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Article

Harmonizing Quantum Gravity with
Thermodynamics: Determination of the EUP
Parameter by Prigogine’s Law

Giorgio SONNINO
Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 224 - Bvd du Triomphe, 1050 Brussels -
Belgium; giorgio.sonnino@ulb.be

Abstract: In 1974, Stephen Hawking made the groundbreaking discovery that black holes emit thermal radiation,

characterized by a specific temperature now known as the Hawking temperature. While his original derivation

is intricate, retrieving the exact expressions for black hole temperature and entropy in a simpler, more intuitive

way without losing the core physical principles behind Hawking’s assumptions is possible. This is obtained by

employing the Heisenberg uncertainty principle which is known to be connected to the the vacuum fluctuation.

This exercise allows us to easily perform more complex calculations involving the effects of quantum gravity. This

work aims to answer the following question: Is it possible to reconcile Prigogine’s second law of thermodynamics for
open systems and the second law of black hole dynamics with Hawking radiation? Due to the effects of quantum gravity,

the Heisenberg uncertainty principle has been extended to the Generalized Uncertainty Principle (GUP) and

successively to the Extended Uncertainty Principle (EUP). The expression for the EUP parameter is obtained by

conjecturing that Prigogine’s second law of thermodynamics and the second law of black holes are not violated by

Hawking thermal radiation mechanism.

Keywords: Hawking radiation mechanism; Vacuum fluctuations; Physics of black holes

PACS: 04.70.Dy; 04.70.Bw; 04.70.-s; 42.50.Lc

1. Introduction

Hawking radiation, proposed by physicist Stephen Hawking, is a phenomenon predicted by
quantum mechanics that describes black holes’ gradual loss of mass and energy. In the past, it was very
difficult to accept that black holes had a temperature because they would then have to emit radiation,
which went against the definition of a black hole. In 1974, S. Hawking theoretically discovered that a
static black hole located in a vacuum must emit from its horizon in all directions a type of thermal
radiation known as Hawking radiation [1,2]. According to Hawking’s mechanism, radiation occurs
near the event horizon of a black hole and it arises from the steady conversion of quantum vacuum
fluctuations into pairs of particles, one of which escapes at infinity while the other is trapped inside the
black hole horizon. In Hawking’s most famous book, A Brief History of Time [3,4], he makes the analogy
that space is filled with particle-antiparticle pairs and that one member can escape, carrying positive
energy, while the other falls in, with negative energy. Since these pairs of particles were present outside
the black hole, the flow of positive energy particles appears as radiation while the flow of negative
energy particles reduces its mass leading to black hole decay. There are, however, two main issues to
address: one of a pedagogical nature (i) and the other of a fundamental nature (ii).

(i) Hawking’s original derivation of black hole radiation involves complex mathematics due to
the need to handle quantum fields in curved spacetime and solve intricate equations. Simplifying and
intuitively explaining these concepts helps in making the ideas more accessible and comprehensible.
Such approaches can provide a clearer understanding of the fundamental physics behind Hawking
radiation and black hole thermodynamics without requiring advanced mathematical tools. Addition-
ally, an intuitive approach can highlight the physical principles behind Hawking radiation - such as
vacuum fluctuations and particle creation near the event horizon - without getting lost in technical
details. This helps in grasping why and how black holes emit radiation.
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(ii) At first glance, the Hawking radiation process seems to contradict both Prigogine’s second law
of thermodynamics for open systems [5,8] and the second law of black hole dynamics [9]. Prigogine’s
second law for open systems states that "During the evolution, the entropy production of the system is
always positive". The second law of black hole dynamics states that "In any classical process involving black
holes, the total area of the event horizon of the black hole cannot decrease". So, in the standard picture, since
Hawking radiation causes a black hole to lose mass over time, Prigogine’s law and the second law of
black holes are violated. The generalized second law (GSL) of black holes incorporates the entropy
of both the black hole and the surrounding radiation, ensuring the total entropy (black hole entropy
plus radiation entropy) never decreases (see for instance [10]). However, this all seems like a "gimmick,
since a black hole that emits energy is an open system and must still satisfy Prigogine’s law.

This work deals with the above issues i) and ii). More specifically, the standard Hawking radiation
mechanism will be revisited through the Generalized Uncertainty Principle (GUP) [11–13] or the Extended
Uncertainty Principe (EUP) [14,15]. The GUP is a theoretical framework in quantum mechanics that
extends the Heisenberg Uncertainty Principle by incorporating the effects of quantum gravity. The
GUP modifies this principle by including terms that account for gravitational effects, particularly
those that become significant at extremely small (Planck-scale) distances. These modifications suggest
that at such scales, the uncertainties in position and momentum are influenced not just by quantum
mechanical factors, but also by gravitational effects. The GUP suggests the existence of a minimal
measurable length, typically on the order of the Planck length. This contrasts with the standard
quantum mechanics view, where smaller and smaller distances could, in theory, be probed with higher
momentum. The GUP has implications for black hole physics, particularly for the end stages of black
hole evaporation. It suggests modifications to the Hawking radiation process and could imply that
black holes do not evaporate completely but leave behind a Planck-sized remnant. The EUP addresses
the possibility of both positive and negative values of the so-called EUP deformation parameter while still
maintaining a minimum length scale. This flexibility in the EUP deformation parameter is significant
because it broadens the range of possible physical interpretations and applications of the uncertainty
principle in quantum gravity scenarios. We shall see that contrary to GUP, the possibility of a negative
EUP parameter opens up the opportunity to set the Hawking temperature to zero. This adjustment
can address the conflicts between Prigogine’s second law of thermodynamics and the second law of
black hole mechanics. Indeed, by choosing a negative EUP parameter value such that the Hawking
temperature becomes zero, the black hole ceases to radiate. However. even when the Hawking
temperature is set to zero by adjusting the EUP parameter the black hole’s entropy does not vanish
because entropy is primarily tied to the geometry of the black hole (its horizon area), not directly to
the temperature. The entropy represents the number of hidden microstates or the information content
of the black hole, which remains finite as long as the black hole has a non-zero mass and horizon area.
This stabilization implies that the black hole’s mass and entropy would no longer decrease, thereby
aligning with both the area theorem (second law of black hole mechanics) and Prigogine’s law of
non-negative entropy production in open systems. This leads also to the situation where black hole
entropy continues to increase despite no radiation. The increase in entropy without radiation suggests
that the black hole is still evolving in some way, even if it is not losing mass through radiation.

The manuscript is organized as follows. Before starting our analysis, in Section 2 we shall revisit
the steps leading to the determination of the Hawking temperature. This will allow us to focus
on the main assumptions adopted by Hawking for getting the expression of the temperature of a
black hole. In Section 3 we shall derive the exact expressions of the Hawking Temperature and
Entropy for a Schwarzschild black hole. To do this task, we shall follow J. Pinochet’s arguments
[16]. However, it should be stressed that we shall follow some of his mathematical steps but we
shall not adopt his physical interpretation of the black hole radiation mechanism, remaining faithful
to the original Hawking’s picture of the mechanism responsible for the thermal emission. For easy
reference, Prigogine’s second law for open systems and the second law of black holes are recalled in
Section 3.1, 3.2, respectively. The connection between these two laws is shown in Section 3.3. The
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method suggested by Pinochet will allow us to deal with more complex situations without resorting to
complex mathematical methods. In particular, it will allow us to deal with, and resolve, the conflict
between Hawking radiation and the second law of black holes. This will be the subject of Section 4.
Concluding remarks can be found in Section 5.

2. The Hawking Radiation Mechanism

In 1974 [1,2] Stephen W. Hawking published his celebrated result stating that if one takes quantum
theory into account, black holes are not quite black, but they emit radiation consisting of photons,
neutrinos, and to a lesser extent all sorts of massive particles. The Hawking radiation mechanism
describes hypothetical particles and antiparticles formed by a black hole’s boundary, and it is based
on the assumption that the horizon is the radiating surface. This radiation implies black holes have
temperatures that are inversely proportional to their mass. Below, we resume in a few bullets the main
assumptions made by Hawking to explain the mechanism of black hole radiation:

(i) The universe is filled with particle-antiparticle pairs popping in and out of existence;
(ii) These pairs of particle-antiparticle exist even in empty space, as a consequence of quantum field theory and

the Heisenberg uncertainty relations;
(iii) These pairs always find one another and re-annihilate after a very small time interval;
(iv) Hawking radiation arises from quantum effects near the event horizon of a black hole. The strong

gravitational field near the event horizon causes quantum vacuum fluctuations to become real particles;
(v) This mechanism leads to a situation where one member of the pair falls in while a real particle escapes and

is emitted with positive mass/energy from just outside the horizon itself ;
(vi) The paired member that falls into the event horizon must have negative energy that subtracts from the

black hole’s total mass. The flow of particles of negative energy into the black hole reduces its mass until it
disappears completely in a final burst of radiation;

Figure 1 illustrates the Hawking radiation process.

Figure 1. The mechanism of Hawking radiation. To an outside observer, it looks as if the black hole has
radiated a particle. Indeed, to conserve energy, the energy it took to create the particle and shoot it off
to infinity must have come from the black hole. The particle that did not escape possesses a negative
energy.

The Hawking radiation mechanism is a purely quantum effect. Hawking’s findings are practically
irrelevant for classical black holes.

2.1. Vacuum fluctuations and Time-Energy Heisenberg’s Uncertainty Relation

The Quantum Field Theory (QFT) states that the vacuum is not so empty: there are fluctuations
in the vacuum field that produce measurable macroscopic effects. The vacuum, even in the absence
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of particles and photons, has vacuum energy (zero point energy): that is, virtual photons and virtual
particle-antiparticle pairs that are created and destroyed in very short times, in such a way as to
conserve energy and respect the Heisenberg uncertainty principle. The main effects affected by
“vacuum fluctuations” are the Casimir effect, the Lamb shift, Blackbody radiation, Hawking radiation,
and the inhibition and acceleration of spontaneous emission. Vacuum fluctuations arise due to the
quantum uncertainty in energy over short time intervals, as described by the time-energy Heisenberg
uncertainty relation. Heisenberg’s uncertainty principle states that it is not possible to simultaneously
measure the position and the velocity of a particle with absolute precision, the same is true for energy
and time. From this principle, it follows that in a vacuum it is possible to create a virtual boson
(for example a photon) as long as the vacuum reabsorbs it after a very short time interval. Or it is
possible to create two virtual fermions (always in the particle-antiparticle composition) as long as
they annihilate in a small time interval. The Heisenberg uncertainty principle, through the energy
uncertainty ∆E, permits vacuum fluctuations where virtual particles momentarily appear. Near a
black hole’s event horizon, these fluctuations can lead to the creation of real particles via Hawking
radiation. The escaping particles are observed as radiation, while the black hole loses mass due to the
infall of particles with negative energy, leading to its gradual evaporation.

3. A (Heuristic) Derivation of the Exact Expressions of Temperature and Entropy for a
Schwarzschild Black Hole

Stephen Hawking’s original work on Hawking radiation is mathematically complex for several
reasons. Hawking’s derivation involves applying quantum field theory in the curved spacetime of a
black hole. This requires complex calculations involving the behavior of quantum fields in a non-flat
(curved) spacetime, which is inherently complicated. Additionally, Hawking used the semi-classical
approximation where the spacetime is treated classically (using general relativity), but the fields
are treated quantum mechanically. Combining these two frameworks is non-trivial and requires
sophisticated mathematical tools. Hawking’s method involves decomposing the quantum fields into
modes that interact with the black hole’s event horizon. Calculating the contributions of these modes
to the radiation is mathematically intensive. The derivation involves evaluating complex integrals
and solving differential equations that describe the behavior of fields near the event horizon. This
requires advanced techniques from mathematical physics. Finally, showing that the radiation emitted
by the black hole is thermal, and finding the exact temperature involves intricate calculations related
to black body radiation and quantum statistics. So, deriving the exact expressions for Hawking
temperature and entropy more simply and intuitively is necessary as simplifying and intuitively
explaining these concepts helps in making the ideas more accessible and comprehensible. In our
derivation of Hawking’s temperature, we shall follow the arguments of J. Pinochet [16]. However, this
work differs conceptually from that of J. Pinochet. As the six points above state, we utilize the quantum
vacuum fluctuation. In our derivation, according to Hawking’s assumption, the radiation does not come
directly from within the black hole but near the horizon event. If particles are subject to the uncertainty
principle, then we cannot know both the time and energy of a particle with perfect accuracy. Hawking
radiation represents a situation where the energy-time uncertainty principle plays a crucial role in
determining the characteristics of the emitted radiation. Denoting with ∆t the uncertainty in the time
of the particle, the process effectively "chooses" the emission of particles with energy ∆E corresponding
to the minimum value that the product of these quantities can take [17,18]

(∆t∆E)|min =
h̄
2

(1)

with h̄ denoting the reduced Planck constant. In our energy situation, ∆E = c∆p, with c denoting
the speed of light and ∆p the momentum uncertainty, respectively. So, the Heisenberg Uncertainty
Principle relating the uncertainties in position ∆l and momentum ∆p implies c∆t = ∆l. In quantum
field theory, the quantum vacuum state is the quantum state with the lowest possible energy ∆E. Since
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∆l and ∆E are inversely proportional, the minimum value ∆E, compatible with Eq. (1), corresponds to
the maximal uncertainty in the position of the particle ∆l|Max. Taking into account this observation,
Eq. (1) leads to

∆E =
h̄c

2∆l|Max
(2)

Assuming that the black hole event horizon is spherically symmetric with a radius equal to Schwarzschild’s
radius RS, it is easily checked that ∆l|Max corresponds to the maximal uncertainty in the coordinate x
(or y) of the particle on the event horizon. Hence, by taking into account that:

x = RS sin θ cos ϕ (3)

with θ (with 0 ≤ θ ≤ π) and ϕ (with 0 ≤ ϕ ≤ 2π) denoting the spherical coordinates, we get:

∆l|Max = ∆x|Max = RS| cos θ cos ϕ∆θ − sin θ sin ϕ∆ϕ|Max (4)

= RSπ| cos θ cos ϕ − 2 sin θ sin ϕ|Max

=
π

2
RS|3 cos(θ + ϕ)− cos(θ − ϕ)|Max = 2πRS

as the maximum indetermination is obtained for ∆θ = π, ∆ϕ = 2π, and at the coordinate values
(θ, ϕ) = (π/2, 3/2π). So,

∆E =
h̄c

4πRS
(5)

By plugging in Eq. (5) the expression for the Schwarzschild’s radius RS [9]

RS =
2GM

c2 (6)

with M denoting the mass of the black hole and G is the universal gravitational constant, respectively,
we get the Hawking expression for the black hole emitted energy:

∆E =
h̄c3

8πGM
(7)

As said, Hawking radiation is a theoretical prediction that black holes can emit radiation due to
quantum effects near the event horizon. This radiation has a thermal spectrum, and its associated
temperature is known as the Hawking temperature. The energy of the particles (usually photons, but
also other particles) emitted in Hawking radiation is directly related to the Hawking temperature TH
by the relation [19–21]:

∆E = KBTH (8)

with KB denoting the Boltzmann constant. This equation makes sense in this scenario because the
emitted radiation is thermal, similar to black body radiation, but with Hawking temperature. So,
the particles emitted by the black hole have an average energy that is proportional to the Hawking
temperature TH through Boltzmann’s constant KB. We finally get

TH =
h̄c3

8πKBGM
(9)

We note the subtlety implicit in Eq. (9). The temperature of a classical black hole is 0K. According to
Hawking’s radiation mechanism, due to the quantum effect, the black hole emits energy ∆E in the form
of escaping matter showing a very weak temperature TH given by Eq. (9). The energy that the black
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hole loses ∆EBHloss is equal to the negative energy of the antimatter it has captured i.e., ∆EBHloss = −∆E.
In the absence of work, the first law of thermodynamics reads

∆E = TH∆SBH (10)

with SBH denoting the black hole entropy. Hawking radiation propagates away from the event horizon,
and since real radiation carries energy, the only place where that energy ∆E can be taken from is from
the mass of the black hole itself, via the classic Einstein’s equation, ∆E|m = c2∆M. In this case, the
mass lost by the black hole has to balance the energy of the emitted radiation. So,

∆SBH =
8πKBG

h̄c
M∆M (11)

where Eq. (9) has been taken into account. The integration yields

SBH =
4πKBG

h̄c
M2 + S0 (12)

where S0 is an arbitrary constant of integration. In physical contexts like black hole thermodynamics,
S0 typically corresponds to the minimal entropy or entropy at a particular reference point.

• Black Holes and Generalized Second Law (GSL) of Thermodynamics

Expression (9) shows that a black hole loses mass through evaporation. This seems in disagreement
with the law of thermodynamics expressed as The total entropy of an isolated system always increases. We
soon realize that this disagreement is only apparent. Indeed, after simple calculations, we have that
the total entropy change of the isolated system, composed of the black hole plus reservoir (i.e., the the
rest of Universe) reads [10]

∆STot. = − KB
720

ln
Mi
M f

> 0 (13)

with Mi and M f denoting the original mass Mi to the final mass M f of the black hole, respectively.
Since the initial mass Mi is greater than the final mass M f , the result is a positive quantity showing an
increase in entropy.

Some Remarks
According to Hawking in [4] since the average temperature of the universe is about 2.7K, most

black holes absorb more energy than they emit and will not begin to evaporate for some time until
the universe has expanded and cooled below their temperature. So, the expressions for the total
entropy (13) are valid only when the black hole is at thermodynamic equilibrium with the Universe.
They are not applicable during the transition phase in which the black hole and the Universe tend
to reach thermodynamic equilibrium. However, we know that any object with a temperature above
absolute zero will emit radiation by Planck’s law. As said, during the transitional phase Eq. (13) does
not apply and this is a big limitation of the demonstrations shown above. In other words, what needs
to be demonstrated is that a radiating black hole (as any open system) satisfies Prigogine’s second law
of thermodynamics even during the transition phase. In reality, what needs to be demonstrated is that
a radiating black hole, seen as an open system, satisfies Prigogine’s second law of thermodynamics
even during the transition phase. This is the subject of the next section.

3.1. Prigogine’s second law of thermodynamics for open systems

The verification that the entropy of matter outside the black hole plus the entropy of the black hole
never decreases does not satisfactorily answer the question about the validity of the second law of black
hole thermodynamics. Indeed, some important questions remain open. The first reaction is that having
demonstrated that the total entropy of an isolated system (in this case the black hole plus external
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environment) is always increasing is a sort of escamotage rather than a convincing demonstration. This
is because for open systems, as is the case of radiating black holes, the correct formulation of the second
law of thermodynamics is expressed by Ilya Prigogine’s law. In 1971, Prigogine proposed to split the
total differential of entropy of an open system into two components [5,8]:

dS = diS + deS (14)

with diS denoting the entropy production produced inside the system, and deS is the outflow or inflow
of entropy into the system from the outside, respectively. The sign of deS depends on the situation
whereas diS is always a non-negative quantity. Notice that Eq. (14) can describe an open system in
which the total entropy decreases (i.e., dS < 0) when deS < 0 and |deS| > diS. In general, Eq. (14) does
not contain indications of the factors on which the sign and quantity of deS depend whereas the sign
of diS is known. Prigogine proved the following inequality:

diS ≥ 0 (15)

Notice that Eqs (14) and (15) generalize Boltzmann’s law as for isolated systems we have deS = 0, so
dS ≥ 0 i.e., the entropy of isolated systems can never decrease.

3.2. The Second Law of the Black Hole Dynamics

D. Christodoulou and R. Ruffini [22] on 1st 1971 and S. Hawking on 11th 1971 [23] showed that
the mass-energy formula of a Kerr Newmann black hole of mass M can be expressed in terms of the
irreducible mass mir as well as a function of the charge Q, and of the angular momentum L 1

M2 =

(
mir +

Q2

4mir

)2

+
L2

4m2
ir

(16)

The black hole exists if
L2

4m4
ir
+

Q4

16m4
ir
≤ 1 (17)

The surface area of the event horizon A is also related to the irreducible mass according to the equation
[22]

A = 16πm2
ir (18)

The fact that the irreducible mass monotonically increases implies that the black hole event horizon
surface also monotonically increases as shown by Hawking [23]. In Bekenstein-Hawking definition,
the entropy of the black hole SBH is proportional to the event horizon’s area A [24] according to the
formula

SBH =
KB A
4l2

p
=

KBc3 A
4Gh̄

(19)

with lp denoting Planck’s length (lp = (h̄G/c3)1/2). The second law of black hole dynamics states [9]:
"No black-hole transformation can ever reduce its surface of the event horizon or, equivalently, its irreducible
mass". In other words:

dA ≥ 0 or, equivalently, dmir ≥ 0 (20)

1 Here, they set G = 1 and c = 1.
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3.3. Link between the Second Law of the Black Hole Dynamics and Prigogine’s Second Law of Thermodynamics

Bekenstein noted that by differentiating Eq. (16) we obtain an expression that strongly resembles
the first law of thermodynamics [25,28]:

dM =
κ

8π
dA + Ω · da + ΦdQ (21)

where

κ =
4m2

ir − Q2 − 2a2

2(4m2
ir − a2)3/2

; Ω ≡
(Q2 + 4m2

ir)

2r3
+

a ; Φ ≡ Q
r+

(22)

and r+ and a are the horizon location in the Kerr-Newman geometry and the angular momentum per
unit mass, respectively [9]:

r+ = m +
√

m2 − Q2 − a2 ; a =
L
M

(23)

Bekenstein proposed Eq. (21) as the first law of thermodynamics for a black hole in analogy with the first
law of thermodynamics. Bekenstein identified E with M and the sum of the last two contributions
in Eq. (21) as the work W done on a thermodynamic system. Ω and Φ play the role of the rotational
angular frequency and the electric potential of the black hole, respectively. Additionally, Bekenstein
identified A/(4π) as the entropy of the black hole and κ/2 as its characteristic temperature 2. In this way,
Eq. (21) takes the familiar form of the first law of thermodynamics:

dE = THdSBH − δW (24)

For an isolated Schwarzschild black hole (i.e., L = 0, Q = 0, and deSBH = 0), it is easily checked that
Eq (21) and (24) reduce to:

dE = THdiSBH (25)

where, in the unit G = 1 and c = 1, the Schwarzschild black hole entropy production reads 3:

diSBH =
dmir
TH

and TH = Hawking temperature (26)

Prigogine’s second law of thermodynamics states that diSBH ≥ 0 which, by Eq. (26), implies that also
dmir ≥ 0. Therefore, Prigogine’s second law of thermodynamics and the second law of black holes are intimately
connected. Violation of the first law implies violation of the second law and vice-versa. Coming back to
Hawking’s radiation mechanism the following questions arise now spontaneously:

Does a radiating black hole, which is an open system, satisfy the second law of thermodynamics as formulated
by I. Prigogine? or, equivalently,

Is the variation of the event horizon area of a black hole always increasing?
Up to now, we have ignored the quantum gravitational effects. To answer the above questions

we have to take into account the so-called Extended Uncertainty Principle (EUP). We shall see that it is
possible to conciliate both Prigogine’s second law of thermodynamics and the second law of black
holes [9] with the Hawking temperature radiation mechanism.

2 Recall that we are in the unit G = 1 and c = 1.
3 It is easily checked that in Kerr-Newman geometry the black hole entropy production is, in the unit G = 1 and c = 1,

diS = 4κmir
dmir
TH

.
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4. EUP and Conciliation with Prigogine’s Second Law of Thermodynamics and the Second Law of
Black Hole Dynamics

4.1. GUP and Prigogine’s Second Law of Thermodynamics

The Generalized Uncertainty Principle (GUP) is a theoretical framework in quantum mechanics that
extends the Heisenberg Uncertainty Principle by incorporating the effects of quantum gravity. The
GUP is often expressed as:

∆x∆p ≥ h̄
2

[
1 + β

(
∆p

MPc

)2
]

(27)

with ∆p and MP =
√

h̄c/G denoting the uncertainty in momentum and the Planck mass, respectively.
β is a dimensionless GUP deformation parameter that encodes the strength of quantum gravitational
effects. Eq. (27) modifies both the Hawking expressions for the temperature and the entropy of a
black hole. The great advantage of the method presented in section3 is that we can easily determine
Hawking’s corrections for temperature and entropy without having to resort to the sophisticated and
complex calculations performed by Hawking. By performing the same procedure illustrated in the
section 3, we obtain

TH =
4πc2M

βKB

[
1 −

(
1 − β

h̄c
16π2GM2

)1/2
]

(28)

where we have taken into account that for a black hole, the uncertainty in energy ∆E = KBT is related
to the uncertainty in momentum ∆p by the relation ∆E = c∆p, and ∆x = 2πRS. At the first order in β

Eq. (28) reads:

TH ≃ h̄c3

8πKBGM

(
1 + β

h̄c
64π2GM2

)
and (29)

SBH ≃ 4πKB

(
M
Mp

)2
− β

KB
4π

ln
(

M
Mp

)
+ S0

Since β has not been measured experimentally, it is often treated as a free parameter that can be
varied to explore different physical implications of the GUP [29]. For instance, in [30], the value
of the GUP parameter β is obtained by conjecturing that the GUP-deformed black hole tempera-
ture of a Schwarzschild black hole and the modified Hawking temperature of a quantum-corrected
Schwarzschild black hole are the same. Here, we aim to set the expression for β in such a way that
both Prigogine’s second law of thermodynamics and the second law of black holes are not violated.
From Eq. (29), we see that these conditions are satisfied if

TH = 0 i.e., for β = −
(

8π
M
Mp

)2
= −64π2GM2

h̄c
(30)

However, a negative GUP parameter β leads to several counterintuitive and potentially problematic
physical consequences. For instance, a negative β could lead to calculations’ instabilities, divergences,
or singularities. These unphysical behaviors would make applying the GUP to realistic scenarios
difficult. While there have been some speculative models exploring negative β, they often face
significant challenges and are not widely accepted within the physics community. Hence, it is generally
believed that the GUP parameter β must be positive to ensure consistency with the principles of
quantum mechanics and avoid unphysical consequences. Finally, solution (30) must be discarded.

4.2. EUP and Prigogine’s Second Law of Thermodynamics

The work of Du and Long [14], as well as the subsequent consideration by Song-Shan Luo and
Zhong-Wen Feng [15], introduces a novel perspective on the deformation parameter in the uncertainty
principle, specifically addressing the possibility of both positive and negative values for the parameter
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β0, which is referred to as the Extended Uncertainty Principle (EUP) parameter. The model proposed by
Du and Long allows the deformation parameter β0 to take on either positive or negative values while
still maintaining a minimum length scale. This flexibility in β0 is significant because it broadens the
range of possible physical interpretations and applications of the uncertainty principle in quantum
gravity scenarios. The most important feature of this theory is that, unlike traditional models where
a positive β is associated with a minimal length scale and a negative β might imply its absence or
different implications, this novel model preserves the concept of a minimum length regardless of the
sign of β0. This suggests that the deformation of the uncertainty principle is symmetric with respect to
the sign of β0, and the physical implications are adapted accordingly. In GUP a contradiction arises
when the parameter β is negative as the GUP no longer includes a minimum length, which contradicts
the model-independent existence of the minimum length. To address this issue, Du and Long [14]
introduced a novel uncertainty principle model, which can be expressed as

∆x∆p ≥ h̄
2

(
1

1 ± (16β0l2
p/∆x2)

)
(31)

with β0 denoting the deformation parameter EUP. The most important features of the inequality (31)
are that the EUP parameter can be assigned positive or negative values and that it maintains a fixed
and uniform minimum length ∆xmin = 4

√
|β0|lp regardless of whether the parameter is positive

or negative. Furthermore, it is easily checked that if ignoring the higher-order corrections Eq. (31)
reduces to Eq. (27). By performing the same calculations as in section 3, and by taking into account
that ∆E = KBT = c∆p, ∆x = 2πRs, and lp =

√
h̄G/c3, we get

TH =
h̄c3

8πKBGM
1

1 ± 4β0
π2

(
lp
Rs

)2 (32)

We are interested in exploring the case of black holes with very small masses. This leads to ignoring
higher-order terms in β0 (see the forthcoming Eq. (35)). So, at the leading contributions, we find

TH =
c2M2

p

8πKB M

[
1 ∓ β0

M2
p

π2M2

]
(33)

SBH = 4πKB

(
M
Mp

)2
± 16

π
KBβ0 ln

(
M
Mp

)
+ S0

Notice that Eqs (33) are compatible with the Generalized Gravitational Uncertainty Principle (GGUP) as
expressed in [31]:

∆x∆p ≥ h̄
2

(
1 + α(∆x)2 + β(∆p)2 + ξ

)
(34)

with the parameters β and ξ set to zero and α of negative value 4. The modification in temperature
due to the EUP introduces a correction term that depends on the EUP parameter β0 and the mass
M of the black hole. Additionally, the entropy expression includes a logarithmic correction term,
common in quantum gravity scenarios, suggesting a modification in the black hole’s microstates.
These expressions give insight into how the EUP affects the thermodynamic properties of black holes,
particularly in the context of quantum gravity effects near the Planck scale. By choosing a negative β0

4 We have α = −β0

(
lp

π2 R2
s

)2
.
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value such that the Hawking temperature becomes zero, the black hole ceases to radiate. This happens
if, and only if,

β0 =

(
π

M
Mp

)2
=

π2GM2

h̄c
(35)

which is valid only for small black hole masses. This stabilization implies that the black hole’s mass
and entropy would no longer decrease, thereby aligning with both the area theorem (second law of
black hole mechanics) and Prigogine’s law of non-negative entropy production in open systems. In
brief, with Hawking radiation effectively turned off by the negative β0 given by Eq. (35), the entropy of
the black hole stabilizes, eliminating the decrease that would otherwise violate Prigogine’s second law.
This approach thus provides a novel resolution to the apparent conflict between these two fundamental
thermodynamic principles. Hence, for a Schwarzschild black hole, due to EUP and Prigogine’s second
law of thermodynamics, for black holes with very small masses we have

TH = 0 (36)

SBH = 4πKB

(
M
Mp

)2(
1 + 4 ln

(
M
Mp

))
+ S0

The entropy receives a logarithmic correction term, a common feature in many quantum gravity
scenarios, which becomes significant for small black hole masses.

Determination of the constant S0

In the case of the irreducible mass, from Eq. (17), a lower limit to the value of mir can be deduced by
imposing a lower limit in the value of the angular momentum from quantum mechanics considerations
[32]:

L ≥ h̄
2

(37)

From Eq. (17) we have

4m4
ir ≥

h̄2

4
(38)

So,

mir ≥
h̄1/2

2
or, in dimensional form, mir ≥

1
2

(
h̄c
G

)1/2
=

Mp

2
(39)

However, from Eq. (16), we have M ≥ mir, hence

M ≥ mir ≥
Mp

2
or

M
Mp

≥ 1
2

(40)

The black hole does not exist for M/MP < 1/2, and we can set A → 0 as M/Mp → 1/2. Consequently,
even SBH mast vanish as M/Mp → 1/2. This implies

S0 = πKB(4 ln 2 − 1) (41)

To summarize, for a Schwarzschild black hole, Prigogine’s second law of thermodynamics is satisfied
if

TH = 0◦K (42)

SBH = 4πKB

(
M
Mp

)2(
1 + 4 ln

(
M
Mp

))
+ πKB(4 ln 2 − 1)

Discussion
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If you choose the parameter β0 in the Extended Uncertainty Principle (EUP) so that the Hawking
temperature TH is zero, it raises an important question: Why does the entropy SBH of the black hole not
also vanish? We already mentioned that the Hawking temperature TH and the entropy SBH of a black
hole are related by the first law of black hole thermodynamics (10). If TH = 0, this implies that dE = 0
for any dSBH (see Eq. (10)). In other words, no energy (or mass) is radiated away by the black hole
because the temperature is zero. Normally, for a system with TH = 0, one might expect the entropy to
be constant (i.e., dSBH = 0), which implies SBH is at a minimum, potentially zero. However, in the case
of a black hole, SBH represents the number of microstates of the black hole, a measure of the hidden
information or the event horizon’s area. The entropy SBH is proportional to the event horizon’s area,
not the temperature according to the formula (20):

SBH =
KB A
4l2

p
(43)

Where A is the area of the event horizon. This entropy is a geometric property of the black hole and is
non-zero as long as the black hole has a finite horizon area. The Generalized Uncertainty Principle
(or its extended form, EUP) modifies the temperature and entropy, but the entropy still reflects the
area of the event horizon. If β0 is chosen so that TH = 0, the black hole essentially stops radiating.
However, this does not imply the event horizon area vanishes or the microstates disappear, hence the
entropy does not go to zero. The black hole might retain a residual entropy because it still has a finite
event horizon, even if it does not radiate. This residual entropy can be interpreted as the ground state
entropy of the black hole. In brief, Even when the Hawking temperature is set to zero by adjusting β0,
the black hole’s entropy does not vanish because entropy is primarily tied to the geometry of the black
hole (its horizon area), not directly to the temperature. The entropy represents the number of hidden
microstates or the information content of the black hole, which remains finite as long as the black hole
has a non-zero mass and horizon area. Thus, the black hole would still possess a significant amount of
entropy, even at zero temperature.

5. Conclusions

Even the most extreme objects in the universe, like black holes, are bound by certain rules. G.
Gibbons and S. Hawking demonstrated that black hole thermodynamics extends beyond black holes
themselves, revealing that cosmological event horizons also possess entropy and temperature [33].
In 1974, Hawking further showed that when quantum mechanics is considered, black holes can emit
light and particles through a process known as Hawking radiation. Since quantum black holes emit
energy and light, they must have a temperature, in addition to mass, charge, and rotation. This makes
them subject to the laws of thermodynamics. Hawking’s mechanism hinges on quantum vacuum
fluctuations, suggesting that the radiation originates near the event horizon rather than from within the
black hole itself. However, Hawking’s original derivation of this radiation is mathematically intricate,
involving quantum fields in curved spacetime and complex equations. From a pedagogical standpoint,
it’s beneficial to explain these concepts more intuitively, making them accessible without sacrificing the
core physical principles underlying Hawking radiation. This work aims to offer a clearer understanding
of the fundamental physics of Hawking radiation and black hole thermodynamics, without relying
on advanced mathematical techniques. To achieve this goal, we have rederived the exact expressions
of the Hawking temperature and entropy for a Schwarzschild black hole following the indications
of J. Pinochet in [16] with the addition, however, of new elements and physical considerations that
have allowed us to overcome the vulnerable aspects present in the original work of J. Pinochet. The
way suggested by J. Pinochet allowed us to deal with more complex situations. In particular, we
have shown that it is possible to ensure consistency with both Prigogine’s second law and black hole
thermodynamics. The second law of black holes states that even if black holes merge or matter falls
into a black hole, the total event horizon area of the resulting black hole(s) will be greater than or
equal to the sum of the event horizon areas of the original black holes. The second law of black hole
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dynamics applies classically. In quantum mechanics, Hawking radiation introduces the possibility of
black holes losing mass and thereby shrinking in area, which would appear to violate this law. With
Hawking radiation effectively turned off by the negative EUP parameter, the entropy of the black hole
stabilizes, eliminating the decrease that would otherwise violate Prigogine’s second law. So, when
gravitational quantum effects are considered, black holes still obey the non-decreasing law, preserving
the analogy with Prigogine’s second law of thermodynamics. While the classical interpretation of
dE = THdSBH suggests that dSBH = 0 when TH = 0, the inclusion of EUP and quantum gravitational
effects may lead to a scenario where entropy can still increase. This reflects a more complex interaction
between the microstates of the black hole and quantum gravity, beyond what is described by classical
thermodynamics alone. So, the key idea is that the traditional relation dE = THdSBH might not
fully capture the behavior of entropy under the influence of the EUP, particularly when TH = 0. In
non-equilibrium thermodynamics, especially when considering open systems or systems influenced
by quantum gravity, entropy can increase due to other processes, such as quantum fluctuations or
interactions with external fields, even if the black hole is not radiating.

Acknowledgments: The author is very grateful to Prof. Jorge Pinochet from Universidad Metropolitana de
Ciencias de la Educación for his encouragement and fruitful discussions held in December 2023 in Santiago de
Chile.
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