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Abstract: Optimizing networks under large-scale, multidimensional, and dynamic demand presents
a significant challenge. This complexity is further amplified when solving network-based
Uncapacitated Facility Location Problems (UFLP), which are well-known for their NP-hardness.
Current large-scale analytical approaches, such as Neighborhood Search (NS) and Variable
Neighborhood Search (VNS), face limitations in either solution quality or computational efficiency,
predominantly due to their reliance on either unstable Random Initialization (RI) or computationally
expensive Greedy Initialization (GI). Considering demand intensity and network topology, this
research proposes the Demand-Weighted Roulette Wheel Initialization (DWRWI) strategy. This
novel initialization method strategically prioritizes high-demand and centrally located network
nodes, thereby creating high-potential initial facility configurations for improvement algorithms.
Scenario-based testing demonstrates several distinctive strengths of DWRWI: Compared to RI and
GI, DWRWI better identifies high-demand, central network nodes, yielding superior initial solutions
early in optimization. For example, in the large-scale network, DWRWI-initialized NS achieved a
higher Silhouette score (0.3859) than RI (0.3833) and GI (0.3752). Additionally, DWRWTI reduces
computation time by about 28% compared to Greedy-initialized NS while maintaining competitive
costs. By integrating demand-weighted distance and stochastic optimization theory, DWRWI
significantly reduces computation time while ensures more uniform customer-to-facility assignments
aligned closely with spatial demand distributions.

Keywords: stochastic optimization; heuristic algorithm; network-based Uncapacitated Facility
Location Problem; Demand-Weighted Roulette Wheel Initialization; demand intensity; network

topology

1. Introduction

Facility-location problems constitute a cornerstone of operational research, seeking optimal
placement of candidate sites to curb transportation and facility costs while sustaining high service
efficiency. Their relevance permeates logistics, supply-chain design, and urban planning, where
strategic choices must weigh distance, time, capacity, and the comparative expenses of building
versus leasing warehouses. Given the multitude of potential demand nodes and the problem's
inherent complexity, mathematical models and advanced algorithms have become indispensable,
driving extensive academic inquiry and delivering data-driven guidance for real-world decision-
makers [1-3]. The p-median problem (pMP) and its derivative, the uncapacitated facility location
problem (UFLP), exemplify Discrete Location Problems (DLP) concerned with choosing facility sites
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from finite candidates to minimize service costs [3]. The study of DLP has its roots in several key
milestones. Originating with Weber's planar warehouse model [4] , formal network treatment
emerged when Hakimi [5] defined the pMP, sparking systematic research into optimal facility
placement and customer assignment. Tansel’s 1983 survey refined this field by classifying network
variants and outlining efficient solution techniques [6]. In the same year, Krarup and Pruzan
incorporated fixed and variable cost elements, transforming the pMP into what is now recognized as
the UFLP. Subsequent scholarship has broadened UFLP applications—from uncapacitated
warehouse siting [7] to urban service deployment [8] —solidifying these models as foundational tools
in contemporary location analysis.

In 1979, Kariv and Hakimi proved that the pMP is NP-hard [9], indicating its computational
complexity. This result highlighted the difficulty of solving general instances of the problem on
arbitrary networks. Therefore, pMP and UFLP are recognized as generalized mathematical problems
that have been extensively studied in recent years through the lens of optimization theory. The
primary problem has motivated significant methodological advancements across exact, heuristic, and
metaheuristic approaches. Traditional exact algorithms remain indispensable for small-to-medium
scale instances (<1,000 nodes) due to their rigorous optimality guarantees. Enhanced branch-and-
bound techniques [10-12] and decomposition methods—particularly Lagrangian relaxation [13-15]
and Benders decomposition [16,17 —have demonstrated success in decoupling facility selection from
customer allocation decisions. Heuristic approaches address scalability limitations through
computationally efficient strategies. GPU-accelerated parallel vertex substitution algorithms achieve
linear time complexity for large-scale networks [18], while classical interchange heuristics [19] and
greedy algorithms [20,21] provide rapid feasible solutions. Atta et al. [22] report that these methods
maintain computational efficiency within +15% optimality thresholds for ORLib benchmarks, though
they risk local optimum entrapment through path dependency—a limitation requiring 23%
additional iterations on average to mitigate [23]. Metaheuristics excel in handling complex UFLP
variants through global exploration capabilities. Genetic algorithms [24-27] and hybrid evolutionary
learning frameworks [28] outperform deterministic methods by 13% in non-convex fixed-cost
scenarios through multi-modal optimization. Recent advancements like discrete evolutionary
algorithms [29] demonstrate accelerated convergence rates while maintaining solution quality.
Despite these strengths, parameter sensitivity in population-based methods (e.g., particle swarm
optimization [30]) and memory-intensive operations in tabu search [31] present implementation
challenges for resource-constrained environments.

For pMP-type problems, increasing data scale, customer counts, and the expansion of potential
facility locations considerably complicate the solutions. Conventional exact methods like the branch-
and-bound algorithm have high exponential increases in computational time and complexity as
problem size grows [23]. Meanwhile, heuristic methods, like genetic algorithms, are prone to
entrapment in local optima [32]. However, in real-world applications, location problems tend to
appear in the form of more complex networks, such as express logistics companies needing real-time
responses for daily distribution hub strategies, typically manifest as extremely large-scale and
complex networks involving substantial numbers of demand points and network nodes, further
complicating solution methods. In response, recent advancements in Neighborhood Search (NS) and
Variable Neighborhood Search (VNS) have facilitated progress in addressing these challenges. The
classic NS [33] systematically reassigns facility-customer pairs within predefined spatial clusters.
While it achieves local optimality, it suffers from limited global search capabilities due to its myopic
exploration. The latest VNS [34] improves upon the earlier NS method by incorporating the
interchange technique into an iterative structure that involves shaking, local search, and evaluating
swaps. This approach has been demonstrated to perform effectively in large-scale cases.
Subsequently, Ghosh [23] refined the local search phase of the VNS method. Amrani et al. [35]
proposed a hybrid heuristic combining VNS with tabu search to optimize multi-product production-
distribution network design problems involving alternative facility configurations and concave
inventory costs. Their framework was tested on cases ranging from 500 to 1,000 demand areas and
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60 to 100 potential distribution centers. Hansen et al. [36] introduced a primal-dual VNS, which
leverages dynamic neighborhood structure adjustments and heuristic optimization techniques to
enhance algorithmic efficiency and scalability. Irawan & Salhi [37] proposed a novel approach
integrating demand point aggregation with multi-stage optimization to tackle large-scale p-median
problems. Their method combines mini-VNS with full VNS to improve both solution efficiency and
quality. Herran et al. [38] further enhanced the efficiency of VNS for the Hamiltonian p-Median
Problem (HpMP) by 22%, leveraging problem-specific neighborhood structures that balance cluster
density and spatial dispersion. Modern variants, such as the RL-driven VNS by Croci et al. [39],
integrate reinforcement learning to optimize neighborhood-switching thresholds, thereby mitigating
the traditional need for manual parameter calibration.

Although the above literature has extensively explored NS and VNS methodologies for solving
pMP and UFLP problems, several research gaps persist. First, while substantial progress has been
made in applying VNS solutions to pMP and its numerous variants, such as the Hamiltonian p-
Median Problem (HpMP) [38], the a-neighbor p-Median Problem [40], the balanced p-Median
Problem [39] and the Capacitated p-Median Problem (CpMP)—there remains a lack of clear
distinction and definition between discrete and Network-based UFLP problems. This gap limits the
development of solutions and model definitions for pMP variants of Network-based UFLP problems.
Second, both NS and VNS algorithms rely heavily on predefined spatial clusters, with initialization
methods significantly influencing the quality of subsequent iterative improvements. Commonly
referred to as constructive methods (as opposed to NS and VNS, which are considered improvement
techniques), the prevailing initialization method —Greedy algorithms [20,21]—has been
demonstrated through this study to be highly limited in large-scale scenarios. Nonetheless, most
existing literature continues to focus on refining VNS algorithms while the exploration of
initialization methods remains insufficient [17,36,37]. Third, there is a lack of multi-level performance
tests and comparative analyses across varying scales of data for NS and VNS methods. For instance,
the VNS tests conducted by Amrani [35] on network-based CFLP problems are notably limited in
data scale and case diversity. Similarly, the four methods evaluated in Gwalani, Tiwari, & Mikler
[41]—Alternate Selection and Allocation Algorithm, Exchange Algorithm, Global/Regional
Interchange Algorithm, and Greedy Addition/Myopic Algorithm —are relatively outdated.

To address the complexities inherent in large-scale network-based UFLP, this research aims to
innovate the existing initialization methods, which can promote the effectiveness of both the NS and
VNS. Based on a mathematical formulation that incorporates user requests and network topology
traits explicitly, the study positions NS and VNS within a systematic comparison against a spectrum
of solution approaches, including exact algorithms, heuristics, metaheuristics, and relaxation
techniques. Special emphasis is placed on the development and theoretical justification of a novel
demand-weighted roulette wheel initialization method, which leverages user demand and network
structure to enhance both solution quality and computational efficiency. This innovative approach is
analytically demonstrated to outperform conventional greedy strategies in terms of algorithmic
complexity and practical effectiveness, particularly within NS and VNS frameworks. A
comprehensive empirical evaluation is undertaken using a variety of datasets, spanning from small-
scale synthetic instances to real-world transportation networks across six cities. The testing
methodology encompasses three core dimensions: multi-case comparative analysis, repeated trials
for robustness assessment, and cross-method benchmarking, facilitating a thorough evaluation of
solution quality, stability, and generalizability. Through these contributions, the study not only
proposes methodological enhancements but also bridges theoretical and practical advancements for
network-based UFLP, offering insights of broad relevance for the optimization community.

The structure of this paper is organized as follows: Chapter 2 introduces the formal definition of
the Network-Based Uncapacitated Facility Location Problem (N-UFLP). Chapter 3 presents the
methodological framework, with particular emphasis on the proposed Demand-Weighted Roulette
Wheel Initialization (DWRWI) and its integration into enhanced metaheuristic algorithms NS2025
and VNS2025. Chapter 4 presents a comprehensive empirical evaluation across multiple real-world
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scenarios, including small-scale, large-scale, and ultra-large-scale networks, to assess the
performance of the proposed methods in comparison to state-of-the-art benchmarks. Chapter 5
synthesizes the theoretical and experimental findings to critically discuss the strengths, limitations,
and practical implications of DWRWI-based methods. Finally, Chapter 6 concludes the paper by
summarizing the contributions, outlining the methodological innovations, and identifying promising
directions for future research.

2. Problem Definition

2.1. Network-Based Uncapacitated Facility Location Problem (N-UFLP)

The Uncapacitated Facility Location Problem (UFLP), also known as the Simple Facility Location
Problem (SFLP), traditionally involves selecting optimal facility locations from a set of discrete
candidate points to serve spatially distributed customer zones. Generally speaking, UFLP minimizes
total system cost by deciding which candidate sites to open—hence the number and locations of
facilities— while explicitly accounting for customer locations, customer demand, transportation costs,
and facility setup costs. While prior studies [35] have addressed UFLP scenarios, the network-based
problem lacks a rigorous definition. This study formalizes the Network-based Uncapacitated Facility
Location Problem (N-UFLP) by contrasting it with classical discrete UFLP and specifying its defining
characteristics:
® Node Location Integration: Facilities and customers are co-located within a unified node set,
where the first N nodes serve dual roles as both customers and candidate facility locations. This
contrasts with traditional UFLP, which treats facilities and customers as distinct sets and
introduces self-service constraints (e.g., a facility can serve itself). This approach better reflects
practical applications such as telecommunications, logistics, and waste management systems,
where real-world nodes (e.g., intersections, hubs, or urban locations) can act both as service
origins and destinations, improving model fidelity to network realities [5,42,43].

® Path-Dependent Distance Metric: Transportation costs are determined by shortest-path distances
on the network, calculated as the sum of edge weights between nodes using the Floyd-Warshall
algorithm. Unlike classical UFLP models, which assume Euclidean distances or direct
transportation costs, this approach dynamically computes path costs based on the network
topology. For many network applications, e.g., transportation and waste collection, using
shortest-path network distances instead of geometric distances is essential for operational
feasibility, as real-world routes are dictated by the topology of the network and its connectivity
[2,43,44].

® Network Distance Matrix: A precomputed MxM matrix stores all-pairs shortest path distances
for M nodes, replacing conventional transportation cost matrices. Storing precomputed shortest-
path distances allows large-scale problems to be solved more efficiently, enabling rapid cost
evaluations within metaheuristic or exact optimization frameworks commonly used in both
academic study and industrial practice [2,29].

® Network Connectivity Constraints: Accommodates disconnected subnetworks (e.g., isolated
traffic zones) by introducing virtual edges to connect orphaned nodes to the nearest network
component, ensuring full service coverage. This is especially vital in urban logistics,
telecommunications, or emergency services, where service continuity across potentially
disconnected or dynamically changing networks must be ensured [42,45]. Virtual or auxiliary
links are routinely adopted in real-world applications to guarantee full coverage.

® Demand-Weighted Travelled Cost: Combines customer demand volumes with path distances to
generate a demand-weighted travelled cost metric. Weighting travel costs by demand mirrors
operational objectives in logistics, emergency services, and supply chain management, where
both the volume and the distance traveled significantly influence the optimal facility placement
and overall system efficiency [42,46].
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Figure 1. Network-based Uncapacitated Facility Location Problem.

These considerations lead to the inclusion of further constraints, reflecting realistic network
structures and distance calculations that depend on actual travel paths rather than simple geometric
distances. They will, in turn, become unique assumptions. To further formulate this problem, we
firstly define sets and indices:

Nodes/Facilities: Let I={1,2,..., M}be the set of all nodes (with |I1=M), every node is a candidate
for locating a facility.

Customers: Define the customer node/demand site subset as J€I, ={1,2,...,N} (N<M) indicating
that the first N nodes serve as customers and also as candidate facility locations (thus allowing co-
location).acilities and customers) and j€] refer specifically for customers.

Then, we define network structure

Adjacency-Based Distance Matrix (D).

Define the adjacency-based distance between node

Indices: Let i, r€l denote Index for nodes (both fi and node r as di#%. The matrix D*i=[did]mm i
then specified by:

0, ifti=r, Viel
edge length, if i and r are adjacent nodes,
with df¥ = d ¥, symmetry.
di¥ =< geodist(i,r), if i is an isolated node, (1)
but with customer demand.
00, if i and r are not connected,

after connectivity adjustment.

Let geodist (i,r) denote the Euclidean distance between nodes i and r, computed from their
geographic coordinates given in the Mx2 matrix nodeCoords when a node j with customer demand
is identified as isolated (i.e., di=c= for all j€]). The geodist function trigger condition occurs when
either node i or r represents an isolated node with customer demand. This indicates that these nodes
are special cases within the network data, often corresponding to unique subareas in real-world
transportation networks or OD points connected via feeder branches. To ensure effective routing for
demand originating from these isolated nodes, we connect them “virtually” to their geographically
nearest reachable node kg0 via the Euclidean distance.

(a) Shortest-path distance matrix (D)

The effective transportation distance used in the objective function is given by the matrix
D=[dir]u=u, where each element is defined by:

0 ] ifi=r.
shortest path (i,r; DY), if a path exists in DY,
d,, =< geodist(i,r), if i or 7 is an isolated node, 2)

with customer demand.
00, otherwise (disconnected).

where the shortest-path distance matrix D is calculated by D« through shortest-path algorithm.
It is noteworthy that we employ path distance or demand-weighted traveled distance, rather than
traditional adjacency-based distance metrics.
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Finally, in the aspects of demand and cost, we define

Trip attraction (h): Let hjrepresent the Nx1 demand/trip attraction at customer node/demand
site j.

(a) Transportation Cost Rate (@): A scalar parameter o multiplies the effective distance to yield

the transportation cost.

(b) Facility Setup Cost (f): A scalar parameter  denotes the unitary fixed cost for opening a

facility. This cost is assumed to be identical for all candidate locations.

(c) Demand-weighted traveled distance (Wj): The transportation cost incurred when assigning

customer demand #; to a facility at node i is given by Wi= h; - djj.

In N-UFLP, similar to the general types, we aim to minimize total costs by optimizing both
facility locations and assignment relationships.

minimize aZy,- + ﬂz Eh‘,di,xi,« = OCZJG + ,BZ Z W;x;
iel JjeJ iel ieN JjEJ i€l
where the first component aims to reduce facility setup costs, which are determined by construction
rates and facility opening decision variables. The second component focuses on transportation costs,
which depend on transportation rates, customer demand, travelled distances, and assignment
decision variables.

The conventional UFLP seeks to determine optimal facility locations under constraints such as
ensuring all demand points are satisfied, establishing correspondence between facility assignments
and demands, and often limiting the number of facilities due to resource constraints. In contrast, the
N-UFLP introduces additional constraints by incorporating specific assumptions, including Node
Location Integration and path-dependent distance metrics:

® Self-Service Feasibility:

x; =y, VjEJ

which forces the assignment variable that represents “customer j serves itself” (xjj) to be the value of
the opening variable of the same node (yi). Compared to classical UFLP, although the standard
assignment-opening link xi<yj, Vi€l, Vi€] already prevents assigning demand at a closed site. It is
noteworthy that this formulation incorporates Node Location Integration, allowing facilities and
customers to be located at the same point by employing a shared set | (JEI) for both facility and
customer decision variables. This means that if node j is selected as a facility location, the demand at
node j is automatically assigned to the facility at that point.

® Path Consistency (Triangle-Inequality) Constraint:

d,<d,,+d,. i, m, r &I
where dicrefers to effective transportation distance (shortest-path length) between node i and k on the
underlying network G=(I,E) with non-negative edge weights. The inequality enforces the triangle
inequality for every ordered triple of nodes. For any detour that goes from i to k through an
intermediate node m, the direct shortest-path distance dix cannot exceed the length of that detour
dimtdwr. Compared to traditional UFLP, which assumes a static, exogenous cost matrix—often
Euclidean—so metric validity is implicit. Introducing path-dependent costs makes distance
consistency an endogenous concern; the triangle inequalities are therefore the natural extension
ensuring that facility location decisions remain faithful to the underlying network topology.

® Variables xij and yi are the decision variables representing the assignment relationships and

facility location, respectively

Xij

_J 1 if customer j is assigned to facility i, and
) 0 otherwise;

P =

1 if facility is opened at node i, and
0 otherwise;

The N-UFLP Model can be formulated as follows.

min azyi +ﬂ22hjd,~jx,-j )

iel JjeJ iel
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st. Y x;=1, Vjed, (4

iel

Z yi=p, (5

iel

x; <y, VielLVjelJ, (6)

x; =y, Vi€, )

dy<din+dw, Vi, m, kEIL (8)

y:€{0,1} Viel, 9)

x; €40,1} Viel V jeJ (10)
where yi and x; are separately facility locations decision variables and customer assignment decision
variables. The objective function (3) is to minimize the total cost. Constraint (4) means each customer
at a demand site j must be served. Constraint (5) ensures maximum allowed facility number is p. In
this research, we further limit p equal to the square root value of the number of customer sites N.
Constraint (6) means facility activation, which guarantees no assignment to the closed facility or
customer demand can only be assigned to open facilities. Constraint (7) enforces the commonsense
rule that a customer may be self-served only if a facility is actually installed at that node, closing a
loophole that arises when customer and facility sets overlap and self-service incurs zero travel
distance. Constraint (8) secures metric validity of the distance matrix, aligns transportation costs with
physically realizable routes, and prevents the optimization model from exploiting impossible
shortcuts when path-dependent distances are part of the decision process.

2.2. Notations

Symbol Definition

Sets

I Set of all nodes (l[|=M), including facilities and
customers.

] Subset of customer nodes/demand site (|]/|=N), also

candidate facilities.

S Final set of selected facilities. S={si,s2,...,sp}. px1
Vector of indices. Output.

Asgmt. 1xN Vector mapping customers to assigned

facilities. Output.

K Set of all candidate facility locations. K={1,2,...,N}.

Indices

i, v €l Indices for general nodes (facilities or customers).

i€l Index specifically for customer nodes.

t Iteration index for facility selection, t=1,2,...,p,where
p<N.

keK k€K corresponds to a potential facility.

Parameters

dimdi Adjacency-based distance between nodes i and r
(direct edge length).

Dedj MxM adjacency distance matrix.

dir Shortest-path distance between nodes i and r.

D Mx=M shortest-path distance matrix.

(hi)ier Demand weight (trip attraction) at customer j (Nx1
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vector). Input.

Wij Demand-weighted traveled distance from node i to
node .
Uniform facility setup cost. Input components.

Transportation cost rate per unit-distance-demand.

Input.

p Maximum allowed facilities.

Z(s) TotalCost. Scalar objective value of solution S.
Output.

Decision Variables

yi yi€l0,1}): 1 if a facility is opened at node i; 0
otherwise.

Xij xij€{0,1}: 1 if customer jis assigned to facility i; 0
otherwise.

Key Matrices

NodeNames Mx1 cell array of unique node identifiers. Input
components?.

NodeCoords Mx2 matrix of geographic coordinates (longitude,
latitude). Input.

DistTable Lx3 matrix of adjacency distances (origin,
destination, edge length). Input.

DistanceMatrix M xM matrix of precomputed shortest-path

distances. Input.

2.3. Assumptions

The N-UFLP proposed relies on the following assumptions:

A customer node can be served by a facility co-located at the same node.

All facilities incur identical fixed setup costs, i.e., no site-dependent cost variations.
Facilities are either fully open or closed; partial opening is prohibited.

Each customer is entirely served by a single facility.

There is no upper limit on the demand a facility can serve.

All costs, demands, and distances are deterministic and known with certainty.

The maximum number of facilities p is the square root of N (budget-constrained).
3. Methodology

3.1. Baseline Methods

This section presents the overarching methodological framework utilized in this study.
Neighborhood Search (NS) and Variable Neighborhood Search (VNS) algorithms are widely
recognized as effective improvement algorithms for solving large-scale Network-based
Uncapacitated Facility Location Problem (N-UFLP); however, their performance is significantly
influenced by the quality of constructive algorithm, which are typically generated via randomized,
roulette wheel, or greedy initialization approaches. Despite their prevalence, these construction
methods demonstrate notable limitations when applied to large-scale N-UFLP instances. Therefore,
this section first explores, from a theoretical perspective, strategies to refine these initialization
algorithms, aiming to overcome their inherent shortcomings. Furthermore, we integrate these
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enhanced methods with NS and VNS to enhance the overall efficiency and capability in solving N-
UFLP problems.

3.1.1. Roulette Wheel Initialization (RWI)

Roulette Wheel Initialization, as described by Celebi [46], is widely adopted as a heuristic
approach, most notably for enhancing iterative selection mechanisms in genetic algorithms and the
initialization process of K-Means++. The essence of this method lies in its probabilistic selection
scheme: at iteration ¢, the probability of selecting node k from the remaining candidates K\ S:1 is
proportional to its weight wk, normalized over all unselected nodes. Formally:

Wik

P(s,=k|S,_)=—==— , s~ Discrete(P(-))
W
JEKN\S, -,
Where:
® S:1is the set of facilities already selected before iteration .
® K\S:1is the set of remaining candidate nodes.
® In the basic version one may set wi=(d)min,
® si~Discrete(P(+)) denotes that st is drawn from the discrete distribution defined by the probabilities
Px.
This ensures that nodes with higher weights have a correspondingly greater chance of being

selected, thereby guiding the initialization process in a data-driven manner.

3.1.2. Greedy Initialization (GI)

The greedy heuristic initialization method, widely used in facility location problems (Celebi et
al., 2013), iteratively selects facilities to directly minimize the total cost defined in the N-UFLP
objective function. This method prioritizes immediate cost reduction but often lacks exploration
diversity, potentially trapping solutions in local optima. Let:
®  S: - denote the set of selected facilities after iteration t (Se=@).
® let K\ S+1be the candidate nodes, unselected candidate nodes (recall K={1,2,...,N}).

Phase 1 (Initial Facility Selection)
Intialize So=@, =0, K\ S+-1=K.
Phase 2 (Iterative Marginal-cost evaluation)

While IS¢l <p, set t=t+1:

Cost Evaluation

For each candidate node k€K\S+1, compute the temporary total cost Z(S+1 U {k}) incurred by
opening k:

Fixed Facility Cost:

FC(S, Uik} =a- (IS o[+ 1)
Transportation Cost: Assign each customer j €] to its nearest facility in St1 U {k}
NNG S, U{k}) = arg min,cs,_ v d ;i
where dji is the shortest-path distance from j to i. The transportation cost becomes:
TC(S, LD =B hy - d s, vien
jed
stance from j to i. The transportation cost becomes:
Total Cost:
Z(S, Uk} =FC(S, \U{k}) +TC(S, Uik}

(a) Selection Criterion

Select the candidate k*€K that maximizes the marginal cost reduction:

k*=arg maxyexs,, (Z(S: 1) — Z(S, -\ U{kY]

where Z(5+1) is the total cost of the current facility set Se1. It should be noted that when S5:1=0,
define Z(St1)= o (no facilities imply infinite unassigned demand cost).

(b) Update

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Add k* to the facility set and remove it from candidates:
S, <8, Ufk*}

The greedy method directly optimizes the N-UFLP objective by sequentially minimizing;:
Z(S Utk = a(S [+ 1)yt BD i+ min d,

= ieS,_\Ufk} °

Transportation Cost

which guarantees that each iteration incorporates the facility yielding the greatest reduction in total
cost. Although commonly adopted as a constructive algorithm, it requires evaluating every
remaining candidate facility k€K, calculating the total cost Z(S+1 U {k}). For each candidate, this
involves: Assigning every customer j€] to its closest facility within St1 U {k}, where argmin operation
over |Se11+1 facilities is performed; Repeating this process for all |K\Sw1| candidates. In each
iteration, if 1J1=N, [I1=M, and the final number of facilities is p, then the computational cost per
iteration is O(I K\ Se1l-1]1-(1S+11+1)). Since K\ St-1 decreases as facilities are selected, and p iterations
are required, a typical worst-case bound is O(M-N-p). For large-scale networks or urban scenarios
where both M and N, this complexity becomes computationally prohibitive, severely limiting the
practicality of the greedy method for real-time or iterative metaheuristic frameworks.

3.1.3. Neighborhood Search Algorithm (NS) and Greedy-initialized Neighborhood Search

Neighborhood Search (NS) and Variable Neighborhood Search (VNS) are often adopted as
improvement methods. Specifically, Neighborhood Search (NS), proposed by Maranzana [33], seeks
to minimize total costs, aligning with the objective of the N-UFLP baseline. The general procedure of
NS involves iteratively exploring neighboring solutions to identify cost reductions:

Phase 1 (Initialization)

Generate S via Greedy Initialization or other initialization methods.

Phase 2 (Neighborhood Structure)

Define operators for search:

(2a) For each iteration, alternately reassigns all customers to their nearest open facility.

(2b) For each facility, seek the optimal new location (from the M possibilities) that minimizes the
total demand-weighted distance to its assigned customers.

Phase 3 (Iterative Improvement)

(3a) Evaluate all neighbors of S.

(8b) Accept the neighbor S’ with the lowest total cost Z(S").

(3¢c) Repeat until no further improvement occurs.

Given an initial facility set S(1S|=p), each NS iteration involves: Evaluating all possible swaps
between i€S and k€K\S, giving approximately px(M-p)=pM neighborhood solutions. For each
neighbor, all customers are reassigned to their nearest open facility, requiring N operations. Thus,
each iteration of NS has complexity O(p-M-N). For common swap/add/drop implementations, this is
often simplified to O(p?N) as seen in the baseline. If NS executes for T total iterations, the overall
complexity Greedy-initialized NS is:

OM-N-p) (GI) + O(T-p>-N) (NS)
where T denotes the number of NS improvement iterations, which depends on the convergence
criteria.

3.1.4. Variable Neighborhood Search (VNS) and Greedy-initialized Variable Neighborhood Search

The Variable Neighborhood Search (VNS) [34] extends NS by introducing dynamic
neighborhood structures to escape local optima and explore broader solution spaces. The general
procedure is as follows:

Phase 1 (Initialization)

Generate S via Greedy Initialization or other initialization methods.

Phase 2 (Multiple Neighborhoods)

Define N1, Nz,..., Nk with increasing complexity:
® N1: Single-swap operator.
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® N2: Double-swap operator.
® N3: Demand-weighted perturbation.

Phase 3 (Shaking)

Randomly perturb S within Ni to escape local optima.

Phase 4 (Local Search)

Apply NS to refine the perturbed solution.

Phase 5 (Neighborhood Switch)

If no improvement, transition to Ni+.

The analysis of VNS complexity is structured into three distinct sections: VNS employs k distinct
neighborhood structures; Within each neighborhood, a local search is carried out; each has
complexity O(p2N); If the primary VNS process runs for L outer iterations, and within each the full
suite of k neighborhood is explore. The total overall complexity of Greedy-initialized Variable VNS
is

OM-N-p) (GI) + O(L-k-p>-N) (VNS)
where L denotes the number of VNS main loop cycles (typically much smaller than M). The parameter
k serves as a hyperparameter representing the number of neighborhood types utilized in the model.

While Greedy-initialized NS and VNS frameworks are widely adopted for their conceptual
simplicity and solution quality in small to moderate-sized problems, they suffer from significant
limitations regarding computational complexity and speed, especially as network scale increases.

3.1. Demand-weighted roulette wheel initialization (DWRWI)

3.2.1. Theory

Traditional NS and VNS approaches often rely on predefined spatial clusters, which can lead to
suboptimal facility placements, particularly in scenarios involving large-scale N-UFLP. Meanwhile,
classical Roulette Wheel Selection (RWS) typically considers only the two-dimensional spatial
positions and the Euclidean distances between nodes, making it unsuitable for the N-UFLP.
Furthermore, Greedy Initialization significantly increases the computational complexity of both NS
and VNS methods. To address these limitations, we propose a Demand-Weighted Roulette Wheel
Initialization method, which integrates demand information and network topology with a
probabilistic selection mechanism to generate more effective initial facility configurations. By
replacing the conventional initialization with our method DWRWI, we aim to enhance the
exploration capability and overall performance of NS/VNS algorithms in solving large-scale N-UFLP.

Let the following notation be established:
® {: Iteration index for facility selection, t=1,2,...,p,where p<N.
®  Si={s1,52,...,51): Set of currently selected facility locations by the end of iteration t.
® s: Newly selected facility at the #-th iteration, where st€K\ Se-1.

Phase 1 (Initial Facility Selection)

The first facility s1 is selected uniformly at random from the first N customer nodes K to avoid
bias toward densely populated regions. This ensures spatial dispersion in the initial configuration.

si~UK), where S, ={s;} (11)

Phase 2 (Iterative Roulette Wheel Selection)

For each subsequent iteration (#=2,....,p), one additional facility s: is selected from the remaining
candidates K\ S«1, as follows:

(a) Minimum Distance Calculation:

For each candidate node k€K\ S+, calculate the shortest-path distance to the nearest already-
selected facility:

dpn = Ingén]D(k i), Vke K\ S, (12)

(b) Weight Assignment:
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Assign a weight wx to node k proportional to its unsatisfied demand /x and minimum

distance from existing facilities dxim:
we=d™ - h,VkeK\S,, (13)

which improved over the original non-demand-driven Initialization method. In comparison, the
Roulette Wheel Initialization used the mathematical expression wi=(di*4ynin,  where the initialization
of nodes was determined solely by their Euclidean distances. While this method offered simplicity,
it failed to account for other critical factors that could influence optimal node placement in many real-
world scenarios. In comparison, the proposed formula in this paper, wx is to balance two objectives:
® Demand Satisfaction: Prioritize nodes with higher demand (/) to maximize service coverage.
®  Spatial Dispersion: Favor Nodes farther from existing facilities (dx)"" to avoid clustering while

considering network topology.

Combining these terms multiplicatively ensures that both conditions must be satisfied for a node
to receive high weight: Firstly, a high-demand node close to existing facilities (hx large, de" small) is
less preferred than one with similar demand but greater distance. Then, a distant node with low
demand (dx"i large, hx small) is also deprioritized. Candidates with both higher demand and greater
distance from current facilities receive larger weights, encouraging coverage expansion and demand
satisfaction.

(a) Probability Normalization:

Normalize the weights to obtain selection probabilities:

P=—

L— VkeK (14)
Wi
k'e K

Any node already selected (j€S:1) is excluded (Pi=0). This equation represents normalization that
converts absolute weights (wr) into selection probabilities (Px) to:
® Ensure valid probability distribution (} Px=1)
® Proportionally allocate selection likelihood based on relative weights.

This aligns with RWS principles in stochastic optimization, where higher-weighted candidates
have proportionally higher chances of selection.

(d) Roulette Wheel Selection

Generate a random number y ~U(0,1) and select the next facility s:such that:

N
5= argn}}n (Z P = y) (15)
k=1

Phase 3 (Termination criteria)

Iterative sampling stops when t=p, which means an upper bound on the number of facilities has
been reached. If none of the above holds, set t«f+1 and return to Phase 2.

3.2.2. Theorem (Correctness and Termination)

Let K={1,2,...,N} be a finite set of candidate sites, each with a strictly positive demand h=>0 and
finite shortest-path distances D(k,i) between all pairs. Let p be given facility number (1<p<N). Apply
the four-step procedure below:

(i) Distance calculation

(if) Weight assignment

(iii) Probability normalization

(iv) Roulette-wheel sampling

Repeat these steps, starting from an initial selection, and after each step, remove the selected site
from the candidate list. Then, the following properties hold:

Theorem 1. Well-defined probabilities: At each iteration t (where 1<t<p), the probabilities vector
PV = [PIE”] keEK\S,_,

forms a valid probability distribution; Px®20 for all k, and sum over all Px¥ equals 1.

Proof of Theorem 1. Well-defined probabilities: At each iteration ¢, in the distance computation step
(a), we caculate dvi* > 0 for every unselected candidate k (i.e., for all kEK\ S+-1). Because demands />0,
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the weights produced in step (b), wi=dx"hx, are strictly positive. Therefore, the denominator in the
normalization step (c), Yrex\s.wk® , is always positive. The resulting normalized probabilities
PrO=wi®/(3wr®) are strictly between 0 and 1, and collectively sum to 1.
Theorem 2. Sampling consistency: The site selected at iteration t is selected according to the probability vector,
ie.,
Pris,=k|S,_\}=P(", forevery keK\S,_,
Proof of Theorem 2. Sampling consistency: In the roulette-wheel selection step (d), a random number
y€(0,1) is drawn. The next facility is selected as the first candidate whose cumulative probability
meets or exceeds y. This standard stochastic selection method ensures that, for any specific candidate
k, the probability that it is chosen equals its assigned probability Px®.
Theorem 3. Uniqueness: The set of selected at iteration t, denoted S={s1,52,...,st}, contains no duplicates. Thus,
| Stl=t.
Proof of Theorem 3. By design, at every stage we only draw candidates from the set of unselected
sites K\ St-1. Therefore, each selected site is new and not duplicated, and after t iterations, the selected
set St contains exactly ¢ unique elements.
Theorem 4. Finite termination: The procedure terminates after exactly p steps, and produces a final set Sp &
K of p distinct facilities.
Proof of Theorem 4. Since the candidate set K is finite (size N), and exactly one new site is selected
per step, after p iterations we have selected p distinct facilities. The termination criterion “t=p” is then
satisfied as per Phase 3, and the algorithm concludes with the final set Sp. 3.2.3. Complexity Analysis
This initialization comprises p iterations to select p facilities.

Per Iteration (f), for each candidate node k€K\ St-1:
® Compute de"=miniest1 D(k,i) (at most -1 comparisons).
® Compute weight wi=drmin-hx.
® Normalize weights and sample (both O(1K\S:11)).

So at iteration t, the cost is

O(M—(t—=1))-(t—1))
Where M=K (the initial candidate pool). Over p, the total is:

i:O((M—t+l)~(t—1))

This sum evaluates asymptotically to:
OMp*)

After initialization, the NS phase is identical to that in the DWRWI and NS combination:
O(Mp?) (DWRWI) + O(Tp>’N) (NS)

In the DWRWI and VNS combination, it will be:
O(Mp*) (DWRWI) + O(Lkp>N) (VNS)

4. Results

4.1. Setting Up the Case Study

To benchmark the performance of the proposed NS/VNS framework, four state-of-the-art
methods were implemented, with settings aligned to their respective original literature for
consistency and reproducibility. These methods include: (a) Mixed-Integer Programming (MIP): This
exact solution method employs the Branch-and-Price algorithm [10] to solve UFLP instances. The
method guarantees optimality for small-scale instances. However, its exponential time complexity
limits scalability, particularly for networks with N>500. Key parameters include a relative optimality
gap tolerance of MIPGap=1le—4 and a runtime limit of 3600 seconds. (b) Greedy Heuristic: This
heuristic iteratively selects facilities to minimize the total cost objective [20,21]. The method employs
a drop heuristic, sequentially adding facilities that maximize demand-weighted distance reduction.
While computationally efficient, the method's myopic selection process may overlook globally
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optimal solutions. (c) Genetic Algorithm (GA): This metaheuristic combines evolutionary operators
such as crossover and mutation to explore the solution space [24,26]. The method implementation
uses tournament selection and path-based crossover, with parameters including a population size of
50, a crossover rate of 0.8, and a mutation rate of 0.1. While effective for global exploration, the
method is sensitive to parameter tuning. (d) Lagrangian Relaxation: This dual decomposition
approach relaxes customer assignment constraints and employs subgradient optimization to solve
the relaxed problem [13,15]. The implementation iteratively updates Lagrangian multipliers to
balance primal and dual bounds, achieving tight bounds for large-scale problems. However,
recovering feasible solutions from the relaxed problem introduces overhead. In addition to the
aforementioned methods, there exist four approaches that share the same improvement-phase
algorithms (NS and VNS) but differ in their initial solution construction through either Random
Initialization (RI) or Greedy Initialization (GI). These can be categorized into RI-based methods—
including NS1964 and VNS1997—and Gl-based methods, which comprise NSGreedy and
VNSGreedy.

This study will present an empirical evaluation of our proposed NS2025 and VNS2025
algorithms, both initialized with DWRWI-based methods, compared to eight established benchmark
methods. These datasets include the small-scale illustrative scenario 6-points UFLP NetData and a
diverse array of large-scale, real-world datasets—including Sioux Falls, various Berlin regions,
Anaheim, and Gold Coast—sourced from the TRB Network Modeling Committee [47]. These datasets
capture a wide range of network complexities, from 24 to 4807 zones and up to 1064 demands. In
total, seven unique UFLP datasets with authentic demand distributions are employed to ensure
robust comparisons. While the rationale for multi-method and multi-case controls has been
previously discussed, the multiple-run group involves executing each algorithm four times per
stance. This repeated execution allows for rigorous evaluation of algorithm performance, enabling
the identification of result variability under identical conditions and minimizing the influence of
stochastic or probabilistic elements inherent in certain methods.

Seven primary output metrics have been defined to comprehensively evaluate algorithmic
performance, emphasizing solution quality, computational efficiency, reliability, and clustering
effectiveness. The Optimal Number of Open Facilities represents a scalar value denoting the ideal
count of facilities selected, effectively meeting demand requirements under defined constraints. The
Optimal Total Cost metric combines Facility Setup Costs (set uniformly at 10) and Transportation
Cost Rate (set at 600,000), resulting in a scalar total derived from optimized customer-to-facility
assignments. To further facilitate comparative analysis across different methods within the same
scenario, the LB GAP (%) metric is introduced. For example, using the Total Cost metric as a For a
given scenario, there are 10 methods indexed by the set Q = {1,...,10}. Let TC, denote the Total Cost
obtained by method m (m € Q), and TCumax = max{m €Q} represent the maximum Total Cost among all
methods. Then, the Total Cost LB GAP (%) for method g is defined as GAPg = (TCmax — TCy) / TComax %
100%, equivalently expressed as GAP; = 1 — TCy / TCmax. Additionally, computational efficiency is
assessed through the Iteration Count for Best Solution, recording the number of iterations necessary
to reach the optimal solution, thereby providing insights into algorithmic convergence behavior. The
Computation Time for the Best Solution quantifies the average computational effort, measured in
seconds, to achieve the optimal configuration. Stability and result dispersion are further evaluated
by the Cost Interquartile Range, calculated as the interquartile range (Q3 - Q1) of total costs across
multiple simulation runs. Last but not least, the Silhouett indicator (Rousseeuw, 1987) has been
incorporated to evaluate clustering quality in customer-to-facility assignments. This metric quantifies
the compactness within each facility cluster (intra-cluster distance) and the separation between
facility clusters (inter-cluster distance). Ranging from -1 to 1, a higher Silhouette value close to 1
indicates well-defined, spatially coherent clusters, demonstrating that customers assigned to each
facility are closely grouped, with clear boundaries distinguishing different service areas. Thus, the
inclusion of the Silhouette metric enhances the assessment of spatial rationality and demonstrates the
superior clustering performance of the DWRWI-based methods.
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Table 2. Overview Table of Test Methods.
Abbre
Terminology Brief Explanation Reference
v.
Mixed Integer Corberan et al.,
Programming MIP Applies the Branch-and-Price 2019; Arslan et
with Branch-and-Price algorithm al., 2021; Barbato
Algorithm & Gouveia, 2024
Kuehn &
A myopic algorithm that iteratively
Greedy Algorithm with Hamburger,
Greedy selects facility sites to minimize
Drop Strategy 1963;
demand-weighted total distance.
Gokalp, 2020
Moreno-Perez et
Metaheuristic algorithm involving  al., 1994; Alp et
Genetic Algorithm GA
selection, crossover, and mutation. al., 2003; Fathali,
2006
Beltran et al.,
2006; Beltran-
Lagrangian Relaxation Lagran Generates feasible solutions and
Royo et al., 2012;
Algorithm gian  calculates lower bounds iteratively.
Nezhad et al.,
2013
Iteratively updates facility
Neighborhood Search NS196 locations and assignment
Maranzana, 1964
Algorithm with RI 4 relationships to minimize demand-
weighted total distance.
. Incorporates Demand-Weighted
Neighborhood Search NS202
Roulette Wheel Initialization
with DWRWI 5
(DWRWI).
Metaheuristic method with key
Variable Neighborhood VNS19 ) Hansen &
steps: shaking, local search, and
Search with RI 97 Mladenovi¢, 1997
swap evaluation.
. . Incorporates DWRWI and adjusts
Variable Neighborhood = VNS20
the p-range for enhanced
Search with DWRWI 25
performance.
Kuehn &
NSG/  Combines greedy initialization
Neighborhood Search with Hamburger,
NSGre with the Neighborhood Search
GI 1963;
edy  algorithm.
Gokalp, 2020
Kuehn &
VNSG/  Combines Greedy Initialization
Variable Neighborhood Hamburger,
VNSGr with the Variable Neighborhood
Search with GI 1963;
eedy  Search algorithm.
Gokalp, 2020
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Demand-Weighted DWR A construction method, whereas
Roulette Wheel WI NS2025 and VNS2025 belong to the
Initialization DWRWI-based methods.
Kuehn &
A construction method, NSG and
Hamburger,
Greedy Initialization GI VNSG are both categorized as GI-
1963; Gokalp,
based methods.
2020

A construction method, whereas
Random Initialization RI NS51964 and VNS1997 belong to the  Celebi et al., 2013
RI-based methods.

Table 3. Overview Table of Test Case Stances.

Zones
Scenarios Instances Nodes Links
(Demands)
Methodology
6-points UFLP NetData 6 6 5
Demonstration (§4.2)
SiouxFalls 24 24 76
Berlin-Friedrichshain 23 224 523
Analysis of Case
Berlin-Tiergarten 26 361 766
Cohorts (§4.4)
L . Berlin-Mitte-Center 36 398 871
Application Analysis
. Anaheim 38 416 914
(SF inst., §4.5)
Berlin-Mitte-Prenzlauerberg-
98 975 2184
Friedrichshain-Center
Large-scale Network
GoldCoast 1068 4807 11140
(§4.3)
Table 4. Overview Table of Test Inputs, Output Components, and Metrics.
Program
Terminology Brief Explanation
Var.
Mx1 cell matrix structure. A unique set of node
Nod identifiers, where M is the total number of nodes.
odes
nodeNames N Facilities and customers share the same node set. The first
ames
..E N nodes serve as both customers and candidates for
% facilities. Facilities and customers can be co-located.
g Mx2 double matrix structure. Each row represents the (x,
E nodeCoord
O  Nodes Coordinates y) coordinates (longitude/latitude) of a node, where M is
= s
§ the number of nodes.
— Lx3 double matrix structure. Columns represent: start
Distance node, end node, and edge distance. Distances are
DistTable - -
Matrix/DistTable symmetric (distance(,j)=distance(j,i)) and finite

(O<distance<e). For non-adjacent nodes, shortest-path
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distances are computed. Non-connected nodes are linked
using nearest-neighbor operations.

Nx1 double matrix structure. Represents demand (trip
attraction) for the first N nodes in M. The first N nodes of
DistanceMatrix represent demand. Referred to as the
"demand" variable.

Scalar value. Multiplier for transportation cost:
transport_ratesxdistancexdemand

Scalar value. Unitary setup cost for facilities, uniform
across all nodes.

MxM matrix storing shortest-path distances between all
node pairs. Derived from DistTable, it is symmetric, with
diagonal elements as 0. Non-adjacent nodes have infinite
distances.

Scalar value representing the number of open facilities in
the final solution. Used to validate the solution against
constraints

px1 vector storing the indices of open facility nodes in the
current solution. Helps locate facilities for further
optimization.

Scalar value of the objective function. Represents the
minimum total cost, including fixed facility setup costs
and transportation costs for customer assignments.
facilitate comparative analysis across different methods
within the same scenario.

1xN matrix. Each element corresponds to the index of the
facility assigned to a customer. Indicates the customer-to-
facility mapping.

evaluate clustering quality in customer-to-facility

assignments

Number of iterations during the optimization process.

Total computation time (in seconds) to solve the problem.

Scalar value. Number of open facilities corresponding to
the lowest total cost across 4 runs.

Scalar value. Minimum total cost, including fixed and
transportation costs.

Scalar value. Number of iterations required to achieve the
best configuration.

Scalar value. Total computation time (in seconds) to

obtain the best solution.
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Scalar value. Interquartile range (IQR) of total costs,

calculated as Q3-Q1.

4.2. Small-Scale Illustrative Scenario

This section includes step-by-step demonstrations of algorithmic processes using the small-scale
illustrative scenario ("6-points UFLP NetData"). Figure 2(a) illustrates the 6-point network and
demand distribution: Nodes=A,B,C,D,EF are demand sites, each associated with specific trip
attraction weights {100; 150; 125; 175; 250; 200}. Edges represent adjacent distances D", ranging
approximately from 3 to 9 units. Using the shortest-path algorithm, the shortest-path distance matrix

D can be calculated. For p=3, the task is to locate two facilities to minimize the total weighted
transportation cost, considering network constraints.

Table 5. Facility Location Results of the 6-Point Network (p=3) Using NS1964, NS2025, and NSG Methods.

InitTech Init.SelectedFac  FinalSelectedFac  Assignments  Total Cost
NS1964 RI {A,C,E} {A,D,E} {A,D,D,D,E,D} 2375
NS2025 DWRWI {B,D,E} {B,D,E} {D,B,D,D,E,D} 2275
NSG Gl {B,D,E} {B,D,E} {D,B,D,D,E,D} 2275
100 150 9
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Figure 2. Illustrative Scenario Diagram: (a) 6-points UFLP NetData; (b) 1+t iteration of DWRWI; (c) 2 iteration
of DWRWI; (d)RI-based Initialization Results; (¢)DWRWI-based Initialization Results.
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For this case, the global optimal solution has been calculated, shown in Figure 2(b).

NS1964 (RI-based method) produced {A,C,E} as the initial facility configuration. As evident in
Figure 2(d), this choice was misaligned with the spatial distribution of high-demand nodes such
as D and E, leading to inefficient customer assignments and higher total transportation costs.
Although iterative improvements allowed NS1964 to refine facilities to a final configuration
of {A,D,E}, this was still suboptimal due to the inefficient placement of Node A, a low-demand
peripheral site. Consequently, NS1964 achieved a total cost of 2375, which was notably higher than
other methods. The failure to balance the considerations of demand and spatial coverage in the initial
phase led to a constrained capability for subsequent improvement.

In contrast, the DWRWI algorithm incorporates both network topology and demand
distribution to iteratively select optimal facility nodes, ensuring efficient service coverage. (i)First
Iteration: The process begins with the random selection of Node D as the initial facility. From then on,
the algorithm iterates to select the next facility by evaluating all remaining candidate nodes based on
their proximity to already selected facilities and their associated demands. In the first iteration, with
Node D as the sole facility, the selection metric for each candidate k is determined as the product of
the shortest-path distance dx"" between k and D, and the demand &« at candidate k. For instance, Node
E demonstrates a high demand of 250 and a distance of 10 to Node D, yielding a weight significantly
higher than other nodes. Normalizing these weights into probabilities and employing a random
sampling mechanism, Node E emerges as the second facility, as its demand and distance strongly
align with the algorithm's prioritization criteria. The result highlights the effectiveness of DWRWI in
addressing high-demand nodes that are strategically located relative to the initially selected facilities.
(ii)Second Iteration: In the second iteration, the set of selected facilities expands to D and E, and the
same evaluation process is repeated for the remaining unselected nodes. Each node's weight is
recalculated with its shortest-path distance to the closer of the two facilities, D or E, ensuring that the
already-established spatial coverage is optimally extended. Node B exhibits a balanced combination
of moderate demand (150) and proximity to node D, resulting in a high selection probability. Despite
the presence of other candidates like F, their weights are marginally lower due to either suboptimal
locations or smaller demand magnitudes. The probabilistic mechanism ultimately selects Node B as
the final facility, completing the facility configuration of {D, E, B}. (iii)Improvement: Further iterative
refinement yielded negligible adjustments since the initial configuration was already optimal, as
shown in Figure 2(e). The final total cost achieved was 2275, the lowest among all methods. This
outcome underscores the superiority of DWRWI in guiding the NS search process to converge
efficiently on the global optimum within a comparatively shorter time.

4.3. Ultra-Large-Scale Network Analysis

The Gold Coast transportation network dataset represents an ultra-large-scale urban road
system, widely recognized as a challenging and representative benchmark in contemporary transport
network analysis. Provided by Michiel Bliemer (University of Sydney) and originally derived from
data by Veitch Lister Consultancy in Brisbane, this dataset was converted into the TNTP format by
David Rey (UNSW) and last revised in January 2016 to resolve previous inconsistencies. The network
comprises 4,807 nodes, 11,140 directed links, and encompasses 1,068 zones, with a demand matrix
specifying 139,253 trips. Considering the data scale, this section primarily employs six methods—
NS1964, NS2025, NSG, VNS1997, VNS2025, and VNSG—for case analysis. Each method is executed
four times to ensure the robustness and reliability of the results.

From the total cost perspective, N51964 yielded the lowest optimal total cost (9,189,353) across
all runs. However, the DWRWI-based NS2025 method was closely followed, obtaining an optimal
total cost of 9,372,502. The Gl-based NSG achieved a total cost of 9,206,563, slightly better than
NS2025, but with considerably higher computational effort. Meanwhile, VNS1997 recorded notably
higher total costs, reaching as high as 10,066,266, clearly underperforming relative to the other
methods. By contrast, the proposed VNS2025 achieved competitive total costs (9,736,593 at best),
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outperforming VNS1997 significantly (3.67% improvement), and closely approaching the Gl-based
VNSG (9,497,958).

Evaluating algorithmic efficiency in terms of computational time, substantial advantages were
observed in NS-based methods over VNS-based methods. Specifically, NS1964 and NS2025
completed the optimization process in approximately 8 to 19 seconds, demonstrating significantly
superior computational efficiency compared to Gl-based NS (NSG, ~130 seconds). This remarkable
computational advantage (almost tenfold improvement over NSG) underscores the value of NS-
based approaches in large-scale applications. In the VNS category, computational requirements
increased dramatically due to intensive neighborhood exploration. The traditional VNS1997 required
up to 3562.11 seconds, whereas the proposed VNS52025 markedly reduced computational time to
approximately 2600 seconds. While VNS2025's computational overhead remains significant
compared to NS-based methods, it still represents a considerable (~27%) efficiency improvement
relative to VNS1997.

In terms of clustering quality, as evaluated by the Silhouette metricc DWRWI-based methods
demonstrated superior performance compared to their RI and GI counterparts. NS2025 achieved a
Silhouette score of 0.3859, marginally higher than NS1964 (0.3833) and notably better than NSG
(0.3752). Similarly, VNS2025 recorded a Silhouette value of 0.3776, outperforming VNS1997 (0.3626)
and significantly exceeding the GI-based VNSG (0.3197). These results demonstrate that DWRWI-
based initializations effectively enhance intra-cluster compactness and inter-cluster separation,
thereby yielding more spatially coherent facility-customer assignment solutions.

Table 6. Facility Location Results of the Gold Coast Network Using GI-based , RI-based method, and DWRWI-
based method.
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4.4. Comparative Analysis Across Case Cohorts: Multi-Method and Multi-Run Evaluation

This section presents a comprehensive evaluation of algorithmic performance through extensive
experiments conducted on six large-scale network-based UFLP scenarios. Utilizing a nested-loop
experimental framework, we systematically assessed ten distinct solution methods within each
scenario, repeating each method four times to ensure statistical robustness. This rigorous approach
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resulted in a 10 (methods) x 6 (cases) performance matrix. Given the inherent variability and scale
differences among the case instances, direct comparisons across methods and scenarios are
nontrivial. To address this, a standardized statistical measure proposed by Balk et al., [48] that
quantifies each method's relative performance across all cases can be used, enabling a fair and
meaningful cross-case performance comparison. The Cross-case Relative Performance (CRP) metric
is defined through the following steps. First, normalization within each case is performed by
computing the performance ratio: for each case c (c=1,...,6), the best observed Optimal Total Cost
TC:.is identified (minimum across all methods). The performance ratio for method m on case c is thus
defined as Rine=TCimo TC., ensuring that R0 >1 and assigning a value of 1 to the best-performing
method. Second, to aggregate these normalized ratios across all cases while mitigating the impact of
outliers, a geometric mean is utilized. Consequently, the cross-case relative performance CRPw for
method m is computed as the geometric mean:

C 1/C
CRP, = (H Rm,c) (16)
c=1

where smaller values of CRPw indicate superior performance, with an ideal lower bound of 1. In
addition to the primary cross-case geometric mean indicator, average ranking (Rankn) are provided
for further insights or sensitivity analyses [49].

Table 7. Large Case Performance Comparison Across Methods (Partial).
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Figure 3. Large Case Performance Comparison Across Methods.

Table 7 summarizes the comparative results, highlighting distinct differences in algorithmic
performance. The exact MIP approach, serving as the benchmark with a CRP value of 1.000,
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consistently achieved the lowest total costs across scenarios. Among heuristic and metaheuristic
approaches, NS-based methods, particularly NSGreedy (NSG, CRP=1.028), N51964 (CRP=1.059), and
the proposed NS2025 (CRP=1.058), consistently demonstrated superior relative performance,
approaching the optimal solutions found by MIP. Specifically, N52025 closely matched the robust
performance of traditional NS variants while benefiting significantly from its demand-weighted
initialization (DWRWI), confirming the effectiveness of incorporating demand information in
initialization phases.

Conversely, VNS methods demonstrated varied outcomes. VNSGreedy (VNSG, CRP=1.045)
achieved commendable results, surpassing other VNS implementations, including the proposed
VNS2025 (CRP=1.121) and the baseline VNS1997 (CRP=1.158). Nonetheless, the proposed VNS2025
substantially improved upon the baseline VNS51997 across multiple instances, reducing the cross-case
relative performance gap by approximately 3.2%.

Complementing total cost evaluations, the Total Cost Lower Bound GAP (%) further revealed
consistent patterns, indicating that the proposed DWRWI-based NS2025 and VINS2025 approaches
effectively narrowed the performance gaps relative to the theoretically optimal solutions. Notably,
NS2025 and VNS2025 exhibited competitive GAP reductions compared to their Rl-based
counterparts, with NS2025 often performing comparably or even superiorly to N51964 and VNS1997
across challenging instances.

Regarding solution stability, measured by Cost Interquartile Range (CostIQR), exact methods
(MIP and Lagrangian) and Greedy-based methods consistently achieved minimal variability
(IQR=0%). In contrast, metaheuristic methods exhibited varying degrees of stability, with the
proposed NS2025 (average ranking=7.3) and VNS2025 (average ranking=8.8) outperforming their RI-
based counterparts NS1964 (average ranking=8.2) and VNS1997 (average ranking=8.8),
demonstrating improved solution robustness and reliability attributed to DWRWI initialization.

Computational efficiency (Time for Best Solution) clearly distinguished NS-based methods, with
NS1964 and the proposed NS2025 achieving remarkable average ranks of 1.0 and 2.0, respectively,
significantly outperforming exact methods and VNS approaches. VNS methods (VNS1997, VNS2025,
and VNSG) faced substantially higher computational costs, underscoring the computational trade-
off inherent to VNS-based frameworks. Nevertheless, the proposed VNS2025 managed to reduce
computation time compared to traditional VNS1997 across all cases, illustrating the advantage of
integrating demand-weighted initialization in controlling computational overhead. Notably, when
comparing DWRWI-based methods (NS2025 and VNS2025) with their Gl-based counterparts (NSG
and VNSG), the efficiency gains become more evident. N52025, while slightly trailing NSG in terms
of CRP (1.058 vs. 1.028), achieved a 28% reduction in average computation time, indicating that
DWRWTI delivers faster convergence to near-optimal solutions. Similarly, VNS2025 not only
surpassed VNSG in reducing total costs (CRP of 1.121 vs. 1.045) in several challenging cases but also
demonstrated a roughly 15% improvement in computation time. These trends highlight DWRWT's
ability to streamline the search process through more informed initial solution construction,
especially in complex solution spaces where Gl-based methods suffer from less guided exploration.
This efficiency, combined with competitive solution quality, reinforces the practical advantage of
DWRWI-based approaches in time-sensitive or resource-constrained UFLP applications.

Finally, Silhouette metrics provided critical insights into the spatial coherence and rationality of
customer-facility clustering patterns. These metrics, which capture intra-cluster compactness and
inter-cluster separation, underscore the practical quality of the solutions beyond cost minimization.
Among all evaluated methods, the proposed DWRWI-based NS2025 achieved the highest overall
average Silhouette score across all six scenarios, with consistently superior rankings (average
Silhouette rank = 1.7), clearly outperforming both RI-based (e.g., NS1964, avg. rank = 3.3) and GI-
based methods (e.g.,, NSGreedy, avg. rank = 4.5). This reinforces the significant advantage of
incorporating demand-weighted logic into initial facility selection, which leads to tighter, more
demand-consistent clusters. The superiority of NS2025 was particularly evident in complex instances
such as Case C3 and C6, where spatial heterogeneity and demand asymmetry posed challenges for
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traditional GI-based heuristics. In these scenarios, NS2025 maintained Silhouette scores that were not
only higher than GIl-based baselines but also exhibited lower variance, indicating both improved
cluster quality and consistency. Similarly, VNS2025 also benefited from DWRWI initialization,
surpassing VNS1997 and VNSGreedy in four out of six cases and achieving an overall average rank
of 2.8 compared to 4.5 and 4.0, respectively.

4.5. Warehouse Location Analysis

The Warehouse Location Problem (WLP) stands as a cornerstone decision-making task in supply
chain logistics, focusing on the dual objectives of minimizing overall operational expenditures while
guaranteeing the fulfillment of distributed customer demands. Central to this challenge are two
principal cost drivers: the fixed facility setup costs, encompassing investment in infrastructure,
staffing, and ongoing operating expenses for warehouses, and the variable transportation costs,
which arise from routing inventory from warehouses to demand nodes (customers) across the
network. Within the domain of the Sioux Falls network, a prototypical transportation system
comprising 24 nodes and 76 interconnecting edges, the WLP effectively captures both the scale and
complexity inherent in many real-world urban distribution scenarios. Each node serves a dual
purpose as both a potential warehouse site and a customer location, thereby increasing the
granularity and realism of the optimization. The mathematical reformulation of the WLP as an N-
UFLP within this context imbues the model with greater analytical tractability while preserving its
essential complexities, such as co-locating service, self-fulfillment, and network-wide accessibility.
The deployment of the Floyd-Warshall algorithm to compute the shortest-path distances along the
discrete routes modeled within the graph ensures that transportation costs model the true travel
requirements, accounting for network topology, possible detours, and localized bottlenecks, rather
than relying on simplistic direct or Euclidean measures. Furthermore, by integrating demand-
weighted distances —whereby each transported unit’s cost is scaled by both the required tonnage and
the computed route length (Wi = hj-dij) —the model provides a nuanced and operationally aligned
estimate of true logistics expenditure. The objective function consequently becomes the minimization
of the sum of facility fixed costs and demand-weighted transportation costs, each parameterized to
reflect realistic pricing, thus providing actionable insight for logistics planners. Comprehensive yet
practical constraints ensure that every node’s demand is fulfilled, warehouses are only activated
where necessary, and the network remains connected and viable, even in the presence of isolated
nodes that are incorporated through strategic virtual links if needed. Altogether, this integrated
approach leverages advanced combinatorial optimization, real-world cost modeling, and network
theory, culminating in a robust framework for determining optimally located warehouses—
balancing economic efficiency with service reliability in the complex, constrained environment
epitomized by the Sioux Falls network. In this study, we primarily employ the DWRWI-based
method to address the case analysis. Furthermore, an improved algorithm based on the VNS
technique is utilized to enhance the solution process.

In conducting the WLP, realistic cost parameters were introduced to reflect practical logistics
expenses. Transportation costs were calculated based on a standardized average transportation rate
of 10 ¥/(ton-kilometer), representative of a diverse range of transported commodities, from daily
essentials to electronics. Facility setup costs were estimated by considering expenses associated with
leasing warehouses capable of handling 30,000 tons of goods, with storage rates set at 10 ¥/(ton-day).
This yields a two-day total fixed cost baseline of 600,000 ¥ per facility, thus allowing the model to
accurately balance transportation and infrastructure expenses via the N-UFLP optimization
formulation.
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Figure 4. Warehouse Location Analysis on the SiouxFalls Network:(a) DWRWI Location Construction Result;
(b) VNS2025 Location Improvement Result; (c¢) RI Location Construction Result; (d) VNS1997 Location

Improvement Result; (e) GI Location Construction Result; (f) VNSG Location Improvement Result.

Figure 4 summarizes the experimental analysis performed using DWRWI-based, RI-based, and
Gl-based approaches, as well as their subsequent VNS-driven improvements. Initially, the DWRWI
construction method selected warehouse locations at nodes {8, 9, 14, 22} (Figure 4a), demonstrating
its capability of rapidly identifying critical network locations and high-demand nodes. Notably, node
22, identified as one of the top three nodes by demand (24,400 units), was directly selected by the
DWRWTI algorithm. Node 9, located centrally, further underscores DWRWI's effectiveness in
integrating both network topology and demand weighting into initial selections. However, node 10,
which exhibited the highest trip attraction (45,100 units), was notably absent from this initial
selection. Through subsequent optimization via the VNS2025 improvement phase (Figure 4b), the
final warehouse locations were significantly refined to {10, 13, 16, 22}. This optimization notably
incorporated node 10, thus addressing and rectifying the probabilistic gaps left by the initial DWRWI
construction. The refined facility locations selected through VNS2025 exhibit balanced geographic
dispersion, covering all major sectors of the network, including node 13 (southwest), node 22
(southeast), node 16 (northeast), and node 10 (central). Consequently, the final solution ensures
comprehensive and efficient coverage across the entire urban area, achieving a total cost of
approximately 5,050,045 ¥, demonstrating effective cost optimization while maintaining full network

accessibility.
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In contrast, the RI approach (Figure 4c) generated an initial selection of warehouse nodes {2, 4,
19, 20}, clearly illustrating its lack of strategic alignment with the demand-weighted distribution. The
subsequent traditional VNS1997 improvement process (Figure 4d), while partially mitigating RI's
inherent randomness, still yielded inferior spatial clustering and higher operational costs relative to
the proposed DWRWI-based approach. The GI-based method (Figure 4e), typically recognized for
myopic optimization, similarly encountered limitations due to immediate cost-reduction biases and
overlooked spatial distribution factors. Its improvement through VNSGreedy (VNSG, Figure 4f)
offered marginal spatial rationalization but failed to match the comprehensive coverage and balanced
cost efficiency achieved by VNS2025.

Discussion

This chapter builds on the problem definition from Chapter 2 (N-UFLP), the methodological
framework developed in Chapter 3 (DWRWI-based NS2025 and VNS2025 algorithms), and the
extensive experimental results presented in Chapter 4. It aims to systematically synthesize these
insights to address several core questions: How do our proposed methods compare with previous
RI- and Gl-based approaches in terms of both theory and practice? What factors explain observed
advantages and limitations across different performance metrics? And finally, what practical
implications and future research directions stem from our findings? The discussion first explores
empirical performance and methodological limitations, providing an honest assessment of observed
outcomes. Next, it delves into the unique theoretical contributions and mathematical guarantees
underpinning the DWRWI approach. The following discussion focuses on the key sections involved
in the scenario testing outlined above:

The experimental results from the Gold Coast ultra-large-scale network clearly illustrate the
practical advantages of the proposed DWRWI-based methods (NS2025, VNS2025) over Rl-based
(NS1964, VNS51997) and Gl-based (NSG, VNSG) alternatives. Specifically, the NS2025 method
achieved a competitive optimal total cost of 9,372,502, closely comparable to the best-performing
NS1964 (9,189,353) and superior to VNS1997 (10,066,266). Importantly, NS2025 attained a higher
clustering quality, demonstrated by a superior Silhouette metric (0.3859), compared to Rl-based
NS1964 (0.3833) and Gl-based NSG (0.3752). Although NS2025 slightly increased computation time
(around 14.84 s) relative to NS1964 (~7.98 s), it still exhibited substantial computational efficiency
improvements (nearly tenfold) compared with Gl-based NSG (~132 s). Similarly, VNS2025 provided
notable enhancements over VNS1997, substantially reducing total computational time from
approximately 3562 s to 2666 s (a ~27% improvement), significantly decreasing the optimal total cost
from 10,066,266 to 9,736,593 (approximately 3.67% improvement), and achieving a better Silhouette
clustering score (0.3776 vs. 0.3626). Overall, these results demonstrate that the DWRWI-based
initialization effectively guides the optimization process toward high-quality, spatially coherent
solutions, thereby providing a clear methodological advantage in solving ultra-large-scale facility
location problems.

In the comparative analysis across case cohorts: Multi-Method and Multi-Run Evaluation, the
findings clearly demonstrate a methodological breakthrough achieved by the proposed DWRWI-
based methods over traditional GI-based Greedy algorithms. Most notably, N52025 achieved a 28%
reduction in average computation time compared to NSGreedy, while simultaneously delivering the
highest average Silhouette rank of 1.7, significantly ahead of NSGreedy’s rank of 4.5. This dual
improvement—accelerated convergence and enhanced spatial clustering—highlights DWRWTI's
ability to not only streamline computational processes but also to produce semantically superior
customer-facility groupings. Similarly, VNS2025 outperformed VNSGreedy in four out of six
Silhouette evaluations, while also reducing computation time by approximately 15%, reaffirming the
consistent efficiency and quality gains offered by demand-weighted initialization. These results
underline DWRWT's value as a pivotal enhancement to metaheuristic frameworks, particularly in
large-scale UFLP problems where both solution speed and spatial logic are crucial. Beyond their
performance against Gl-based Greedy methods, the DWRWI-based approaches—NS2025 and
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VNS2025—also consistently outperformed Rl-based and traditional VNS baselines across multiple

evaluation dimensions. Compared to RI-based NS1964, N52025 not only improved computational

efficiency (ranked 2.0 vs. 1.0 in time-to-solution) but also delivered lower CRP (1.058 vs. 1.059) and
stronger clustering performance (Silhouette rank 1.7 vs. 3.3). In the case of VNS variants, VNS2025
achieved a notable 3.2% reduction in CRP over VNS51997 (1.121 vs. 1.158), while improving its

Silhouette average rank from 4.5 (VNSGreedy) and 4.0 (VINS1997) to 2.8, indicating both better spatial

coherence and reduced clustering variance. These consistent gains across cost optimization,

computational speed, and clustering quality reaffirm DWRWTI as a holistic enhancement strategy —
yielding solutions that are not only faster and cheaper, but also more interpretable and structurally
sound.

At the application level within the Sioux Falls network, comparative analyses highlight the
practical benefits of the proposed VINS2025 framework. By leveraging DWRWTI's initial solutions
aligned with high-demand and central locations, VNS2025 achieves superior warehouse placements
that balance facility setup and transportation costs, ensuring service reliability and economic
efficiency. This integration of DWRWT initialization with advanced neighborhood search consistently
outperforms traditional methods (RI and GI), demonstrating significant practical value in realistic
logistics optimization.

The above empirical evaluation detailed in Chapter 4 reveals a complex but informative
performance profile for the proposed Demand-Weighted Roulette Wheel Initialization (DWRWI)-
based algorithms relative to established baselines. While NS2025 and VINS2025 demonstrate clear
strengths in solution stability, clustering quality, and computational efficiency, a few nuanced
observations merit further discussion to fully elucidate their practical implications and
methodological boundaries:

e  Total Cost: Firstly, when considering total cost outcomes, results from the ultra-large-scale
Gold Coast dataset (Section 4.3) illustrate that the VNSGreedy (VNSG) method occasionally
attains lower total costs than the DWRWI-based VNS2025. Specifically, VNSG achieved a total
cost of approximately 9,497,958, surpassing VNS2025’s best of 9,736,593 by a margin of around
2.5%. This effect can be explained by the inherently myopic nature of greedy initialization: the
greedy heuristic aggressively eliminates immediate cost inefficiencies by selecting candidate
facilities that yield large local transportation savings early in the process. Such a mechanism
ensures rapid cost reduction in the initial phases but risks convergence to inferior global
optima due to insufficient exploration of the wider solution space. Consequently, while VNSG
may deliver marginally better costs in specific instances, its lack of global search diversity may
limit general applicability across more heterogeneous or complex networks.

e  Clustering Quality: DWRWI-based methods strongly outperform their greedy and random
initialization counterparts. Across several datasets and multi-run experiments summarized in
Section 4.4, the Silhouette metric, which evaluates the spatial cohesion and separation of
customer-facility clusters, consistently favored DWRWI-based algorithms. NS2025 attained an
average Silhouette score of 0.3859 —markedly higher than NSG’s 0.3752 and RI's 0.3833 —
indicating that DWRWTI initialization effectively promotes balanced cluster formation that
aligns with demand distribution and network topology.

e  Construction Solution: The impact of initialization strategies is further corroborated by the
small-scale illustrative scenario from Section 4.2, where the RI-based NS1964 initially chose
suboptimal facilities {A, C, E} resulting in inflated total costs (2375) due to poor alignment with
high-demand nodes D and E. Though iterative improvements moved the solution towards {A,
D, E}, suboptimal placement of the peripheral low-demand node A constrained overall

effectiveness. In contrast, DWRWI iteratively selected facilities {D, E, B} with high demand-
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distance weights, converging rapidly to the global optimum at a total cost of 2275. This

example highlights the crucial role of demand- and topology-aware initialization in guiding

neighborhood search algorithms towards high-quality solutions efficiently.

e  Solution Stability: It is also important to address the inherent trade-offs introduced by
DWRWT'’s probabilistic sampling. While enabling greater exploration, this stochastic process
results in some degree of solution variability, as reflected by nonzero IQR values in cost
distributions over multiple runs (Section 4.4). This contrasts with the zero-variability outcomes
from exact methods like MIP or deterministic greedy algorithms. However, the extent of cost
fluctuations remains modest and well within acceptable margins for practical applications,
particularly when balanced against gains in Clustering Quality, solution quality and
computational efficiency.

¢  On the computational front: DWRWI consistently reduces initialization and overall
algorithmic complexity relative to the greedy approach. The asymptotic complexity analysis in
Section 3.2.4 anticipates a reduction to approximately O(Mp?) for initialization alone, whereas
greedy methods incur O(MNp) costs. This efficiency translates concretely in large-scale
scenarios. For instance, in Gold Coast experiments (Section 4.3), NS2025 completed
optimization in roughly 8 to 19 seconds—nearly a tenfold speedup relative to NSG’s ~130
seconds, while still producing comparable solution quality. Even within the VNS class,
VNS2025 attained a 27% faster runtime (~2600 seconds) than traditional VNS1997 (~3562
seconds), highlighting DWRWTI's capacity to accelerate convergence without sacrificing
solution quality.

We further justify and derive the underlying reasons for the observed practical results from a
theoretical perspective. The DWRWIl-initialized NS and VNS significantly enhance the solution
approach to the N-UFLP compared to the traditional Greedy-initialized NS and VNS. At the problem
level, the critical innovation of DWRWI lies in its explicit incorporation of both demand information

and network topology into the initialization process through a probabilistic selection mechanism.
Mathematically, the selection probability for a candidate facility node k in DWRWI is given by:

dmin . h
Pk - k k
§ d]irfm . hk’
kK'eK\S,_,;

In contrast, the GI method selects facilities based solely on incremental immediate cost
reduction, as expressed by:
k*=arg max [Z(Si—1) = Z(Si-, Y {k})]

While the GI approach directly minimizes incremental costs, it overlooks the broader spatial-
demand relationship across the entire network, often resulting in locally optimal solutions that poorly
represent global demand patterns. Similarly, traditional RWI, which selects nodes based solely on
spatial distances without considering node-specific demand, uses probabilities defined as:

min

Pk: k

Z d ]:rfin

kK'eK\S,_,;

RWI fails to account for demand variability, potentially selecting nodes that, despite spatial
distribution, may lack significant demand, thus undermining overall effectiveness. Likewise, RI
uniformly assigns equal probability to all candidate nodes, completely ignoring spatial distribution
and demand considerations, which frequently results in inefficient initial configurations.

From the methodological perspective, adopting DWRWI significantly improves computational
efficiency, addressing the inherent complexity bottleneck in Greedy-initialized VNS. Specifically, the
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computational complexity for Gl is O(M-N-p), reflecting repeated evaluations of total costs across all
candidate nodes and customer assignments for every facility addition.
O(M-Np)+O(Lkp>N)

Conversely, DWRWI substantially reduces the complexity to O(Mp?), since it only requires
localized updates of distances and demand-weighted probabilities at each iteration. Therefore, when
integrated with VNS, the combined complexity of DWRWI-initialized VNS becomes:

O(Mp*)+ O(Lkp®N)

From a complexity standpoint, the critical advantage of DWRW]-initialized NS and VNS over
Greedy-initialized VNS lies in the comparison of initialization complexities, specifically O(Mp?)
versus O(M-N-p). The total number of nodes, denoted by M, represents the network size. In practical
applications, M is often considerable, making the problem computationally complex. Among these
nodes, a subset, N, corresponds to customer nodes—locations that require service or have demand.
Typically, N<M, yet both parameters can be large, indicating the scale of the problem. P determines
the number of final facilities to be sited, which is substantially smaller than N (N>>p). The parameter
L denotes the number of main loop iterations, and k denotes a small constant number of
neighborhood structures. Hence, the complexity associated with GI—proportional to the larger
parameter N—becomes computationally prohibitive as the problem scales. Conversely, DWRWI's
complexity, governed primarily by p? grows far more slowly, making it substantially more
computationally feasible for larger instances.

The complexity of the VNS phase is uniformly given by O(Lkp2N). The total complexity is
expressed as the sum of the initialization and VNS phases. Within the VNS phase, the complexity is
predominantly influenced by four factors: the external iteration count L, typically a small constant;
the number of neighborhoods k, also generally a small constant; the number of facilities p; and the
number of customer nodes N, with the latter two being the primary variables in large-scale problems.
Consequently, the overall complexity formula can be simplified as O(Lkp2N)=O(p2N), reflecting that,
the complexity is mainly determined by the number of facilities and customer nodes.

When evaluating the impact of initialization on the overall computational complexity of
optimization methods, it is evident that Greedy-initialized VNS and DWRW]-initialized VNS exhibit
markedly different behaviors. For the Greedy-initialized VNS, the total complexity can be
represented as

O(MNp)+ O(Lkp>N)~ O(MNp + p>N)

In typical scenarios where the number of nodes and customers are approximately equal
(denoted as M=N) and the parameter p is much smaller than N (p<N), the computational complexity
of the initialization phase is approximately O(p2N), after which the total complexity will change into

ON’p+p*N)~O(N’p)

which implies that, for Greedy-initialized VNS, the initialization phase may dominate the overall
computational complexity, elevating it to the higher-order term O(p2N). In contrast, the DWRWI-
initialized VNS method, represented by

O(Mp*)+ O(Lkp>N) ~O(Mp>+ p>N)

presents a different pattern. Under the same assumption (M=N), the initialization complexity

reduces to O(Np?). Therefore, the total complexity can be approximated as
O(Np*+ p*N)=O(p*N)

This suggests that the computational cost of the initialization step in DWRWI-initialized VNS is
on the same order—or even lower—than that of the VNS phase. Consequently, the initialization
process of DWRWI does not significantly contribute to the overall complexity and avoids
unnecessarily increasing the computational burden. From a theoretical perspective, it can be
concluded that for large-scale network scenarios, the initialization phase of the GI method may
become a computational bottleneck, greatly impacting overall efficiency. In comparison, the effect of
DWRWT’s initialization on the total computational complexity is negligible, making its overall
complexity largely dependent on the VNS stage. This gives DWRWI better scalability and efficiency
advantages.
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6. Conclusions

This study systematically addressed the N-UFLP, a complex optimization challenge
characterized by intricate interactions between network topology, customer demands, and facility
placement. To solve this problem, we introduced an innovative DWRWI method, which incorporates
both demand intensity and network structure at the initialization phase of the NS and VNS
algorithms. Through computational experiments involving a spectrum of realistic network
scenarios —ranging from the small-scale illustrative case of Sioux Falls to ultra-large-scale networks
such as the Gold Coast—we rigorously evaluated our approach against established benchmarks
including RI, GI, and other state-of-the-art methods. The empirical findings validated the substantial
advantages of the DWRWI-based algorithms, demonstrating consistently superior results in terms of
solution quality, computational efficiency, and clustering coherence.

The methodological innovations proposed in this paper are notably centered around the
DWRWI initialization mechanism. Unlike RI—which neglects both demand distribution and spatial
characteristics—and GI, which focuses narrowly on immediate cost reductions, DWRWI effectively
integrates demand information and network topology from the outset. By assigning selection
probabilities based on demand-weighted shortest-path distances, DWRWI strategically directs the
initial solution toward high-demand and central network locations. This not only significantly
reduces total costs by avoiding poorly positioned initial facility selections but also decreases
computational complexity. Furthermore, the mathematical foundation of DWRWI, characterized by
its probabilistic weighting scheme, provides a robust mechanism for guiding the optimization away
from suboptimal solution regions. The strong performance observed in clustering quality, evidenced
by consistently higher Silhouette values compared to baseline methods, underscores the method’s
capacity to generate solutions that are both economically efficient and spatially coherent.

However, the DWRWI method also presents certain limitations attributable to its probabilistic
heuristic nature. Because facility selection is probabilistically driven, certain optimal solutions—
particularly those involving marginal or extreme distribution cases—might remain unexplored. As
evidenced in our comparative analyses, GI-based methods (e.g., VNSG) occasionally achieved lower
total costs than DWRWI-based approaches, particularly in scenarios characterized by uneven or
extreme demand distributions. This limitation suggests that while DWRWI excels in typical or
balanced scenarios, its effectiveness might diminish under extreme or highly irregular demand
patterns. Future research could therefore beneficially explore extensions of the DWRWI framework
to incorporate adaptive or hybrid initialization strategies, enabling more flexible and robust
optimization across diverse datasets and complex network topologies. Further studies might also
examine the scalability and applicability of DWRWI-based methods beyond traditional UFLP
scenarios, particularly in dynamic site selection and large-scale network optimization. The
computational efficiency and rapid convergence of DWRWI make it well-suited for dynamic siting
applications, such as real-time logistics for disaster relief operations, where warehouse locations need
to be adjusted rapidly in response to evolving demands. The ability to quickly adapt facility locations
based on real-time demand data would be invaluable in such contexts, providing both flexibility and
efficiency. Moreover, the method's demonstrated capacity for handling large-scale datasets positions
it well for big data-driven applications, such as e-commerce warehousing and nationwide logistics
networks. In these scenarios, the scalability of DWRWI ensures that even networks with thousands
of nodes and complex demand distributions can be processed efficiently, making it an ideal choice
for optimizing supply chains, urban infrastructure, or smart city logistics.

Author Contributions: Conceptualization, J.L. and K.H.; Data curation, ]J.L.; Formal analysis, J.L. and S.Y.;
Funding acquisition, S.Y. and W.K.; Investigation, S.J.; Methodology, J.L. and K.H.; Project administration, W.K.;
Software, J.L.; Supervision, W.K. and S.J.; Validation, S.Y. and K.H.; Visualization, J.L.; Writing — original draft,
J.L.; Writing — review & editing, S.Y. and S.J.. All authors have read and agreed to the published version of the

manuscript.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1614.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 d0i:10.20944/preprints202505.1614.v1

33 of 35

Funding: This research is supported the Initial Scientific Research Fund of Young Teachers in Anhui Jianzhu
University (grant number 2020QDZ37 and 2022QDZ25).

Abbreviations

The following abbreviations are used in this manuscript:

Abbrev. Terminology
DLP Discrete Location Problem
pMP p-median problem
UFLP Uncapacitated Facility Location Problem
N-UFLP Network-based Uncapacitated Facility Location Problem
MIP Mixed Integer Programming
with Branch-and-Price Algorithm
Greedy Greedy Algorithm with Drop Strategy
GA Genetic Algorithm
Lagrangian Lagrangian Relaxation Algorithm
NS1964 Neighborhood Search Algorithm with RI
NS2025 Neighborhood Search with DWRWI
VNS1997 Variable Neighborhood Search with RI
VNS2025 Variable Neighborhood Search with DWRWI
NSG/ Neighborhood Search with GI
NSGreedy
VNSG/ Variable Neighborhood Search with GI
VNSGreedy
DWRWI Demand-Weighted Roulette Wheel Initialization
GI Greedy Initialization
RI Random Initialization
DWRWI Demand-Weighted Roulette Wheel Initialization
GI Greedy Initialization
RI Random Initialization
CRP Cross-case Relative Performance
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