Pre prints.org

Article Not peer-reviewed version

Development of a Medication-Related
Osteonecrosis of the Jaw Prediction
Model Using the FDA Adverse Event
Reporting System Database and
Machine Learning

Shinya Toriumi i , Komei Shimokawa , Munehiro Yamamoto , Yoshihiro Uesawa ’

Posted Date: 5 February 2025
doi: 10.20944/preprints202502.0246.11

Keywords: medication-related osteonecrosis of the jaw; bisphosphonates; epidemiological research;
disproportionality analysis; spontaneous report database; in silico analysis; quantitative structure-activity
relationship; machine learning; artificial neural network; molecular structure descriptor

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/1290608
https://sciprofiles.com/profile/253868

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2025 d0i:10.20944/preprints202502.0246.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Development of a Medication-Related Osteonecrosis
of the Jaw Prediction Model Using the FDA Adverse
Event Reporting System Database and

Machine Learning

Shinya Toriumi 12*, Komei Shimokawa 2, Munehiro Yamamoto ? and Yoshihiro Uesawa *

1 Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan

2 Department of Pharmacy, National Hospital Organization Kanagawa Hospital, Hadano 257-8585, Japan

3 Department of Orthopedic Surgery, National Hospital Organization Kanagawa Hospital, Hadano 257-8585,
Japan

* Correspondence: sn.toriumi@gmail.com (S.T.); uesawa@my-pharm.ac.jp (Y.U.); Tel.: +81-42-495-8983 (Y.U.)

Abstract: Medication-related osteonecrosis of the jaw (MRON]) is a rare adverse event associated
with antiresorptive and antiangiogenic drugs that can significantly impact quality of life. In this
study, we conducted a quantitative structure-activity relationship (QSAR) analysis using the U.S.
Food and Drug Administration Adverse Drug Reaction Database System (FAERS) and machine
learning to construct a drug prediction model for MRON] induction based solely on chemical
structure information. We analyzed 4,815 drugs from FAERS to assess their association with MRON]
and predict MRON]J-positive and MRON]J-negative drugs. By incorporating 326 chemical structure
descriptors, we performed QSAR analysis on 60 positive and 108 negative drugs. Three machine
learning algorithms were evaluated along with the number of chemical structure descriptors for
QSAR analysis. The optimal MRON] induction drug prediction model was established using an
artificial neural network algorithm and eight chemical structure descriptors (area under the receiver
operating characteristic curve = 0.778). Among these descriptors, drugs with polar surface area
characteristics were identified as potentially linked to MRON]. This study demonstrates a promising
approach for predicting MRONJ risk, which could enhance drug safety assessment and streamline
drug screening in clinical and preclinical settings.

Keywords: medication-related osteonecrosis of the jaw; bisphosphonates; epidemiological research;
disproportionality analysis; spontaneous report database; in silico analysis; quantitative structure-
activity relationship; machine learning; artificial neural network; molecular structure descriptor

1. Introduction

Medication-related osteonecrosis of the jaw (MRON]) is a rare adverse event associated with
long-term administration of bisphosphonates (BPs) and denosumab [1,2]. However, MRONJ] has also
been linked to drugs with mechanisms of action distinct from those of bone resorption inhibitors,
such as the angiogenesis inhibitors bevacizumab and sunitinib, as well as the immunosuppressants
methotrexate and everolimus [1—4]. This suggests that various drugs may contribute to the
development of MRON]J through different pathways. Although MRON] significantly reduces quality
of life, it is recommended to continue treatment with MRON]-related drugs while implementing
strategies to minimize its risk, as the therapeutic benefits of these drugs often outweigh the risks [5-
8]. Therefore, the ability to predict and evaluate the risk of MRON] in advance would be valuable for
managing such adverse events.

Spontaneous reporting systems, which collect data on adverse events in clinical settings over an
extended period, play an important role in epidemiological studies, particularly in drug safety
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evaluations [9-14]. A spontaneous reporting system is a drug adverse event database that gathers
spontaneous reports from patients, medical professionals, pharmaceutical companies, and other
sources. These databases accumulate a huge amount of adverse event reports that are often
challenging to obtain at a single institution. In addition, they include data on patients with diverse
backgrounds, such as those with renal or hepatic disorders, making spontaneous reporting system
an excellent tool for inductively understanding drug-related adverse events. This reflects not only
unique pharmacological and pharmacokinetic characteristics but also prescription and usage
conditions [15,16]. In spontaneous reporting system databases, a signal detection approach can be
used to identify potential causal relationships between adverse events and drugs, even when such
relationships were previously unknown [17-19]. Many studies have utilized these databases to
explore the association between drugs and adverse events [12,20]. The U.S. Food and Drug
Administration (FDA) Adverse Event Reporting System (FAERS) is one of the largest spontaneous
reporting databases globally [21].

In recent years, there has been a growing interest in using in silico analysis to evaluate drug
toxicity (adverse event evaluation) [22,23]. The physiological activity and physical properties of a
drug are typically determined by its chemical structure, which can be analyzed through structural
similarity. Quantitative structure-activity relationship (QSAR) analysis is a method that models the
relationship between chemical structure and drug efficacy based on this principle [24-27]. This
method involves converting the chemical structure of a compound into computationally analyzable
features and constructing mathematical models to relate structure to activity. Recently, advances in
machine learning algorithms have been reported to enhance the prediction accuracy of such models
[28,29]. Therefore, by leveraging machine learning to develop an MRON]J-inducing drug prediction
model, it becomes possible to assess the risk of MRON] for various drugs based solely on their
chemical structure information. This approach is highly beneficial for screening new compounds and
drugs prior to clinical use.

In this study, we integrated data from a drug adverse event database with machine learning
techniques to construct an MRONJ-inducing drug prediction model. Initially, drugs associated with
MRON] were extracted from the FAERS drug adverse event database. Subsequently, molecular
descriptors representing the structural information of the extracted drugs were calculated, and a
classification model for MRON]J-inducing drugs was developed using machine learning.

2. Results
2.1. Creation of the FAERS Analysis Data Tables

The FAERS analysis data table was created by combining information from the FAERS drug
table (drug information), Reaction table (adverse event information), Demographic table (basic case
information), and Therapy table (treatment period information). Duplicate records were eliminated
from the four tables. Following deduplication, the Drug, Reaction, Demographic, and Therapy tables
contained 103,252,306, 44,286,680, 14,836,487, and 53,686,946 records, respectively. These tables were
merged, and data cleaning procedures were applied to create the FAERS analysis data table. The table
contained adverse event data from 12,468,455 records involving 4,815 drugs. Among these, 3,427
cases (0.027%) were related to MRON].

2.2. Positive and Negative Drugs for MRON]

In the FAERS analysis data table, out of 4,815 drugs, 70 were identified as MRON]-positive and
139 as MRON]J-negative (Supplementary Table S1). A volcano plot was generated to visually
represent the relationship between the drugs reported in FAERS and MRON]J (Figure 1). Each point
on the scatter plot represents a drug, with MRON]-positive drugs located in the upper right quadrant
and MRON]J-negative drugs in the upper left quadrant. The color of each point represents the total
number of reported adverse events for each drug, with more red points and fewer blue points
indicating higher numbers of adverse events. Among the 70 MRON]-positive drugs, 11 were
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classified as malignant tumor drug protein kinase inhibitors (ATC code: LO1E), and 8 were drugs

affecting bone structure and mineralization (ATC code: M05B), such as BPs (Supplementary Table
S1). The number of reported cases of MRON] was 907 for denosumab, 702 for zoledronic acid, 264 for
alendronate, 92 for ibandronate, 65 for sunitinib, and 60 for dexamethasone (Table 1).
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Figure 1. A volcano plot of drugs associated with medication-related osteonecrosis of the jaw (MRON]). The x-

axis represents the natural logarithm of the odds ratios (In (ROR)), while the y-axis represents the common

logarithm of the inverse P-value (-log10 [P]) from Fisher’s exact test. The dotted line on the y-axis represents P

= 0.05. The color of the plot represents the total number of adverse events reported for each drug. Drugs

associated with MRON]J (MRON]J-positive drugs) are shown in the upper right part of the plot, while drugs not

associated with MRON] (MRON]-negative drugs) are displayed in the upper left part.

Table 1. Twenty most frequently reported drugs as medication-related osteonecrosis of the jaw (MRON]J)-

positive drugs.

Number of P-value

Drug name Drug group MRON] reports ROR
Denosumab Anti-RANKL antibody 907 <.0001 373.78
Zoledronic acid Bisphosphonates 702 <.0001 140.70
Alendronic acid Bisphosphonate 264 <.0001 36.69
Ibandronic acid Bisphosphonate 92 <.0001 35.77
Sunitinib Anticancer drugs 65 <.0001 10.30
Dexamethasone Corticosteroids 60 <.0001 412
Cholecalciferol Vitamin D 55 <.0001 21.13
Bevacizumab Anticancer drugs 51 <.0001 7.96
Lenalidomide Anticancer drugs 47 <.0001 3.07
Everolimus Anticancer drugs 39 <.0001 4.39
Letrozole Anticancer drugs 38 <.0001 10.34
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Prednisolone Corticosteroids 36 <.0001 4.81
Risedronic acid Bisphosphonates 33 <.0001 16.50
Exemestane Anticancer drugs 32 <.0001 13.92
Palbociclib Anticancer drugs 31 <.0001 8.96
Paclitaxel Anticancer drugs 29 <.0001 3.42
Calcium carbonate Calcium 28 <.0001 18.19
Docetaxel Anticancer drugs 25 <.0001 2.64
Prednisone Corticosteroids 25 <.0001 3.97
Pamidronic acid Bisphosphonates 22 <.0001 54.81

P-value; Fisher’s exact test; ROR, reported odds ratio.

2.3. QSAR Analysis Data Table

A QSAR Analysis Data Table was created by incorporating 326 chemical structure descriptors
for MRON]J-positive and -negative candidate drugs identified from the FAERS analysis data table
(Supplementary Table S2). The Simplified Molecular Input Line-Entry System (SMILES) of 70
MRON]J-positive drugs and 139 MRON]J-negative drugs in FAERS was verified, and 326 types of
chemical structure descriptors calculated using the Molecular Operating Environment, a chemical
calculation environment, were included. The QSAR Analysis Data Table comprised 60 MRON]-
positive drugs and 108 MRON]J-negative drugs for which descriptors were available. Among the
drugs affecting bone structure and mineralization (ATC code: M05B), all six drugs, including BPs,
were classified as MRON]J-positive drugs (zoledronic acid, alendronic acid, ibandronic acid,
risedronic acid, pamidronic acid, and minodronic acid).

2.4. QSAR Analysis Using Machine Learning (Construction of MRON]-Induced Drug Prediction Model)

In this study, QSAR analysis was conducted to evaluate the machine learning algorithm and the
number of chemical structure descriptors to be incorporated into the prediction model. The analysis
utilized all chemical structure descriptors for the machine learning algorithms random forest,
gradient boosting, and artificial neural network to construct MRONJ-induced drug prediction
models (Table 2). Default hyperparameter values of JMP analysis software were used for the three
machine learning algorithms. For random forest, the hyperparameter conditions included 100 trees,
81 terms per branch, and a minimum branch size of 5, resulting in an area under the receiver
operating characteristic curve (AUROC) of 0.726 for model validation. Gradient boosting utilized two
branches per tree, 48 layers, and a learning rate of 0.02, with an AUROC of 0.714. The artificial neural
network employed the Tan H activation function, 3 layers, and a learning rate of 0.1, achieving an
AUROC of 0.741. Therefore, among the algorithms, the artificial neural network demonstrated the
highest prediction accuracy (validation AUROC = 0.741; Table 2).

Furthermore, to enhance computational efficiency and prediction accuracy, we investigated the
optimal number of chemical structure descriptors to be incorporated into the artificial neural network
prediction model with the highest AUROC (Table 3). Due to the challenge of assessing the importance
of each chemical structure descriptor in the artificial neural network prediction model, descriptors
with the highest contribution rates from the random forest model were selected (Supplementary
Table S3). Using the top 5, 6, 7, 8, 9, 10, 20, and 30 chemical structure descriptors with the highest
contribution rates, the validation AUROCs were 0.699, 0.724, 0.719,0.778,0.761,0.748, 0.724, and 0.716,
respectively (Table 3). The model incorporating the top 8 chemical structure descriptors exhibited the
highest prediction accuracy (validation AUROC = 0.778). The validation AUROC value of 0.778
indicates the success of our prediction model in identifying MRON]J-inducing drugs [30].

The eight key descriptors of the top-performing artificial neural network algorithm included
ASA_P (total polar surface area)) PEOE_VSA_FHYD (fractional hydrophobic dw surface area),
PEOE_VSA-5 (total negative 5 dw surface area), h_pavgQ (average total charge), lip_acc (Lipinski
Acceptor Count), vsa_acc (VDW acceptor surface area [A**2]), vsa_pol (VDW polar surface area
[A**2]), and CASA- (charge-weighted negative surface area) (Table 4). Among these descriptors,
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ASA_P (total polar surface area) was higher in the MRON]-positive drugs group than in the MRON]-
negative drugs group (Figure 2). Specifically, BPs and anticancer drugs exhibited higher values for
ASA_P (total polar surface area) in the MRONJ-positive drug group (Table 5).

The accuracy rates of the 168 drugs incorporated into the MRON] prediction model constructed
in this study, categorized by drug efficacy group, are presented in Table 6 (top 13 drug classes) and
Supplementary Table S4 (all drug classes). Notably, M05B Drugs affecting bone structure and
mineralization and LO4A Immunosuppressants achieved accuracy rates exceeding 80%. Conversely,
“JO5A Direct acting antivirals” and “NO6A Antidepressants” had accuracy rates below 0.5.

The predictive model’s performance was assessed by excluding drugs near the cutoff value in
the ROC curve to define the applicability domain (Table 7). By setting the applicability domain, the
model’s reliability within a specific data range can be determined. Excluding drugs within +0%, +10%,
and +20% of the cutoff value resulted in 42, 32, and 17 drugs falling within the applicability domain,
respectively, with balanced accuracies of 0.693, 0.750, and 0.800, F values of 0.593, 0.645, and 0.778,
and Matthews correlation coefficients of 0.409, 0.488, and 0.618, respectively. Therefore, the
performance of the MRON] predictive model was improved by narrowing the applicability domain.

Table 2. Examination of the machine learning algorithms.

Machine AURO AUROC Cutof Accurac Precision/positiv Negative Recall/Sensitivit Specificit Balance F1- Matthews

. Cofthe ofthe f y e predictive  predictiv y y d  scor correlatio
Learning .. s qoen
. trainin validatio value value e value accuracy e n
Algorithm -
s gdata ndata coefficien
t
Random 0.996 0.726 0.533 0.714 0.600 0.778 0.600 0.778 0.689 0.60 0.378
Forest 0
Gradient 0.956 0.714 0.484 0.714 0.636 0.742 0.467 0.852 0.659 0.53 0.347
Boosting 8
Artificial  0.849 0.741 0.526 0.714 0.579 0.826 0.733 0.704 0.719 0.64 0421
Neural 7
Networks

Table 3. Examination of the number of chemical structure descriptors in the artificial neural networks.

Number of AURO AUROC Cutof Accurac Precision/positiv Negative Recall/Sensitivit Specificit Balance F1- Matthews

chemical C of the of the f y e predictive  predictiv y y d  scor correlatio
structure trainin validatio value value e value accuracy e n

descriptors g data n data coefficien

* t

5 0713  0.699 0.363 0.667 0.600 0.676 0.200 0.926 0.563 0.30 0.186
Descriptors 0

6 0.837 0724 0479 0.714 0.600 0.778 0.600 0.778 0.689 0.60 0.378
Descriptors 0

7 0703 0719 0.554 0.714 0.615 0.759 0.533 0.815 0.674 0.57 0.361
Descriptors 1

8 0.871 0778 0.291 0.738 0.667 0.767 0.533 0.852 0.693 059 0.409
Descriptors 3

9 0.871 0761 0.383 0.714 0.600 0.778 0.600 0.778 0.689 0.60 0.378
Descriptors 0

10 0.877  0.748 0.265 0.667 0.533 0.741 0.533 0.741 0.637 0.53 0.274
Descriptors 3

20 0786 0724 0.463 0.762 0.778 0.758 0.467 0.926 0.696 0.58 0.458
Descriptors 3

30 0777 0716 0274 0.738 0.667 0.767 0.533 0.852 0.693 059 0.409
Descriptors 3

*Chemical structure descriptors incorporated into the artificial neural network were used with the top

contributions in the random forest.
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Table 4. Eight chemical structure descriptors contributed to the MRON] prediction model.
Descriptor Descriptor description Number of branches*
ASA_P Total polar surface area 7
PEOE_VSA_FHYD Fractional hydrophobic dw surface area 3
PEOE_VSA-5 Total negative 5 dw surface area 3
h_pavgQ Total average charge (pH =7) 3
lip_acc Lipinski Acceptor Count 3
vsa_acc VDW acceptor surface area (A**2) 2
vsa_pol VDW polar surface area (A**2) 2
CASA- Charge-weighted negative surface area 2
*Number of splits in the random forest.
350 Wilcoxon signed-rank test
P<0.0001
300
250
5
E 200
ol
é 150
100
50
0
MRONJ-positive drugs group MRONJ-negative drugs group
Figure 2. Comparison of the descriptor ASA_P values between MRON]J-positive and -negative drugs.
Table 5. Top 20 MRON]-positive drugs by descriptor ASA_P values.
Drug name ATC code Drug group ASA_P
Detirelix L02BX02 Anticancer drug (hormone-related drugs) 533.2
Triptorelin LO2AE04 Anticancer drug (hormone-related drugs) 509.8
Leuprorelin LO2AE02 Anticancer drug (hormone-related drugs) 412.1
Cefcapene J01DD17 Antibiotics 322.2
Pamidronic acid MO5BA03 Bisphosphonates 305.2
Alendronic acid MO5BA04 Bisphosphonates 302.7
Pemetrexed LO1BAO4 Anticancer drug (metabolic antagonists) 294.9
Docetaxel L01CD02 Anticancer drug (taxanes) 284.6
Melphalan LO1AAO03 Anticancer drug (alkylating agents) 283.3
Bicalutamide L02BB03 Anticancer drug (hormone-related drugs) 267.5
Epacadostat LO1XX58 Anticancer drug (others) 267.1
Paclitaxel L01CDO01 Anticancer drug (taxanes) 265.3
Zoledronic acid MO5BA08 Bisphosphonates 263.6
Temsirolimus LO1EGO1 Anticancer drug (protein kinase inhibitors) 260.5
Allelism LO1EMO03 Anticancer drug (protein kinase inhibitors) 259.5
Anastrozole L02BG03 Anticancer drug (hormone-related drugs) 256.4
Fulvestrant L02BAO3 Anticancer drug (hormone-related drugs) 254.4
Ibandronic acid MO5BA06 Bisphosphonates 252.1
Risedronic acid MO5BA07 Bisphosphonates 2442

Capecitabine L01BCO06 Anticancer drug (metabolic antagonists) 240.3
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*Number of splits in the random forest.

Table 6. Accuracy rate by therapeutic class of drugs incorporated into the MRON] prediction model.

Classification results
for the MRON] prediction
model

FAERS analysis
data table
Drug classes in the ATC classification

Number of drugs Positive Negative Accuracy

(positive/negative)
LO1E PROTEIN KINASE INHIBITORS 14 (11/3) 13 1 0.75
L02B HORMONE ANTAGONISTS AND RELATED AGENTS 7 (7/0) 6 1 0.75
L01X OTHER ANTINEOPLASTIC AGENTS 6 (6/0) 5 1 0.71
MO05B DRUGS AFFECT BONE STRUCTURE AND MINERALIZATION 6 (6/0) 6 0 1.00
L04A IMMUNOSUPPRESSANTS 9 (5/4) 4 5 0.80
A11C VITAMIN A AND D, INCL. COMBINATIONS OF THE TWO 4 (4/0) 4 0 1.00
HO02A CORTICOSTEROIDS FOR SYSTEMIC USE, PLAIN 4 (4/0) 4 0 1.00
L01C PLANT ALKALOIDS AND OTHER NATURAL PRODUCTS 4 (4/0) 4 0 1.00
RO1A DECONGESTANTS AND OTHER NASAL PREPARATIONS FOR 7 (3/4) 5 2 0.56
TOPICAL USE
DO07A CORTICOSTEROIDS, PLAIN 5(3/2) 5 0 0.43
AQ7E INTESTINAL ANTIINFLAMMATORY AGENTS 4 (3/1) 4 0 0.60
CO05A AGENTS FOR TREATMENT OF HEMORRHOIDS AND ANAL 4 (3/1) 3 1 1.00
FISSURES FOR TOPICAL USE
S01B ANTIINFLAMMATORY AGENTS 4 (3/1) 3 1 1.00

Table 7. Predictive performance of the MRON]J predictive models for compounds within the application

domain.
Number of AccuracyPrecision/positive Negative Recall/sensitivitySpecificityBalanced F1- Matthews
Applicability drugs in predictive value predictive accuracy scorecorrelation
Domain applicability value coefficient
domain
Exclusion: Cutoff 42 0.738 0.667 0.767 0.533 0.852 0.693 0.593  0.409
value 0.5+ 0
(No exclusion)
Exclusion: Cutoff 32 0.656 0.476 1.000 1.000 0.500 0.750 0.645 0.488
value 0.5+0.1
(Applicability: 40—
60% exclusion)
Exclusion: Cutoff 17 0.765 0.636 1.000 1.000 0.600 0.800 0.778 0.618

value 0.5 +0.2
(Applicability: 30—
70% exclusion)

3. Discussion
3.1. Analysis of the Adverse Drug Reaction Database FAERS

In this study, we developed a prediction model to classify MRON]J-inducing drugs based solely
on their structural information using the FAERS adverse drug reaction database and a machine
learning algorithm. To the best of our knowledge, this is the first study to build an MRON]J-inducing
drug prediction model utilizing an adverse drug reaction database. Due to the challenge of accurately
determining MRON] risk from the FAERS database, we assessed it using three indicators: reported
odds ratio (ROR), Fisher’s exact test, and the total number of reports for each drug. ROR is widely
used for signal detection of adverse events in adverse drug event databases. However, ROR is
susceptible to inflation and false signal detection when the number of reports is limited. Therefore,
in this study, in addition to ROR, we comprehensively evaluated MRON] risk by incorporating
Fisher’s exact test and the total number of reports.
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From the FAERS analysis data table, 80 drugs were identified as MRON]-positive and 139 as
MRON]J-negative. Among the MRON]J-positive drugs, frequently reported drugs included BPs such
as zoledronic acid, alendronic acid, and ibandronic acid, the anti-receptor activator of nuclear factor
kappa B ligand (RANKL) antibody denosumab, anticancer drugs like sunitinib, bevacizumab,
everolimus, and letrozole, as well as corticosteroids such as dexamethasone and prednisolone (Table
1). BPs (ATC code: M05B) have a strong affinity for bone hydroxyapatite, inhibit osteoclast activity,
reduce bone resorption, and are used to treat osteoporosis and malignant tumors [31]. BPs are closely
associated with MRONJ [2]. Monitoring the use of BPs for both malignant tumors and osteoporosis
is crucial. Denosumab, an anti-RANKL antibody, has also been linked to MRON] [32,33]. However,
denosumab was not included in the QSAR analysis due to its nature as an antibody preparation.
Several protein kinase inhibitors (ATC code: LO1E) used in anticancer therapy were also found to be
associated with MRON]J, with sunitinib exacerbating MRON] in renal cell carcinoma [34].
Antiangiogenic drugs also contribute to MRON] development [35], with varying effects depending
on the drug’s mechanism of action [36]. Corticosteroids such as dexamethasone and prednisolone
(ATC code: D07A) have been shown to increase the risk of developing MRON]J [37] by delaying
wound healing through immunosuppression and altering oral microbiota, increasing the risk of oral
infections and MRON] [32,38]. Selective estrogen receptor modulators, oral contraceptives, and sex
hormone preparations may also influence MRON] development. Estrogen, a sex hormone, has been
shown to impact bone remodeling, potentially affecting jaw bone remodeling [39]. This study
highlights the potential association between various drugs and MRON]J. While MRON] is commonly
linked to bone resorption inhibitors and antiangiogenic drugs, other medications have also been
reported to induce this condition [14,40]. In this study, all drugs registered in the adverse event
database were comprehensively examined under the same analysis conditions. The fact that some
bone resorption inhibitors and antiangiogenic drugs were detected as MRON]-positive drugs using
this analysis method ensures the reliability of other detected drugs.

3.2. Construction of the MRON]-Induced Drug Prediction Model

In this study, we constructed an MRON]J-induced drug prediction model using an artificial
neural network machine learning algorithm and eight chemical structure descriptors, achieving a
validation AUROC of 0.871 (Table 3). Our goal was to improve the prediction model’s accuracy by
comparing three different machine learning algorithms and determining the optimal number of
chemical structure descriptors. To address the challenge of assessing the individual contribution of
each descriptor in the artificial neural network, a prediction model was constructed using chemical
structure descriptors with a large contribution rate in a random forest. The best MRON] prediction
model demonstrated a negative predictive value of 0.767, specificity of 0.852, and minimal false
negatives (Table 3). Notably, the prediction model exhibited high accuracy rates for drug categories
affecting bone structure and mineralization (ATC code: M05B) and immunosuppressants (ATC code:
L04A), including BPs, known to be associated with MRON] development (Table 6). Our findings
suggest that the developed MRON]J-inducing drug prediction model can effectively identify
important MRON]-positive drugs while excluding MRON]J-negative drugs, thereby reducing the risk
of overlooking critical medications.

The MRONJ-inducing drug prediction model selected eight molecular descriptors, many of
which were related to the polar surface area of the compound (Table 4). The MRON]-positive drug
group exhibited higher values for ASA_P (total polar surface area), a descriptor incorporated into the
MRON]J prediction model constructed in this study, than the MRON]J-negative drug group (Figure
2). Specifically, the MRON]-positive drug group, which included BPs and anticancer drugs, showed
elevated levels of the descriptor (ASA_P: total polar surface area; Table 5). This suggests that drugs
with strong polar surface area characteristics, such as BPs and anticancer drugs, may contribute to
MRON] development. BPs, known to be closely associated with MRON], are highly polar drugs due
to the presence of hydroxyl groups of BPs that have a strong affinity for hydroxyapatite, the main
component of bone tissue, leading to their specific adsorption to bone tissue [41]. BPs bound to bone

d0i:10.20944/preprints202502.0246.v1
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tissue are taken up by osteoclasts, inhibiting their function and reducing bone resorption [42,43]. It
has been reported that excessive bone resorption inhibition may be related to MRON] [44]. The
presence of hydroxyl groups contributes to a larger polar surface area in BPs, as these groups are
known to have a high affinity for bone hydroxyapatite. Similarly, other drugs containing hydroxyl
groups may also impact MRON] by adsorbing the hydroxyl groups to bone hydroxyapatite.
Anticancer drugs, which are designed to target specific molecules, often have a large polar surface
area [45]. Among the 14 anticancer drugs analyzed, 11 protein kinase inhibitors (ATC code: LO1E)
were found to be MRON]-positive drugs (Supplementary Table S1).

The applicability domain of the MRON]J-induced drug prediction model was confirmed to
exclude probabilities close to the cutoff value of the ROC curve. By setting the applicability domain
within a chemical space, drugs falling within this region can yield reliable prediction outcomes.
Consequently, narrowing the application region enhanced the model’s performance.

3.3. Limitations

Drug adverse reaction databases such as FAERS have biases and limitations in information
collection. FAERS relies on self-reported adverse drug reaction information, which introduces human
biases such as reporting bias [46], making it challenging to accurately assess drug risks. Moreover,
the detection of false signals of adverse drug reactions may occur when multiple drugs are used [47].
Therefore, in this study, we carefully identified MRON]J-inducing drugs by employing time-series
data cleaning methods that consider the characteristics of FAERS and three evaluation indicators
(ROR, Fisher’s exact test, and total number of reports) for signal detection.

The quality of a machine learning-based prediction model depends on the quality of the input
data [48]. Ideally, reliable data encompassing both positive and negative MRON] drugs should be
included in the learning dataset for QSAR analysis. However, the FAERS data utilized in this study
may contain inappropriate reports, leading to limitations in the prediction model’s accuracy.
Additionally, due to the rarity of MRON], the number of reports in FAERS was limited, resulting in
a constrained number of MRON]-positive drugs in the QSAR analysis dataset. Consequently, the
prediction model’s applicability domain in this study may be limited [49,50]. Furthermore, the lack
of patient information, such as the genetic background of patients, poses a challenge in explaining
individual differences in the onset of adverse events.

4. Materials and Methods
4.1. Creation of the FAERS Analysis Data Table

For the analysis in this study, data reported to FAERS from January 2004 to March 2022 were
utilized to create data tables for FAERS analysis (Figure 3). The adverse event data reported to FAERS
are stored in seven data tables. In this study, four data tables were utilized: the Drug table (containing
drug information), the Reaction table (providing adverse event information), the Demographic table
(offering basic case information), and the Therapy table (presenting treatment duration information),
with duplicate reports removed [26,28]. The drugs in the Drug table were categorized into first and
second suspected drugs, concomitant drugs and interactions, with only the first and second
suspected drugs being considered in this study. World Health Organization drug classification ATC
codes were assigned to each drug to facilitate drug effect tabulation [51,52]. The Reaction table
documented adverse events according to the ICH International Glossary of Pharmaceutical Terms
(Medical Dictionary for Regulatory Activities version 25.0; MedDRA ver. 25.0) based on the preferred
term [53,54]. In this study, the adverse event “osteonecrosis of the jaw” in the Reaction table was
defined as “medication-related osteonecrosis of the jaw,” with a column added to indicate whether
it was MRON]J or not. The Drug and Therapy tables were initially joined using “Primary ID“ and
“Drug sequence,” followed by the joining of the Reaction and Demographic tables using “Primary
ID.” Additionally, for data cleaning purposes, only data from the Demographic table with adverse
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event onset dates falling within the Therapy table treatment start and end dates were extracted to
create a consistent time-series data table for FAERS analysis.

Extract first and second suspect drugs

Remove duplicates

Remove duplicates

Drug table Therapy table
(103,252,306 records) (53,686,946 records)
* Primary ID * Primary ID

* Drug sequence
* Medication start date
* Medication end date

+ Drug sequence L .
ATC code *—T* - Generic name of drug used
(Medicinal classification)

Remove duplicates Remove duplicates

Reaction table
(44,286,680 records)
* Primary ID
- Adverse event PT

Demographic table
(14,836,467 records)
* Primary ID
+ Adverse event onset date

Data cleaning

(Exclusion: Reports where the "medication start date" < "adverse event
onset date” < "medication end date” were not)

FAERS analysis data table
(12,468,455 records, 4815 drugs)

MRONJ
(3,427 records, 209 drugs)

Non-MRONJ
(12,465,028 records, 4,815 drugs)

Figure 3. Procedure for creating the U.S. Food and Drug Administration Adverse Drug Reaction Database
System (FAERS) Analysis Data Table. Duplicate data were removed from the Drug, Therapy, Demographic, and
Reaction tables. Only the “first suspected drug” and “second suspected drug” were extracted from the DRUG
table. Initially, the Drug and Therapy tables were merged using the Primary ID and Drug sequence.
Subsequently, the Demographic and Reaction tables were joined using the Primary ID. To ensure data accuracy,
reports that did not adhere to the order of treatment start date, adverse event onset date, and treatment end date
were excluded. Out of the 12,468,455 reports in the FAERS analysis data table, 3,427 were related to the MRONJ.

4.2. Examination of the FAERS Analysis Data Tables (Extraction of Positive and Negative MRON] Drugs)

The drugs in the FAERS Analysis Data Tables were assessed using three indices: the Reporting
Odds Ratio and Fisher’s exact test, along with the total number of reports for each drug. Initially, a 2
x 2 contingency table for MRON] was created for each of the 4,815 drugs in the FAERS analysis data
table, and the P-values for ROR and Fisher’s exact test were calculated (Figure 4). To stabilize the
estimate, a correction was applied by adding 0.5 to all cells (Haldane Anscombe 1/2 correction) [55,56].

ROR is a key indicator in nonproportional analysis methods utilized for detecting adverse drug
signals in pharmacovigilance [57]. It offers high sensitivity and low bias, enabling the estimation of
the association between the drug and the adverse event [19]. However, classical signal detection
indicators such as ROR may overestimate the signal and lead to unstable statistical estimates in cases
of low reporting [58,59]. To address this, Eudra Vigilance guidelines recommend a minimum number
of reports to ensure a stable signal [60]. In the present study, a threshold of 100 reports (Figure 4; atb
>100) was set for the total number of reports for each drug (Figure 4; a+b) to prevent the oversight of
commonly used drugs [61]. In addition, Fisher’s exact test was used to assess the independence of
drugs and MRON] in the 2 x 2 contingency table in Figure 4. Consequently, the criteria for identifying
MRON]-positive drugs included ROR > 1, Fisher’s exact test P-values <0.05, and total adverse event
reports 2100, while MRON]J-negative drugs met the criteria of ROR <1, Fisher’s exact test P-values
<0.05, and total adverse event reports >100.

In addition, this study utilized a scatter plot (volcano plot) to visualize the MRON]J-positive and
-negative drug candidates from the FAERS analysis data table. Volcano plots, commonly used in
bioinformatics to analyze gene expression trends, were employed in this study [61-63]. In the volcano
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plot, the x-axis represents the natural logarithm of the reported odds ratio (InROR), while the y-axis
represents the ordinary logarithm [-log (P-value)] of Fisher’s exact test P-value. The x-axis indicates
the risk of MRON]J development when InROR >0 (ROR > 1), while the y-axis indicates a —-log P-value
>1.3 (P <0.05), indicating a significant difference in the 2 x 2 contingency table shown in Figure 4. Each
point on the plot represents a drug, with the color of the point indicating the total number of adverse
event reports (a+b in Figure 4), where drugs with a high number of reports are depicted in red and
those with a low number in blue. Only drugs with 100 or more adverse event reports were included
in the analysis. Therefore, MRON]J-positive drugs are located in the upper right-hand corner of the
plot, while MRON]J-negative drugs are in the upper left-hand corner.

Reports with Reports without
a suspected adverse event | a suspected adverse event

Report with a suspected
drug d b
All other reports C d

ROR (reporting odds ratio)=a X d/b X ¢

Figure 4. Cross-tabulation and formula used to calculate the ROR for an adverse event. The table is organized
with reports for the suspected drug, all other reports, reports with an adverse event, and reports without an

adverse event (a-d represent the number of reports).

4.3. Creation of QSAR Analysis Data Tables (Addition of Chemical Structure Descriptors)

Data tables for the QSAR analysis were created by incorporating chemical structure descriptors
for MRON]J-positive and -negative drugs (Figure 5, Supplementary Table S2). The chemical structures
of the drugs were obtained from the PubChem compound database in the form of SMILES, a linear
representation of molecular structures [64]. Chemical structure descriptors were calculated using the
Molecular Operating Environment version 2022.02 (Chemical Computing Group, Inc, Montreal,
Canada) [65], a specialized chemical computing platform. Prior to descriptor calculations, water
molecules and counter ions were eliminated through desalting. Each drug was converted to a three-
dimensional structure, assessed for partial charge, and optimized using force field calculations
(Amber 10 EHT). A total of 326 chemical structure descriptors were calculated for each drug.
Descriptor variables with missing values or perfect collinearity (r2=1) were excluded. Mixtures, large
peptides, bacterial preparations, inorganic compounds, organometallic compounds, and drugs with
unspecified names or abbreviations were also removed. Enoxaparin was excluded due to duplication
in the dataset. Consequently, the data table for the QSAR analysis comprised 326 chemical structure
descriptors for 60 MRON]J-positive and 108 MRON]J-negative drugs. To validate the model, the data
table was randomly divided into a 3:1 ratio for training and validation purposes.
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FAERS analysis Data table

Total reports : 12,468,455 reports, Reported drugs: 4815 drugs
(3,427 reports of MRONJ, 12,465,028 reports of non-MRONJ)

Extraction of MRONJ positive and negative drugs
* MRONI positive drugs: ROR>0, Fisher’s exact test p-value<0.05, total number of reports Z 100
* MRONJ negative drugs: ROR<0, Fisher‘s exact test p-value<0.05, total number of reports 2 100

FAERS analysis data table (Supplementary Table 51)

MRONI Positive drug : 80drugs
MRONI Negative drug: 139 drugs

Adding chemical structure descriptors Chemical Structure Descriptors
(326 descriptors)

QSAR analysis data table (Supplementary Table 52) ';fgimgvgi?ﬁﬁfim

MRONIJ Positive drug : 60drugs Partial Charge: +
MRONJ Nagative drug: 108 drugs Force filed: Amber 10 EHT
(training: validation = 75%: 25%)

QSAR analysis Examination of machine learning algorithms
+ Performance evaluation of the prediction model (Table 2)
+ Contribution of the descriptors (Supplementary Table $3)

Examination of chemical structure descriptors in artificial neural network
+ Performance evaluation of the prediction model (Table 3)

MRON!J-induced drug prediction model

- Machine learning algorithm: artificial neural network
+ Chemical structure descriptor: 8 descriptors

Chemical structure descriptor

- Eight descriptors in the prediction model (Table 4)

+ Comparison of ASA_P values of the descriptors (Figure 2)

+ ASA_P values of MRONJ-positive drugs (Table 5)
Accuracy rate by drug class in the prediction model (Table 6, Supplementary Table 54)
Applicable area of the prediction model (Table 7)

Figure 5. Procedure for creating the Quantitative Structure-Activity Relationship (QSAR) Analysis Data Table.
Positive and negative drugs for MRON]J were estimated based on the drugs listed in the FAERS analysis data
table. A total of 326 chemical structure descriptions, representing structural features, were added to the positive
and negative drugs for MRON]. In the QSAR analysis, models were constructed and compared using three
machine learning algorithms and varying numbers of descriptors. The selection of chemical structure for the
artificial neural network was guided by their contribution in the random forest model. The model with the
highest performance was checked for accuracy, the significance of the descriptors used, accuracy rates across

pharmacological groups of the incorporated drugs, and the applicability domain.

4.4. QSAR Analysis Using Machine Learning Algorithms (Construction of MRONJ-Induced Drug
Prediction Model)

A MRON]J-induced drug prediction model was constructed through QSAR analysis using
machine learning algorithms (Figure 5). The algorithms considered were random forests, gradient
boosting, and artificial neural networks, all available in the JMP analysis software. Each algorithm
has distinct approaches and characteristics. Random Forest [66] and gradient boosting [67] are
ensemble learning methods that combine several weak learners, such as decision trees. Random
Forest is known for its stability and improved accuracy through bagging [66], while gradient boosting
achieves high prediction performance through sequential error correction by boosting [67]. On the
other hand, artificial neural networks consist of multi-layered structures with input, hidden, and
output layers containing multiple neurons, enabling them to learn complex nonlinear relationships
[68]. In this study, the artificial neural network was constructed using a multilayer perceptron neural
network with a back-propagation algorithm for nonlinear regression. Boosting was employed as the
ensemble method for the artificial neural network. It is crucial to utilize these algorithms differently
due to their unique approaches and characteristics. In this study, the prediction models were built
using default values for chemical structure descriptors and hyperparameters for each algorithm.

Furthermore, the study investigated the optimal number of chemical structure descriptors in the
artificial neural network. It is beneficial to develop predictive models with fewer descriptors for
computational efficiency and explainability. Artificial neural networks are effective in capturing
nonlinear relationships, but determining the significance of each descriptor in the model can be
challenging. On the other hand, random forests utilize decision trees to assess feature importance. In
this study, the top chemical structure descriptors with the largest contribution in the random forest
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model were selected and integrated into the artificial neural network algorithm [69,70]. In addition,
we analyzed the descriptors used in constructing the MRON] predictive model and interpreted the
drug characteristics associated with MRON].

The prediction performance of the MRON]J-induced drug prediction model was evaluated using
metrics such as AUROC, accuracy, precision (positive predictive value), negative predictive value,
recall-sensitivity, specificity, balanced accuracy, F1-score, and Matthews correlation coefficient. The
hold-out method was employed for validation.

The applicability domain was assessed by determining the cutoff value on the ROC curve of the
artificial neural network prediction model [71]. Defining the scope of application helps to establish
the reliable prediction range of the constructed model. In this study, the cutoff value was determined
using Youden’s index [72] and normalized to 0.5. Additionally, the model’s performance within the
applicability domain was assessed by building a predictive model that excluded drugs with
deviations of +0%, +10%, and +20% from the cutoff value.

4.5. Statistical Analysis

All analyses were conducted using JMP Pro 16.2.0 (SAS Institute Inc., NC, USA), and a P-value
less than 0.05 was considered significant.

5. Conclusions

In this study, an MRON]J-induced drug prediction model was constructed using chemical
structure information, the FEARS database of drug adverse events, and machine learning. The model,
based on an artificial neural network algorithm and eight chemical structure descriptors, identified
drugs with polar surface area characteristics as potential contributors to MRON]. These findings
could enhance risk assessment in clinical trials and postmarketing surveillance, as well as streamline
screening in new drug development.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org., Table S1: 70 MRON]J-positive drugs and 139 MRON]J-negative drugs. Table S2:
QSAR analysis data table. Table S3: Contribution of chemical structure descriptors in random forests. Table S4:
Accuracy rate of the MRON] prediction model by ATC classification.
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The following abbreviations are used in this manuscript:

AUROC Area under the receiver operating characteristic curve
FDA Food and Drug Administration

MRON] Medication-related osteonecrosis of the jaw

QSAR Quantitative structure-activity relationship

RANKL Receptor activator of nuclear factor kappa B ligand
ROR Reported odds ratio

SMILES The Simplified Molecular Input Line-Entry System
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