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Abstract: Medication-related osteonecrosis of the jaw (MRONJ) is a rare adverse event associated 

with antiresorptive and antiangiogenic drugs that can significantly impact quality of life. In this 

study, we conducted a quantitative structure-activity relationship (QSAR) analysis using the U.S. 

Food and Drug Administration Adverse Drug Reaction Database System (FAERS) and machine 

learning to construct a drug prediction model for MRONJ induction based solely on chemical 

structure information. We analyzed 4,815 drugs from FAERS to assess their association with MRONJ 

and predict MRONJ-positive and MRONJ-negative drugs. By incorporating 326 chemical structure 

descriptors, we performed QSAR analysis on 60 positive and 108 negative drugs. Three machine 

learning algorithms were evaluated along with the number of chemical structure descriptors for 

QSAR analysis. The optimal MRONJ induction drug prediction model was established using an 

artificial neural network algorithm and eight chemical structure descriptors (area under the receiver 

operating characteristic curve = 0.778). Among these descriptors, drugs with polar surface area 

characteristics were identified as potentially linked to MRONJ. This study demonstrates a promising 

approach for predicting MRONJ risk, which could enhance drug safety assessment and streamline 

drug screening in clinical and preclinical settings. 

Keywords: medication-related osteonecrosis of the jaw; bisphosphonates; epidemiological research; 

disproportionality analysis; spontaneous report database; in silico analysis; quantitative structure-

activity relationship; machine learning; artificial neural network; molecular structure descriptor 

 

1. Introduction 

Medication-related osteonecrosis of the jaw (MRONJ) is a rare adverse event associated with 

long-term administration of bisphosphonates (BPs) and denosumab [1,2]. However, MRONJ has also 

been linked to drugs with mechanisms of action distinct from those of bone resorption inhibitors, 

such as the angiogenesis inhibitors bevacizumab and sunitinib, as well as the immunosuppressants 

methotrexate and everolimus [1–4]. This suggests that various drugs may contribute to the 

development of MRONJ through different pathways. Although MRONJ significantly reduces quality 

of life, it is recommended to continue treatment with MRONJ-related drugs while implementing 

strategies to minimize its risk, as the therapeutic benefits of these drugs often outweigh the risks [5–

8]. Therefore, the ability to predict and evaluate the risk of MRONJ in advance would be valuable for 

managing such adverse events. 

Spontaneous reporting systems, which collect data on adverse events in clinical settings over an 

extended period, play an important role in epidemiological studies, particularly in drug safety 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 February 2025 doi:10.20944/preprints202502.0246.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202502.0246.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 18 

 

evaluations [9–14]. A spontaneous reporting system is a drug adverse event database that gathers 

spontaneous reports from patients, medical professionals, pharmaceutical companies, and other 

sources. These databases accumulate a huge amount of adverse event reports that are often 

challenging to obtain at a single institution. In addition, they include data on patients with diverse 

backgrounds, such as those with renal or hepatic disorders, making spontaneous reporting system 

an excellent tool for inductively understanding drug-related adverse events. This reflects not only 

unique pharmacological and pharmacokinetic characteristics but also prescription and usage 

conditions [15,16]. In spontaneous reporting system databases, a signal detection approach can be 

used to identify potential causal relationships between adverse events and drugs, even when such 

relationships were previously unknown [17–19]. Many studies have utilized these databases to 

explore the association between drugs and adverse events [12,20]. The U.S. Food and Drug 

Administration (FDA) Adverse Event Reporting System (FAERS) is one of the largest spontaneous 

reporting databases globally [21]. 

 In recent years, there has been a growing interest in using in silico analysis to evaluate drug 

toxicity (adverse event evaluation) [22,23]. The physiological activity and physical properties of a 

drug are typically determined by its chemical structure, which can be analyzed through structural 

similarity. Quantitative structure-activity relationship (QSAR) analysis is a method that models the 

relationship between chemical structure and drug efficacy based on this principle [24–27]. This 

method involves converting the chemical structure of a compound into computationally analyzable 

features and constructing mathematical models to relate structure to activity. Recently, advances in 

machine learning algorithms have been reported to enhance the prediction accuracy of such models 

[28,29]. Therefore, by leveraging machine learning to develop an MRONJ-inducing drug prediction 

model, it becomes possible to assess the risk of MRONJ for various drugs based solely on their 

chemical structure information. This approach is highly beneficial for screening new compounds and 

drugs prior to clinical use. 

In this study, we integrated data from a drug adverse event database with machine learning 

techniques to construct an MRONJ-inducing drug prediction model. Initially, drugs associated with 

MRONJ were extracted from the FAERS drug adverse event database. Subsequently, molecular 

descriptors representing the structural information of the extracted drugs were calculated, and a 

classification model for MRONJ-inducing drugs was developed using machine learning. 

2. Results 

2.1. Creation of the FAERS Analysis Data Tables 

The FAERS analysis data table was created by combining information from the FAERS drug 

table (drug information), Reaction table (adverse event information), Demographic table (basic case 

information), and Therapy table (treatment period information). Duplicate records were eliminated 

from the four tables. Following deduplication, the Drug, Reaction, Demographic, and Therapy tables 

contained 103,252,306, 44,286,680, 14,836,487, and 53,686,946 records, respectively. These tables were 

merged, and data cleaning procedures were applied to create the FAERS analysis data table. The table 

contained adverse event data from 12,468,455 records involving 4,815 drugs. Among these, 3,427 

cases (0.027%) were related to MRONJ. 

2.2. Positive and Negative Drugs for MRONJ 

In the FAERS analysis data table, out of 4,815 drugs, 70 were identified as MRONJ-positive and 

139 as MRONJ-negative (Supplementary Table S1). A volcano plot was generated to visually 

represent the relationship between the drugs reported in FAERS and MRONJ (Figure 1). Each point 

on the scatter plot represents a drug, with MRONJ-positive drugs located in the upper right quadrant 

and MRONJ-negative drugs in the upper left quadrant. The color of each point represents the total 

number of reported adverse events for each drug, with more red points and fewer blue points 

indicating higher numbers of adverse events. Among the 70 MRONJ-positive drugs, 11 were 
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classified as malignant tumor drug protein kinase inhibitors (ATC code: L01E), and 8 were drugs 

affecting bone structure and mineralization (ATC code: M05B), such as BPs (Supplementary Table 

S1). The number of reported cases of MRONJ was 907 for denosumab, 702 for zoledronic acid, 264 for 

alendronate, 92 for ibandronate, 65 for sunitinib, and 60 for dexamethasone (Table 1). 

 

Figure 1. A volcano plot of drugs associated with medication-related osteonecrosis of the jaw (MRONJ). The x-

axis represents the natural logarithm of the odds ratios (ln (ROR)), while the y-axis represents the common 

logarithm of the inverse P-value (−log10 [P]) from Fisher’s exact test. The dotted line on the y-axis represents P 

= 0.05. The color of the plot represents the total number of adverse events reported for each drug. Drugs 

associated with MRONJ (MRONJ-positive drugs) are shown in the upper right part of the plot, while drugs not 

associated with MRONJ (MRONJ-negative drugs) are displayed in the upper left part. 

Table 1. Twenty most frequently reported drugs as medication-related osteonecrosis of the jaw (MRONJ)-

positive drugs. 

Drug name Drug group 
Number of  

MRONJ reports 

P-value 
ROR 

Denosumab  Anti-RANKL antibody 907 <.0001 373.78 

Zoledronic acid Bisphosphonates 702 <.0001 140.70 

Alendronic acid Bisphosphonate 264 <.0001 36.69 

Ibandronic acid Bisphosphonate 92 <.0001 35.77 

Sunitinib  Anticancer drugs 65 <.0001 10.30 

Dexamethasone  Corticosteroids 60 <.0001 4.12 

Cholecalciferol  Vitamin D 55 <.0001 21.13 

Bevacizumab  Anticancer drugs 51 <.0001 7.96 

Lenalidomide Anticancer drugs 47 <.0001 3.07 

Everolimus Anticancer drugs 39 <.0001 4.39 

Letrozole Anticancer drugs 38 <.0001 10.34 
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Prednisolone Corticosteroids 36 <.0001 4.81 

Risedronic acid Bisphosphonates 33 <.0001 16.50 

Exemestane Anticancer drugs 32 <.0001 13.92 

Palbociclib Anticancer drugs 31 <.0001 8.96 

Paclitaxel Anticancer drugs 29 <.0001 3.42 

Calcium carbonate Calcium 28 <.0001 18.19 

Docetaxel Anticancer drugs 25 <.0001 2.64 

Prednisone Corticosteroids 25 <.0001 3.97 

Pamidronic acid Bisphosphonates 22 <.0001 54.81 

P-value; Fisher’s exact test; ROR, reported odds ratio. 

2.3. QSAR Analysis Data Table 

A QSAR Analysis Data Table was created by incorporating 326 chemical structure descriptors 

for MRONJ-positive and -negative candidate drugs identified from the FAERS analysis data table 

(Supplementary Table S2). The Simplified Molecular Input Line-Entry System (SMILES) of 70 

MRONJ-positive drugs and 139 MRONJ-negative drugs in FAERS was verified, and 326 types of 

chemical structure descriptors calculated using the Molecular Operating Environment, a chemical 

calculation environment, were included. The QSAR Analysis Data Table comprised 60 MRONJ-

positive drugs and 108 MRONJ-negative drugs for which descriptors were available. Among the 

drugs affecting bone structure and mineralization (ATC code: M05B), all six drugs, including BPs, 

were classified as MRONJ-positive drugs (zoledronic acid, alendronic acid, ibandronic acid, 

risedronic acid, pamidronic acid, and minodronic acid). 

2.4. QSAR Analysis Using Machine Learning (Construction of MRONJ-Induced Drug Prediction Model) 

In this study, QSAR analysis was conducted to evaluate the machine learning algorithm and the 

number of chemical structure descriptors to be incorporated into the prediction model. The analysis 

utilized all chemical structure descriptors for the machine learning algorithms random forest, 

gradient boosting, and artificial neural network to construct MRONJ-induced drug prediction 

models (Table 2). Default hyperparameter values of JMP analysis software were used for the three 

machine learning algorithms. For random forest, the hyperparameter conditions included 100 trees, 

81 terms per branch, and a minimum branch size of 5, resulting in an area under the receiver 

operating characteristic curve (AUROC) of 0.726 for model validation. Gradient boosting utilized two 

branches per tree, 48 layers, and a learning rate of 0.02, with an AUROC of 0.714. The artificial neural 

network employed the Tan H activation function, 3 layers, and a learning rate of 0.1, achieving an 

AUROC of 0.741. Therefore, among the algorithms, the artificial neural network demonstrated the 

highest prediction accuracy (validation AUROC = 0.741; Table 2). 

Furthermore, to enhance computational efficiency and prediction accuracy, we investigated the 

optimal number of chemical structure descriptors to be incorporated into the artificial neural network 

prediction model with the highest AUROC (Table 3). Due to the challenge of assessing the importance 

of each chemical structure descriptor in the artificial neural network prediction model, descriptors 

with the highest contribution rates from the random forest model were selected (Supplementary 

Table S3). Using the top 5, 6, 7, 8, 9, 10, 20, and 30 chemical structure descriptors with the highest 

contribution rates, the validation AUROCs were 0.699, 0.724, 0.719, 0.778, 0.761, 0.748, 0.724, and 0.716, 

respectively (Table 3). The model incorporating the top 8 chemical structure descriptors exhibited the 

highest prediction accuracy (validation AUROC = 0.778). The validation AUROC value of 0.778 

indicates the success of our prediction model in identifying MRONJ-inducing drugs [30]. 

The eight key descriptors of the top-performing artificial neural network algorithm included 

ASA_P (total polar surface area), PEOE_VSA_FHYD (fractional hydrophobic dw surface area), 

PEOE_VSA-5 (total negative 5 dw surface area), h_pavgQ (average total charge), lip_acc (Lipinski 

Acceptor Count), vsa_acc (VDW acceptor surface area [A**2]), vsa_pol (VDW polar surface area 

[A**2]), and CASA- (charge-weighted negative surface area) (Table 4). Among these descriptors, 
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ASA_P (total polar surface area) was higher in the MRONJ-positive drugs group than in the MRONJ-

negative drugs group (Figure 2). Specifically, BPs and anticancer drugs exhibited higher values for 

ASA_P (total polar surface area) in the MRONJ-positive drug group (Table 5). 

The accuracy rates of the 168 drugs incorporated into the MRONJ prediction model constructed 

in this study, categorized by drug efficacy group, are presented in Table 6 (top 13 drug classes) and 

Supplementary Table S4 (all drug classes). Notably, M05B Drugs affecting bone structure and 

mineralization and L04A Immunosuppressants achieved accuracy rates exceeding 80%. Conversely, 

“J05A Direct acting antivirals” and “N06A Antidepressants” had accuracy rates below 0.5. 

The predictive model’s performance was assessed by excluding drugs near the cutoff value in 

the ROC curve to define the applicability domain (Table 7). By setting the applicability domain, the 

model’s reliability within a specific data range can be determined. Excluding drugs within ±0%, ±10%, 

and ±20% of the cutoff value resulted in 42, 32, and 17 drugs falling within the applicability domain, 

respectively, with balanced accuracies of 0.693, 0.750, and 0.800, F values of 0.593, 0.645, and 0.778, 

and Matthews correlation coefficients of 0.409, 0.488, and 0.618, respectively. Therefore, the 

performance of the MRONJ predictive model was improved by narrowing the applicability domain. 

Table 2. Examination of the machine learning algorithms. 

Machine 

Learning 

Algorithm

s 

AURO

C of the 

trainin

g data 

AUROC 

of the 

validatio

n data 

Cutof

f 

value 

Accurac

y 

Precision/positiv

e predictive 

value 

Negative 

predictiv

e value 

Recall/Sensitivit

y 

Specificit

y 

Balance

d 

accuracy 

F1-

scor

e 

Matthews 

correlatio

n 

coefficien

t 

Random 

Forest 

0.996 0.726 0.533 0.714 0.600 0.778 0.600 0.778 0.689 0.60

0 

0.378 

Gradient 

Boosting 

0.956 0.714 0.484 0.714 0.636 0.742 0.467 0.852 0.659 0.53

8 

0.347 

Artificial 

Neural 

Networks 

0.849 0.741 0.526 0.714 0.579 0.826 0.733 0.704 0.719 0.64

7 

0.421 

Table 3. Examination of the number of chemical structure descriptors in the artificial neural networks. 

Number of 

chemical 

structure 

descriptors

* 

AURO

C of the 

trainin

g data 

AUROC 

of the 

validatio

n data 

Cutof

f 

value 

Accurac

y 

Precision/positiv

e predictive 

value 

Negative 

predictiv

e value 

Recall/Sensitivit

y 

Specificit

y 

Balance

d 

accuracy 

F1-

scor

e 

Matthews 

correlatio

n 

coefficien

t 

5 

Descriptors 

0.713 0.699 0.363 0.667 0.600 0.676 0.200 0.926 0.563 0.30

0 

0.186 

6 

Descriptors 

0.837 0.724 0.479 0.714 0.600 0.778 0.600 0.778 0.689 0.60

0 

0.378 

7 

Descriptors 

0.703 0.719 0.554 0.714 0.615 0.759 0.533 0.815 0.674 0.57

1 

0.361 

8 

Descriptors 

0.871 0.778 0.291 0.738 0.667 0.767 0.533 0.852 0.693 0.59

3 

0.409 

9 

Descriptors 

0.871 0.761 0.383 0.714 0.600 0.778 0.600 0.778 0.689 0.60

0 

0.378 

 10 

Descriptors 

0.877 0.748 0.265 0.667 0.533 0.741 0.533 0.741 0.637 0.53

3 

0.274 

 20 

Descriptors 

0.786 0.724 0.463 0.762 0.778 0.758 0.467 0.926 0.696 0.58

3 

0.458 

 30 

Descriptors 

0.777 0.716 0.274 0.738 0.667 0.767 0.533 0.852 0.693 0.59

3 

0.409 

*Chemical structure descriptors incorporated into the artificial neural network were used with the top 

contributions in the random forest. 
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Table 4. Eight chemical structure descriptors contributed to the MRONJ prediction model. 

Descriptor Descriptor description Number of branches* 

ASA_P Total polar surface area 7 

PEOE_VSA_FHYD Fractional hydrophobic dw surface area 3 

PEOE_VSA-5 Total negative 5 dw surface area 3 

h_pavgQ Total average charge (pH = 7) 3 

lip_acc Lipinski Acceptor Count 3 

vsa_acc VDW acceptor surface area (A**2) 2 

vsa_pol VDW polar surface area (A**2) 2 

CASA- Charge-weighted negative surface area 2 

*Number of splits in the random forest. 

 

Figure 2. Comparison of the descriptor ASA_P values between MRONJ-positive and -negative drugs. 

Table 5. Top 20 MRONJ-positive drugs by descriptor ASA_P values. 

Drug name ATC code Drug group ASA_P 

Detirelix  L02BX02 Anticancer drug (hormone-related drugs) 533.2 

Triptorelin L02AE04 Anticancer drug (hormone-related drugs) 509.8 

Leuprorelin L02AE02 Anticancer drug (hormone-related drugs) 412.1 

Cefcapene J01DD17 Antibiotics 322.2 

Pamidronic acid M05BA03 Bisphosphonates 305.2 

Alendronic acid M05BA04 Bisphosphonates 302.7 

Pemetrexed L01BA04 Anticancer drug (metabolic antagonists) 294.9 

Docetaxel L01CD02 Anticancer drug (taxanes) 284.6 

Melphalan L01AA03 Anticancer drug (alkylating agents) 283.3 

Bicalutamide L02BB03 Anticancer drug (hormone-related drugs) 267.5 

Epacadostat L01XX58 Anticancer drug (others) 267.1 

Paclitaxel L01CD01 Anticancer drug (taxanes) 265.3 

Zoledronic acid M05BA08 Bisphosphonates 263.6 

Temsirolimus L01EG01 Anticancer drug (protein kinase inhibitors) 260.5 

Allelism  L01EM03 Anticancer drug (protein kinase inhibitors) 259.5 

Anastrozole L02BG03 Anticancer drug (hormone-related drugs) 256.4 

Fulvestrant L02BA03 Anticancer drug (hormone-related drugs) 254.4 

Ibandronic acid M05BA06 Bisphosphonates 252.1 

Risedronic acid M05BA07 Bisphosphonates 244.2 

Capecitabine L01BC06 Anticancer drug (metabolic antagonists) 240.3 
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*Number of splits in the random forest. 

Table 6. Accuracy rate by therapeutic class of drugs incorporated into the MRONJ prediction model. 

Drug classes in the ATC classification 

FAERS analysis 

 data table 

 

Classification results 

 for the MRONJ prediction 

model 

Number of drugs 

 

(positive/negative) 

 Positive  Negative 

 

Accuracy 

 

L01E PROTEIN KINASE INHIBITORS 14 (11/3)   13 1 0.75  

L02B HORMONE ANTAGONISTS AND RELATED AGENTS 7 (7/0)   6 1 0.75  

L01X OTHER ANTINEOPLASTIC AGENTS 6 (6/0)   5 1 0.71  

M05B DRUGS AFFECT BONE STRUCTURE AND MINERALIZATION 6 (6/0)   6 0 1.00  

L04A IMMUNOSUPPRESSANTS 9 (5/4)   4 5 0.80  

A11C VITAMIN A AND D, INCL. COMBINATIONS OF THE TWO 4 (4/0)   4 0 1.00  

H02A CORTICOSTEROIDS FOR SYSTEMIC USE, PLAIN 4 (4/0)   4 0 1.00  

L01C PLANT ALKALOIDS AND OTHER NATURAL PRODUCTS 4 (4/0)   4 0 1.00  

R01A DECONGESTANTS AND OTHER NASAL PREPARATIONS FOR 

TOPICAL USE 

7 (3/4)   5 2 0.56  

D07A CORTICOSTEROIDS, PLAIN 5 (3/2)   5 0 0.43  

A07E INTESTINAL ANTIINFLAMMATORY AGENTS 4 (3/1)   4 0 0.60  

C05A AGENTS FOR TREATMENT OF HEMORRHOIDS AND ANAL 

FISSURES FOR TOPICAL USE 

4 (3/1)   3 1 1.00  

S01B ANTIINFLAMMATORY AGENTS 4 (3/1)   3 1 1.00  

Table 7. Predictive performance of the MRONJ predictive models for compounds within the application 

domain. 

Applicability 

Domain 

Number of 

drugs in 

applicability 

domain 

Accuracy Precision/positive 

predictive value 

Negative 

predictive 

value 

Recall/sensitivity Specificity Balanced 

accuracy 

F1-

score 

Matthews 

correlation 

coefficient 

Exclusion: Cutoff 

value 0.5 ± 0 

(No exclusion) 

42 0.738 0.667 0.767 0.533 0.852 0.693 0.593 0.409 

Exclusion: Cutoff 

value 0.5 ± 0.1 

(Applicability: 40–

60% exclusion) 

32 0.656 0.476 1.000 1.000 0.500 0.750 0.645 0.488 

Exclusion: Cutoff 

value 0.5 ± 0.2 

(Applicability: 30–

70% exclusion) 

17 0.765 0.636 1.000 1.000 0.600 0.800 0.778 0.618 

3. Discussion 

3.1. Analysis of the Adverse Drug Reaction Database FAERS  

In this study, we developed a prediction model to classify MRONJ-inducing drugs based solely 

on their structural information using the FAERS adverse drug reaction database and a machine 

learning algorithm. To the best of our knowledge, this is the first study to build an MRONJ-inducing 

drug prediction model utilizing an adverse drug reaction database. Due to the challenge of accurately 

determining MRONJ risk from the FAERS database, we assessed it using three indicators: reported 

odds ratio (ROR), Fisher’s exact test, and the total number of reports for each drug. ROR is widely 

used for signal detection of adverse events in adverse drug event databases. However, ROR is 

susceptible to inflation and false signal detection when the number of reports is limited. Therefore, 

in this study, in addition to ROR, we comprehensively evaluated MRONJ risk by incorporating 

Fisher’s exact test and the total number of reports. 
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 From the FAERS analysis data table, 80 drugs were identified as MRONJ-positive and 139 as 

MRONJ-negative. Among the MRONJ-positive drugs, frequently reported drugs included BPs such 

as zoledronic acid, alendronic acid, and ibandronic acid, the anti-receptor activator of nuclear factor 

kappa B ligand (RANKL) antibody denosumab, anticancer drugs like sunitinib, bevacizumab, 

everolimus, and letrozole, as well as corticosteroids such as dexamethasone and prednisolone (Table 

1). BPs (ATC code: M05B) have a strong affinity for bone hydroxyapatite, inhibit osteoclast activity, 

reduce bone resorption, and are used to treat osteoporosis and malignant tumors [31]. BPs are closely 

associated with MRONJ [2]. Monitoring the use of BPs for both malignant tumors and osteoporosis 

is crucial. Denosumab, an anti-RANKL antibody, has also been linked to MRONJ [32,33]. However, 

denosumab was not included in the QSAR analysis due to its nature as an antibody preparation. 

Several protein kinase inhibitors (ATC code: L01E) used in anticancer therapy were also found to be 

associated with MRONJ, with sunitinib exacerbating MRONJ in renal cell carcinoma [34]. 

Antiangiogenic drugs also contribute to MRONJ development [35], with varying effects depending 

on the drug’s mechanism of action [36]. Corticosteroids such as dexamethasone and prednisolone 

(ATC code: D07A) have been shown to increase the risk of developing MRONJ [37] by delaying 

wound healing through immunosuppression and altering oral microbiota, increasing the risk of oral 

infections and MRONJ [32,38]. Selective estrogen receptor modulators, oral contraceptives, and sex 

hormone preparations may also influence MRONJ development. Estrogen, a sex hormone, has been 

shown to impact bone remodeling, potentially affecting jaw bone remodeling [39]. This study 

highlights the potential association between various drugs and MRONJ. While MRONJ is commonly 

linked to bone resorption inhibitors and antiangiogenic drugs, other medications have also been 

reported to induce this condition [14,40]. In this study, all drugs registered in the adverse event 

database were comprehensively examined under the same analysis conditions. The fact that some 

bone resorption inhibitors and antiangiogenic drugs were detected as MRONJ-positive drugs using 

this analysis method ensures the reliability of other detected drugs. 

3.2. Construction of the MRONJ-Induced Drug Prediction Model 

In this study, we constructed an MRONJ-induced drug prediction model using an artificial 

neural network machine learning algorithm and eight chemical structure descriptors, achieving a 

validation AUROC of 0.871 (Table 3). Our goal was to improve the prediction model’s accuracy by 

comparing three different machine learning algorithms and determining the optimal number of 

chemical structure descriptors. To address the challenge of assessing the individual contribution of 

each descriptor in the artificial neural network, a prediction model was constructed using chemical 

structure descriptors with a large contribution rate in a random forest. The best MRONJ prediction 

model demonstrated a negative predictive value of 0.767, specificity of 0.852, and minimal false 

negatives (Table 3). Notably, the prediction model exhibited high accuracy rates for drug categories 

affecting bone structure and mineralization (ATC code: M05B) and immunosuppressants (ATC code: 

L04A), including BPs, known to be associated with MRONJ development (Table 6). Our findings 

suggest that the developed MRONJ-inducing drug prediction model can effectively identify 

important MRONJ-positive drugs while excluding MRONJ-negative drugs, thereby reducing the risk 

of overlooking critical medications. 

 The MRONJ-inducing drug prediction model selected eight molecular descriptors, many of 

which were related to the polar surface area of the compound (Table 4). The MRONJ-positive drug 

group exhibited higher values for ASA_P (total polar surface area), a descriptor incorporated into the 

MRONJ prediction model constructed in this study, than the MRONJ-negative drug group (Figure 

2). Specifically, the MRONJ-positive drug group, which included BPs and anticancer drugs, showed 

elevated levels of the descriptor (ASA_P: total polar surface area; Table 5). This suggests that drugs 

with strong polar surface area characteristics, such as BPs and anticancer drugs, may contribute to 

MRONJ development. BPs, known to be closely associated with MRONJ, are highly polar drugs due 

to the presence of hydroxyl groups of BPs that have a strong affinity for hydroxyapatite, the main 

component of bone tissue, leading to their specific adsorption to bone tissue [41]. BPs bound to bone 
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tissue are taken up by osteoclasts, inhibiting their function and reducing bone resorption [42,43]. It 

has been reported that excessive bone resorption inhibition may be related to MRONJ [44]. The 

presence of hydroxyl groups contributes to a larger polar surface area in BPs, as these groups are 

known to have a high affinity for bone hydroxyapatite. Similarly, other drugs containing hydroxyl 

groups may also impact MRONJ by adsorbing the hydroxyl groups to bone hydroxyapatite. 

Anticancer drugs, which are designed to target specific molecules, often have a large polar surface 

area [45]. Among the 14 anticancer drugs analyzed, 11 protein kinase inhibitors (ATC code: L01E) 

were found to be MRONJ-positive drugs (Supplementary Table S1). 

The applicability domain of the MRONJ-induced drug prediction model was confirmed to 

exclude probabilities close to the cutoff value of the ROC curve. By setting the applicability domain 

within a chemical space, drugs falling within this region can yield reliable prediction outcomes. 

Consequently, narrowing the application region enhanced the model’s performance. 

3.3. Limitations 

Drug adverse reaction databases such as FAERS have biases and limitations in information 

collection. FAERS relies on self-reported adverse drug reaction information, which introduces human 

biases such as reporting bias [46], making it challenging to accurately assess drug risks. Moreover, 

the detection of false signals of adverse drug reactions may occur when multiple drugs are used [47]. 

Therefore, in this study, we carefully identified MRONJ-inducing drugs by employing time-series 

data cleaning methods that consider the characteristics of FAERS and three evaluation indicators 

(ROR, Fisher’s exact test, and total number of reports) for signal detection. 

The quality of a machine learning-based prediction model depends on the quality of the input 

data [48]. Ideally, reliable data encompassing both positive and negative MRONJ drugs should be 

included in the learning dataset for QSAR analysis. However, the FAERS data utilized in this study 

may contain inappropriate reports, leading to limitations in the prediction model’s accuracy. 

Additionally, due to the rarity of MRONJ, the number of reports in FAERS was limited, resulting in 

a constrained number of MRONJ-positive drugs in the QSAR analysis dataset. Consequently, the 

prediction model’s applicability domain in this study may be limited [49,50]. Furthermore, the lack 

of patient information, such as the genetic background of patients, poses a challenge in explaining 

individual differences in the onset of adverse events. 

4. Materials and Methods 

4.1. Creation of the FAERS Analysis Data Table  

For the analysis in this study, data reported to FAERS from January 2004 to March 2022 were 

utilized to create data tables for FAERS analysis (Figure 3). The adverse event data reported to FAERS 

are stored in seven data tables. In this study, four data tables were utilized: the Drug table (containing 

drug information), the Reaction table (providing adverse event information), the Demographic table 

(offering basic case information), and the Therapy table (presenting treatment duration information), 

with duplicate reports removed [26,28]. The drugs in the Drug table were categorized into first and 

second suspected drugs, concomitant drugs and interactions, with only the first and second 

suspected drugs being considered in this study. World Health Organization drug classification ATC 

codes were assigned to each drug to facilitate drug effect tabulation [51,52]. The Reaction table 

documented adverse events according to the ICH International Glossary of Pharmaceutical Terms 

(Medical Dictionary for Regulatory Activities version 25.0; MedDRA ver. 25.0) based on the preferred 

term [53,54]. In this study, the adverse event “osteonecrosis of the jaw“ in the Reaction table was 

defined as “medication-related osteonecrosis of the jaw,” with a column added to indicate whether 

it was MRONJ or not. The Drug and Therapy tables were initially joined using “Primary ID“ and 

“Drug sequence,” followed by the joining of the Reaction and Demographic tables using “Primary 

ID.” Additionally, for data cleaning purposes, only data from the Demographic table with adverse 
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event onset dates falling within the Therapy table treatment start and end dates were extracted to 

create a consistent time-series data table for FAERS analysis. 

 

Figure 3. Procedure for creating the U.S. Food and Drug Administration Adverse Drug Reaction Database 

System (FAERS) Analysis Data Table. Duplicate data were removed from the Drug, Therapy, Demographic, and 

Reaction tables. Only the “first suspected drug” and “second suspected drug” were extracted from the DRUG 

table. Initially, the Drug and Therapy tables were merged using the Primary ID and Drug sequence. 

Subsequently, the Demographic and Reaction tables were joined using the Primary ID. To ensure data accuracy, 

reports that did not adhere to the order of treatment start date, adverse event onset date, and treatment end date 

were excluded. Out of the 12,468,455 reports in the FAERS analysis data table, 3,427 were related to the MRONJ. 

4.2. Examination of the FAERS Analysis Data Tables (Extraction of Positive and Negative MRONJ Drugs) 

The drugs in the FAERS Analysis Data Tables were assessed using three indices: the Reporting 

Odds Ratio and Fisher’s exact test, along with the total number of reports for each drug. Initially, a 2 

× 2 contingency table for MRONJ was created for each of the 4,815 drugs in the FAERS analysis data 

table, and the P-values for ROR and Fisher’s exact test were calculated (Figure 4). To stabilize the 

estimate, a correction was applied by adding 0.5 to all cells (Haldane Anscombe 1/2 correction) [55,56]. 

ROR is a key indicator in nonproportional analysis methods utilized for detecting adverse drug 

signals in pharmacovigilance [57]. It offers high sensitivity and low bias, enabling the estimation of 

the association between the drug and the adverse event [19]. However, classical signal detection 

indicators such as ROR may overestimate the signal and lead to unstable statistical estimates in cases 

of low reporting [58,59]. To address this, Eudra Vigilance guidelines recommend a minimum number 

of reports to ensure a stable signal [60]. In the present study, a threshold of 100 reports (Figure 4; a+b 

≥ 100) was set for the total number of reports for each drug (Figure 4; a+b) to prevent the oversight of 

commonly used drugs [61]. In addition, Fisher’s exact test was used to assess the independence of 

drugs and MRONJ in the 2 × 2 contingency table in Figure 4. Consequently, the criteria for identifying 

MRONJ-positive drugs included ROR > 1, Fisher’s exact test P-values <0.05, and total adverse event 

reports ≥100, while MRONJ-negative drugs met the criteria of ROR <1, Fisher’s exact test P-values 

<0.05, and total adverse event reports ≥100. 

In addition, this study utilized a scatter plot (volcano plot) to visualize the MRONJ-positive and 

-negative drug candidates from the FAERS analysis data table. Volcano plots, commonly used in 

bioinformatics to analyze gene expression trends, were employed in this study [61–63]. In the volcano 
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plot, the x-axis represents the natural logarithm of the reported odds ratio (lnROR), while the y-axis 

represents the ordinary logarithm [−log (P-value)] of Fisher’s exact test P-value. The x-axis indicates 

the risk of MRONJ development when lnROR > 0 (ROR > 1), while the y-axis indicates a −log P-value 

>1.3 (P <0.05), indicating a significant difference in the 2 × 2 contingency table shown in Figure 4. Each 

point on the plot represents a drug, with the color of the point indicating the total number of adverse 

event reports (a+b in Figure 4), where drugs with a high number of reports are depicted in red and 

those with a low number in blue. Only drugs with 100 or more adverse event reports were included 

in the analysis. Therefore, MRONJ-positive drugs are located in the upper right-hand corner of the 

plot, while MRONJ-negative drugs are in the upper left-hand corner.  

 

Figure 4. Cross-tabulation and formula used to calculate the ROR for an adverse event. The table is organized 

with reports for the suspected drug, all other reports, reports with an adverse event, and reports without an 

adverse event (a–d represent the number of reports). 

4.3. Creation of QSAR Analysis Data Tables (Addition of Chemical Structure Descriptors) 

Data tables for the QSAR analysis were created by incorporating chemical structure descriptors 

for MRONJ-positive and -negative drugs (Figure 5, Supplementary Table S2). The chemical structures 

of the drugs were obtained from the PubChem compound database in the form of SMILES, a linear 

representation of molecular structures [64]. Chemical structure descriptors were calculated using the 

Molecular Operating Environment version 2022.02 (Chemical Computing Group, Inc, Montreal, 

Canada) [65], a specialized chemical computing platform. Prior to descriptor calculations, water 

molecules and counter ions were eliminated through desalting. Each drug was converted to a three-

dimensional structure, assessed for partial charge, and optimized using force field calculations 

(Amber 10 EHT). A total of 326 chemical structure descriptors were calculated for each drug. 

Descriptor variables with missing values or perfect collinearity (r2 = 1) were excluded. Mixtures, large 

peptides, bacterial preparations, inorganic compounds, organometallic compounds, and drugs with 

unspecified names or abbreviations were also removed. Enoxaparin was excluded due to duplication 

in the dataset. Consequently, the data table for the QSAR analysis comprised 326 chemical structure 

descriptors for 60 MRONJ-positive and 108 MRONJ-negative drugs. To validate the model, the data 

table was randomly divided into a 3:1 ratio for training and validation purposes. 
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Figure 5. Procedure for creating the Quantitative Structure-Activity Relationship (QSAR) Analysis Data Table. 

Positive and negative drugs for MRONJ were estimated based on the drugs listed in the FAERS analysis data 

table. A total of 326 chemical structure descriptions, representing structural features, were added to the positive 

and negative drugs for MRONJ. In the QSAR analysis, models were constructed and compared using three 

machine learning algorithms and varying numbers of descriptors. The selection of chemical structure for the 

artificial neural network was guided by their contribution in the random forest model. The model with the 

highest performance was checked for accuracy, the significance of the descriptors used, accuracy rates across 

pharmacological groups of the incorporated drugs, and the applicability domain. 

4.4. QSAR Analysis Using Machine Learning Algorithms (Construction of MRONJ-Induced Drug 

Prediction Model) 

A MRONJ-induced drug prediction model was constructed through QSAR analysis using 

machine learning algorithms (Figure 5). The algorithms considered were random forests, gradient 

boosting, and artificial neural networks, all available in the JMP analysis software. Each algorithm 

has distinct approaches and characteristics. Random Forest [66] and gradient boosting [67] are 

ensemble learning methods that combine several weak learners, such as decision trees. Random 

Forest is known for its stability and improved accuracy through bagging [66], while gradient boosting 

achieves high prediction performance through sequential error correction by boosting [67]. On the 

other hand, artificial neural networks consist of multi-layered structures with input, hidden, and 

output layers containing multiple neurons, enabling them to learn complex nonlinear relationships 

[68]. In this study, the artificial neural network was constructed using a multilayer perceptron neural 

network with a back-propagation algorithm for nonlinear regression. Boosting was employed as the 

ensemble method for the artificial neural network. It is crucial to utilize these algorithms differently 

due to their unique approaches and characteristics. In this study, the prediction models were built 

using default values for chemical structure descriptors and hyperparameters for each algorithm. 

Furthermore, the study investigated the optimal number of chemical structure descriptors in the 

artificial neural network. It is beneficial to develop predictive models with fewer descriptors for 

computational efficiency and explainability. Artificial neural networks are effective in capturing 

nonlinear relationships, but determining the significance of each descriptor in the model can be 

challenging. On the other hand, random forests utilize decision trees to assess feature importance. In 

this study, the top chemical structure descriptors with the largest contribution in the random forest 
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model were selected and integrated into the artificial neural network algorithm [69,70]. In addition, 

we analyzed the descriptors used in constructing the MRONJ predictive model and interpreted the 

drug characteristics associated with MRONJ. 

The prediction performance of the MRONJ-induced drug prediction model was evaluated using 

metrics such as AUROC, accuracy, precision (positive predictive value), negative predictive value, 

recall-sensitivity, specificity, balanced accuracy, F1-score, and Matthews correlation coefficient. The 

hold-out method was employed for validation. 

The applicability domain was assessed by determining the cutoff value on the ROC curve of the 

artificial neural network prediction model [71]. Defining the scope of application helps to establish 

the reliable prediction range of the constructed model. In this study, the cutoff value was determined 

using Youden’s index [72] and normalized to 0.5. Additionally, the model’s performance within the 

applicability domain was assessed by building a predictive model that excluded drugs with 

deviations of ±0%, ±10%, and ±20% from the cutoff value. 

4.5. Statistical Analysis 

All analyses were conducted using JMP Pro 16.2.0 (SAS Institute Inc., NC, USA), and a P-value 

less than 0.05 was considered significant. 

5. Conclusions 

In this study, an MRONJ-induced drug prediction model was constructed using chemical 

structure information, the FEARS database of drug adverse events, and machine learning. The model, 

based on an artificial neural network algorithm and eight chemical structure descriptors, identified 

drugs with polar surface area characteristics as potential contributors to MRONJ. These findings 

could enhance risk assessment in clinical trials and postmarketing surveillance, as well as streamline 

screening in new drug development. 
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