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Abstract

Maritime safety, environmental protection and efficient traffic management increasingly rely on
data-driven technologies. However, leveraging Automatic Identification System (AIS) data for
predictive modelling faces two major challenges: the massive volume of data generated in real-time
and growing privacy concerns associated with proprietary vessel information. This paper proposes
anovel, privacy-preserving framework for vessel traffic density (VID) prediction that addresses both
challenges. The approach combines EMODNet's grid-based VTD calculation method with
Convolutional Neural Networks (CNN) to model spatiotemporal traffic patterns and employs
Federated Learning to collaboratively build a global predictive model without the need for explicit
sharing of proprietary AIS data. Three geographically diverse AIS datasets were harmonized,
processed, and used to train local CNN models on hourly VID matrices. These models were then
aggregated via a Federated Learning framework, under a lifelong learning scenario. Evaluation using
Sparse Mean Squared Error shows that the federated global model achieves promising accuracy in
sparse data scenarios and maintains performance parity when compared with local CNN-based
models, all while preserving data privacy and minimizing hardware performance needs and data
communication overheads. The results highlight the approach’s effectiveness and scalability for real-
world maritime applications in traffic forecasting, safety, and operational planning.

Keywords: vessel traffic density; federated learning; convolutional neural networks; artificial
intelligence; maritime logistics; automatic identification system

1. Introduction
1.1. Context and Motivation

Since ancient times, the maritime domain has been vital as a hub for communication, travel, and
trade, driving cultural exchange, economic growth, and the global movement of goods and people
[1]. Today, it plays an even more crucial role in global trade, security, and environmental
sustainability. Over 80% of global trade by volume is now transported via maritime routes, supported
by a fleet of over 50,000 merchant vessels. In 2022 alone, container carriers earned an estimated $296.3
billion, a 38% increase from 2021 [2].

Despite these benefits, the scale of maritime activity brings major challenges. According to the
2022 United Nations Conference on Trade and Development (UNCTAD) report port congestion
increased significantly, especially in China, the U.S., and Northern Europe, where average container
delays doubled [2]. Between 2014 and 2023, European waters saw 26,595 maritime incidents,
averaging 2,660 annually, primarily involving cargo and passenger ships. These led to hundreds of
injuries and over 600 pollution events per year. Similarly, Canada averaged 289 maritime accidents
annually from 2010 to 2019, many causing fatalities and environmental damage [3,4].

To address these and other challenges, public and private maritime entities are advancing the
digital transformation of the sector. This transformation includes adopting advanced technologies
such as artificial intelligence (AI), the Internet of Things (IoT), Blockchain, and Big Data analytics
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[5,6]. These innovations aim to improve operational efficiency, security, and environmental
compliance by applying modern solutions to long-standing challenges. Data is central to this
transformation. A key example is Automatic Identification System (AIS) data, collected in real time
via ground stations, vessel transmitters, and satellites. It enables the continuous exchange of vessel
status and location, improving maritime safety [7]. UNCTAD’s 2022 report prioritised the use of real-
time digital platforms based on AIS data [2]. However, working with AIS data is challenging due to
its massive and continuous volumes, which makes processing and storage complex and costly [7].
Privacy and copyright-related challenges are also critical when using AIS data. Often owned by
entities unwilling to share it for business or confidentiality reasons, AIS data remains largely
inaccessible, hindering efforts to tackle maritime challenges [8].

An effective approach should simultaneously limit the amount of AIS data to be collected,
processed, and stored for digital applications, such as Al-based solutions, while preserving data
privacy. This means avoiding the explicit sharing of critical vessel information like location, status,
or characteristics. Since most maritime challenges occur in known spatial areas (e.g., ports, canals)
and during specific times (e.g., seasonal peaks, rush hours) when vessel traffic density (VID) is high,
the solution should identify global VID hotspots. Digital tools could then be applied selectively over
limited spatial and temporal ranges, filtering only the necessary AIS data. Additionally, the approach
must incorporate privacy-preserving strategies to avoid exposing proprietary or sensitive
information.

This paper proposes a privacy-preserving, performance-driven approach for Vessel Traffic
Density (VID) prediction that offers a global view of traffic patterns across wide spatiotemporal
intervals. It preserves data privacy for both data owners and individual vessels while reducing high-
performance hardware requirements by distributing model training across multiple local
deployments. The approach integrates proprietary AIS datasets with standardized VTD calculation
methods, particularly EMODNet’s VID calculation method [9], Machine Learning (ML), Deep
Learning (DL) [10] and Federated Learning (FL) approaches [11] to generate accurate VTD forecasts
while safeguarding AIS data privacy.

1.2. Related Works

With the context and main challenges established, this subsection presents the state-of-the-art
literature relevant to the proposed approach. It covers vessel traffic density calculation methods,
Machine and Deep Learning techniques applied to AIS datasets, and Federated Learning applications
in the maritime domain.

1.2.1. Vessel Traffic Density Calculation

VTD is vital to reveal the distribution of ships and traffic and to identify vessel activity hot spots,
supporting overall maritime situational awareness [12,13]. Furthermore, VTD calculation is used in
many vessel- and maritime-related data visualisation methods. The authors of [13] identify three
main types of VTD approaches for data visualisation: (i) direct density drawing (e.g., [14]) uses vessel
positions as trajectory points on a density map. It is simple to implement but relies heavily on
viewers’ interpretation and suffers from overlapping data points, leading to inaccurate visual
estimations; (ii) grid-based density calculation (e.g., [9,15]) divides the spatial area into uniform or
non-uniform grids and counts the number of vessels in each cell. These values are then used to assign
density colours to each grid cell. The complexity of this method depends on the use of uniform or
non-uniform grids. Uniform grids are simpler to implement and interpret but typically require lower
resolutions (i.e., coarser granularity) due to large spatial datasets and increased processing demands.
Non-uniform grids offer finer analysis but involve more complex algorithms and greater
computational cost. Finally, (iii) kernel density estimation methods (e.g., [16]) estimate a probability
density distribution without relying on predefined grids or prior knowledge of the data distribution.
These methods use various kernel functions and are widely adopted for visualizing vessel density
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and trajectories. However, they come with drawbacks such as sensitivity to bandwidth, edge effects,
boundary bias, outliers, and high computational demands [17].

1.2.2. Machine and Deep Learning Methods Applied to AIS Data

Recent years have seen a significant rise in Al applications within the maritime domain [18,19].
Specifically, the application of Al to AIS data has grown rapidly, driven by the system's global
coverage and the vast amount of historical AIS data. Numerous surveys have explored this field,
covering general applications, specific research topics, and emerging approaches in ML, DL, and Al
[20]. Among these, vessel trajectory prediction stands out as the most prominent research topic. The
authors of [21] propose a vessel trajectory prediction model using AIS data based on a Deep Learning
transformer architecture, incorporating convolutional neural networks and multi-head attention
mechanisms. This model reduced the mean squared error by at least 6 X 10™* compared to the
baseline. Similarly, [10] presents another DL-based trajectory prediction model using a Long Short-
Term Memory (LSTM) network combined with an attribute correlation attention mechanism to
improve maritime navigational safety. This model reportedly outperforms both classic ML models
and advanced attention-based models in terms of accuracy and trajectory stability.

Collision detection and risk assessment is a critical research area in the maritime domain due to
its importance for maritime security. In [22], the authors propose an analysis of spatial correlations
between near-collision clusters and local traffic characteristics to detect global spatial patterns and
identify local hotspots. The results are then assessed through spatial co-occurrence. In [23], the
authors present a CNN-based model that leverages AIS Big Data to build a graph-based structure for
predicting multi-ship encounters and supporting collision avoidance. The network combines
spatiotemporal graph-based attention mechanisms with an LSTM unit to model complex maritime
traffic scenarios and make avoidance decisions.

An increasingly relevant research topic is traffic management, which focuses on predicting the
overall behaviour and conditions of multiple vessels in a specific area, rather than individual routes.
The authors of [24] propose a maritime traffic prediction method using feature augmentation and a
three-layer LSTM network over AIS data to forecast traffic near ports. While feature augmentation
improved prediction performance, the model was trained on a single port due to hardware
limitations, prompting the authors to recommend further evaluation across multiple locations. In [25]
a proactive ML-based traffic prediction method addressed uncertainties in vessel destinations along
inland waterways. AIS data was used to group trajectories by origin, destination, and route, with a
decision tree classifier trained to predict future patterns. The model effectively detected traffic trends
and congestion in convergent waters. Notably, none of these works directly addresses data privacy
concerns.

1.2.3. Federated Learning Applications in the Maritime Domain

FL is a decentralized machine learning approach that trains models across multiple devices or
servers without sharing raw data. Each device trains a local model using its own dataset and sends
only model updates to a central server. The server aggregates these updates into a global model. This
cyclical process—local training, weight sharing, and global model refinement— continues iteratively.
It enables continuous learning from distributed data while ensuring sensitive information remains
on local devices.

Recent years have seen growing interest in distributed, continuous learning approaches like FL,
driven by concerns over privacy and performance. FL is particularly valuable when local data privacy
is essential, such as with proprietary AIS data, or when hardware is insufficient to process massive
datasets, as with global AIS records. In this context, [26] proposes an FL-based anomaly detection
method for identifying unusual vessel movements. The resulting federated model is evaluated
against a centralised counterpart, focusing on data communication costs and model quality. An
experimental study showed that the federated model had only marginal variance compared to the
centralised model, while significantly reducing data communication costs. In [27], the authors present
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two variants of a vessel location forecasting model, one centralised and one federated, based on
LSTM. Although the centralised model achieved slightly better accuracy, tuning FL parameters
improved both local and global model performance, with communication costs reduced by up to 84%
using the FL approach.

Lastly, the authors of [28] propose a ship fuel consumption prediction model using a FL
approach. An LSTM network is trained using AIS data, noon reports, ship characteristics from 18
bulk carriers, and meteorological data. To enhance accuracy, Grey Wolf Optimization is applied for
hyperparameter tuning, while XGBoost is used for feature selection. Since different ships exhibit
varying feature importance, FL is employed to train local models for each vessel, which are then
federated into a global fuel consumption prediction model.

1.3. Proposed Solution

Predicting VID using AIS data is essential for addressing maritime challenges. Accurate
predictions enhance safety by identifying collision hotspots or helping vessels avoid congestion. Port
authorities can improve logistical planning, while environmental agencies can monitor high-traffic
zones to manage pollution. Security forces can target surveillance on high-risk areas to strengthen
maritime security. AIS datasets are characterized by their large volume and privacy limitations.
Nearly every vessel transmits AIS data at short intervals, typically tens to hundreds of seconds,
making AIS a true Big Data source with significant processing and analysis challenges. Additionally,
AIS enables near real-time vessel tracking, raising serious privacy concerns. These datasets are often
proprietary, owned by public or private entities that collect data from specific fleets or geographic
regions.

To tackle these limitations, the proposed solution uses several strategies. To manage its Big Data
nature, the approach uses vessel traffic densities instead of raw AIS records for training VID
predictive models. While density calculation is somewhat processing-intensive, it significantly
reduces data volumes and simplifies model training. Both density calculation and model training
occur in a distributed environment, where each local data provider trains a model on their own
hardware using smaller local datasets. These models are then aggregated via a FL architecture. A
central server receives model weights from clients and federates them into a global model. This global
model helps identify high-density traffic regions, which are more likely to experience collisions,
delays, or bottlenecks. Recognizing these areas enables targeted training of other predictive models,
such as collision detection or avoidance systems, using only data from dense traffic regions and
periods, reducing the need to train models on global-scale datasets.

On the other hand, and regarding AIS data privacy, the approach uses several privacy-
enhancing methods:

e EMODNet’s density calculation method is used to transform AIS data into grid-based density
maps, representing vessel traffic flows and densities while anonymizing individual vessel
tracks and routes.

e Density maps are then used to train local prediction models for each AIS dataset. Since the
models reflect the underlying data without directly exposing it, they can be shared without
disclosing explicit AIS information.

e  FLis applied to generate a global VID prediction model by aggregating local models, without
accessing proprietary or sensitive AIS data.

The proposed solution implements a lifelong learning cycle. Figure 1 shows five hypothetical
AIS data providers, each continuously supplying AIS data from different regions. In the first cycle,
each provider uses recent data (e.g., from the previous month) to calculate vessel traffic densities and
train local prediction models. Local model weights are sent to a central server and federated into a
global model. The resulting global model weights are then back-propagated to update local models.
In subsequent cycles, providers continue updating local models with new data and density
calculations, sending updated weights to the central server, which refines the global model and
redistributes the new federated weights. The integration of EMODNet’s VTD method, CNN-based
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local training, and model federation via FL represents a novel and disruptive approach in the current
literature.

This back-propagation approach keeps all local models synchronized with the global model,
allowing for the selection of the most accurate one. The choice between local or global model weights
is based on accuracy metrics: if a local model achieves better accuracy than the global model, its
weights are retained; otherwise, the global model’s weights are adopted for predicting local vessel
traffic densities. This selection scheme also applies to global model versions. If a newer version
outperforms its best predecessor in accuracy, its weights are backpropagated to the providers. If the
predecessor performs better, due to overfitting in the newer model, for instance, then its weights are
used instead. This ensures that providers always have access to the most accurate density predictions.
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Figure 1. Lifelong Federated Learning cycle for the proposed solution.

Section 1 outlined the research context and key challenges addressed and introduced the
proposed solution, along with a review of relevant state-of-the-art. Section 2 details the materials and
methods, including AIS datasets, development steps, and methods for VTD calculation, local model
training, and global model federation. Section 3 presents the evaluation results of model training and
federation. Finally, Section 4 discusses the outcomes, explores future research directions, and
concludes the study.

2. Materials and Methods

This section outlines the proposed solution’s processes, from data collection and pre-processing
to VID calculation using EMODNet’s method, density prediction model training, and global model
federation via FL.

2.1. Selected Datasets, Data Collection and Pre-Processing

Since public real-time AIS datasets are not easy to find, the selected approach is based on
historical data, which were divided into monthly batches. Three datasets were selected: the Brest
dataset (Brest coast and port area, France, Atlantic Ocean — Figure 2a) [29], the Kystverket dataset
(Oslo Fjord area, Norway, Baltic Sea — Figure 2b) [30] and the Piraeus dataset (Athens coast and port
area, Greece, Mediterranean Sea — Figure 2c) [31].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2399.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2025 d0i:10.20944/preprints202507.2399.v1

6 of 19

(a) (b) (0

Figure 2. Bounding boxes defining spatial boundaries for the three datasets: (a) Brest; (b) Kystverket; and (c)

Piraeus.

Although some datasets span multiple years, only one year was used from each. For Brest, only
six months, from October 2015 to March 2016, were used. For Piraeus and Kystverket, the whole year
of 2019 was selected. These datasets were chosen either because they are publicly available or fall
within the scope of the European Commission-funded HORIZON 2020 VesselAl project [32].

Each dataset originates from different sources and collection methods: Brest and Piraeus were
downloaded, while Kystverket was obtained via Application Programming Interface (API).
Although all were retrieved in Comma-Separated Values (CSV) format, each has a unique schema
and set of fields.

A data harmonisation step was applied to unify all datasets into a common schema, depicted in
Table 1, facilitating subsequent data processing tasks.

Table 1. Common database reference schema for the three AIS datasets.

Field Name Data Type Description
OID Object ID Unique identifier of the AIS message
MMSI Long Integer Vessel MMSI identifier

Lon Double WGS84 longitude value
Lat Double WGS84 latitude value

DateTime Timestamp Timestamp object of the AIS message
Sog Integer Speed over ground value in knots
Cog Integer Course over ground value in degrees

Heading Integer Heading value in degrees

In Table 1, “OID” is the unique identifier of each AIS message, “MMSI” (Maritime Mobile
Service Identity) identifies individual vessels, “Lat” and “Lon represent latitude and longitude in the
WGS84 reference system, “DateTime” is the AIS message’s UNIX timestamp, “Sog” is the vessel’s
speed over ground (knots) and “Cog” and “Heading” are, respectively, the vessel’s course over ground
and heading (degrees). After harmonisation, all datasets underwent a data cleaning process based on
the following steps: (i) Removal of duplicate messages, (ii) removal of irrelevant message types, as
described in [15], (iii) removal of missing or incomplete data, and (iv) removal of messages with
wrong or anomalous values, based on [15].

The cleaned and harmonised data was stored in a PostGreSQL relational database management
system [33] with the Geographic Information Systems (GIS) extension PostGIS [34] installed.

2.2. Vessel Traffic Density Calculation

The VID calculation was based on EMODNet’s Vessel Density Map method, which will be
presented in the following subsections.
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2.2.1. Defining the Area of Interest

The Area of Interest (Aol) defines the spatial boundaries of each dataset represented in Figure 2.
Each Aol is a four-sided polygon aligned with Earth’s curvature, with edges determined by the
minimum and maximum latitudes and longitudes of the respective dataset. Table 2 provides key
details about each dataset and its Aol, including the total spatial area in squared kilometres, the total
number of AIS messages, the average monthly message count, and the number of months covered.

Table 2. Dataset facts and figures.

Aol Total Area Total Number of Monthly Average Number of Months

Dataset (Km?) Messages Number of Messages
Brest 25.456 16.356.036 2.726.006 6
Piraeus 9.504 92.534.303 8.004.870 12
Kystverket 15.776 53.065.140 4.421.921 12

2.2.2. Creating a Grid

Grids are geographic bounding boxes divided into uniform square cells, defined using GIS
methods. Various cell sizes were tested, as each serves different analytical purposes and presents
trade-offs for VTD calculation. Smaller grid cells offer more detailed density insights but can degrade
calculation performance over large Aols and increase sparsity in the final dataset, posing challenges
for training prediction models (the sparsity challenge is discussed in later subsections). Conversely,
larger cells improve performance in both density calculation and model training but reduce spatial
detail, potentially offering an overly general view of vessel traffic.

Grid cell size selection is also influenced by datasets’ temporal characteristics, particularly span
and granularity. For shorter spans, such as one hour or one day, larger cell sizes are recommended
to avoid overly sparse density values due to fewer AIS messages, as opposed to a monthly span, for
instance. The recommended span also depends on the actual temporal granularity of the density
calculation, i.e., the time interval considered to calculate a specific cell's density. Lower granularity
(e.g., vessels passing through a cell over one week) yields denser values, while higher granularity
(e.g., one-minute intervals) increases sparsity, making prediction more challenging.

Multiple tests were conducted using different cell sizes, time spans, and granularities. Although
each Aol varies in size, a uniform grid cell size, temporal granularity, and time span across all datasets
is preferred. A balanced configuration, minimizing data sparsity while maintaining spatial detail,
was achieved using a one-month span, one-hour granularity and four-by-four-kilometre grid cells.
To define grid cells in kilometres, the distance-based ETRS89-LAEA Europe (EPSG:3035) coordinate
system was used. PostGIS transformation functions converted AIS coordinates from the original
angle-based WGS84 system (EPSG:4326) to ETRS89-LAEA.

PostGIS functions were used to define four-by-four-kilometre grid cells covering the Aols
presented in Figure 2 and to transform distance-based coordinates back to WGS84. Grid cell data
was stored in a new database table, the Grid table, which includes a cell identifier (“CellID”),
minimum and maximum latitudes and longitudes, and a geometry object (“Shape”) representing the
cell’s spatial polygon. Figure 3 depicts the resulting grids: (a) Brest, (b) Kystverket, and (c) Piraeus.
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Figure 3. Spatial grids for Brest (a), Kistverket (b) and Piraeus (c) datasets.

2.2.3. Creating Points and Lines

The next step involved creating tables for points and lines. Each point represents positional and
spatial data from each AIS message, while each line connects two temporally consecutive spatial
points from the same vessel, forming a straight-line segment. The Point table was generated by
processing AIS messages using a custom Python script, with its structure detailed in Table 3.

Table 3. Point database table reference.

Field Name Data Type Description
OID Object ID Unique identifier of the point
Shape Geometry POINT geometry object
MMSI Long Integer Vessel MMSI identifier
Lon Double WGS84 longitude
Lat Double WGS84 latitude
DateTime Date DATETIME object of the point
X1 Double LAEA longitude value
Y1 Double LAEA latitude value

In Table 3, “OID” is the unique identifier for each point, “Shape” is a PostGIS geometry object
generated from the vessel’s WGS84 coordinate, “Lat” and “Lon” represent the point’s latitude and
longitude, respectively. “MMSI” is the vessel’s unique identifier, “DateTime” represents the AIS
message’s timestamp, “X1” and “Y1” are horizontal and vertical coordinates in the LAEA reference
system, used to calculate distances in metres between consecutive points.

Once AIS data is processed and stored as points, the Point table is sorted by “MMSI” and
“DateTime.” A Python script processes the sorted data to generate Line data. For every two
consecutive Point records, the script creates and stores a Line record, structured as depicted in Table
4.

Table 4. Line database table reference.

Field Name Data Type Description
OID Object ID Unique identifier of the line
Shape Geometry LINE geometry object
MMSI Long Integer Vessel MMSI identifier
Lonl Double WGS84 longitude of point 1
Latl Double WGS84 latitude of point 1
Lon2 Double WGS84 longitude of point 2
Lat2 Double WGS84 latitude of point 2
LineTime Double Time difference (seconds) between point 1
DateTime and point 2 DateTime
ShapeLength Double Line length (meters) between point 1 and point 2
DateTimel Date DATETIME object of point 1

In Table 4, “OID” is the unique identifier for each line, “Shape” is the geometry generated by
PostGIS. “MMSI” is the vessel’s unique identifier. “X1” and “Y1” are the latitude and longitude of
the origin point, while “X2” and “Y2” are those of the destination point, in WGS84. “LineTime” is the
time in seconds the vessel takes to travel between the two points, based on the difference between
their “DateTime” values. “ShapeLength” is the line's length in metres, and “Datetimel” is the origin
point’s timestamp.
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2.2.4. Calculating Density

The EMODNet grid-based density calculation method [9] computes a density value for each grid
cell using the Line data described in the previous subsection. As noted earlier, the first step involves
generating a grid cell table. Each row includes a “CellID,” a unique index ranging from 0 to the total
number of cells minus one, and a “Shape” parameter, representing the geographic square polygon of
the cell based on its Earth surface position. The EMODNet’s density calculation method defines a
cell’s density, g, as a measure of the total time spent in the cell for all vessels that crossed that cell and
is calculated via Equation (1).

0 = (length in cell / total length ) * total time (1)

A new database table, Density, was created to store grid cell density values calculated using
Equation (1). It includes “CellID,” corresponding to the unique identifier from the Grid table; “Year,”
“Month,” “Day,” and “Hour,” indicating the time associated with each density value; and “Density,”
which stores the value o for the respective cell and time interval defined by the temporal granularity.
A stored procedure was developed in PostgreSQL to perform the following PostGIS-supported tasks:
(i) sort lines by MMSI, hour, day, month, and year; (ii) intersect lines from the Line table with Grid
cells using the “st_intersection” function; (iii) define a variable SEGLENGTH and compute segment
length using “st_length”; (iv) define SEGTIME and calculate segment time using Equation (2); (v) sum
segment times within each cell to derive g; and (vi) store the results in the Density table.

SEGTIME = ( SEGLENGTH / ShapeLength ) * LineTime ()

The resulting Density table represents a monthly aggregation of hourly density matrices, aligned
with the temporal span and granularity defined during grid definition. Each matrix’s dimensions
match the number of horizontal and vertical cells in the Aol grid. Figure 4 illustrates this structure.
For a 31-day month like March, there are 744 matrices. Matrix size varies by dataset (e.g., Brest has a

43x37 grid, Piraeus 23x27, and Kystverket 29x34).
l P——
I E—— —

Dayl Day 1 Day 1l Day 31
Hourl Hour2 Hour3 Hour 23

Y
Month

Figure 4. Monthly aggregation of hourly density matrices.

A key characteristic of these matrices is their sparsity, i.e., most cell density values are zero. This
results from two factors: vessel traffic typically follows specific routes or “sea highways,” leaving
most water-based cells with zero or near-zero density, except those along these routes; and squared
grids may include land-based cells, which always have zero density since AIS data is not recorded
on land.

A final note concerns hourly matrices composed entirely of zero-density values, typically due to
missing or cleaned AIS messages for the entire hour. For instance, in March 2019, the Piraeus dataset
yielded only 739 matrices instead of the expected 744, indicating 5 hours with no data available.
Given that it is highly unlikely for the Piraeus port area to have zero traffic during any hour, these
zero-density matrices are considered erroneous and were excluded prior to VID prediction model
training.

2.3. Training Local Vessel Traffic Density Prediction Models
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Based on current state-of-the-art, and to the best of the authors” knowledge, few studies focus
on predicting VID using Federated, Lifelong Learning or DL methods. Consequently, it is difficult
to rely on prior problem definitions. The authors examined the Density table’s characteristics to
identify parallels with advanced studies that could provide insights or inspiration. As shown in
Figure 4, each matrix represents the hourly cumulative density for a specific day and location, with
each cell corresponding to a spatial position. Density patterns in each cell are primarily influenced
by two factors: its own activity in the preceding hours and the activity in surrounding cells during
the same period. From another perspective, each hourly density matrix can be seen as a grayscale
image representing vessel traffic in the Aol at a specific time. In this interpretation, each cell acts as a
pixel with a single hue, the density value, unlike colour images, which have multiple hue values (e.g.,
Red, Green, Blue).

In this context, the task resembles an image processing-based next-frame prediction problem,
developing a model that transforms sparse input density matrices into future states of the same
shape, as a matrix-to-matrix transformation. This model aims to predict the future state of the density
grid while maintaining the same matrix shape. Each cell’s density depends on its previous state,
giving the data a time-series of images nature (Figure 5). Leveraging convolutional layers for spatial
feature extraction and temporal pattern learning is a promising approach.

CNN are designed to process grid-like data structures, such as images or matrices. As noted
earlier, an image is a grid of pixels, each holding brightness and colour values. For grayscale images,
each pixel contains a single value, mirroring matrix structures. The sparse matrices generated by
EMODNet’s density calculation can be interpreted as grayscale images in a time series with hourly
granularity, where each cell acts as a pixel representing vessel density.

—

Figure 5. VID prediction problem definition.

This approach was selected after a thorough evaluation of methods suited to the problem’s
characteristics defined in Figure 5, such as fixed matrix size and sparsity. The architecture, number
of convolutional layers, kernels per layer, and other hyperparameters were determined through
extensive experimentation with different CNN configurations. Hence, the authors deployed the
architecture presented in Figure 6, with four Conv2D convolutional layers’ shapes, comprising the
number of horizontal cells and the number of vertical cells of the density matrices generated for the
Brest dataset, along with each layer’s number of filters (respectively, 40, 20, 10 and 1 filter). All
convolutional layers use a 4x4 kernel and ReLu as the activation function, with the same padding
across layers to keep the original spatial structure of the input matrices.

The choice for such a simple architecture was mainly due to the limited number of matrices in
the prepared datasets (700 ~800) and to the need of efficiency of model training tasks in local on-
premises machines. Mean Squared Error (MSE) was the model's loss function applied and ADAM
the hyperparameter optimiser technique, with a learning rate of 1x10+. 3-fold cross-validation for
time-series data was employed to optimise the hyperparameters. The CNN architecture was
developed using Keras [35].
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Figure 6. CNN architecture for the Brest dataset.

This model performs a series of convolutional transformations on a grayscale 2D input to
produce a single-channel output, with the intention of performing image-to-image regression over
heatmap-like matrices.

2.4. Global Vessel Traffic Density Prediction Model Federation

Federated Learning (FL) is a decentralized machine learning approach that enables model
training across multiple devices without sharing raw data, preserving data privacy and supporting
localized training without requiring high-performance hardware. The process begins by training
local models on each data provider’s on-premises or cloud servers using local datasets. Instead of
sharing raw data, the local models’ weights, capturing the behaviour of local data, are sent to a central
server for aggregation using FL techniques.

This aggregation produces a global federated model that reflects the implicit behaviour of all
local models. The global model’s weights are then shared with local data providers and evaluated
against their local weights for prediction accuracy and error handling. Providers can choose to adopt
global weights or retain their local weights for future predictions and model updates. This iterative
process continually refines the global model, incorporating insights from diverse datasets.

This study adopts a horizontal FL approach to structure the server—client model and manage
data sharing. In horizontal FL, data is distributed across multiple devices or servers, each holding
different records but with the same feature set. A shared model is collaboratively trained without
exchanging raw data. Each device trains locally and sends only model updates to a central server for
aggregation. This approach is well-suited for privacy-sensitive contexts, as data remains on local
devices while still enabling collective learning. It is ideal for horizontally partitioned data, where each
device has distinct examples but identical features [36].

Several FL libraries were reviewed and tested to identify the best fit for the proposed solution
[37]. Flower [38], an open-source FL framework, proved most suitable due to its flexible, modular
architecture that supports integration with major ML frameworks like TensorFlow and PyTorch. Its
ability to handle slow or delayed clients and reduce model update sizes is particularly advantageous.
Additional strengths include cross-platform compatibility, adaptability to various devices, and
scalability to millions of clients. Figure 7 depicts the Flower-based FL client-server structure. During
scheduled communication, not all clients may be available, due to being offline or lacking data or
resources, thus the global model is updated using only the weights from available clients.
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Figure 7. Flower FL server-client architecture [38].

All clients in the pool can access the server’s aggregated parameters at any time. In the
architecture shown in Figure 7, a cyclical process unfolds (with a predefined or infinite number of
repetitions n, as in lifelong learning): (i) train/update local models offline; (ii) select available clients;
(iii) transmit local weight representations to the server; (iv) aggregate weights on the server using the
“FedAvg” function; (v) compare new global weights with previous best to select those for
dissemination; (vi) distribute global weights to all available clients; (vii) compare global and local
weights to choose the best for updating; (viii) repeat from step 1 for the next round. The Flower server
was deployed on a dedicated IP address accessible to clients, with three specialized clients handling
the Brest, Piraeus, and Kystverket datasets, each responsible for training and updating its CNN
model. While preprocessing steps and input structures may vary slightly across datasets, they share
a common network architecture. Each dataset was split into three segments: the first two used for
training, and the third for predicting the future grid.

3. Results

This section presents an evaluation of the results from both local and global model training. As
previously noted, density matrices are inherently sparse due to vessel routes and nearby land areas
lacking vessel presence. To address this, Sparse Mean Square Error (Sparse MSE) [39] was used as
the primary accuracy metric, focusing on prediction precision for non-zero cells, providing a more
meaningful evaluation of model performance in sparse contexts. First, to demonstrate the quality of
the CNN model depicted in Figure 6, the authors performed a comparison between the chosen model
and three other state-of-the-art approaches available in the literature, as presented in Table 5. The
comparison was made by training all models with a month worth of data extracted from the Piraeus
dataset. The selected month was the one in which the 4-layer CNN mode of Figure 7 presented the
best result.

Table 5. Prediction accuracy comparison between the 4-layer CNN model and three other state-of-the-art
models. The metric used is Sparse MSE. The “* means that, although the model presents the best SparseMSE

result, it has also really high computing infrastructure requirements.

Model Reference Sparse MSE (best)
4-layer CNN Figure 7 0.0028
CNN-LSTM Autoencoder [40] 0.00065*
Keras CNN-LSTM Autoencoder [41] 0.0323
Pyramid CNN Autoencoder [42] 0.0079

The 4-layer CNN model proposed in this work performs better than two of the state-of-the-art
models, in terms of Sparse MSE. The best-performing model is the one proposed in [40] but it presents
severe limitations in terms of model training performance, since it is a 11-layer CNN-LSTM with
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transformation steps between layers. The proposed 4-layer CNN outperforms most of the models in
terms of accuracy and presents a good balance in terms of computing performance and prediction
accuracy.

To determine convergence, each local CNN model was trained for 100 epochs. Figure 8 depicts
the Piraeus model’s training results over 100 epochs, with the horizontal axis representing epoch
count and the vertical axis showing training/validation loss (right) and Sparse MSE (left). The global
federated weights were sent back to local clients, where they were validated and compared with local
weights using Sparse MSE. Table 6 presents the validation results for both local and global Sparse
MSE across the three datasets. In the first iteration, the local models for Piraeus and Kystverket
outperformed the global model, though the differences were small. Conversely, the global model
performed better on the Brest dataset.

Table 6. Sparse MSE validation results for local and global models for the three datasets (first month of data).
Best result for each dataset is marked in bold.

Dataset Local Sparse MSE (first month) Global Sparse MSE (first month)
Brest 0.0312 0.0294
Piraeus 0.0030 0.0048
Kystverket 0.0023 0.0030

The discrepancy in results for the Brest dataset, along with higher error values for both local and
global models, stems from its characteristics. The Brest Aol is significantly larger —nearly four times
Piraeus and three times Kystverket—yet it contains only half the monthly AIS records of Kystverket
and a quarter of Piraeus (see Table 2). This results in much sparser density matrices, making accurate
VTD prediction more difficult. This situation mirrors the “not enough data” challenge in FL, where
clients with limited data benefit from aggregated global weights. This aligns with the results in Table
6, in which the global model outperforms the local model on Brest data, a trend that becomes more
evident in subsequent lifelong learning iterations.

Training and Validation sparse_mse Training and Validation Loss
- Taining Loss
40 Validation Loss
35
0j00048
30
25 0j00046
20
0{00044
15
10
0j00042
05
= Taining sparse_mse
00 Validation sparse_mse
= 0j00040
0 20 40 60 80 100 0 20 40 60 80 100

Figure 8. MSE loss (right) and Sparse MSE (left) values for training and validation of the Piraeus local model.

After the initial iteration, each subsequent round updated local models with one month of data.
Local weights were sent to the server to update the global model, whose new weights were then
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propagated back to clients and compared against updated local weights using Sparse MSE. The
better-performing weights, local or global, were retained for the next iteration. From the second
month onward, global weights generally outperformed local ones, with only minor exceptions. This
is well expressed in Table 7, which depicts the validation Sparse MSE results for both local and global
models during the best-performing month overall.

Table 7. Sparse MSE validation results for local and global models for the three datasets (best month). Best result
for each dataset is marked in bold.

Dataset Local Sparse MSE (best) Global Sparse MSE (best)
Brest 0.0276 0.0072
Piraeus 0.0028 0.0013
Kystverket 0.0018 0.0016

The results indicate that, overall, the global model improves through iterations and eventually
outperforms local models in predicting hourly VID across all Aols. Still, aside from the Brest case,
both local and global models yield low and closely aligned Sparse MSE values, demonstrating strong
predictive performance. However, ongoing testing with more data over multiple years is needed to
validate these findings, particularly to assess seasonality effects and potential overfitting in both local
and global models.

Figure 9 presents the VTD prediction grids for a sample hour in the month of March (i.e., third
iteration) for all three Aols: the left column represents the Brest Aol; the centre column represents the
Kystverket Aol; and the right column represents the Piraeus Aol

Local Ground Truth

Federated

° s 10 15 20 25 30 s 10 1s

Brest Kystverket Piraeus

Figure 9. Sample predictions from local and global models for the best-performing month (based on Sparse
MSE): ground truth (top), local model prediction (middle), and federated model prediction (bottom) for
Kystverket (left), Piraeus (centre), and Brest (right) datasets. The figures use a red-to-white colour gradient, with
darker reds denoting lower VTD and lighter shades indicating higher VTD values.

The top row shows the ground truth for the sample hour, while the middle and bottom rows
display the VID predictions from the local and global models, respectively. The outputs align with
the results in Table 7: (i) predictions for the Brest Aol are generally less accurate, though the federated
model outperforms the local one; (ii) for both Kystverket and Piraeus, local and global models
provide strong predictions, with the global model performing slightly better. As part of the European
Commission-funded VesselAl project, a visualization dashboard was developed using Apache
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Superset [43] to analyse and evaluate both models” results against ground truth data for specific
periods (e.g., day, hour).

4. Discussion and Conclusions

This work presents a novel, privacy-preserving, and performance-aware framework for VID
prediction using AIS data, integrating EMODNet’s standardised VID calculation with CNN- and FL-
based methods. The approach tackles two key maritime data science challenges: protecting
proprietary AIS information and managing the computational and storage demands of AIS Big Data.
A major strength is its FL-based distributed architecture, which decentralises model training across
local hardware, preserving data privacy and reducing reliance on centralised systems. By training
models near the data source and sharing only model weights, the approach cuts communication
overhead and infrastructure needs, offering a scalable, cost-effective alternative to traditional
centralised methods.

Empirical results show that the federated global model generally outperforms local models in
data-sparse regions while maintaining strong accuracy across all validation cases. This highlights the
approach’s effectiveness and adaptability across varying scenarios and data profiles, delivering
acceptable accuracy while preserving data privacy. A key challenge, however, lies in the high sparsity
of density matrices. Neural networks are typically optimised for rectangular inputs, making it
difficult to exclude land regions or isolate specific maritime routes. Attempts to reduce the Aol and
input size had limited success. Future work should investigate methods for processing non-
rectangular or irregular spatial inputs to better capture actual vessel traffic areas.

Another major challenge is the hardware-intensive and time-consuming nature of data
preparation and model training. Table 8 depicts the monthly average data volumes collected or
generated during these tasks. Pre-density processing, such as grid cell mapping and calculating
SEGLENGTH, SEGTIME, and @, produces significant data, often in the tens or hundreds of gigabytes.
Overcoming these bottlenecks and integrating more data over time within a lifelong learning
framework could greatly improve the global model’s predictive capability. Still, these challenges
reinforce the approach’s core advantage: distributing data preparation and training across local
clients while sharing only model weights, rather than centralizing these tasks and transmitting raw
data, offers clear scalability and efficiency benefits.

Table 8. Monthly average data volumes (collected or generated) for different stages of the data processing and

model training tasks, for the three Aols.

Data Type Brest Kystverket Piraeus
AIS Records ~108.79 MB ~340.48 MB ~304.48 MB
Pre-density ~49.21 GB ~455.69 GB ~87.21 GB
Density Matrices ~39.59 MB ~36.46 MB ~15.7 MB
Model Weights ~2MB ~2MB ~2MB

The resource-intensive processes are distributed, allowing clients to require fewer hardware
resources for local data processing and model training. Additionally, no explicit data is shared,
meeting clients’ privacy requirements. A third benefit arises from both goals: the proposed approach
significantly reduces data communication needs, as only model weights, not raw data, are exchanged
between clients and server. As seen in Table 8, model weights offer the most communication-efficient
option due to their smaller data volume, enabling faster transmissions within the FL client-server
architecture.

Implementing a true lifelong learning strategy on the server side is a crucial next step for
developing a more adaptable and competitive global model. This involves continuously aggregating
client updates, even when model architectures differ, to produce a refined, representative global
model. As the current approach used only one year of data, extending the deployment period may
introduce challenges such as detecting seasonality patterns or managing overfitting. Additionally,
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the present method updates local models monthly using hourly-resolution data. Future work should
explore lifelong learning-related challenges, along with alternative update frequencies and temporal
granularities, to enhance both performance and computational efficiency.

Finally, alternative methods and technologies should be explored. As models accumulate
knowledge, more advanced architectures like LSTM-CNN hybrids or Sparse GANs become viable.
LSTMs are effective for capturing temporal dependencies in time-series data, while Sparse GANs are
promising for modelling sparse datasets. Though these models could reduce Sparse MSE and
enhance prediction quality, they also increase computational demands, especially on the client side.
Additionally, for efficient model versioning and continuous learning, tools like MLFlow offer a
robust platform for storing, tracking, and managing both local and global models, as will be validated
during the AI-DAPT research project [44]. This enables clients to retain and compare historical model
versions across types and training periods. The proposed solution provides a solid foundation for
real-world maritime traffic forecasting, delivering actionable insights for safety, environmental
protection, and port logistics. Overall, this study effectively demonstrates how federated, distributed
Al can enable powerful predictive capabilities in privacy-sensitive, data-intensive domains like
global maritime operations.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

AIS Automatic Identification System

Aol Area of Interest

API Application Programming Interface

CNN Convolutional Neural Networks

csv Comma Separated Values

DL Deep Learning

EMODNet European Maritime Observation and Data Network
EPSG European Petroleum Survey Group

ETRS89 European Terrestrial Reference System 1989
FL Federated Learning

GANs Generative Adversarial Networks

GB Gigabytes

GIS Geographic Information Systems

IoT Internet of Things

P Internet Protocol

LAEA Lambert azimuthal equal-area projection
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LSTM Long Short-Term Memory

MB Megabytes

ML Machine Learning

MMSI Maritime Mobile Service Identity

MSE Mean Squared Error

UNCTAD United Nations Conference on Trade and Development
VID Vessel Traffic Density

WGS84 World Geodetic System 1984

XGBoost eXtreme Gradient Boosting
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