with full VNS to improve both solution efficiency and 
quality. Herrán et al. [38] further enhanced the efficiency of VNS for the Hamiltonian p-Median 
Problem (HpMP) by 22%, leveraging problem-specific neighborhood structures that balance cluster 
density and spatial dispersion. Modern variants, such as the RL-driven VNS by Croci et al. [39], 
integrate reinforcement learning to optimize neighborhood-switching thresholds, thereby mitigating 
the traditional need for manual parameter calibration. 

Although the above literature has extensively explored NS and VNS methodologies for solving 
pMP and UFLP problems, several research gaps persist. First, while substantial progress has been 
made in applying VNS solutions to pMP and its numerous variants, such as the Hamiltonian p-
Median Problem (HpMP) [38], the α-neighbor p-Median Problem [40], the balanced p-Median 
Problem [39] and the Capacitated p-Median Problem (CpMP)—there remains a lack of clear 
distinction and definition between discrete and Network-based UFLP problems. This gap limits the 
development of solutions and model definitions for pMP variants of Network-based UFLP problems. 
Second, both NS and VNS algorithms rely heavily on predefined spatial clusters, with initialization 
methods significantly influencing the quality of subsequent iterative improvements. Commonly 
referred to as constructive methods (as opposed to NS and VNS, which are considered improvement 
techniques), the prevailing initialization method—Greedy algorithms [20,21]—has been 
demonstrated through this study to be highly limited in large-scale scenarios. Nonetheless, most 
existing literature continues to focus on refining VNS algorithms while the exploration of 
initialization methods remains insufficient [17,36,37]. Third, there is a lack of multi-level performance 
tests and comparative analyses across varying scales of data for NS and VNS methods. For instance, 
the VNS tests conducted by Amrani [35] on network-based CFLP problems are notably limited in 
data scale and case diversity. Similarly, the four methods evaluated in Gwalani, Tiwari, & Mikler 
[41]—Alternate Selection and Allocation Algorithm, Exchange Algorithm, Global/Regional 
Interchange Algorithm, and Greedy Addition/Myopic Algorithm—are relatively outdated. 

To address the complexities inherent in large-scale network-based UFLP, this research aims to 
innovate the existing initialization methods, which can promote the effectiveness of both the NS and 
VNS. Based on a mathematical formulation that incorporates user requests and network topology 
traits explicitly, the study positions NS and VNS within a systematic comparison against a spectrum 
of solution approaches, including exact algorithms, heuristics, metaheuristics, and relaxation 
techniques. Special emphasis is placed on the development and theoretical justification of a novel 
demand-weighted roulette wheel initialization method, which leverages user demand and network 
structure to enhance both solution quality and computational efficiency. This innovative approach is 
analytically demonstrated to outperform conventional greedy strategies in terms of algorithmic 
complexity and practical effectiveness, particularly within NS and VNS frameworks. A 
comprehensive empirical evaluation is undertaken using a variety of datasets, spanning from small-
scale synthetic instances to real-world transportation networks across six cities. The testing 
methodology encompasses three core dimensions: multi-case comparative analysis, repeated trials 
for robustness assessment, and cross-method benchmarking, facilitating a thorough evaluation of 
solution quality, stability, and generalizability. Through these contributions, the study not only 
proposes methodological enhancements but also bridges theoretical and practical advancements for 
network-based UFLP, offering insights of broad relevance for the optimization community. 

The structure of this paper is organized as follows: Chapter 2 introduces the formal definition of 
the Network-Based Uncapacitated Facility Location Problem (N-UFLP). Chapter 3 presents the 
methodological framework, with particular emphasis on the proposed Demand-Weighted Roulette 
Wheel Initialization (DWRWI) and its integration into enhanced metaheuristic algorithms NS2025 
and VNS2025. Chapter 4 presents a comprehensive empirical evaluation across multiple real-world 
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scenarios, including small-scale, large-scale, and ultra-large-scale networks, to assess the 
performance of the proposed methods in comparison to state-of-the-art benchmarks. Chapter 5 
synthesizes the theoretical and experimental findings to critically discuss the strengths, limitations, 
and practical implications of DWRWI-based methods. Finally, Chapter 6 concludes the paper by 
summarizing the contributions, outlining the methodological innovations, and identifying promising 
directions for future research. 

2. Problem Definition 

2.1. Network-Based Uncapacitated Facility Location Problem (N-UFLP) 

The Uncapacitated Facility Location Problem (UFLP), also known as the Simple Facility Location 
Problem (SFLP), traditionally involves selecting optimal facility locations from a set of discrete 
candidate points to serve spatially distributed customer zones. Generally speaking, UFLP minimizes 
total system cost by deciding which candidate sites to open—hence the number and locations of 
facilities—while explicitly accounting for customer locations, customer demand, transportation costs, 
and facility setup costs. While prior studies [35] have addressed UFLP scenarios, the network-based 
problem lacks a rigorous definition. This study formalizes the Network-based Uncapacitated Facility 
Location Problem (N-UFLP) by contrasting it with classical discrete UFLP and specifying its defining 
characteristics:  
 Node Location Integration: Facilities and customers are co-located within a unified node set, 

where the first N nodes serve dual roles as both customers and candidate facility locations. This 
contrasts with traditional UFLP, which treats facilities and customers as distinct sets and 
introduces self-service constraints (e.g., a facility can serve itself). This approach better reflects 
practical applications such as telecommunications, logistics, and waste management systems, 
where real-world nodes (e.g., intersections, hubs, or urban locations) can act both as service 
origins and destinations, improving model fidelity to network realities [5,42,43]. 

 Path-Dependent Distance Metric: Transportation costs are determined by shortest-path distances 
on the network, calculated as the sum of edge weights between nodes using the Floyd-Warshall 
algorithm. Unlike classical UFLP models, which assume Euclidean distances or direct 
transportation costs, this approach dynamically computes path costs based on the network 
topology. For many network applications, e.g., transportation and waste collection, using 
shortest-path network distances instead of geometric distances is essential for operational 
feasibility, as real-world routes are dictated by the topology of the network and its connectivity 
[2,43,44]. 

 Network Distance Matrix: A precomputed M×M matrix stores all-pairs shortest path distances 
for M nodes, replacing conventional transportation cost matrices. Storing precomputed shortest-
path distances allows large-scale problems to be solved more efficiently, enabling rapid cost 
evaluations within metaheuristic or exact optimization frameworks commonly used in both 
academic study and industrial practice [2,29]. 

 Network Connectivity Constraints: Accommodates disconnected subnetworks (e.g., isolated 
traffic zones) by introducing virtual edges to connect orphaned nodes to the nearest network 
component, ensuring full service coverage. This is especially vital in urban logistics, 
telecommunications, or emergency services, where service continuity across potentially 
disconnected or dynamically changing networks must be ensured [42,45]. Virtual or auxiliary 
links are routinely adopted in real-world applications to guarantee full coverage. 

 Demand-Weighted Travelled Cost: Combines customer demand volumes with path distances to 
generate a demand-weighted travelled cost metric. Weighting travel costs by demand mirrors 
operational objectives in logistics, emergency services, and supply chain management, where 
both the volume and the distance traveled significantly influence the optimal facility placement 
and overall system efficiency [42,46]. 
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              (a)pre-location                   (b) after-location 

Figure 1. Network-based Uncapacitated Facility Location Problem. 

These considerations lead to the inclusion of further constraints, reflecting realistic network 
structures and distance calculations that depend on actual travel paths rather than simple geometric 
distances. They will, in turn, become unique assumptions. To further formulate this problem, we 
firstly define sets and indices: 

Nodes/Facilities: Let I={1,2,...,M}be the set of all nodes (with |I|=M), every node is a candidate 
for locating a facility. 

Customers: Define the customer node/demand site subset as J⊆I, J={1,2,...,N} (N≤M) indicating 
that the first N nodes serve as customers and also as candidate facility locations (thus allowing co-
location).acilities and customers) and j∈J refer specifically for customers. 

Then, we define network structure  
Adjacency-Based Distance Matrix (Dadj).  
Define the adjacency-based distance between node  
Indices: Let i, r∈I denote Index for nodes (both fi and node r as diradj. The matrix Dadj=[diradj]M×M  is 

then specified by:  

 

               (1) 

Let geodist (i,r) denote the Euclidean distance between nodes i and r, computed from their 
geographic coordinates given in the M×2 matrix nodeCoords when a node j with customer demand 
is identified as isolated (i.e., dij=∞ for all j∈J). The geodist function trigger condition occurs when 
either node i or r represents an isolated node with customer demand. This indicates that these nodes 
are special cases within the network data, often corresponding to unique subareas in real-world 
transportation networks or OD points connected via feeder branches. To ensure effective routing for 
demand originating from these isolated nodes, we connect them “virtually” to their geographically 
nearest reachable node kgeo via the Euclidean distance. 

(a) Shortest-path distance matrix (D) 
The effective transportation distance used in the objective function is given by the matrix 

D=[dir]M×M, where each element is defined by: 

    

          (2) 

where the shortest-path distance matrix D is calculated by Dadj through shortest-path algorithm. 
It is noteworthy that we employ path distance or demand-weighted traveled distance, rather than 
traditional adjacency-based distance metrics.  
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Finally, in the aspects of demand and cost, we define 
Trip attraction (hj): Let hj represent the N×1 demand/trip attraction at customer node/demand 

site j.  
(a) Transportation Cost Rate (α): A scalar parameter α multiplies the effective distance to yield 

the transportation cost. 
(b) Facility Setup Cost (β): A scalar parameter β denotes the unitary fixed cost for opening a 

facility. This cost is assumed to be identical for all candidate locations. 
(c) Demand-weighted traveled distance (Wij): The transportation cost incurred when assigning 

customer demand hj to a facility at node i is given by Wij= hj · dij. 
In N-UFLP, similar to the general types, we aim to minimize total costs by optimizing both 

facility locations and assignment relationships. 

  
where the first component aims to reduce facility setup costs, which are determined by construction 
rates and facility opening decision variables. The second component focuses on transportation costs, 
which depend on transportation rates, customer demand, travelled distances, and assignment 
decision variables.  

The conventional UFLP seeks to determine optimal facility locations under constraints such as 
ensuring all demand points are satisfied, establishing correspondence between facility assignments 
and demands, and often limiting the number of facilities due to resource constraints. In contrast, the 
N-UFLP introduces additional constraints by incorporating specific assumptions, including Node 
Location Integration and path-dependent distance metrics: 

 Self-Service Feasibility: 

  
which forces the assignment variable that represents “customer j serves itself” (xjj) to be the value of 
the opening variable of the same node (yi). Compared to classical UFLP, although the standard 
assignment-opening link xij≤yj,∀i∈I,∀i∈J already prevents assigning demand at a closed site. It is 
noteworthy that this formulation incorporates Node Location Integration, allowing facilities and 
customers to be located at the same point by employing a shared set J (J⊆I) for both facility and 
customer decision variables. This means that if node j is selected as a facility location, the demand at 
node j is automatically assigned to the facility at that point. 

 Path Consistency (Triangle-Inequality) Constraint: 

 
where dik refers to effective transportation distance (shortest-path length) between node i and k on the 
underlying network G=(I,E) with non-negative edge weights. The inequality enforces the triangle 
inequality for every ordered triple of nodes. For any detour that goes from i to k through an 
intermediate node m, the direct shortest-path distance dik cannot exceed the length of that detour 
dim+dmr. Compared to traditional UFLP, which assumes a static, exogenous cost matrix—often 
Euclidean—so metric validity is implicit. Introducing path-dependent costs makes distance 
consistency an endogenous concern; the triangle inequalities are therefore the natural extension 
ensuring that facility location decisions remain faithful to the underlying network topology. 

 Variables xij and yi are the decision variables representing the assignment relationships and 
facility location, respectively 

  

  
The N-UFLP Model can be formulated as follows. 

   (3) 
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   (4) 

   (5) 

   (6) 
   (7) 
   (8) 
   (9) 
   (10) 

where yi and xij are separately facility locations decision variables and customer assignment decision 
variables. The objective function (3) is to minimize the total cost. Constraint (4) means each customer 
at a demand site j must be served. Constraint (5) ensures maximum allowed facility number is p. In 
this research, we further limit p equal to the square root value of the number of customer sites N. 
Constraint (6) means facility activation, which guarantees no assignment to the closed facility or 
customer demand can only be assigned to open facilities. Constraint (7) enforces the commonsense 
rule that a customer may be self-served only if a facility is actually installed at that node, closing a 
loophole that arises when customer and facility sets overlap and self-service incurs zero travel 
distance. Constraint (8) secures metric validity of the distance matrix, aligns transportation costs with 
physically realizable routes, and prevents the optimization model from exploiting impossible 
shortcuts when path-dependent distances are part of the decision process. 

2.2. Notations 

Symbol Definition 

Sets 

I  Set of all nodes (∣I∣=M), including facilities and 

customers. 

J Subset of customer nodes/demand site (∣J∣=N), also 

candidate facilities. 

S  Final set of selected facilities. S={s1,s2,…,sp}. p×1 

Vector of indices. Output. 

Asgmt. 1×N Vector mapping customers to assigned 

facilities. Output. 

K Set of all candidate facility locations. K={1,2,...,N}. 

Indices 

i, r ∈I Indices for general nodes (facilities or customers). 

j∈J Index specifically for customer nodes. 

t Iteration index for facility selection, t=1,2,...,p,where 

p≤N. 

k∈K k∈K corresponds to a potential facility. 

Parameters 

diradj  Adjacency-based distance between nodes  i and r 

(direct edge length). 

Dadj M×M adjacency distance matrix. 

dir Shortest-path distance between nodes i and r. 

D M×M shortest-path distance matrix. 

(hj)j∈J Demand weight (trip attraction) at customer j (N×1 
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vector). Input. 

Wij Demand-weighted traveled distance from node i to 

node j. 

α Uniform facility setup cost. Input components. 

β Transportation cost rate per unit-distance-demand. 

Input. 

p Maximum allowed facilities. 

Z(s) TotalCost. Scalar objective value of solution S. 

Output. 

Decision Variables 

yi yi∈{0,1}: 1 if a facility is opened at node i; 0 

otherwise. 

xij xij∈{0,1}: 1 if customer j is assigned to facility i; 0 

otherwise. 

Key Matrices 

NodeNames M×1 cell array of unique node identifiers. Input 

components#. 

NodeCoords M×2 matrix of geographic coordinates (longitude, 

latitude). Input. 

DistTable L×3 matrix of adjacency distances (origin, 

destination, edge length). Input. 

DistanceMatrix M ×M matrix of precomputed shortest-path 

distances. Input. 

2.3. Assumptions 

The N-UFLP proposed relies on the following assumptions: 
 A customer node can be served by a facility co-located at the same node. 
 All facilities incur identical fixed setup costs, i.e., no site-dependent cost variations. 
 Facilities are either fully open or closed; partial opening is prohibited. 
 Each customer is entirely served by a single facility. 
 There is no upper limit on the demand a facility can serve. 
 All costs, demands, and distances are deterministic and known with certainty. 
 The maximum number of facilities p is the square root of N (budget-constrained). 

3. Methodology 

3.1. Baseline Methods 

This section presents the overarching methodological framework utilized in this study. 
Neighborhood Search (NS) and Variable Neighborhood Search (VNS) algorithms are widely 
recognized as effective improvement algorithms for solving large-scale Network-based 
Uncapacitated Facility Location Problem (N-UFLP); however, their performance is significantly 
influenced by the quality of constructive algorithm, which are typically generated via randomized, 
roulette wheel, or greedy initialization approaches. Despite their prevalence, these construction 
methods demonstrate notable limitations when applied to large-scale N-UFLP instances. Therefore, 
this section first explores, from a theoretical perspective, strategies to refine these initialization 
algorithms, aiming to overcome their inherent shortcomings. Furthermore, we integrate these 
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enhanced methods with NS and VNS to enhance the overall efficiency and capability in solving N-
UFLP problems.                                                

3.1.1. Roulette Wheel Initialization (RWI) 

Roulette Wheel Initialization, as described by Celebi [46], is widely adopted as a heuristic 
approach, most notably for enhancing iterative selection mechanisms in genetic algorithms and the 
initialization process of K-Means++. The essence of this method lies in its probabilistic selection 
scheme: at iteration t, the probability of selecting node k from the remaining candidates K\St-1 is 
proportional to its weight wk, normalized over all unselected nodes. Formally:           

  
Where: 
 St-1 is the set of facilities already selected before iteration t. 
 K\St-1 is the set of remaining candidate nodes. 
 In the basic version one may set wk=(dkadj)min. 
 st~Discrete(P(·)) denotes that st is drawn from the discrete distribution defined by the probabilities 

Pk.       
This ensures that nodes with higher weights have a correspondingly greater chance of being 

selected, thereby guiding the initialization process in a data-driven manner. 

3.1.2. Greedy Initialization (GI) 

The greedy heuristic initialization method, widely used in facility location problems (Celebi et 
al., 2013), iteratively selects facilities to directly minimize the total cost defined in the N-UFLP 
objective function. This method prioritizes immediate cost reduction but often lacks exploration 
diversity, potentially trapping solutions in local optima. Let: 
 St - denote the set of selected facilities after iteration t (S0=∅).             
 let K\St-1 be the candidate nodes, unselected candidate nodes (recall K={1,2,...,N}). 
Phase 1 (Initial Facility Selection) 
Intialize S0=∅, t=0, K\St-1=K. 
Phase 2 (Iterative Marginal-cost evaluation) 

While |St|＜p, set t=t+1: 
Cost Evaluation 
For each candidate node k∈K\St-1, compute the temporary total cost Z(St-1 ∪ {k}) incurred by 

opening k: 
Fixed Facility Cost: 

  
Transportation Cost: Assign each customer j ∈J to its nearest facility in St-1 ∪ {k}       

  
where dji is the shortest-path distance from j to i. The transportation cost becomes: 

  
stance from j to i. The transportation cost becomes: 
Total Cost: 

  
(a) Selection Criterion 
Select the candidate k*∈K that maximizes the marginal cost reduction: 

  
where Z(St-1) is the total cost of the current facility set St-1. It should be noted that when St-1=∅, 

define Z(St-1)= ∞ (no facilities imply infinite unassigned demand cost).     
(b) Update 
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Add k* to the facility set and remove it from candidates: 

  
The greedy method directly optimizes the N-UFLP objective by sequentially minimizing: 

  
which guarantees that each iteration incorporates the facility yielding the greatest reduction in total 
cost. Although commonly adopted as a constructive algorithm, it requires evaluating every 
remaining candidate facility k∈K, calculating the total cost Z(St-1 ∪ {k}). For each candidate, this 
involves: Assigning every customer j∈J to its closest facility within St-1 ∪ {k}, where argmin operation 
over |St-1|+1 facilities is performed; Repeating this process for all |K\St-1| candidates. In each 
iteration, if |J|=N, |I|=M, and the final number of facilities is p, then the computational cost per 
iteration is O(|K\St-1|·|J|·(|St-1|+1)). Since K\St-1 decreases as facilities are selected, and p iterations 
are required, a typical worst-case bound is O(M·N·p). For large-scale networks or urban scenarios 
where both M and N, this complexity becomes computationally prohibitive, severely limiting the 
practicality of the greedy method for real-time or iterative metaheuristic frameworks.    

3.1.3. Neighborhood Search Algorithm (NS) and Greedy-initialized Neighborhood Search 

Neighborhood Search (NS) and Variable Neighborhood Search (VNS) are often adopted as 
improvement methods. Specifically, Neighborhood Search (NS), proposed by Maranzana [33], seeks 
to minimize total costs, aligning with the objective of the N-UFLP baseline. The general procedure of 
NS involves iteratively exploring neighboring solutions to identify cost reductions: 

Phase 1 (Initialization) 
Generate S via Greedy Initialization or other initialization methods. 
Phase 2 (Neighborhood Structure) 
Define operators for search: 
(2a) For each iteration, alternately reassigns all customers to their nearest open facility.  
(2b) For each facility, seek the optimal new location (from the M possibilities) that minimizes the 

total demand-weighted distance to its assigned customers. 
Phase 3 (Iterative Improvement)  
(3a) Evaluate all neighbors of S. 
(3b) Accept the neighbor S′ with the lowest total cost Z(S′). 
(3c) Repeat until no further improvement occurs. 
Given an initial facility set S(|S|=p), each NS iteration involves: Evaluating all possible swaps 

between i∈S and k∈K\S, giving approximately p×(M-p)≈pM neighborhood solutions. For each 
neighbor, all customers are reassigned to their nearest open facility, requiring N operations. Thus, 
each iteration of NS has complexity O(p·M·N). For common swap/add/drop implementations, this is 
often simplified to O(p2N) as seen in the baseline. If NS executes for T total iterations, the overall 
complexity Greedy-initialized NS is: 

  
where T denotes the number of NS improvement iterations, which depends on the convergence 
criteria. 

3.1.4. Variable Neighborhood Search (VNS) and Greedy-initialized Variable Neighborhood Search 

The Variable Neighborhood Search (VNS) [34] extends NS by introducing dynamic 
neighborhood structures to escape local optima and explore broader solution spaces. The general 
procedure is as follows: 

Phase 1 (Initialization) 
Generate S via Greedy Initialization or other initialization methods. 
Phase 2 (Multiple Neighborhoods) 
Define N1, N2,...,Nk with increasing complexity: 

 N1: Single-swap operator. 
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 N2: Double-swap operator. 
 N3: Demand-weighted perturbation. 

Phase 3 (Shaking) 
Randomly perturb S within Ni to escape local optima. 
Phase 4 (Local Search) 
Apply NS to refine the perturbed solution. 
Phase 5 (Neighborhood Switch) 
If no improvement, transition to Ni+1. 
The analysis of VNS complexity is structured into three distinct sections: VNS employs k distinct 

neighborhood structures; Within each neighborhood, a local search is carried out; each has 
complexity O(p2N); If the primary VNS process runs for L outer iterations, and within each the full 
suite of k neighborhood is explore. The total overall complexity of Greedy-initialized Variable VNS 
is 

  
where L denotes the number of VNS main loop cycles (typically much smaller than M). The parameter 
k serves as a hyperparameter representing the number of neighborhood types utilized in the model. 

While Greedy-initialized NS and VNS frameworks are widely adopted for their conceptual 
simplicity and solution quality in small to moderate-sized problems, they suffer from significant 
limitations regarding computational complexity and speed, especially as network scale increases.  

3.1. Demand-weighted roulette wheel initialization (DWRWI) 

3.2.1. Theory 

Traditional NS and VNS approaches often rely on predefined spatial clusters, which can lead to 
suboptimal facility placements, particularly in scenarios involving large-scale N-UFLP. Meanwhile, 
classical Roulette Wheel Selection (RWS) typically considers only the two-dimensional spatial 
positions and the Euclidean distances between nodes, making it unsuitable for the N-UFLP. 
Furthermore, Greedy Initialization significantly increases the computational complexity of both NS 
and VNS methods. To address these limitations, we propose a Demand-Weighted Roulette Wheel 
Initialization method, which integrates demand information and network topology with a 
probabilistic selection mechanism to generate more effective initial facility configurations. By 
replacing the conventional initialization with our method DWRWI, we aim to enhance the 
exploration capability and overall performance of NS/VNS algorithms in solving large-scale N-UFLP. 

Let the following notation be established: 
 t: Iteration index for facility selection, t=1,2,...,p,where p≤N. 
 St={s1,s2,...,st}: Set of currently selected facility locations by the end of iteration t.            
 st: Newly selected facility at the t-th iteration, where st∈K\St-1. 

Phase 1 (Initial Facility Selection) 
The first facility s1 is selected uniformly at random from the first N customer nodes K to avoid 

bias toward densely populated regions. This ensures spatial dispersion in the initial configuration. 
  (11) 
Phase 2 (Iterative Roulette Wheel Selection) 
For each subsequent iteration (t=2,....,p), one additional facility st is selected from the remaining 

candidates K\St-1, as follows:                                   
(a) Minimum Distance Calculation: 
For each candidate node k∈K\St-1, calculate the shortest-path distance to the nearest already-

selected facility: 
  (12) 

(b) Weight Assignment: 
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Assign a weight wk to node k proportional to its unsatisfied demand hk and minimum 
distance from existing facilities dkmin: 

  (13) 
which improved over the original non-demand-driven Initialization method. In comparison, the 
Roulette Wheel Initialization used the mathematical expression wk=(dkadj)min， where the initialization 
of nodes was determined solely by their Euclidean distances. While this method offered simplicity, 
it failed to account for other critical factors that could influence optimal node placement in many real-
world scenarios. In comparison, the proposed formula in this paper, wk is to balance two objectives: 
 Demand Satisfaction: Prioritize nodes with higher demand (hk) to maximize service coverage.       
 Spatial Dispersion: Favor Nodes farther from existing facilities (dk)min to avoid clustering while 

considering network topology. 
Combining these terms multiplicatively ensures that both conditions must be satisfied for a node 

to receive high weight: Firstly, a high-demand node close to existing facilities (hk large, dkmin small) is 
less preferred than one with similar demand but greater distance. Then, a distant node with low 
demand (dkmin large, hk small) is also deprioritized. Candidates with both higher demand and greater 
distance from current facilities receive larger weights, encouraging coverage expansion and demand 
satisfaction. 

(a) Probability Normalization: 
Normalize the weights to obtain selection probabilities: 

  (14) 

Any node already selected (j∈St-1) is excluded (Pk=0). This equation represents normalization that 
converts absolute weights (wk) into selection probabilities (Pk) to: 
 Ensure valid probability distribution (∑Pk=1) 
 Proportionally allocate selection likelihood based on relative weights.     

This aligns with RWS principles in stochastic optimization, where higher-weighted candidates 
have proportionally higher chances of selection. 

(d) Roulette Wheel Selection 
Generate a random number γ ~U(0,1) and select the next facility st such that: 

  (15) 

Phase 3 (Termination criteria) 
Iterative sampling stops when t=p, which means an upper bound on the number of facilities has 

been reached. If none of the above holds, set t←t+1 and return to Phase 2. 

3.2.2. Theorem (Correctness and Termination) 

Let K={1,2,...,N} be a finite set of candidate sites, each with a strictly positive demand hk>0 and 
finite shortest-path distances D(k,i) between all pairs. Let p be given facility number (1≤p≤N). Apply 
the four-step procedure below: 

(i) Distance calculation 
(ii) Weight assignment 
(iii) Probability normalization 
(iv) Roulette-wheel sampling 
Repeat these steps, starting from an initial selection, and after each step, remove the selected site 

from the candidate list. Then, the following properties hold: 
Theorem 1. Well-defined probabilities: At each iteration t (where 1≤t≤p), the probabilities vector 

  
forms a valid probability distribution; Pk(t)≥0 for all k, and sum over all Pk(t) equals 1. 

Proof of Theorem 1. Well-defined probabilities: At each iteration t, in the distance computation step 
(a), we caculate dkmin ≥ 0 for every unselected candidate k (i.e., for all k∈K\St-1). Because demands hk>0, 
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the weights produced in step (b), wk(t)=dkmin·hk, are strictly positive. Therefore, the denominator in the 
normalization step (c), ∑k∈K\St-1wk(t) , is always positive. The resulting normalized probabilities 
Pk(t)=wk(t)/(∑wk’(t)) are strictly between 0 and 1, and collectively sum to 1. 
Theorem 2. Sampling consistency: The site selected at iteration t is selected according to the probability vector, 
i.e., 

  
Proof of Theorem 2. Sampling consistency: In the roulette-wheel selection step (d), a random number 
γ∈(0,1) is drawn. The next facility is selected as the first candidate whose cumulative probability 
meets or exceeds γ. This standard stochastic selection method ensures that, for any specific candidate 
k, the probability that it is chosen equals its assigned probability Pk(t).  
Theorem 3. Uniqueness: The set of selected at iteration t, denoted St={s1,s2,...,st}, contains no duplicates. Thus, 
|St|=t. 
Proof of Theorem 3. By design, at every stage we only draw candidates from the set of unselected 
sites K\St-1. Therefore, each selected site is new and not duplicated, and after t iterations, the selected 
set St contains exactly t unique elements. 
Theorem 4. Finite termination: The procedure terminates after exactly p steps, and produces a final set Sp ⊆ 
K of p distinct facilities. 
Proof of Theorem 4. Since the candidate set K is finite (size N), and exactly one new site is selected 
per step, after p iterations we have selected p distinct facilities. The termination criterion “t=p” is then 
satisfied as per Phase 3, and the algorithm concludes with the final set Sp. 3.2.3. Complexity Analysis 

This initialization comprises p iterations to select p facilities. 
Per Iteration (t), for each candidate node k∈K\St-1:  

 Compute dkmin=mini∈St-1 D(k,i) (at most t-1 comparisons).     
 Compute weight wk=dkmin·hk.    
 Normalize weights and sample (both O(|K\St-1|)). 

So at iteration t, the cost is  

  
Where M=|K|(the initial candidate pool). Over p, the total is: 

  
This sum evaluates asymptotically to: 

  
After initialization, the NS phase is identical to that in the DWRWI and NS combination: 

  
In the DWRWI and VNS combination, it will be: 

  

4. Results 

4.1. Setting Up the Case Study  

To benchmark the performance of the proposed NS/VNS framework, four state-of-the-art 
methods were implemented, with settings aligned to their respective original literature for 
consistency and reproducibility. These methods include: (a) Mixed-Integer Programming (MIP): This 
exact solution method employs the Branch-and-Price algorithm [10] to solve UFLP instances. The 
method guarantees optimality for small-scale instances. However, its exponential time complexity 
limits scalability, particularly for networks with N>500. Key parameters include a relative optimality 
gap tolerance of MIPGap=1e−4 and a runtime limit of 3600 seconds. (b) Greedy Heuristic: This 
heuristic iteratively selects facilities to minimize the total cost objective [20,21]. The method employs 
a drop heuristic, sequentially adding facilities that maximize demand-weighted distance reduction. 
While computationally efficient, the method's myopic selection process may overlook globally 
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optimal solutions. (c) Genetic Algorithm (GA): This metaheuristic combines evolutionary operators 
such as crossover and mutation to explore the solution space [24,26]. The method implementation 
uses tournament selection and path-based crossover, with parameters including a population size of 
50, a crossover rate of 0.8, and a mutation rate of 0.1. While effective for global exploration, the 
method is sensitive to parameter tuning. (d) Lagrangian Relaxation: This dual decomposition 
approach relaxes customer assignment constraints and employs subgradient optimization to solve 
the relaxed problem [13,15]. The implementation iteratively updates Lagrangian multipliers to 
balance primal and dual bounds, achieving tight bounds for large-scale problems. However, 
recovering feasible solutions from the relaxed problem introduces overhead. In addition to the 
aforementioned methods, there exist four approaches that share the same improvement-phase 
algorithms (NS and VNS) but differ in their initial solution construction through either Random 
Initialization (RI) or Greedy Initialization (GI). These can be categorized into RI-based methods—
including NS1964 and VNS1997—and GI-based methods, which comprise NSGreedy and 
VNSGreedy. 

This study will present an empirical evaluation of our proposed NS2025 and VNS2025 
algorithms, both initialized with DWRWI-based methods, compared to eight established benchmark 
methods. These datasets include the small-scale illustrative scenario 6-points UFLP NetData and a 
diverse array of large-scale, real-world datasets—including Sioux Falls, various Berlin regions, 
Anaheim, and Gold Coast—sourced from the TRB Network Modeling Committee [47]. These datasets 
capture a wide range of network complexities, from 24 to 4807 zones and up to 1064 demands. In 
total, seven unique UFLP datasets with authentic demand distributions are employed to ensure 
robust comparisons. While the rationale for multi-method and multi-case controls has been 
previously discussed, the multiple-run group involves executing each algorithm four times per 
stance. This repeated execution allows for rigorous evaluation of algorithm performance, enabling 
the identification of result variability under identical conditions and minimizing the influence of 
stochastic or probabilistic elements inherent in certain methods. 

Seven primary output metrics have been defined to comprehensively evaluate algorithmic 
performance, emphasizing solution quality, computational efficiency, reliability, and clustering 
effectiveness. The Optimal Number of Open Facilities represents a scalar value denoting the ideal 
count of facilities selected, effectively meeting demand requirements under defined constraints. The 
Optimal Total Cost metric combines Facility Setup Costs (set uniformly at 10) and Transportation 
Cost Rate (set at 600,000), resulting in a scalar total derived from optimized customer-to-facility 
assignments. To further facilitate comparative analysis across different methods within the same 
scenario, the LB GAP (%) metric is introduced. For example, using the Total Cost metric as a For a 
given scenario, there are 10 methods indexed by the set Q = {1,…,10}. Let TCq denote the Total Cost 
obtained by method m (m ∈ Q), and TCmax = max{m∈Q} represent the maximum Total Cost among all 
methods. Then, the Total Cost LB GAP (%) for method q is defined as GAPq = (TCmax − TCq) / TCmax × 
100%, equivalently expressed as GAPq = 1 − TCq / TCmax. Additionally, computational efficiency is 
assessed through the Iteration Count for Best Solution, recording the number of iterations necessary 
to reach the optimal solution, thereby providing insights into algorithmic convergence behavior. The 
Computation Time for the Best Solution quantifies the average computational effort, measured in 
seconds, to achieve the optimal configuration. Stability and result dispersion are further evaluated 
by the Cost Interquartile Range, calculated as the interquartile range (Q3 - Q1) of total costs across 
multiple simulation runs. Last but not least, the Silhouett indicator (Rousseeuw, 1987) has been 
incorporated to evaluate clustering quality in customer-to-facility assignments. This metric quantifies 
the compactness within each facility cluster (intra-cluster distance) and the separation between 
facility clusters (inter-cluster distance). Ranging from -1 to 1, a higher Silhouette value close to 1 
indicates well-defined, spatially coherent clusters, demonstrating that customers assigned to each 
facility are closely grouped, with clear boundaries distinguishing different service areas. Thus, the 
inclusion of the Silhouette metric enhances the assessment of spatial rationality and demonstrates the 
superior clustering performance of the DWRWI-based methods. 
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Table 2. Overview Table of Test Methods. 

Terminology 
Abbre

v. 
Brief Explanation Reference 

Mixed Integer 

Programming 

with Branch-and-Price 

Algorithm 

MIP 
Applies the Branch-and-Price 

algorithm 

Corberán et al., 

2019; Arslan et 

al., 2021; Barbato 

& Gouveia, 2024 

Greedy Algorithm with 

Drop Strategy 
Greedy 

A myopic algorithm that iteratively 

selects facility sites to minimize 

demand-weighted total distance.  

Kuehn & 

Hamburger, 

1963;  

Gokalp, 2020 

Genetic Algorithm GA 
Metaheuristic algorithm involving 

selection, crossover, and mutation.  

Moreno-Perez et 

al., 1994; Alp et 

al., 2003; Fathali, 

2006 

Lagrangian Relaxation 

Algorithm 

Lagran

gian 

Generates feasible solutions and 

calculates lower bounds iteratively.  

Beltran et al., 

2006; Beltran-

Royo et al., 2012; 

Nezhad et al., 

2013 

Neighborhood Search 

Algorithm with RI 

NS196

4 

 Iteratively updates facility 

locations and assignment 

relationships to minimize demand-

weighted total distance.  

Maranzana, 1964 

Neighborhood Search 

with DWRWI 

NS202

5 

Incorporates Demand-Weighted 

Roulette Wheel Initialization 

(DWRWI). 

 

Variable Neighborhood 

Search with RI  

VNS19

97 

Metaheuristic method with key 

steps: shaking, local search, and 

swap evaluation.  

Hansen & 

Mladenović, 1997 

 Variable Neighborhood 

Search with DWRWI 

VNS20

25 

 Incorporates DWRWI and adjusts 

the p-range for enhanced 

performance.  

 

Neighborhood Search with 

GI 

NSG/ 

NSGre

edy 

 Combines greedy initialization 

with the Neighborhood Search 

algorithm.  

Kuehn & 

Hamburger, 

1963;  

Gokalp, 2020 

Variable Neighborhood 

Search with GI 

VNSG/ 

VNSGr

eedy 

 Combines Greedy Initialization 

with the Variable Neighborhood 

Search algorithm.  

Kuehn & 

Hamburger, 

1963;  

Gokalp, 2020 
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Demand-Weighted 

Roulette Wheel 

Initialization  

DWR

WI 

A construction method, whereas 

NS2025 and VNS2025 belong to the 

DWRWI-based methods. 

 

Greedy Initialization  GI 

A construction method, NSG and 

VNSG are both categorized as GI-

based methods. 

Kuehn & 

Hamburger, 

1963; Gokalp, 

2020 

Random Initialization  RI 

A construction method, whereas 

NS1964 and VNS1997 belong to the 

RI-based methods. 

Celebi et al., 2013 

Table 3. Overview Table of Test Case Stances. 

Scenarios Instances 
Zones 

(Demands) 
Nodes Links 

Methodology 

Demonstration (§4.2) 
6-points UFLP NetData 6 6 5 

Analysis of Case 

Cohorts (§4.4) 

Application Analysis 

(SF inst., §4.5) 

SiouxFalls 24 24 76 

Berlin-Friedrichshain 23 224 523 

Berlin-Tiergarten 26 361 766 

Berlin-Mitte-Center 36 398 871 

Anaheim 38 416 914 

Berlin-Mitte-Prenzlauerberg-

Friedrichshain-Center 
98 975 2184 

 Large-scale Network 

(§4.3) 
GoldCoast 1068 4807 11140 

Table 4. Overview Table of Test Inputs, Output Components, and Metrics. 

 
Terminology 

Program 

Var. 
Brief Explanation 

In
pu

t C
om

po
ne

nt
s 

nodeNames 
Nodes 

Names 

M×1 cell matrix structure. A unique set of node 

identifiers, where M is the total number of nodes. 

Facilities and customers share the same node set. The first 

N nodes serve as both customers and candidates for 

facilities. Facilities and customers can be co-located. 

Nodes Coordinates 
nodeCoord

s 

M×2 double matrix structure. Each row represents the (x, 

y) coordinates (longitude/latitude) of a node, where M is 

the number of nodes. 

Distance 

Matrix/DistTable 
DistTable 

L×3 double matrix structure. Columns represent: start 

node, end node, and edge distance. Distances are 

symmetric (distance(i,j)=distance(j,i)) and finite 

(0<distance<∞). For non-adjacent nodes, shortest-path 
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distances are computed. Non-connected nodes are linked 

using nearest-neighbor operations. 

Customer Demands 
tripAttracti

on 

N×1 double matrix structure. Represents demand (trip 

attraction) for the first N nodes in M. The first N nodes of 

DistanceMatrix represent demand. Referred to as the 

"demand" variable. 

Transportation Cost 

Rates 

transport_r

ates 

Scalar value. Multiplier for transportation cost: 

transport_rates×distance×demand 

Facility Setup Costs 
facility_rat

es 

Scalar value. Unitary setup cost for facilities, uniform 

across all nodes. 

 
DistanceM

atrix 

M×M matrix storing shortest-path distances between all 

node pairs. Derived from DistTable, it is symmetric, with 

diagonal elements as 0. Non-adjacent nodes have infinite 

distances.  

O
ut

pu
t C

om
po

ne
nt

s 

Number of Open 

Facilities 
p 

Scalar value representing the number of open facilities in 

the final solution. Used to validate the solution against 

constraints 

Selected Facility Indices 
selectedFac

ilities 

p×1 vector storing the indices of open facility nodes in the 

current solution. Helps locate facilities for further 

optimization. 

Total Cost totalCost 

Scalar value of the objective function. Represents the 

minimum total cost, including fixed facility setup costs 

and transportation costs for customer assignments. 

LB GAP (%)  
facilitate comparative analysis across different methods 

within the same scenario.  

Customer-Facility 

Assignment  

assignment

s 

1×N matrix. Each element corresponds to the index of the 

facility assigned to a customer. Indicates the customer-to-

facility mapping. 

Silhouett  
evaluate clustering quality in customer-to-facility 

assignments 

Iteration Count 
iteration 

step 
Number of iterations during the optimization process. 

Computation Time 
iteration 

time 
Total computation time (in seconds) to solve the problem. 

R
es

ul
t S

ta
ti

st
ic

s 

Optimal Number of 

Open Facilities 
Best_p 

Scalar value. Number of open facilities corresponding to 

the lowest total cost across 4 runs. 

Optimal Total Cost 
Best_totalC

ost 

Scalar value. Minimum total cost, including fixed and 

transportation costs. 

Iteration Count for Best 

Solution 

Best_iterCo

unt 

Scalar value. Number of iterations required to achieve the 

best configuration. 

Computation Time for 

Best Solution 

Best_iterTi

me 

Scalar value. Total computation time (in seconds) to 

obtain the best solution. 
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Cost Interquartile Range 

(IQR) 
Cost_IQR 

Scalar value. Interquartile range (IQR) of total costs, 

calculated as Q3−Q1. 

4.2. Small-Scale Illustrative Scenario      

This section includes step-by-step demonstrations of algorithmic processes using the small-scale 
illustrative scenario ("6-points UFLP NetData"). Figure 2(a) illustrates the 6-point network and 
demand distribution: Nodes =A,B,C,D,E,F are demand sites, each associated with specific trip 
attraction weights {100; 150; 125; 175; 250; 200}. Edges represent adjacent distances Dadj, ranging 
approximately from 3 to 9 units. Using the shortest-path algorithm, the shortest-path distance matrix 
D can be calculated. For p=3, the task is to locate two facilities to minimize the total weighted 
transportation cost, considering network constraints.  

Table 5. Facility Location Results of the 6-Point Network (p=3) Using NS1964, NS2025, and NSG Methods. 

 

Figure 2. Illustrative Scenario Diagram: (a) 6-points UFLP NetData; (b) 1st iteration of DWRWI; (c) 2nd iteration 
of DWRWI; (d)RI-based Initialization Results; (e)DWRWI-based Initialization Results. 

 InitTech Init.SelectedFac  FinalSelectedFac Assignments Total Cost 

NS1964 RI {A,C,E} {A,D,E} {A,D,D,D,E,D} 2375 

NS2025 DWRWI {B,D,E} {B,D,E} {D,B,D,D,E,D} 2275 

NSG GI {B,D,E} {B,D,E} {D,B,D,D,E,D} 2275 
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For this case, the global optimal solution has been calculated, shown in Figure 2(b). 
NS1964 (RI-based method) produced {A,C,E} as the initial facility configuration. As evident in 

Figure 2(d), this choice was misaligned with the spatial distribution of high-demand nodes such 
as D and E, leading to inefficient customer assignments and higher total transportation costs. 
Although iterative improvements allowed NS1964 to refine facilities to a final configuration 
of {A,D,E}, this was still suboptimal due to the inefficient placement of Node A, a low-demand 
peripheral site. Consequently, NS1964 achieved a total cost of 2375, which was notably higher than 
other methods. The failure to balance the considerations of demand and spatial coverage in the initial 
phase led to a constrained capability for subsequent improvement. 

In contrast, the DWRWI algorithm incorporates both network topology and demand 
distribution to iteratively select optimal facility nodes, ensuring efficient service coverage. (i)First 
Iteration: The process begins with the random selection of Node D as the initial facility. From then on, 
the algorithm iterates to select the next facility by evaluating all remaining candidate nodes based on 
their proximity to already selected facilities and their associated demands. In the first iteration, with 
Node D as the sole facility, the selection metric for each candidate k is determined as the product of 
the shortest-path distance dkmin between k and D, and the demand hk at candidate k. For instance, Node 
E demonstrates a high demand of 250 and a distance of 10 to Node D, yielding a weight significantly 
higher than other nodes. Normalizing these weights into probabilities and employing a random 
sampling mechanism, Node E emerges as the second facility, as its demand and distance strongly 
align with the algorithm's prioritization criteria. The result highlights the effectiveness of DWRWI in 
addressing high-demand nodes that are strategically located relative to the initially selected facilities. 
(ii)Second Iteration: In the second iteration, the set of selected facilities expands to D and E, and the 
same evaluation process is repeated for the remaining unselected nodes. Each node's weight is 
recalculated with its shortest-path distance to the closer of the two facilities, D or E, ensuring that the 
already-established spatial coverage is optimally extended. Node B exhibits a balanced combination 
of moderate demand (150) and proximity to node D, resulting in a high selection probability. Despite 
the presence of other candidates like F, their weights are marginally lower due to either suboptimal 
locations or smaller demand magnitudes. The probabilistic mechanism ultimately selects Node B as 
the final facility, completing the facility configuration of {D, E, B}. (iii)Improvement: Further iterative 
refinement yielded negligible adjustments since the initial configuration was already optimal, as 
shown in Figure 2(e). The final total cost achieved was 2275, the lowest among all methods. This 
outcome underscores the superiority of DWRWI in guiding the NS search process to converge 
efficiently on the global optimum within a comparatively shorter time. 

4.3. Ultra-Large-Scale Network Analysis   

The Gold Coast transportation network dataset represents an ultra-large-scale urban road 
system, widely recognized as a challenging and representative benchmark in contemporary transport 
network analysis. Provided by Michiel Bliemer (University of Sydney) and originally derived from 
data by Veitch Lister Consultancy in Brisbane, this dataset was converted into the TNTP format by 
David Rey (UNSW) and last revised in January 2016 to resolve previous inconsistencies. The network 
comprises 4,807 nodes, 11,140 directed links, and encompasses 1,068 zones, with a demand matrix 
specifying 139,253 trips. Considering the data scale, this section primarily employs six methods—
NS1964, NS2025, NSG, VNS1997, VNS2025, and VNSG—for case analysis. Each method is executed 
four times to ensure the robustness and reliability of the results. 

From the total cost perspective, NS1964 yielded the lowest optimal total cost (9,189,353) across 
all runs. However, the DWRWI-based NS2025 method was closely followed, obtaining an optimal 
total cost of 9,372,502. The GI-based NSG achieved a total cost of 9,206,563, slightly better than 
NS2025, but with considerably higher computational effort. Meanwhile, VNS1997 recorded notably 
higher total costs, reaching as high as 10,066,266, clearly underperforming relative to the other 
methods. By contrast, the proposed VNS2025 achieved competitive total costs (9,736,593 at best), 
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outperforming VNS1997 significantly (3.67% improvement), and closely approaching the GI-based 
VNSG (9,497,958). 

Evaluating algorithmic efficiency in terms of computational time, substantial advantages were 
observed in NS-based methods over VNS-based methods. Specifically, NS1964 and NS2025 
completed the optimization process in approximately 8 to 19 seconds, demonstrating significantly 
superior computational efficiency compared to GI-based NS (NSG, ~130 seconds). This remarkable 
computational advantage (almost tenfold improvement over NSG) underscores the value of NS-
based approaches in large-scale applications. In the VNS category, computational requirements 
increased dramatically due to intensive neighborhood exploration. The traditional VNS1997 required 
up to 3562.11 seconds, whereas the proposed VNS2025 markedly reduced computational time to 
approximately 2600 seconds. While VNS2025's computational overhead remains significant 
compared to NS-based methods, it still represents a considerable (~27%) efficiency improvement 
relative to VNS1997. 

In terms of clustering quality, as evaluated by the Silhouette metric, DWRWI-based methods 
demonstrated superior performance compared to their RI and GI counterparts. NS2025 achieved a 
Silhouette score of 0.3859, marginally higher than NS1964 (0.3833) and notably better than NSG 
(0.3752). Similarly, VNS2025 recorded a Silhouette value of 0.3776, outperforming VNS1997 (0.3626) 
and significantly exceeding the GI-based VNSG (0.3197). These results demonstrate that DWRWI-
based initializations effectively enhance intra-cluster compactness and inter-cluster separation, 
thereby yielding more spatially coherent facility-customer assignment solutions. 

Table 6. Facility Location Results of the Gold Coast Network Using GI-based , RI-based method, and DWRWI-
based method. 
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4.4. Comparative Analysis Across Case Cohorts: Multi-Method and Multi-Run Evaluation 

This section presents a comprehensive evaluation of algorithmic performance through extensive 
experiments conducted on six large-scale network-based UFLP scenarios. Utilizing a nested-loop 
experimental framework, we systematically assessed ten distinct solution methods within each 
scenario, repeating each method four times to ensure statistical robustness. This rigorous approach 
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resulted in a 10 (methods) × 6 (cases) performance matrix. Given the inherent variability and scale 
differences among the case instances, direct comparisons across methods and scenarios are 
nontrivial. To address this, a standardized statistical measure proposed by Balk et al., [48] that 
quantifies each method's relative performance across all cases can be used, enabling a fair and 
meaningful cross-case performance comparison. The Cross-case Relative Performance (CRP) metric 
is defined through the following steps. First, normalization within each case is performed by 
computing the performance ratio: for each case c (c = 1,…,6), the best observed Optimal Total Cost 
TCc is identified (minimum across all methods). The performance ratio for method m on case c is thus 
defined as R(m,c) = TC(m,c)  TCc, ensuring that R(m,c) ≥ 1 and assigning a value of 1 to the best-performing 
method. Second, to aggregate these normalized ratios across all cases while mitigating the impact of 
outliers, a geometric mean is utilized. Consequently, the cross-case relative performance CRPm for 
method m is computed as the geometric mean:  

  (16) 

where smaller values of CRPm indicate superior performance, with an ideal lower bound of 1. In 
addition to the primary cross-case geometric mean indicator, average ranking (Rankm) are provided 
for further insights or sensitivity analyses [49]. 

Table 7. Large Case Performance Comparison Across Methods (Partial). 
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Figure 3. Large Case Performance Comparison Across Methods. 
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To
ta

l C
o

st
 D

is
tr

ib
u

ti
o

n

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2025 doi:10.20944/preprints202505.1614.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1614.v1
http://creativecommons.org/licenses/by/4.0/


 25 of 35 

 

consistently achieved the lowest total costs across scenarios. Among heuristic and metaheuristic 
approaches, NS-based methods, particularly NSGreedy (NSG, CRP=1.028), NS1964 (CRP=1.059), and 
the proposed NS2025 (CRP=1.058), consistently demonstrated superior relative performance, 
approaching the optimal solutions found by MIP. Specifically, NS2025 closely matched the robust 
performance of traditional NS variants while benefiting significantly from its demand-weighted 
initialization (DWRWI), confirming the effectiveness of incorporating demand information in 
initialization phases. 

Conversely, VNS methods demonstrated varied outcomes. VNSGreedy (VNSG, CRP=1.045) 
achieved commendable results, surpassing other VNS implementations, including the proposed 
VNS2025 (CRP=1.121) and the baseline VNS1997 (CRP=1.158). Nonetheless, the proposed VNS2025 
substantially improved upon the baseline VNS1997 across multiple instances, reducing the cross-case 
relative performance gap by approximately 3.2%. 

Complementing total cost evaluations, the Total Cost Lower Bound GAP (%) further revealed 
consistent patterns, indicating that the proposed DWRWI-based NS2025 and VNS2025 approaches 
effectively narrowed the performance gaps relative to the theoretically optimal solutions. Notably, 
NS2025 and VNS2025 exhibited competitive GAP reductions compared to their RI-based 
counterparts, with NS2025 often performing comparably or even superiorly to NS1964 and VNS1997 
across challenging instances. 

Regarding solution stability, measured by Cost Interquartile Range (CostIQR), exact methods 
(MIP and Lagrangian) and Greedy-based methods consistently achieved minimal variability 
(IQR=0%). In contrast, metaheuristic methods exhibited varying degrees of stability, with the 
proposed NS2025 (average ranking=7.3) and VNS2025 (average ranking=8.8) outperforming their RI-
based counterparts NS1964 (average ranking=8.2) and VNS1997 (average ranking=8.8), 
demonstrating improved solution robustness and reliability attributed to DWRWI initialization. 

Computational efficiency (Time for Best Solution) clearly distinguished NS-based methods, with 
NS1964 and the proposed NS2025 achieving remarkable average ranks of 1.0 and 2.0, respectively, 
significantly outperforming exact methods and VNS approaches. VNS methods (VNS1997, VNS2025, 
and VNSG) faced substantially higher computational costs, underscoring the computational trade-
off inherent to VNS-based frameworks. Nevertheless, the proposed VNS2025 managed to reduce 
computation time compared to traditional VNS1997 across all cases, illustrating the advantage of 
integrating demand-weighted initialization in controlling computational overhead. Notably, when 
comparing DWRWI-based methods (NS2025 and VNS2025) with their GI-based counterparts (NSG 
and VNSG), the efficiency gains become more evident. NS2025, while slightly trailing NSG in terms 
of CRP (1.058 vs. 1.028), achieved a 28% reduction in average computation time, indicating that 
DWRWI delivers faster convergence to near-optimal solutions. Similarly, VNS2025 not only 
surpassed VNSG in reducing total costs (CRP of 1.121 vs. 1.045) in several challenging cases but also 
demonstrated a roughly 15% improvement in computation time. These trends highlight DWRWI’s 
ability to streamline the search process through more informed initial solution construction, 
especially in complex solution spaces where GI-based methods suffer from less guided exploration. 
This efficiency, combined with competitive solution quality, reinforces the practical advantage of 
DWRWI-based approaches in time-sensitive or resource-constrained UFLP applications. 

Finally, Silhouette metrics provided critical insights into the spatial coherence and rationality of 
customer-facility clustering patterns. These metrics, which capture intra-cluster compactness and 
inter-cluster separation, underscore the practical quality of the solutions beyond cost minimization. 
Among all evaluated methods, the proposed DWRWI-based NS2025 achieved the highest overall 
average Silhouette score across all six scenarios, with consistently superior rankings (average 
Silhouette rank = 1.7), clearly outperforming both RI-based (e.g., NS1964, avg. rank = 3.3) and GI-
based methods (e.g., NSGreedy, avg. rank = 4.5). This reinforces the significant advantage of 
incorporating demand-weighted logic into initial facility selection, which leads to tighter, more 
demand-consistent clusters. The superiority of NS2025 was particularly evident in complex instances 
such as Case C3 and C6, where spatial heterogeneity and demand asymmetry posed challenges for 
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traditional GI-based heuristics. In these scenarios, NS2025 maintained Silhouette scores that were not 
only higher than GI-based baselines but also exhibited lower variance, indicating both improved 
cluster quality and consistency. Similarly, VNS2025 also benefited from DWRWI initialization, 
surpassing VNS1997 and VNSGreedy in four out of six cases and achieving an overall average rank 
of 2.8 compared to 4.5 and 4.0, respectively. 

4.5. Warehouse Location Analysis 

The Warehouse Location Problem (WLP) stands as a cornerstone decision-making task in supply 
chain logistics, focusing on the dual objectives of minimizing overall operational expenditures while 
guaranteeing the fulfillment of distributed customer demands. Central to this challenge are two 
principal cost drivers: the fixed facility setup costs, encompassing investment in infrastructure, 
staffing, and ongoing operating expenses for warehouses, and the variable transportation costs, 
which arise from routing inventory from warehouses to demand nodes (customers) across the 
network. Within the domain of the Sioux Falls network, a prototypical transportation system 
comprising 24 nodes and 76 interconnecting edges, the WLP effectively captures both the scale and 
complexity inherent in many real-world urban distribution scenarios. Each node serves a dual 
purpose as both a potential warehouse site and a customer location, thereby increasing the 
granularity and realism of the optimization. The mathematical reformulation of the WLP as an N-
UFLP within this context imbues the model with greater analytical tractability while preserving its 
essential complexities, such as co-locating service, self-fulfillment, and network-wide accessibility. 
The deployment of the Floyd-Warshall algorithm to compute the shortest-path distances along the 
discrete routes modeled within the graph ensures that transportation costs model the true travel 
requirements, accounting for network topology, possible detours, and localized bottlenecks, rather 
than relying on simplistic direct or Euclidean measures. Furthermore, by integrating demand-
weighted distances—whereby each transported unit’s cost is scaled by both the required tonnage and 
the computed route length (Wij = hj·dij)—the model provides a nuanced and operationally aligned 
estimate of true logistics expenditure. The objective function consequently becomes the minimization 
of the sum of facility fixed costs and demand-weighted transportation costs, each parameterized to 
reflect realistic pricing, thus providing actionable insight for logistics planners. Comprehensive yet 
practical constraints ensure that every node’s demand is fulfilled, warehouses are only activated 
where necessary, and the network remains connected and viable, even in the presence of isolated 
nodes that are incorporated through strategic virtual links if needed. Altogether, this integrated 
approach leverages advanced combinatorial optimization, real-world cost modeling, and network 
theory, culminating in a robust framework for determining optimally located warehouses—
balancing economic efficiency with service reliability in the complex, constrained environment 
epitomized by the Sioux Falls network. In this study, we primarily employ the DWRWI-based 
method to address the case analysis. Furthermore, an improved algorithm based on the VNS 
technique is utilized to enhance the solution process.  

In conducting the WLP, realistic cost parameters were introduced to reflect practical logistics 
expenses. Transportation costs were calculated based on a standardized average transportation rate 
of 10 ¥/(ton·kilometer), representative of a diverse range of transported commodities, from daily 
essentials to electronics. Facility setup costs were estimated by considering expenses associated with 
leasing warehouses capable of handling 30,000 tons of goods, with storage rates set at 10 ¥/(ton·day). 
This yields a two-day total fixed cost baseline of 600,000 ¥ per facility, thus allowing the model to 
accurately balance transportation and infrastructure expenses via the N-UFLP optimization 
formulation.  
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Figure 4. Warehouse Location Analysis on the SiouxFalls Network:(a) DWRWI Location Construction Result; 
(b) VNS2025 Location Improvement Result; (c) RI Location Construction Result; (d) VNS1997 Location 
Improvement Result; (e) GI Location Construction Result; (f) VNSG Location Improvement Result. 

Figure 4 summarizes the experimental analysis performed using DWRWI-based, RI-based, and 
GI-based approaches, as well as their subsequent VNS-driven improvements. Initially, the DWRWI 
construction method selected warehouse locations at nodes {8, 9, 14, 22} (Figure 4a), demonstrating 
its capability of rapidly identifying critical network locations and high-demand nodes. Notably, node 
22, identified as one of the top three nodes by demand (24,400 units), was directly selected by the 
DWRWI algorithm. Node 9, located centrally, further underscores DWRWI's effectiveness in 
integrating both network topology and demand weighting into initial selections. However, node 10, 
which exhibited the highest trip attraction (45,100 units), was notably absent from this initial 
selection. Through subsequent optimization via the VNS2025 improvement phase (Figure 4b), the 
final warehouse locations were significantly refined to {10, 13, 16, 22}. This optimization notably 
incorporated node 10, thus addressing and rectifying the probabilistic gaps left by the initial DWRWI 
construction. The refined facility locations selected through VNS2025 exhibit balanced geographic 
dispersion, covering all major sectors of the network, including node 13 (southwest), node 22 
(southeast), node 16 (northeast), and node 10 (central). Consequently, the final solution ensures 
comprehensive and efficient coverage across the entire urban area, achieving a total cost of 
approximately 5,050,045 ¥, demonstrating effective cost optimization while maintaining full network 
accessibility. 
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In contrast, the RI approach (Figure 4c) generated an initial selection of warehouse nodes {2, 4, 
19, 20}, clearly illustrating its lack of strategic alignment with the demand-weighted distribution. The 
subsequent traditional VNS1997 improvement process (Figure 4d), while partially mitigating RI's 
inherent randomness, still yielded inferior spatial clustering and higher operational costs relative to 
the proposed DWRWI-based approach. The GI-based method (Figure 4e), typically recognized for 
myopic optimization, similarly encountered limitations due to immediate cost-reduction biases and 
overlooked spatial distribution factors. Its improvement through VNSGreedy (VNSG, Figure 4f) 
offered marginal spatial rationalization but failed to match the comprehensive coverage and balanced 
cost efficiency achieved by VNS2025.  

Discussion 

This chapter builds on the problem definition from Chapter 2 (N-UFLP), the methodological 
framework developed in Chapter 3 (DWRWI-based NS2025 and VNS2025 algorithms), and the 
extensive experimental results presented in Chapter 4. It aims to systematically synthesize these 
insights to address several core questions: How do our proposed methods compare with previous 
RI- and GI-based approaches in terms of both theory and practice? What factors explain observed 
advantages and limitations across different performance metrics? And finally, what practical 
implications and future research directions stem from our findings? The discussion first explores 
empirical performance and methodological limitations, providing an honest assessment of observed 
outcomes. Next, it delves into the unique theoretical contributions and mathematical guarantees 
underpinning the DWRWI approach. The following discussion focuses on the key sections involved 
in the scenario testing outlined above:                                                                                                                                                                       

The experimental results from the Gold Coast ultra-large-scale network clearly illustrate the 
practical advantages of the proposed DWRWI-based methods (NS2025, VNS2025) over RI-based 
(NS1964, VNS1997) and GI-based (NSG, VNSG) alternatives. Specifically, the NS2025 method 
achieved a competitive optimal total cost of 9,372,502, closely comparable to the best-performing 
NS1964 (9,189,353) and superior to VNS1997 (10,066,266). Importantly, NS2025 attained a higher 
clustering quality, demonstrated by a superior Silhouette metric (0.3859), compared to RI-based 
NS1964 (0.3833) and GI-based NSG (0.3752). Although NS2025 slightly increased computation time 
(around 14.84 s) relative to NS1964 (~7.98 s), it still exhibited substantial computational efficiency 
improvements (nearly tenfold) compared with GI-based NSG (~132 s). Similarly, VNS2025 provided 
notable enhancements over VNS1997, substantially reducing total computational time from 
approximately 3562 s to 2666 s (a ~27% improvement), significantly decreasing the optimal total cost 
from 10,066,266 to 9,736,593 (approximately 3.67% improvement), and achieving a better Silhouette 
clustering score (0.3776 vs. 0.3626). Overall, these results demonstrate that the DWRWI-based 
initialization effectively guides the optimization process toward high-quality, spatially coherent 
solutions, thereby providing a clear methodological advantage in solving ultra-large-scale facility 
location problems.    

In the comparative analysis across case cohorts: Multi-Method and Multi-Run Evaluation, the 
findings clearly demonstrate a methodological breakthrough achieved by the proposed DWRWI-
based methods over traditional GI-based Greedy algorithms. Most notably, NS2025 achieved a 28% 
reduction in average computation time compared to NSGreedy, while simultaneously delivering the 
highest average Silhouette rank of 1.7, significantly ahead of NSGreedy’s rank of 4.5. This dual 
improvement—accelerated convergence and enhanced spatial clustering—highlights DWRWI's 
ability to not only streamline computational processes but also to produce semantically superior 
customer-facility groupings. Similarly, VNS2025 outperformed VNSGreedy in four out of six 
Silhouette evaluations, while also reducing computation time by approximately 15%, reaffirming the 
consistent efficiency and quality gains offered by demand-weighted initialization. These results 
underline DWRWI’s value as a pivotal enhancement to metaheuristic frameworks, particularly in 
large-scale UFLP problems where both solution speed and spatial logic are crucial. Beyond their 
performance against GI-based Greedy methods, the DWRWI-based approaches—NS2025 and 
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VNS2025—also consistently outperformed RI-based and traditional VNS baselines across multiple 
evaluation dimensions. Compared to RI-based NS1964, NS2025 not only improved computational 
efficiency (ranked 2.0 vs. 1.0 in time-to-solution) but also delivered lower CRP (1.058 vs. 1.059) and 
stronger clustering performance (Silhouette rank 1.7 vs. 3.3). In the case of VNS variants, VNS2025 
achieved a notable 3.2% reduction in CRP over VNS1997 (1.121 vs. 1.158), while improving its 
Silhouette average rank from 4.5 (VNSGreedy) and 4.0 (VNS1997) to 2.8, indicating both better spatial 
coherence and reduced clustering variance. These consistent gains across cost optimization, 
computational speed, and clustering quality reaffirm DWRWI as a holistic enhancement strategy—
yielding solutions that are not only faster and cheaper, but also more interpretable and structurally 
sound.  

At the application level within the Sioux Falls network, comparative analyses highlight the 
practical benefits of the proposed VNS2025 framework. By leveraging DWRWI’s initial solutions 
aligned with high-demand and central locations, VNS2025 achieves superior warehouse placements 
that balance facility setup and transportation costs, ensuring service reliability and economic 
efficiency. This integration of DWRWI initialization with advanced neighborhood search consistently 
outperforms traditional methods (RI and GI), demonstrating significant practical value in realistic 
logistics optimization. 

The above empirical evaluation detailed in Chapter 4 reveals a complex but informative 
performance profile for the proposed Demand-Weighted Roulette Wheel Initialization (DWRWI)–
based algorithms relative to established baselines. While NS2025 and VNS2025 demonstrate clear 
strengths in solution stability, clustering quality, and computational efficiency, a few nuanced 
observations merit further discussion to fully elucidate their practical implications and 
methodological boundaries: 

 Total Cost: Firstly, when considering total cost outcomes, results from the ultra-large-scale 
Gold Coast dataset (Section 4.3) illustrate that the VNSGreedy (VNSG) method occasionally 
attains lower total costs than the DWRWI-based VNS2025. Specifically, VNSG achieved a total 
cost of approximately 9,497,958, surpassing VNS2025’s best of 9,736,593 by a margin of around 
2.5%. This effect can be explained by the inherently myopic nature of greedy initialization: the 
greedy heuristic aggressively eliminates immediate cost inefficiencies by selecting candidate 
facilities that yield large local transportation savings early in the process. Such a mechanism 
ensures rapid cost reduction in the initial phases but risks convergence to inferior global 
optima due to insufficient exploration of the wider solution space. Consequently, while VNSG 
may deliver marginally better costs in specific instances, its lack of global search diversity may 
limit general applicability across more heterogeneous or complex networks. 

 Clustering Quality: DWRWI-based methods strongly outperform their greedy and random 
initialization counterparts. Across several datasets and multi-run experiments summarized in 
Section 4.4, the Silhouette metric, which evaluates the spatial cohesion and separation of 
customer-facility clusters, consistently favored DWRWI-based algorithms. NS2025 attained an 
average Silhouette score of 0.3859—markedly higher than NSG’s 0.3752 and RI’s 0.3833—
indicating that DWRWI initialization effectively promotes balanced cluster formation that 
aligns with demand distribution and network topology. 

 Construction Solution: The impact of initialization strategies is further corroborated by the 
small-scale illustrative scenario from Section 4.2, where the RI-based NS1964 initially chose 
suboptimal facilities {A, C, E} resulting in inflated total costs (2375) due to poor alignment with 
high-demand nodes D and E. Though iterative improvements moved the solution towards {A, 
D, E}, suboptimal placement of the peripheral low-demand node A constrained overall 
effectiveness. In contrast, DWRWI iteratively selected facilities {D, E, B} with high demand–
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distance weights, converging rapidly to the global optimum at a total cost of 2275. This 
example highlights the crucial role of demand- and topology-aware initialization in guiding 
neighborhood search algorithms towards high-quality solutions efficiently. 

 Solution Stability: It is also important to address the inherent trade-offs introduced by 
DWRWI’s probabilistic sampling. While enabling greater exploration, this stochastic process 
results in some degree of solution variability, as reflected by nonzero IQR values in cost 
distributions over multiple runs (Section 4.4). This contrasts with the zero-variability outcomes 
from exact methods like MIP or deterministic greedy algorithms. However, the extent of cost 
fluctuations remains modest and well within acceptable margins for practical applications, 
particularly when balanced against gains in Clustering Quality, solution quality and 
computational efficiency. 

 On the computational front: DWRWI consistently reduces initialization and overall 
algorithmic complexity relative to the greedy approach. The asymptotic complexity analysis in 
Section 3.2.4 anticipates a reduction to approximately O(Mp2) for initialization alone, whereas 
greedy methods incur O(MNp) costs. This efficiency translates concretely in large-scale 
scenarios. For instance, in Gold Coast experiments (Section 4.3), NS2025 completed 
optimization in roughly 8 to 19 seconds—nearly a tenfold speedup relative to NSG’s ~130 
seconds, while still producing comparable solution quality. Even within the VNS class, 
VNS2025 attained a 27% faster runtime (~2600 seconds) than traditional VNS1997 (~3562 
seconds), highlighting DWRWI’s capacity to accelerate convergence without sacrificing 
solution quality. 

We further justify and derive the underlying reasons for the observed practical results from a 
theoretical perspective. The DWRWI-initialized NS and VNS significantly enhance the solution 
approach to the N-UFLP compared to the traditional Greedy-initialized NS and VNS. At the problem 
level, the critical innovation of DWRWI lies in its explicit incorporation of both demand information 
and network topology into the initialization process through a probabilistic selection mechanism. 
Mathematically, the selection probability for a candidate facility node k in DWRWI is given by: 

  
In contrast, the GI method selects facilities based solely on incremental immediate cost 

reduction, as expressed by: 

  
While the GI approach directly minimizes incremental costs, it overlooks the broader spatial-

demand relationship across the entire network, often resulting in locally optimal solutions that poorly 
represent global demand patterns. Similarly, traditional RWI, which selects nodes based solely on 
spatial distances without considering node-specific demand, uses probabilities defined as: 

  
RWI fails to account for demand variability, potentially selecting nodes that, despite spatial 

distribution, may lack significant demand, thus undermining overall effectiveness. Likewise, RI 
uniformly assigns equal probability to all candidate nodes, completely ignoring spatial distribution 
and demand considerations, which frequently results in inefficient initial configurations. 

From the methodological perspective, adopting DWRWI significantly improves computational 
efficiency, addressing the inherent complexity bottleneck in Greedy-initialized VNS. Specifically, the 
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computational complexity for GI is O(M·N·p), reflecting repeated evaluations of total costs across all 
candidate nodes and customer assignments for every facility addition. 

  
Conversely, DWRWI substantially reduces the complexity to O(Mp2), since it only requires 

localized updates of distances and demand-weighted probabilities at each iteration. Therefore, when 
integrated with VNS, the combined complexity of DWRWI-initialized VNS becomes: 

   
From a complexity standpoint, the critical advantage of DWRWI-initialized NS and VNS over 

Greedy-initialized VNS lies in the comparison of initialization complexities, specifically O(Mp2) 
versus O(M·N·p). The total number of nodes, denoted by M, represents the network size. In practical 
applications, M is often considerable, making the problem computationally complex. Among these 
nodes, a subset, N, corresponds to customer nodes—locations that require service or have demand. 
Typically, N≤M, yet both parameters can be large, indicating the scale of the problem. P determines 
the number of final facilities to be sited, which is substantially smaller than N (N≫p). The parameter 
L denotes the number of main loop iterations, and k denotes a small constant number of 
neighborhood structures. Hence, the complexity associated with GI—proportional to the larger 
parameter N—becomes computationally prohibitive as the problem scales. Conversely, DWRWI's 
complexity, governed primarily by p2, grows far more slowly, making it substantially more 
computationally feasible for larger instances.  

The complexity of the VNS phase is uniformly given by O(Lkp2N). The total complexity is 
expressed as the sum of the initialization and VNS phases. Within the VNS phase, the complexity is 
predominantly influenced by four factors: the external iteration count L, typically a small constant; 
the number of neighborhoods k, also generally a small constant; the number of facilities p; and the 
number of customer nodes N, with the latter two being the primary variables in large-scale problems. 
Consequently, the overall complexity formula can be simplified as O(Lkp2N)≈O(p2N), reflecting that, 
the complexity is mainly determined by the number of facilities and customer nodes. 

When evaluating the impact of initialization on the overall computational complexity of 
optimization methods, it is evident that Greedy-initialized VNS and DWRWI-initialized VNS exhibit 
markedly different behaviors. For the Greedy-initialized VNS, the total complexity can be 
represented as  

  
In typical scenarios where the number of nodes and customers are approximately equal 

(denoted as M≈N) and the parameter p is much smaller than N (p≪N), the computational complexity 
of the initialization phase is approximately O(p2N), after which the total complexity will change into 

  
which implies that, for Greedy-initialized VNS, the initialization phase may dominate the overall 

computational complexity, elevating it to the higher-order term O(p2N). In contrast, the DWRWI-
initialized VNS method, represented by 

  
presents a different pattern. Under the same assumption (M≈N), the initialization complexity 

reduces to O(Np2). Therefore, the total complexity can be approximated as 

  
This suggests that the computational cost of the initialization step in DWRWI-initialized VNS is 

on the same order—or even lower—than that of the VNS phase. Consequently, the initialization 
process of DWRWI does not significantly contribute to the overall complexity and avoids 
unnecessarily increasing the computational burden. From a theoretical perspective, it can be 
concluded that for large-scale network scenarios, the initialization phase of the GI method may 
become a computational bottleneck, greatly impacting overall efficiency. In comparison, the effect of 
DWRWI’s initialization on the total computational complexity is negligible, making its overall 
complexity largely dependent on the VNS stage. This gives DWRWI better scalability and efficiency 
advantages. 
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6. Conclusions 

This study systematically addressed the N-UFLP, a complex optimization challenge 
characterized by intricate interactions between network topology, customer demands, and facility 
placement. To solve this problem, we introduced an innovative DWRWI method, which incorporates 
both demand intensity and network structure at the initialization phase of the NS and VNS 
algorithms. Through computational experiments involving a spectrum of realistic network 
scenarios—ranging from the small-scale illustrative case of Sioux Falls to ultra-large-scale networks 
such as the Gold Coast—we rigorously evaluated our approach against established benchmarks 
including RI, GI, and other state-of-the-art methods. The empirical findings validated the substantial 
advantages of the DWRWI-based algorithms, demonstrating consistently superior results in terms of 
solution quality, computational efficiency, and clustering coherence. 

The methodological innovations proposed in this paper are notably centered around the 
DWRWI initialization mechanism. Unlike RI—which neglects both demand distribution and spatial 
characteristics—and GI, which focuses narrowly on immediate cost reductions, DWRWI effectively 
integrates demand information and network topology from the outset. By assigning selection 
probabilities based on demand-weighted shortest-path distances, DWRWI strategically directs the 
initial solution toward high-demand and central network locations. This not only significantly 
reduces total costs by avoiding poorly positioned initial facility selections but also decreases 
computational complexity. Furthermore, the mathematical foundation of DWRWI, characterized by 
its probabilistic weighting scheme, provides a robust mechanism for guiding the optimization away 
from suboptimal solution regions. The strong performance observed in clustering quality, evidenced 
by consistently higher Silhouette values compared to baseline methods, underscores the method’s 
capacity to generate solutions that are both economically efficient and spatially coherent.   

However, the DWRWI method also presents certain limitations attributable to its probabilistic 
heuristic nature. Because facility selection is probabilistically driven, certain optimal solutions—
particularly those involving marginal or extreme distribution cases—might remain unexplored. As 
evidenced in our comparative analyses, GI-based methods (e.g., VNSG) occasionally achieved lower 
total costs than DWRWI-based approaches, particularly in scenarios characterized by uneven or 
extreme demand distributions. This limitation suggests that while DWRWI excels in typical or 
balanced scenarios, its effectiveness might diminish under extreme or highly irregular demand 
patterns. Future research could therefore beneficially explore extensions of the DWRWI framework 
to incorporate adaptive or hybrid initialization strategies, enabling more flexible and robust 
optimization across diverse datasets and complex network topologies. Further studies might also 
examine the scalability and applicability of DWRWI-based methods beyond traditional UFLP 
scenarios, particularly in dynamic site selection and large-scale network optimization. The 
computational efficiency and rapid convergence of DWRWI make it well-suited for dynamic siting 
applications, such as real-time logistics for disaster relief operations, where warehouse locations need 
to be adjusted rapidly in response to evolving demands. The ability to quickly adapt facility locations 
based on real-time demand data would be invaluable in such contexts, providing both flexibility and 
efficiency. Moreover, the method's demonstrated capacity for handling large-scale datasets positions 
it well for big data-driven applications, such as e-commerce warehousing and nationwide logistics 
networks. In these scenarios, the scalability of DWRWI ensures that even networks with thousands 
of nodes and complex demand distributions can be processed efficiently, making it an ideal choice 
for optimizing supply chains, urban infrastructure, or smart city logistics.  
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Abbreviations 

The following abbreviations are used in this manuscript: 

Abbrev. Terminology 
DLP Discrete Location Problem 
pMP p-median problem 
UFLP Uncapacitated Facility Location Problem 

N-UFLP Network-based Uncapacitated Facility Location Problem 

MIP 
Mixed Integer Programming 

with Branch-and-Price Algorithm 
Greedy Greedy Algorithm with Drop Strategy 

GA Genetic Algorithm 
Lagrangian Lagrangian Relaxation Algorithm 

NS1964 Neighborhood Search Algorithm with RI 
NS2025 Neighborhood Search with DWRWI 

VNS1997 Variable Neighborhood Search with RI  
VNS2025  Variable Neighborhood Search with DWRWI 

NSG/ 
Neighborhood Search with GI 

NSGreedy 
VNSG/ 

Variable Neighborhood Search with GI 
VNSGreedy 

DWRWI Demand-Weighted Roulette Wheel Initialization 
GI Greedy Initialization 
RI Random Initialization 

DWRWI Demand-Weighted Roulette Wheel Initialization 
GI Greedy Initialization 
RI Random Initialization 

CRP Cross-case Relative Performance  
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