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Highlights:

What are the main findings?
• The L2 norm of Forecasting error can be used to effectively define a threshold and detect the FDIA.
• Simultaneous DoS and FDIA attacks degrade the accuracy of multi-label localization models.
What is the implication of the main finding?
• The hybrid parallel CNN and Bi-LSTM architecture provides high-accuracy forecasts of power

system behavior.
• The use of forecast error as an input enables accurate FDIA localization despite partial sensor

unavailability caused by DoS attacks.
• The proposed framework demonstrates resilience in real-time smart grid monitoring, enabling early

detection and localization of cyberattacks despite sensor-level disruptions.

Abstract: Smart grid (SG) is increasing in size and complexity with the integration of communication,
protection, and other innovative technologies. However, this integration has made SG vulnerable to
various new cyber threats, particularly false data injection attacks (FDIAs) and Denial of Service (DoS)
attacks. FDIA can deceive the grid operator by subtly corrupting measurement data and misleading
control decisions without being detected by the conventional bad data detection (BDD) methods of the
state estimation (SE) technique. In contrast, DoS attacks disrupt the availability of critical measurements
to mislead control decisions and undermine grid observability. The accurate real-time detection and
localization of FDIA and FDIA in the presence of DoS attacks are paramount for maintaining grid
reliability and efficiency. This paper presents a novel deep learning-based approach that combines a
CNN and a Bi-LSTM-based model for detecting FDIAs, along with a Random Forest(RF)-based model
for localizing them. The hybrid CNN and Bi-LSTM method captures both temporal patterns and
spatial correlations by learning from historical measurements and employs a threshold-based detection
mechanism to detect FDIAs. Meanwhile, the RF maps complex patterns in the forecast error to the
corresponding compromised sensor locations, in the process aiding or acting as a replacement for Bad
Data Detection (BDD) mechanisms. Unlike a conventional SE technique, this approach is data-driven
and does not rely on detailed knowledge of the grid topology. Tests on IEEE benchmark systems
show that our method achieves high accuracy and row accuracy (RACC) in identifying attacks and
pinpointing affected areas, even under conditions of partial observability caused by DoS. Moreover,
comparative analysis with existing deep learning models demonstrates that the proposed approach
achieves superior performance over current state-of-the-art methods reported in the literature. The
results underscore the potential of the proposed method for improving cybersecurity and situational
awareness in SGs.
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1. Introduction
The transition from conventional power grids to smart grids, often referred to as the next gen-

eration of the power grid, has been driven by the integration of Information and Communication
Technologies (ICTs). [1]. This evolution has fostered an automated energy delivery network with
bidirectional energy and information flow, distributed generation, self-healing, and pervasive control
[2]. The bidirectional information flow has led to the availability of big data in SG. Although it has nur-
tured real-time monitoring of the SG via Supervisory Control and Data Acquisition (SCADA) systems,
increasing the reliability and efficiency of the grid, it has made the SG vulnerable to various cyber
threats. SCADA periodically scans the voltage, active power, reactive power, and system topology at a
rate of 2 to 10 seconds to monitor the SG [3]. These measurements are also fed to the state estimator
for state estimation (SE), which estimates the unknown state variable in SG. The estimated states
play a vital role in various Energy Management System (EMS) applications such as optimal power
flow, economic dispatch, and security assessment [4]. The state estimator also includes the bad data
detector, which acts as a defense layer against cyber attacks. Despite these protections, the SG remains
susceptible to multiple classes of cyber attacks, particularly those that compromise data integrity and
availability, such as False Data Injection Attacks (FDIAs) and Denial of Service (DoS) attacks.

In recent years, several cyber attacks have reportedly targeted the smart grid [5]. As the energy
sector is a critical infrastructure, disruption of SG operations has severe economic consequences. In
the worst case, it can initiate a chain of events that results in the collapse of the grid. Cyberattacks
in SG generally fall into three main categories: component-wise attacks, which target individual
devices or systems; protocol-wise attacks, which exploit vulnerabilities in communication protocols;
and topology-wise attacks, which exploit vulnerabilities in network topology[6]. FDIA is a prevalent
and severe cybersecurity threat in SG [7]. FDIA aims to compromise the state estimation of SG by
introducing malicious data into meter readings. Although a random uncoordinated data injection
attack is immediately flagged by BDD, the careful crafting of the injected measurements can bypass
the conventional BDD of SE [8,9]. The attacker can perform FDIA and bypass BDD by modifying
the values of a small set of sensors with limited knowledge of the grid topology[10]. This stealthy
FDIA results in incorrect state prediction and leads to the imbalance of generation and load, ultimately
causing a system to collapse. On the other hand, DoS attacks disrupt the availability of the sensor’s
measurement, leading to partial observability of the grid [11]. When launched in tandem with FDIAs,
DoS attacks reduce redundancy in the measurement set, making it more difficult to detect stealthy
data manipulation.

FDIA poses a significant threat to SG, and its detection and mitigation have been the focus
of substantial research studies. FDIA detection approaches can be grouped primarily into model-
based and data-driven approaches. The model-based approach requires the complete topological
information and its mathematical formulation to estimate the states for BDD. In [12], the author
developed a Euclidean detector and Kalman filter estimator for FDIA. A chi-square test was suggested
in [13] for FDIA detection. Although model-based approaches offers real-time FDIA detection with
less computational burden, their dependencies on precise mathematical formulation cause various
uncertainties and disturbances[14]. Recently, data-driven approaches have gained traction in the
detection of FDIA due to their lack of dependency on system topology information. The data-driven
approach learns from historical measurements and employs the classification- or threshold-based
approach to detect FDIA [15]. In addition to FDIA detection, the localization of the FDIA attack is
instrumental in quickly isolating the compromised sensor and ensuring grid stability and reliability.
Various studies have followed the multi-label classification approach to accurately predict FDIA
locations [16].

In this paper, an online FDIA detection is proposed using a hybrid model that combines Convolu-
tional Neural Networks (CNN) and bidirectional Long Short Term Memory (Bi-LSTM). The proposed
model processes input in parallel by feeding data into separate CNN and Bi-LSTM blocks, leverag-
ing their strengths in handling temporal patterns and sequential dependencies. The hybrid parallel
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CNN-Bi-LSTM is used to forecast the measurements of the next timestep by learning from a historical
dataset. An appropriate threshold is carefully chosen to detect the presence of FDIA. Moreover, a
Random Forest (RF) is used to detect the location of the FDIA-poisoned sensors by training on the
error between the forecasted and actual measurements. The proposed framework is also extended
to operate under DoS scenarios to allow continued operation of the localization module. Our main
contributions are as follows.

• A novel data-driven CNN and Bi-LSTM-based model in conjunction with RF is introduced to
detect and localize FDIA attacks in SG. To the best of our knowledge, this study is the first to
utilize the proposed architecture in this particular research field.

• The proposed approach is universally applicable and does not rely on statistical assumptions
about the system parameters and attack model.

• The comparative analysis of our proposed model and other existing models for FDIA detection
and localization, reported in various literature, is done to showcase the effectiveness of our
proposed model in the IEEE 14 bus and IEEE 30 bus test systems.

• The framework is evaluated under standard FDIA conditions and scenarios where FDIA is
combined with DoS attacks, demonstrating its robustness under partial observability. This work
is among the few studies that jointly investigate the impact of FDIA and DoS in a unified detection
and localization framework.

The remainder of the article is organized as follows. Section 2 provides a comprehensive review of
the existing literature. The preliminary information is discussed in detail in Section 3. The framework
and architecture of the proposed model are presented in Section 4. The performance of the proposed
approach for various scenarios is described in Section 5. Finally, the paper is concluded in Section 6.

2. Related Works
The recent advancement in Artificial Intelligence has encouraged the adoption of various machine

learning (ML) and deep learning (DL) techniques to estimate the state, detect, and localize FDIA. This
section contains a brief summary of the related works. The authors in [17] investigated the viability of
the Feed Forward Neural Networks (FFNNs) and LSTM to estimate the state of the IEEE 14 bus and
IEEE 118 bus. The author concluded that the LSTM is superior to FFNNs, WLS, and WLAV against
FDIA-poisoned data. A stacked ResNetD method was proposed as an alternative to the state estimator
in [18]. The stacked ResNetD outperformed the MLP, CNN, and ProlNet DL techniques to predict the
states of the various IEEE benchmarks. In [19], the author proposed exponential GPR over medium
Gaussian SVM and fine Gaussian SVM for state estimation using data-driven techniques. However,
these studies lacked the implementation of BDD to detect FDIA. In [20], the principal component
analysis (PCA) is used to set the optimal threshold of 2.98e-5 to detect the FDIA in the IEEE 118 bus.
They reported that PCA is better at detecting BDD than SVM. The authors in [21] concluded that the
Stacked Auto Encoder (SAE) was superior to SVM by detecting the 11 anomaly states in contrast to
the six anomaly states in several IEEE benchmarks. Although the above approaches are superior to
the support vector machine (SVM) technique, their performance is not compared with various DL
models. In [22], the author has utilized the hybrid Transformer and LSTM-based architecture to detect
and localize the FDIA for hourly and minute data from the IEEE 14 bus system. The proposed model
uses the threshold to detect FDIA, but it suffers from the problem of low RACC. The author proposed
a Maximum A Posteriori (MAP) approach using sparsity priors to estimate the attack vector, and
the likelihood of the data being normal or under FDIA is modeled using a Gaussian Mixture Model
(GMM) in [23]. However, this algorithm is iterative and alternates between MAP and GMM steps in
an Expectation-Maximization-like fashion for localization, which is computationally burdensome.

In the last decade, the localization of FDIA has been framed as a multilabel classification problem.
The multilabel classification approach enables each feature to have its own binary or categorical labels,
where each label is independent. One of the earliest works includes multilabel classification using CNN
[16]. A CNN-based FDIA location detection algorithm was proposed as a complementary technology
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to BDD, compared to MLP and LightGBM. The author concluded that CNN is more accurate and
scalable by comparing its performance in the IEEE 14 and IEEE 118 buses. In [24], the author reinforced
the superior performance of CNN but concluded that the Exiting Mechanism and Mixed-Precision
Quantization (EE-MPQ) is time efficient for the evaluation of IEEE 14 and 118 bus systems. The author
proposed a hybrid SVM and CNN-based architecture [25], where SVM merges the spatiotemporal
CNN’s output. They applied Gradient-weighted Class Activation mapping (Grad-CAM) for better
localization and interpretability. However, they pointed out its drawbacks in detecting new zero-day
attacks. In [26], the author proposed a spatio-temporal sequence analysis by combining outputs of the
Gated Temporal Convolutional Network (GTCN) and the GCN to localize the attack in a Renewable
Energy (RE) rich grid. The author investigated the spectral Graphical Neural Network (GNN) using
Auto-Regressive Moving Average (ARMA) filters to locate the FDIA across IEEE 57-, 118-, and 300-bus
systems [27]. The author in [28] proposed the Recursive Variational Graph Autoencoder (ReVGAE),
which uses a Graph Convolutional Network (GCN) as an encoder and decoder to reconstruct data and
topology, and denoising. The evaluation of ReVGAE on the IEEE 14 bus generated the ROC-AUC curve
of 0.9667. In [29], FDIA is localized by constructing a causality graph assuming that FDIA disrupts
the expected causal links. A Graph Attention Network learns attention-weighted node embeddings
to highlight suspicious measurements, but this method is very sensitive to noise and non-stationary
conditions. In the aforementioned algorithms, topology information was the prerequisite to locate the
attacks.

In addition to standalone FDIA, few recent studies have investigated the combined impact
of Denial-of-Service (DoS) and False Data Injection Attacks (FDIA), representing a more realistic
and dangerous threat model in smart grids. These hybrid attacks aim to degrade the system’s
observability by blocking sensor data while simultaneously injecting malicious measurements and
confusing detection mechanisms. The authors in [30] proposed a sliding mode observer to co-estimate
states and FDI attacks in multi-area load frequency control systems, where they introduced an attack
compensation controller to mitigate hybrid attack impacts. Similarly, the study in [31] designed a
resilient observer-based controller for stochastic systems to maintain performance under coordinated
DoS and FDIA attacks using a Markov jump framework. In the context of DC microgrids, [32]
presented a fuzzy switching-type estimator and compensator, while [33] incorporated event-triggered
mechanisms to minimize communication overhead during hybrid attack mitigation. A distributed
approach was employed in [34] to jointly estimate system states and attacks under multiple adversarial
strategies without centralized control. Despite their strengths, most of these methods focus on either
control, with limited work tackling the detection and localization of FDIA during DoS-induced
observability loss. In [35], the authors employed an attention-enhanced Temporal Convolutional
Denoising Autoencoder (TCDAE) combined with an MLP to detect and reconstruct FDIA under
combined DoS and FDIA conditions. In contrast, [36] proposed a Graph-based TCDAE model to
handle missing data, identify network topology, and localize FDIA simultaneously. Both works focus
on distributed networks, and they did not explicitly consider Row Accuracy (RACC), which is critical
for evaluating localization reliability in multi-label settings, as a model may exhibit high overall
accuracy despite poor localization performance. This broader gap is addressed by our proposed
CNN–BiLSTM–RF framework, which is tailored for transmission networks and explicitly accounts for
key performance metrics such as RACC, enabling robust and scalable FDIA detection and localization
during limited sensor visibility.

In SG, the measurement of each sensor exhibits both spatial and temporal correlations due to the
interdependence among sensors and the time-varying nature of load dynamics. While CNN effectively
captures spatial patterns and local dependencies across correlated measurements, Bi-LSTM networks
are more suitable for capturing temporal dependencies. By training on historical data, the CNN
and Bi-LSTM hybrid model leverages both spatial and temporal features, enabling robust detection
and localization of stealthy FDIAs under complete and partial observability, as demonstrated by our
experimental results.
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3. Preliminaries
3.1. State Estimation

SE is the process of determining the unknown states of the grids from the known variables or
measurements collected from existing sensors [37]. SE can be framed as an unconstrained optimization
problem, where the power flow equations are used to relate the measurement vector[38]. The SG can
be analyzed using either AC power or DC power flow analysis. In an AC power flow analysis, the
magnitude and angles of voltage and/or currents are used, as opposed to the DC power flow analysis,
where the voltage magnitude is assumed to be constant and only voltage phase angles of the buses
are considered [39]. AC power flow analysis is a more accurate representation of today’s SG, but it is
computationally heavy and raises the issue of nonlinearity [22]. In contrast, DC power flow analysis is
simple and commonly used for real-time operations, so we have considered the DC linearized state
estimation method for power flow analysis with n + 1 buses and t transmission lines. Equation (1)
shows the relationship between the state vector and the measurement vector.

z = h(x) + e (1)

Here, z = {z1, . . . , zm} ∈ Rm is the measurement vector, x = {x1, . . . , xn} ∈ Rn is the state
vector, h(x) = {h1(x), . . . , hm(k)} is the nonlinear measurement function that relates the state and the
measurement vector, and e is the Gaussian noise of shape m× 1. For the linearized DC power flow
assumption, the equation modifies to:

z = Hx + e (2)

Here, H ∈ Rm×n represents the Jacobian matrix and m ≥ n. The solution to Equation (2) can be
found using Equation (3).

x̂ = (HTWH)−1HTWz (3)

Here, x̂ is the state vector when e has a zero mean distribution, and W is the diagonal matrix. For
the zero-mean distribution of e, ẑ = h(x̂) is the measurement estimate. The conventional SE detects
malicious data injection with the help of BDD techniques. In a BDD, the residual (R) between the
state estimates and the observed measurement vector is compared with predefined thresholds τ to
determine bad data, as shown in Equation (4).

R = ∥z− h(x̂)∥ ≥ τ (4)

Bad data occurs mainly due to measurement errors such as meter biases, faulty connections,
incorrect topology information, and unforeseen noise [40]. These errors do not follow an expected
Gaussian distribution, generating a larger error than the threshold, which BDD immediately flags.

3.2. False Data Injection Attack

FDIA is designed to bypass BDD by adding erroneous data to the actual measurements, resulting
in a change in the state variable of the system [41]. If a is the injected measurement such that a = Hc
where c ̸= 0 ∈ Rn, the observed measurement vector is denoted by Equation (5).

ẑ = z + a (5)

The stealthy FDIA occurs if the residual of the modified measurement vectors is equal to the
residual of the original measurement vectors, as shown in Equation (6). For stealthy FDIA, the attacker
can craft the injected measurement with complete or partial knowledge of the H matrix using min-cut
methods [42].

∥ẑ− Hx̂∥ = ∥z + a− H(x + c)∥ = ∥z− Hx∥ (6)
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3.3. DoS

DoS attack disrupts the availability of the sensor measurements by overwhelming or blocking
access to the sensor. The DoS attack can be induced by network flooding, jamming attack, protocol
exploitation, and physical isolation of sensors. Let xt ∈ Rd represent the system measurement vector at
time t, where N is the total number of sensors. A binary mask vector m ∈ {0, 1}N is defined such that:

m(i) =

1, if sensor i is not under DoS attack

0, if sensor i is under DoS attack
(7)

The observed measurement vector in the presence of a DoS attack will be:

m(i) = x̃ = m⊙ x (8)

Here, ⊙ denotes element-wise multiplication. The binary mask m ∈ {0, 1}d effectively zeros out the
measurements from the sensors under attack, simulating the effect of a DoS event.

3.4. CNN

CNN was initially proposed for large-scale image processing [43], but is as effective for analyzing
time-series data due to its ability to extract local patterns. Since power system measurements are
multivariate sequential data, 1D CNN is mostly used in SG applications. In 1D CNN, the input consists
of a sequence with n timesteps, where each timestep contains multiple features. The model applies
a set of 1D convolutional filters with a predefined window size, sliding over the input sequence at
fixed strides. Each convolutional layer is typically followed by batch normalization and a nonlinear
transformation using the Rectified Linear Unit (ReLU) activation function. This process generates
feature maps that capture local patterns across multiple timesteps and all features. If the network
includes L convolutional layers, the first convolution operation applied to the multivariate input
sequence z can be mathematically represented as Equation (7) [16].

c1,j = ReLU(z ∗ h1,j + b1,j) (9)

Here C1,j is the output feature map of the first convolutional layer, h1,j is the j-th kernel, and b1,j is
the bias added to the output, and ∗ represents theconvolution operation. Rectified Linear Unit (ReLU)
is the activation function adopted to encode the nonlinearity associated with the input kernels. The
output after the Pth convolutional layer is as follows.

cP,j = ReLU(cP−1,j ∗ h1,j + b1,j) (10)

The batch normalization operation is performed to stabilize and accelerate training by normalizing
the intermediate feature maps. It rescales and recenters the data within each mini-batch to have zero
mean and unit variance, followed by learnable shift and scale parameters to preserve representational
capacity. The global average pooling operation is used to reduce each feature map to a single value
by computing the average of all its activations. This down-sampling method preserves the spatially
aggregated information while significantly reducing the number of parameters, thus mitigating
overfitting. The structure of CNN is shown in Figure 1.

Figure 1. Structure of CNN.
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3.5. Bi-LSTM

Long Short-Term Memory (LSTM) networks were originally proposed to model long-range
dependencies in sequential data by mitigating vanishing gradient issues [44]. Bidirectional LSTM
(BiLSTM) extends the standard LSTM by processing the input sequence in both forward and backward
directions, allowing the model to capture context from past and future timesteps [45]. Since power
system measurements are temporal and multivariate in nature, BiLSTM has enormous potential
in Smart Grid (SG) applications for sequence modeling. To completely comprehend Bi-LSTM, we
must first understand the fundamentals of the LSTM architecture. LSTMs extend standard RNNs by
introducing a memory cell mechanism that captures long-term dependencies in sequential data. This
is achieved through gating mechanisms, including the forget, input, and output gates. The forget gate
determines which part of the past memory should be discarded, the input gate regulates the addition
of new information, and the output gate controls what information is passed to the next hidden state.
The cell state is updated by combining the retained memory and the new candidate values. At each
time step t, the LSTM cell takes the input xt, the previous hidden state ht−1, and the previous cell state
ct−1. The memory cell and hidden state are updated using Equations (9) and (10), respectively [46]:

ct = ft · ct−1 + gt · it (11)

ht = ot · β(ct) (12)

Each gate is computed as follows:

it = σ(Wixt + Riht−1 + bi) (13)

ft = σ(W f xt + R f ht−1 + b f ) (14)

gt = β(Wgxt + Rght−1 + bg) (15)

ot = σ(Woxt + Roht−1 + bo) (16)

Here, it, ft, gt, and ot are the input gate, forget gate, input node, and output gate, respectively.
Wi, W f , Wg, and Wo denote the weight matrices corresponding to the respective inputs and hidden
states of the network’s activation functions. The operator ’.’ indicates element-wise multiplication. The
function σ represents the sigmoid activation, while ϕ denotes the hyperbolic tangent (tanh) function.
The structure of a single LSTM block is shown in Figure 2.

Figure 2. Structure of an LSTM block.

The BiLSTM consists of two independent LSTM layers that process the input sequence in forward
and backward directions. In a BiLSTM network, the input consists of a sequence with n timesteps,
where each timestep contains multiple features. The forward LSTM processes the sequence from t = 1
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to n, while the backward LSTM processes it from t = n to 1. The outputs from both directions are
concatenated at each timestep to form the final hidden-state representation. This structure enables
the model to learn temporal dependencies in both directions, improving performance in forecasting,
anomaly detection, and event classification tasks. The structure of the Bi-LSTM block is shown in
Figure 3.

Figure 3. Structure of a Bi-LSTM block.

At each time step t, the forward LSTM computes the hidden state
−→
ht based on the previous

forward hidden state
−−→
ht−1 and the current input xt, while the backward LSTM computes the hidden

state
←−
ht based on the subsequent backward hidden state

←−−
ht+1 and the same input xt. Although the

parameters of the forward and backward LSTM are independent, both directions share the same input
embedding sequence as shown in Equations (17) and (18).

−→
ht = LSTMfwd(xt,

−−→
ht−1) (17)

←−
ht = LSTMbwd(xt,

←−−
ht+1) (18)

The final hidden state of the BiLSTM at timestep t is obtained by concatenating the hidden states from
both directions as shown in equations below.

ht = [
−→
ht ;
←−
ht ] (19)

3.6. RF

A random forest, a supervised ML technique, consists of multiple decision trees h(x, k), where
k = 1, 2, . . . , T trees, a unique independent vector θ(k), and a dataset of N instances. Each tree is
constructed with bootstrap samples. Bootstrap Aggregation is a sampling technique in which multiple
datasets are generated by random sampling and replacing samples from the original dataset until
the sampled size equals the original dataset size [47]. If there are M features, m features (m < M)

are randomly selected at each node, but the value of m is consistent for all trees in the forest. The
division of the node is based on the Gini impurity, as shown in the equations below. The trees grow to
the maximum depth unless they are constrained by node size, which controls a minimum number of
samples in a leaf node or the minimum samples per leaf. The split continues until the node is pure,
and the final output is obtained by averaging the output of each tree for regression or majority voting
across all trees for classification.

Gini(D) = 1−
m

∑
i=1

P2
i (20)

Ginis =
|D1|
|D| · Gini(D1) + · · ·+

|Do|
|D| · Gini(Do) (21)
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Here, Gini(D) is the Gini index before the split, Pi = d/D, d is the total sample that exists in the D
datasets, Ginis is the Gini index after the split, and D1 and D0 are the subsets of D. The schematic
diagram of the random forest is shown in Figure 4.

Figure 4. Schematic diagram of Random Forest [48].

4. Methodology
This section provides details on the FDIA detection and localization scheme. In addition, it

outlines the proposed hybrid ML architecture.

4.1. Proposed FDIA Detection and Localization Scheme

The FDIA detection using ML techniques is commonly framed as a binary classification task,
in which the labels can be either 0 or 1. An alternative to the binary classification approach is to
implement threshold-based detection using ML techniques. In our proposed approach, we train a
hybrid ML-based forecasting module on historical measurements offline. The forecasting module
is trained only on normal data to forecast the variables for the next time steps, and a threshold is
extracted for BDD based on the forecast outputs, as shown in Equation (22).

|E| =
√

e2
1 + e2

2 + · · ·+ e2
N (22)

Here, eN is the error between the Nth forecast variable and the corresponding observed variable.
The E represents the Euclidean norm of a vector E between the forecasted and observed variables.
For the detection of FDIA in the first stage, the Euclidean norm of observed variables is compared
with the threshold to detect FDIA. The threshold-based approach is used as the first stage of detection
and is widely reported in various literature [20,22]. The FDIA localization using ML techniques is
framed as a multilabel task. In this approach, each label is independent of the others and can have
binary or categorical labels [49]. The multilabel classification is data-driven and does not require any
information on grid topology or Jacobian matrix H. In our proposed approach, the error between the
forecast and the observed input is fed to another ML classifier to identify whether the variable from
each sensor is under attack. In the presence of a DoS attack, the sensor is out of operation and does not
report any measurements. In such a scenario, the forecast output is considered as an observed output
for the corresponding sensors under attack. The modified variables are fed to the Bad Data Detector
to evaluate the presence of FDIA. In addition, these outputs are fed to the location detection module
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or multilabel classifier to localize the FDIA. This evaluation of the observed data, regardless of the
triggering of BDD, creates redundancy and enhances the detection and localization of the FDIA. In
the presence of FDIA, the FDIA alarm, normal variables, and forecast variables are sent to SCADA,
allowing the grid operator to make an informed decision. The flow chart of the proposed scheme is
shown in Figure 5.

Figure 5. Framework of FDIA detection and Localization.

4.2. Proposed ML Architecture

1D CNN has been widely used in various literature due to its better performance in the time-
series classification task [50,51]. On the other hand, Bi-LSTM has been found to be effective in
Natural Language Processing [52] and anomaly detection tasks [53,54]. The CNN-Bi-LSTM architecture
proposed for forecasting variables for the next time step is shown in Figure 6. The proposed architecture
consists of a 1D-CNN in parallel with a 1-layer Bi-LSTM network. The CNN layer is followed by batch
normalization, ReLU activation, and Global Average pooling, while the Bi-LSTM layer is followed by
the Dropout layer. The output of both dropout and global pooling is concatenated and fed to the dense
layer. Batch normalization speeds up the training and stabilizes learning by normalizing activations
in each minibatch. The ReLU adds non-linearity to the model and prevents the vanishing gradient
problem. Global Average pooling takes the average value from each feature map and reduces its
dimensionality in the process, reducing the parameters and preventing overfitting. The dropout layer
prevents overfitting by randomly disabling some neurons during training. The proposed architecture
demonstrated strong effectiveness for the forecasting task, as evident in the results section. The FDIA
localization is done using RF. The input for the RF is the error between the forecasted and observed
measurements. The output of the RF is either 0 for normal measurement or 1 for FDIA.
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Figure 6. Architecture of Forecasting and FDIA detection Module.

4.3. Dataset

The energy sector is the critical infrastructure, and there is little to no publicly available dataset
due to privacy and security concerns. The hourly dataset used in this paper was taken from [55], and
the load profile for the dataset is taken from [56]. The dataset was generated using DC state estimation
and made publicly available; however, our proposed framework for detection and localization is
also applicable to AC state estimation. The normal dataset consists of 8760 samples along with 54
features for the IEEE 14 bus system. The Gaussian noise, up to 4% of the true value, was added to the
normal measurement to mimic the presence of real-world noise. The dataset comprises 54 features,
each corresponding to specific measurements within the IEEE 14-bus system. The initial 20 features
capture the forward power flow across transmission lines, the subsequent 20 reflect the reverse flow
on those same lines, and the remaining 14 features represent the power consumption at each of the 14
buses. This study employs an attack vector dataset originally presented in [57]. In addition, the attack
vectors in the dataset were scaled further by 1/2, 1/4, and 1/8 to generate more stealthier attacks.
For a = Hc ⇒ γa = Hγc and a′ = γa, where γ ∈ R, is also a valid stealthy attack vector. Figure 7
presents the sensor measurements at a randomly selected timestep under different γ-scaled attack
scenarios using the sparsest attack vector.

Figure 7. Architecture of Forecasting and FDIA detection Module.

4.4. Training Procedure

The proposed FDIA detection framework consists of two key modules: a forecasting-based
anomaly detection module and a location detection module. The forecasting module uses a hybrid
1D-CNN and Bi-LSTM architecture that exploits both spatial and temporal features in multivariate
time-series measurements from the power grid.

The input to the forecasting module is a sequence of past system measurements over a fixed
window of 48 hours, denoted by X ∈ R48×M, where M is the total number of sensors. The CNN branch
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applies a one-dimensional convolutional layer with 128 filters, a kernel size of 3, and ‘same’ padding.
The output undergoes batch normalization, followed by ReLU activation and global average pooling.
In parallel, the BiLSTM branch contains 128 units and is followed by a dropout layer with a dropout
rate of 0.2 to prevent overfitting. The outputs from both branches are concatenated and passed through
a dense layer of 128 ReLU-activated neurons before finally projecting onto an output layer of size
M, providing the forecasted sensor values for the next hour. The model is trained using the Adam
optimizer with a learning rate of 1e− 4, a batch size of 32, and a validation split of 10%. Early stopping
is applied with a patience of 10 epochs to prevent overfitting.

Formally, let ŷ ∈ RM denote the predicted sensor measurements and y ∈ RM represent the actual
observed measurements. The forecasting error is calculated as e = |ŷ− y|. The L2-norm of the error
vector is then computed using Equation (17). Anomaly detection is performed by comparing this
norm with a dynamic threshold τ, determined using the 100th percentile of L2-norm values under
benign (non-attacked) conditions, with a safety margin ϵ = 0.02. If ∥e∥2 > τ, the sample is flagged as
anomalous, indicating the likely presence of an FDIA.

To localize the compromised sensors, the error vector e is passed to a Random Forest (RF)-based
multilabel classifier. Each sensor i ∈ {1, 2, . . . , M} is associated with a binary output pi ∈ {0, 1},
where 1 indicates that the sensor is under attack. The RF classifier is trained using a one-vs-rest
strategy, where the ground truth label vector p ∈ {0, 1}M indicates the attack status of each sensor.
The Random Forest consists of 100 estimators per sensor-specific classifier, each trained independently
on the forecast error features. During testing, the model outputs a multilabel prediction p̂ ∈ {0, 1}M,
indicating the attack status per sensor.

For the CNN–Bi-LSTM forecasting module, the Mean Squared Error (MSE) loss is employed
to minimize the difference between the predicted and actual sensor values over the training set.
This regression loss function effectively penalizes large deviations and ensures accurate short-term
forecasting. For the RF-based model, each sensor’s classifier is trained to minimize classification
impurity (e.g., Gini index or entropy) using forecast error features e as input.

4.5. Performance Evaluation Metrics

To comprehensively assess the effectiveness of the False Data Injection Attack (FDIA) detection
framework, we employ a suite of both regression and classification metrics. These metrics evaluate the
forecasting performance of the False Positive Detection Module (FPDM) and its ability to detect the
presence and location of attacks accurately.

4.5.1. Forecasting Accuracy Metrics

The forecasting capability of the FPDM is quantified using three standard error metrics: Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). Additionally,
the Coefficient of Determination (R2) is used to measure the proportion of variance in the true values
that is predictable from the model’s outputs . Let yi and ŷi represent the actual and predicted values,
respectively, and n denote the number of samples. The metrics are defined as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (23)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (24)

RMSE =
√

MSE (25)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (26)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 June 2025 doi:10.20944/preprints202506.0817.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0817.v1
http://creativecommons.org/licenses/by/4.0/


13 of 23

4.5.2. Attack Detection Metrics

To evaluate the classification performance of the FPDM in detecting attack presence, we compute
Accuracy, Precision, Recall, and F1-Score based on the confusion matrix components: True Positives
(TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). These quantities are defined
as follows:

• TP: Number of correctly detected compromised samples
• FP: Number of benign samples incorrectly labeled as compromised
• TN: Number of correctly detected benign samples
• FN: Number of compromised samples incorrectly labeled as benign

The evaluation metrics are then given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(27)

Precision =
TP

TP + FP
(28)

Recall =
TP

TP + FN
(29)

F1-Score = 2 · Precision · Recall
Precision + Recall

(30)

4.5.3. Row-wise Accuracy (RACC)

In the context of multi-label attack localization, a stricter evaluation metric, RACC, is used [22].
This metric considers a prediction to be correct only if all sensor labels in a given row (sample) match
exactly with the corresponding ground-truth labels. Let yi ∈ {0, 1}m and ŷi ∈ {0, 1}m denote the true
and predicted binary vectors for the m sensors in the sample i, and n be the total number of samples.
RACC is defined as:

RACC =
1
n

n

∑
i=1

1[yi = ŷi] (31)

Here, 1[·] is the indicator function, which returns 1 if the prediction matches exactly and 0
otherwise.

5. Simulation Results
The systems considered in this study are the IEEE 14-bus and IEEE 30-bus test systems. For each

scenario, the models were trained using an identical dataset comprising 7,992 samples. The final 720
samples, which were not seen during training, were reserved as the test dataset to evaluate model
performance on unseen data.

5.1. Scenario 1: FDIA Detection and Location Module in IEEE 14 Bus System

In the first case, we investigated the performance of the proposed forecasting model for the IEEE
14 bus system. The generation of the dataset and the explanation of the attack vectors are described in
detail in Section 4. We used a scaling factor of γ = 1 for the strength of the attack vectors. In the first
stage of the proposed framework, we trained the novel hybrid CNN and Bi-LSTM-based ML model to
forecast the system variables for the next timestep. Table 1 shows the performance of the proposed
method compared to the state-of-the-art model for forecasting.
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Table 1. Performance comparison of the Forecasting Module.

Model MAE MSE RMSE R2

CNN 10.2596 276.8111 12.1323 N/A
CNN-Transformer 2.5116 16.7532 3.1835 N/A

Transformer 10.2524 281.6116 12.2238 N/A
CNN-LSTM 1.5055 6.0333 1.9447 N/A

Transformer-LSTM 0.9866 2.4492 1.2365 N/A
AE(CNN)-LSTM 0.0259 0.0012 0.0353 0.9559

AE(CNN)-Bi-LSTM 0.0245 0.0011 0.0336 0.9587
Bi-LSTM 0.0232 0.0009 0.0304 0.9606

Proposed Model 0.0072 0.0001 0.0094 0.9797

The proposed model outperformed the CNN, CNN-Transformer, CNN-LSTM, and Transformer-
LSTM architectures reported in [22]. Although Bi-LSTM, CNN-based Autoencoder, and LSTM or
Bi-LSTM-based decoder variants demonstrated improved performance, the proposed model achieved
the highest forecasting accuracy overall. Figure 8 shows the comparison between actual and forecasted
measurements for sensor 17 over the unseen test horizon to evaluate the temporal generalization
capability of the proposed model. The close alignment between predicted and true values demonstrates
the model’s ability to maintain forecasting accuracy for unseen test data. Figure 9 illustrates the
comparison between the proposed model’s forecast and actual measurements at an 8030 timestep,
with a zoomed-in view highlighting three consecutive sensors and their respective absolute errors. The
threshold for FDIA detection was determined based on the forecasting error, as defined in Equation
(22). Table 2 presents the performance comparison of various models using this thresholding approach.

Figure 8. Sensor 17 - Actual vs Forecasted Power on Unseen Test Data.
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Figure 9. Sensor 17 - Actual vs Forecasted Power at 8030 timestep.

Table 2. Performance comparison of FDI detection model using Thresholds.

Model Threshold Precision Recall F1-Score

CNN 1.25 0.7632 0.8129 0.7534
CNN-Transformer 1.00 0.9516 0.9547 0.9515

Transformer 1.25 0.7379 0.7989 0.7284
CNN-LSTM 0.4 0.9893 0.9893 0.9893

XTM (Transformer-LSTM) 0.4 0.9962 0.9962 0.9962
AE(CNN)-LSTM 0.4155 0.99 0.994 0.992

AE(CNN)-Bi-LSTM 0.42 0.99 0.99 0.992
Bi-LSTM 0.3820 0.99 0.992 0.991

Proposed Model 0.1534 1 1 1

Each model’s optimal threshold value was determined to maximize detection performance. For
the proposed model, we added a 0.02 margin to the maximum L2 norm observed in benign samples
to reduce the risk of false negatives. The proposed model achieved perfect precision, recall, and
F1-score for the IEEE 14 bus system. This robustness makes it highly suitable for deployment in
critical infrastructure environments for smaller transmission systems. The detection performance of
the proposed model is further illustrated in Figure 10, which shows the L2 norm distribution of the
normal and attacked test samples along with the selected detection threshold.

Figure 10. FDIA detection using L2 Norm Error on Unseen Test Data.

Following threshold-based FDIA detection, localization of the compromised sensors was per-
formed using multi-label classification models, namely an MLP and a Random Forest. The input
to these models consisted of the error vectors derived from the difference between forecasted and
observed measurements, enabling sensor-level identification of tampered signals. Table 3 presents a
comparative analysis between the proposed multi-label MLP model and a Random Forest (RF) clas-
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sifier to evaluate their effectiveness in FDIA localization. Although time-series classification models
were initially considered, their performance was significantly lower in accuracy. Moreover, due to the
requirement for real-time inference, the problem was reframed as a multi-label classification task based
on forecast error vectors. Consequently, we focus our analysis on the two best-performing models
suited for rapid, sensor-level attack localization.

Table 3. Performance comparison for FDIA localization on Unseen Test Data.

Model Precision Recall f1-score RACC

RF 0.9997 0.9997 0.9998 0.9875
MLP 0.9992 0.9991 0.9994 0.9667

5.2. Scenario 2: FDIA detection and Location Module in IEEE 30 Bus System

In the second case, we investigated the performance of the proposed forecasting model for the
IEEE 30 bus system to evaluate the scalability and robustness of the proposed framework. The same
two-stage methodology was employed, where the hybrid CNN-BiLSTM model was first trained to
forecast system variables. The performance of the forecasting model for the IEEE 39 bus test system is
shown in Table 4.

Table 4. Performance comparison of the Forecasting Module for the IEEE 30 bus system.

Model MAE MSE RMSE R2

Proposed Model 0.0079 0.0001 0.01115 0.9183

Figure 11 shows the comparison between actual and forecasted measurements for sensor 17 over
the unseen test horizon to evaluate the temporal generalization capability of the proposed model.

Figure 11. IEEE 30 bus Sensor 17 - Actual vs Forecasted Power on Unseen Test Data.

Figure 12 shows the comparison between the proposed model’s forecast and actual measurement
at 8030 timestep, with a zoomed-in view highlighting three consecutive sensors and their respective
absolute errors.
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Figure 12. IEEE 30 bus - Actual vs Forecasted Power at 8030 timestep.

The FDIA detection using a threshold-based approach was implemented, and the performance of
the proposed model was evaluated. Table 5 shows the performance of the FDI detection model using a
threshold approach.

Table 5. Performance of proposed model for the FDI detection model using thresholds in IEEE 30 Bus System.

Model Threshold Precision Recall f1-score

Proposed Model 1.3767 1 0.93 0.964

The detection performance of the proposed model is further illustrated in Figure 13, which shows
the L2 norm distribution of the normal and attacked test samples of the unseen test data along with
the selected detection threshold.

Figure 13. FDIA detection using L2 Norm Error on IEEE 30 bus.

Subsequently, multi-label classification was used for localizing the compromised sensors based
on the forecast error vectors. As before, both an MLP and a Random Forest model were evaluated for
comparative localization performance. Table 6 presents a comparative analysis between the proposed
multi-label MLP model and RF classifier to evaluate their effectiveness in FDIA localization.

Table 6. Performance comparison for FDIA localization on Unseen Test Data for IEEE 30 Bus System.

Model Precision Recall f1-score RACC

RF 0.9993 0.9995 0.9998 0.9889
MLP 0.9987 0.9981 0.9994 0.9583

5.3. Scenario 3: FDIA Detection and Localization with Stealthier Attack Vectors

In order to investigate the resilience of the proposed Location Detection Module, we considered a
scaling-based stealty attack strategy. The original attack vector A is scaled down to fractions such as
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A/2, A/3, A/4, and A/5 as explained in Section 4.3. These progressively subtler attacks introduce
minimal perturbations to the true measurements, making them harder to detect. Table 7 summarizes
the performance of the proposed approach across different attack strengths using the threshold-based
approach for the IEEE 14 and 30 bus systems. The results highlight the significant drop in the F1-score
for the IEEE 30 bus system, which raises concern about the suitability of the threshold-based approach
for larger systems.

Table 7. Performance comparison of proposed model for FDIA localization using Threshold based approach.

Model Threshold Precision Recall f1-score

IEEE 14 bus 0.1734 1 0.9756 0.9875
IEEE 30 bus 1.3787 0.8662 0.8174 0.8174

Table 8 presents the localization performance of the RF and MLP models under different levels of
scaled FDIA, highlighting their ability to detect stealthier FDIA attacks. Although the RACC of both
RF and MLP dropped similarly to the threshold-based approach, RF was consistent in its performance
compared to the MLP and threshold-based approach.

Table 8. Performance comparison of RF and MLP for FDIA localization across scaled attack levels.

Model System Precision Recall f1-score RACC

RF IEEE 14-Bus 0.9984 0.9991 0.9991 0.9792
RF IEEE 30-Bus 0.9971 0.9938 0.9984 0.9125

MLP IEEE 14-Bus 0.9991 0.9989 0.9989 0.9539
MLP IEEE 30-Bus 0.9955 0.9931 0.9980 0.8681

5.4. Scenario 4: FDIA Detection and Localization During DOS Attacks

In order to evaluate the robustness of the proposed detection and localization framework under
realistic cyber-attack conditions, we considered DoS and FDIA attacks jointly. During a DoS attack,
sensor nodes are out of operation and do not provide any measurements to the central monitoring
system. If attackers perform stealthy FDIA during DoS simultaneously, the threshold-based detector
or learning-based models will have fewer reference points to validate the authenticity of the incoming
data. This will allow false data to bypass the FDIA detection system.

In this evaluation scenario, different combinations of buses are selected to simulate Denial of
Service (DoS) attacks, including all single-bus cases, all two-bus combinations, and all three-bus
combinations. These attacks render the measurement data from all sensors of the selected buses
unavailable. The mapping between each bus and its corresponding sensor is provided in [22]. At the
same time, an FDIA is performed on another random subset of the remaining active sensors. Within
the proposed framework, missing data from sensors of all DoS-affected buses are replaced with their
corresponding forecasted values before being passed to the multiclass classifier, such as an RF or MLP.
This strategy ensures that the model can continue processing inputs despite partial data loss. Table 9
presents the average localization performance of the proposed framework in different numbers of
DoS-affected buses. For each configuration, we report the average values of Precision, Recall, F1-score,
and RACC to evaluate the robustness of the framework under varying levels of sensor unavailability.

Table 9. Performance comparison of RF and MLP for FDIA localization during DoS attack.

Bus
Combination Model Precision Recall f1-score RACC

1 RF 0.9958 0.9953 0.9955 0.9069
1 MLP 0.9980 0.9889 0.9899 0.7635
2 RF 0.9960 0.9957 0.9959 0.9131
3 RF 0.9955 0.9958 0.9957 0.9219
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Both RF and MLP classifiers demonstrate high precision, recall, and f1-scores in identifying indi-
vidual FDIA-compromised sensors, confirming their effectiveness in feature-level detection. However,
their capabilities differ when evaluating holistic prediction accuracy across all sensors in a given
instance. Although the MLP model achieved higher per-sensor precision, RACC dropped significantly
for a DoS attack on a single bus. This drop suggests that MLP struggles with consistent multi-label
predictions when partial sensor data are missing. In contrast, the RF model consistently maintains
a higher RACC for DoS attacks in 1 to 3 buses. This robustness can be attributed to its ensemble
structure, which leverages decision trees to better generalize from incomplete or noisy inputs. As a
result, RF proves more resilient in handling partial observability, making it more suitable for real-time
FDIA localization in operational environments subject to data loss or disruption.

6. Conclusions
This paper presents a robust and scalable machine learning framework for real-time detection and

localization of False Data Injection Attacks (FDIAs) in SGs, including scenarios where partial sensor
outages are induced by DoS attacks. The proposed two-stage architecture combines a CNN-BiLSTM-
based forecasting model with a multilabel classification module that uses RF to locate compromised
sensors using forecast error vectors.

Comprehensive evaluations on IEEE 14-bus and 30-bus test systems demonstrate that the pro-
posed framework outperforms existing ML architecture in both forecasting precision and FDIA detec-
tion accuracy. In particular, the CNN–Bi–LSTM model exhibits superior temporal generalization, while
the RF-based classifier consistently achieves high RACC in sensor-level localization. The L2-norm
thresholding mechanism performs well for detecting high-magnitude anomalies, but its performance
degrades for the IEEE 30 bus system. As a result, a follow-up learning-based localization strategy is
required, where Random Forest classifiers stand out for their robustness and ability to adapt under
worsening observability caused by DoS attacks.

Unlike traditional single-stage detection systems, this multi-stage framework can address the
evolving nature of FDIAs with greater flexibility and reliability. This study confirms the reliability
of a data-driven defense approach by demonstrating its effectiveness across a range of realistic and
complex attack scenarios, including subtle intrusions, varying degrees of tampering, and simultaneous
FDIA–DoS events in transmission networks. Future work will evaluate the model’s performance
under dynamic grid topologies caused by contingency events, maintenance operations, and system
reconfigurations. This extension will improve the model’s applicability to real-world transmission
systems.
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