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Abstract: TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF 

superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, 

while sparing healthy cells. This tumour selectivity prompted, over the last three decades, many 

studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most 

of these attempts have failed, so far, novel formulations are still being evaluated. Yet, emerging 

evidence indicates that TRAIL can also trigger, on the other hand, a non-canonical signal 

transduction pathway that is likely to be detrimental for its use in oncology. Likewise, increasing 

studies suggest that TRAIL can induce, through Death receptor 5 (DR5) in some circumstances, 

tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-

apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, 

that of the non-canonical pathway is less understood. We are reviewing here the current state of 

knowledge of TRAIL non-canonical signalling.  
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1. Introduction 

TNF-Related Apoptosis Ligand (TRAIL) is known as a type II transmembrane protein belonging 

to the TNF ligands superfamily (TNFSF) and reported for the first time as a cytokine coded by a gene 

TNFSF10 in 3q26 position on human chromosome 3 [1,2]. TRAIL can bind to six receptors. Two 

agonist receptors have been reported to induce the canonical pro-apoptotic signal transduction, upon 

binding to TRAIL, namely DR4 (TRAIL-R1 encoded by TNFRSF10A gene) [3]and DR5 (two splice 

variants of TRAIL-R2 encoded by TNFRSF10B gene) [4–8]. The TRAIL agonist receptors, DR4 and 

DR5, are able to trigger apoptosis because they harbour a death domain (DD) in their c-terminal part 

(Figure 1), which is also found in TNF-R1 and Fas [9–14], and which is necessary and sufficient to 

engage the pro-apoptotic machinery [9,10]. 
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Figure 1. Schematic representation of TNFRSF sub-family receptors binding to TNFα, FasL and 
TRAIL. Receptors are depicted with their three main functional domains. The extracellular domain 

of these receptors is composed of Cystein Rich Domains (CRD), Orange for TNFR1/2; blue for Fas and 

DcR3 and a panel of greens for DR4, DR5, DcR1, DcR2 and OPG. Their TM (Transmembrane Domain) 

is represented in red, whereas their Intracellular domains, with the exception of DcR3 and OPG which 

are secreted, is represented either by a bar (solid or not). Some of these receptors harbour in addition 

a Death Domain (DD), represented as a yellow box. Note that the DD of DcR2 is truncated. The solid 

bar underneath each ligand encompasses the receptors with which a physical interaction has been 

demonstrated experimentally. 

In addition to these two agonists, TRAIL can also bind to four other receptors (Figure 2), but the 

latter are unable to induce apoptosis due either to the absence of a functional death domain (DD), in 

their intracellular c-terminal portion, or because these receptors are secreted to the extracellular 

compartment [15]. DcR1, DcR2 and OPG [16–20] solely interact with TRAIL, while DcR3, which has 

more recently been found to interact both with TRAIL [21], was originally found to interact with Fas 

ligand [18]. Both DcR1 (TRAIL-R3 encoded by TNFRSF10C) [22,23] and DcR2 [24] (TRAIL-R4 

encoded by TNFRSF10D) are expressed at the cell surface. Albeit DcR1 lacks an intracellular domain, 

it is expressed on the cell surface, thanks to a GPI-anchor. DcR2, on the other hand is a transmembrane 

protein, but its truncated DD precludes the recruitment of the pro-apoptotic machinery and thus 

makes DcR2 unable to trigger apoptosis[16,25–28]. The two other antagonist receptors, OPG 

(osteoprotegerin) [29] and DcR3 [21] are secreted as soluble receptors in the extracellular 

compartment, and are thus unable to transduce cell death, including OPG which harbours two DD 

(Figure 2). All four antagonist receptors are capable of competing with TRAIL to inhibit apoptosis-

induced by either DR4 or DR5 [16,17,30] (Figures 1 and 2). 

 

Figure 2. Comparison of the signalling pathways triggered by TNFR1, Fas and TRAIL agonist 

receptors. a) TNFR1 signalling complexes upon TNFα stimulation are depicted in this panel (see also 

the text). TNFR1 engages first of all the formation of complex I, a survival membrane platform which 

leads to the activation of the NF-κB pathway, leading, in most cases to cell survival and inflammation. 

Regardless of the outcome, complex I is processed during activation to give rise to a secondary soluble 

complex (complex II), that recruits pro-apoptotic components such as the adaptor protein FADD and 

the caspase-8 to induce apoptosis. Cell death is usually never happening, unless activation of the NF-

kB pathway fails, because the latter induce the transcriptional regulation of cellular FLIP (c-FLIP), the 

main inhibitor of caspase-8. b) Engagement of Fas, DR4 or DR5, contrary to TNFR1 enable direct 

recruitment of FADD and caspase-8 at the membrane complex I, and are thus more prone in triggering 

apoptosis than TNFR1. Non-apoptotic signal transduction, however, is thought to proceed from a 

secondary complex coined complex II, which has been described as the FADDosome or the MISC 

(Migration signalling complex). The latter leads to the activation of the NF-κB pathway to induce 

survival, pro-inflammatory and pro-tumoral effects (see text for more details). Proteins indicates in 

the rectangles have been described to be recruited in the distinct complexes depicted in this figure. 
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Like other members of the TNF superfamily, increasing evidence indicate that TRAIL can also, 

besides inducing cell death, display pleiotropic signalling activities ranging from cell differentiation 

[31–34], tumour progression, invasion to metastasis [35–41]. Although TNFRSF share both structural 

characteristics and signalling activation partners [42], and despite the fact that a large number of these 

receptors also share the ability to trigger similar signalling pathways, the modus operandi is not 

similar, involving distinct sequence of events, depending both on the considered receptor and ligand 

[43]. 

Likewise, and albeit much less efficiently than TNFR1, both TRAIL and Fas-ligand agonist 

receptors are able to trigger NF-kB signalling, leading in some cases to increased tumour growth and 

inflammation [44–58] (Figure 2). Moreover, increasing evidence indicate that soluble FasL or TRAIL 

may confer tumour cell resistance to apoptosis, contributing to pro-tumoral signalling or even 

inducing tumour cell growth[57,59–61]. For instance, seminal findings from Seamus Martin’s 
laboratory demonstrated that caspase-8, regardless of its proteolytic activity, serves as a scaffold for 

the formation of a FADD containing soluble complex recruiting RIPK1 and is necessary for NF-κB 
activation and pro-inflammatory proteins secretion, upon TRAIL stimulation [52,62,63]. The 

formation of this complex has been found to be directly controlled by the caspase-8 inhibitor c-FLIP 

[52] (Figure 2b). 

Alternatively, although much less represented in the literature, other studies suggest that non-

conventional ligand-to-receptor interactions may also exist, explaining how these agonist receptors 

may transduce non-apoptotic signalling pathways, such as the recently described soluble FasL/DR5 

interaction, whose role during auto-antibody-induced arthritis has been associated with exacerbated 

inflammation in-vivo through regulation of NF-κB -mediated production of CX3XL1 [64]. 

While it is still unclear how these complexes are formed, these less studied, non-apoptotic 

signalling capabilities are likely to contribute to a large variety of human diseases. It is thus of utmost 

importance to study them, since only a better understanding of their mechanistic will allows us to 

develop novel therapeutic drugs to be tested in the clinic, to cure or at least alleviate patients suffering 

from autoimmune, inflammatory and cancer diseases. 

We aim with this comprehensive review at discussing and at delineating the current 

understanding of the molecular events governing cell fate decision after TRAIL stimulation, with a 

special emphasis for non-apoptotic signal transduction. 

2. The TRAIL System 

2.1. TRAIL-Induced Cell Death 

TRAIL was described for the first time as a pro-apoptotic ligand that induces apoptosis [1,2]. 

TRAIL is expressed as a cell surface protein, mostly by activated immune cells such as T and B cells 

[65], neutrophils [66–68], dendritic cells [69], monocytes and macrophages [70–74], natural killer and 

NKT cells (NK) [75–85]. TRAIL plays a crucial role both during viral clearance [86–98] and tumour 

immune surveillance [99–104]. Mechanistically, during innate immunity, NK cells and CTLs 

(cytotoxic T cells) promote apoptosis of target cells, either by releasing soluble factors such as the 

cytolytic granules [68,105–107], which contain perforin and granzymes, or by engaging membrane-

bound death ligands like FasL or TRAIL [84,105,108–113]. 

Unlike FasL or TNFα [114,115], TRAIL induces apoptosis in tumour cells, selectively [116] and 

exhibits little to no cytotoxicity against normal human cells or mice cells [117–123]. Given that DR4 

and DR5 are usually upregulated on cancer cells [124–132], and that TRAIL induces apoptosis in a 

p53-independent manner [133,134], contrary to most chemotherapeutic drugs [135], overcoming p53 

escape [23], it has soon attracted major attention in oncology [136–139]. 

TRAIL binding to its two agonist receptors, DR4 and DR5, lead to the formation of homo or 

hetero multimeric complex on the cell surface, which in turn enable the recruitment of the adaptor 

protein FADD (Fas Associated via Death Domain) and the initiator pro-caspases-8 and/or -10, leading 

to the formation of the Death-Inducing Signalling Complex or DISC [48,140–143], in which the 

initiator caspase-8, like in the Fas DISC, is activated by mere proximity-induced dimerization [144–
146]. Once activated this initiator caspase, self cleaves itself enabling it not only its free itself from the 
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DISC, but also to reach and cleave substrates localized in the cytosol, such as the executioner 

caspases-3, -6 and -7 [147], which ultimately will concur in the execution of apoptosis, culminating in 

DNA fragmentation and the formation of apoptotic bodies [148]. 

Commitment to apoptosis upon TRAIL stimulation may further be regulated either by 

genetically regulated events, see below, or by cellular heterogeneity and stochasticity. Likewise, it 

has been demonstrated that random assembly of the receptors upon ligand stimulation [149], as well 

as intracellular or membrane-bound proteins stochastic distribution during cell division [150], may 

contribute to cell fate decision. 

In the late 90′s two type of cells, found to rely or not on the activation of mitochondria, were 

described to transduce differentially apoptosis upon Fas ligand and TRAIL stimulation [151,152]. In 

type I cells, sufficient caspase-8 is activated to undergo apoptosis [153], regardless of mitochondria 

[154,155]. The intrinsic pathway is, however, required in type II cells, to fully transduce apoptosis 

upon TRAIL or FasL stimulation. Likewise, contrary to type I cells, mere loss of Bax expression [156] 

or overexpression of Bcl-2 anti-apoptotic members [153,157,158], is sufficient to abrogate the 

execution of apoptosis. Activation of the mitochondrial pathway by TRAIL receptors is mediated, in 

these cells, by a caspase-8-dependent cleavage of Bid [152,159], a BH3-only Bcl-2 family member, 

whose cleavage allows truncated Bid (tBid) insertion into mitochondrial membranes where it induces 

the translocation and oligomerization of Bax and Bak [160–162], inducing the release of cytochrome-

c (Cyt-c). Once released from the outer membranes of mitochondria, cytochrome c forms, together 

with the initiator caspase-9 and APAF-1 (Apoptotic peptidase activating factor-1), the apoptosome 

complex [163–165], which allows the activation of the caspase-9 by mere dimerization [166] and 

which culminates in the activation of the executioner caspases (Figure 3). 

 

Figure 3. Schematic representation of TRAIL canonical signalling pro-apoptotic pathway. 

Membrane-bound TRAIL, expressed by cytolytic immune cells such as NK cells induces apoptosis in 

cancer cells. TRAIL binding to DR4 and/or DR5 agonist receptors, induce their aggregation and the 

recruitment of FADD and caspase-8/10 forming the DISC (Death-Inducing Signalling Complex), or 

complex I, which ultimately will lead to the activation of the effector caspases 3/6/7, whose activation 
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by enzymatic cleavage is either triggered directly by the active caspase-8 or indirectly through 

caspase-8-mediated Bid cleavage, allowing Bax translocation to mitochondria and the release of 

cytochrome c, whose binding with Apaf-1, amplifies apoptosis-induced by TRAIL receptors (extrinsic 

pathway), through the formation of a soluble pro-apoptotic complex coined apoptosome, that allows 

activation of the initiator caspase-9, that in turn will amplify the signal by cleaving and activating the 

effector caspases 3/6/7. The main inhibitors of this signalling pathway are represented in red, 

including the antagonist receptors (DcR1/2/3 and OPG) which compete for TRAIL binding or c-FLIP 

and XIAP the main caspase-8 and effector caspases inhibitor inhibitors, respectively. In addition, a 

schematic representation of the non-canonical signalling associated with complex I is shown, mainly 

describing potential activation of NF-κΒ which besides protecting the cells from TRAIL-induced 

apoptosis is involved in promoting TRAIL’s pro-tumoral activity. Main TRAIL-induced apoptosis 

inhibitors are shown in red. 

Besides apoptosis, cell death induced by TRAIL may proceed through necrosis, in specific cell 

types or under certain conditions. Likewise, and similar to TNFα and FasL, TRAIL has been found, 

by a seminal work by the late Pr Jurg Tschopp [167], to induce necroptosis in the human jurkat T cell 

line, in a RIPK1-dependant manner, in the presence of a pan-caspase inhibitor or in the absence of 

FADD [167]. It was next found that at acidic extracellular pH (pHe), a condition that can be 

encountered in the tumour microenvironment (TME), TRAIL induced cell death proceeds through 

necroptosis. Likewise, mere acidification of the extracellular pH, in vitro, switches TRAIL-induced 

cell death from apoptosis to necroptosis [168], in a RIPK1-dependent manner [169]. The first inhibitor 

of this programmed inflammatory cell death, the necrostatine [170], was later found to inhibit RIPK1 

[171]. RIPK1 is an integrator of cellular stimulation with protein kinase activity and scaffolding 

functions. RIPK1 is composed of a N-terminal kinase domain, an intermediary domain (ID), a C-

terminal homology interaction motif (RHIM), and a DD. Owing to homotypic interactions, RIPK1 can 

be recruited to DD-containing receptors through its DD, and provided that it is not cleaved by the 

caspase-8 within the DISC [172,173], RIPK1 can recruit RIPK3 through the RHIM [174,175] and 

phosphorylate RIPK3 [176–179], forming the ripoptosome [180], which then phosphorylates and 

activates the pseudo kinase mixed lineage kinase domain-like protein (MLKL) [181,182]. Activation 

of MLKL leads to its oligomerization, translocation to the plasma membrane, forming large pores 

which engage ion channels to mediates ion influx, cell swelling, and plasma membrane rupture 

followed by the uncontrollable release of intracellular material [181,183–185] (Figure 4). Changes of 

pH naturally occur in the vicinity of tumour cells [186] as well as during ischemia [187]. The latter 

are, thus, likely to regulate TRAIL-induced cell death efficacy and modalities [188] and ultimately to 

affect immune antitumoral responses [189,190]. 
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Figure 4. Schematic representation of DR5 non-apoptotic signalling pathways. Illustration of a) 

DR5-mediated RIPoptosome and FADDosome secondary complexes and b) nuclear translocation of 

DR5 in the nucleus, potentially mediating cell migration. See text for explanation. 

Last but not least, TRAIL agonist receptors have been found to induce cell death, in a ligand-

independent manner, during unresolved unfolded-protein stress-induced response [191–195]. DR5 

was found to serve as a receptor for misfolded proteins, explaining, at least in part, how apoptosis is 

transduced through this receptor during ER stress, in the absence of TRAIL [196]. Albeit it remains 

to be determined whether DR4 binds or not unfolded proteins, and despite the fact that most studies 

have focused on DR5, this second agonist TRAIL receptor has also been found to contribute to 

apoptosis during ER stress [63,193,194]. Moreover, although caspase-8 is involved during DR4- and 

DR5-mediated ER-stress-induced cell death [192], it has also been found, associated within an 

atypical platform devoid of DR4 and DR5, to be required for ER-induced apoptosis in an 

osteosarcoma cell line [197]. Yet, it has also been reported that TRAIL agonist receptors or caspase-8 

are negligeable in some cases, such as in B-cell malignant cells or the colorectal cancer cell line 

HCT116 [198,199]. 

2.2. Comparison of the Proximal Regulatory Mechanisms Governing TRAIL-Induced Cell Death with Other 

TNFRSF Members 

TNFα was the first ligand of the TNFSF superfamily tested for its anti-tumoral activity [200,201], 

followed by Fas-ligand [115,202]. While Fas-ligand [14,203,204] and to a much lesser extend TNFα, 
due to the requirement of protein synthesis or transcription inhibitors [205–207], are efficient in 

killing a variety of tumour cells, these ligands cause significant damage to normal tissues that result 

in life-threatening toxicities [116]. Despite the fact that TRAIL, TNFα and Fas share common pro-

apoptotic partners and modalities, solely TRAIL displays tumour selective pro-apoptotic activity, 

sparing normal tissues or cells [116,123], including when administered to small animals or humans 

[122]. Administration of Fas or TNFα in rodents, on the other hand, is lethal [115,208–210]. Moreover, 

TNF is involved in sepsis-mediated organ failure due to cellular toxicity [200,211,212]. 

Unlike TNF-R1 [213], engagement of apoptosis induced by DR4, DR5 or Fas is primarily initiated 

directly from the plasma membrane, through the formation of a complex coined Death-inducing 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 February 2024                   doi:10.20944/preprints202402.0485.v2

https://doi.org/10.20944/preprints202402.0485.v2


 7 

 

signalling complex (DISC) [140,141,143] after TRAIL or Fas ligand binding to their respective cognate 

agonist receptors (Figure 2). TNFR1 membrane-bound complex, on the other hands, triggers a NF-

kB-dependant survival pathway on the first instance, without recruiting FADD nor the caspase-8, 

due essentially to the recruitment of the kinase RIPK1 [214–216] and the adaptor protein TRADD 

[217,218]. The group of David Goeddel in the late 90′s provided the first molecular demonstration 

that divergent signalling complexes could lead to distinct and antagonist signalling pathways [217]. 

Albeit FADD and caspase-8 have long been known to be required for TNF-induced apoptosis 

[219,220], the molecular comprehension of their temporal and spatial contribution was unveiled, 

almost a decade later, by the discovery that a secondary complex was required to initiate apoptosis. 

Complex II is a soluble scaffold multimeric protein complex which arises from complex I [213]. It 

contains, amongst others, the adaptor protein FADD, the cysteine protease caspase-8, as well as the 

post-translationally modified forms of RIPK1 and TRADD, whose modification is primarily initiated 

in complex I [213]. Transition from complex I to complex II, albeit still not fully understood, was later 

on found to involve two proteolytic steps, starting first with the shedding of TNFR1 extracellular 

domain by TACE (TNF-Alpha Converting Enzyme), also known as ADAM17 [221], and leading to 

the internalization of complex I through a clathrin-dependent mechanism, followed by an additional 

cleavage within TNFR1 transmembrane domain, by the γ-secretase, allowing the release of its 

intracellular domain, which contains bound TRADD, TRAF2 and RIPK1 amongst others proteins 

[221]. The release of complex I to the cytosol, in turn, subsequently allows the recruitment of FADD 

and caspase-8, forming the pro-apoptotic TNFR1-complex II (Figure 2). 

Regardless of the modus operandi required for engaging cell death by these receptors, the latter 

have been found to form dimers or trimers, due to spontaneous self-association of their N-terminal 

extracellular domain, called pre-ligand assembly domain (PLAD) [222,223], which is generally 

present in the first cysteine-rich domain of some TNFSFRs (Figure 1). By favouring ligand-

independent receptor multimerizations, the PLAD was both find to limit apoptosis induced by 

TRAIL due to the homodimerization of DR5 [224], or to the formation of heteromeric complexes DR4, 

DR5, DcR1 or DcR2 [16,30,225]. These self-association motifs have recently been demonstrated to be 

targetable. Interestingly it was found that, mere administration of a TNFR1 PLAD-Fc recombinant 

protein improves skin lesions in MRL/lpr [226], arthritis [227], as well as experimental autoimmune 

encephalomyelitis or diabetes [228], in experimental animal models. 

Organization and arrangement of TNFRSF in homo- and heteromeric complexes into higher-

order complexes has profound effect on their signalling capabilities [42,229,230] and is often required 

for efficient apoptosis triggering, as demonstrated with DR5 [231–233]. Likewise, it has been 

proposed that DR4, DR5 and Fas form, first of all, upon cognate ligand binding, trimer complexes 

whose multimerization or crosslinking with neighbouring trimers occurs via the dimerization 

between receptor interfaces, either located opposite the ligand-binding interfaces, resulting in a 

hexameric honeycomb-like structure [234]. A dimerization motif found in the transmembrane helix 

domain of the receptors is also suspected to play an important role for the assembly of the DISC, its 

stability and potency [231,234,235]. Moreover, as suggested for Fas, DISC stability may also be 

regulated at the level of the cytoplasmic domain of some agonist receptors by the adaptor protein 

FADD [236–238]. 

Furthermore, in line with the fact that most TNFSF receptors harbour putative glycosylation 

sites, it has been demonstrated that O- and N-glycosylations, post-translational modifications, also 

regulate TNFRSFs pro-apoptotic signalling transduction [239,240]. Likewise, based on the 

observation that TRAIL sensitivity in cancer cells was associated with high glycosylation profiles, the 

seminal work of Avi Ashenazi’s laboratory, provided the first molecular demonstration that DR5-

mediated TRAIL-induced cell death could be regulated by the O-glycosylation [241]. While it remains 

to be determined whether O-glycosylation affects other receptors of the family [242], receptors such 

Fas, TNFR1 or DR4 were found, on the other hand, to be N-glycosylated [243–247]. This post-

translational modification of DR4 or Fas increases cancer cell lines sensitivity to TRAIL- or FasL-

induced cell death, respectively [243,245]. Similar gain of function associated with the fly tumour 

necrosis factor (TNF) receptor homolog glycosylation were demonstrated [248]. It shall be noted, 
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however, N-glycosylation, on the other hand, was found to prevent TRAIL-induced cell death in 

normal mouse fibroblastic cells [244], suggesting that the increase in signal transduction induced by 

TNFRSFR mediated by their O- or N-glycosylation, maybe restricted to cancer cells. Regardless, it 

has been demonstrated that the gain of function associated with the O- or N-glycosylation of these 

agonist receptors, with the exception of one study [248], is not related to a change in ligand binding 

to its cognate receptor, but rather a stabilization of the membrane-bound primary complex, likely 

mediated by an increase in receptor aggregation, that ultimately leads to a better signalling activity, 

which in the case of Fas or TRAIL is associated with an increase in caspase-8 activation 

[241,243,245,249–251]. Consistent with this, glycan modifications or glycan-binding proteins were 

found to enhance or impair apoptosis induced both by TNFR1, FasL and TRAIL [242,250,252–262]. 

These post-translational modifications shall be distinguished from the O-GlcNAcylations or O-

GlcNAc, as contrary to the O- or N-glycosylation, O-GlcNAc takes place within the cytosol, and shall 

thus affect the C-terminal cytosolic domains of TNFRSFs. Likewise, there have also been reports 

demonstrating that GlcNAcylation of both DR4 or DR5 C-termini, could be required for, or enhance, 

DISC formation and receptor clustering [249,263,264]. On the other hand, O-GlcNAc of death-domain 

containing proteins, has also been demonstrated to protect cells, infected by pathogens, from 

apoptosis induced by TNFRSF-death-containing receptors [265–267], and to protect erythrocytes 

from necroptosis by targeting RIPK1 [268]. Another intracellular post-translational modification may 

also affect death-domain containing receptor localization, aggregation and function. Likewise, it has 

been found that palmitoylation of DR4, Fas and TNFR1, but not DR5, enhances apoptosis induced by 

TRAIL [269] and Fas ligand [270–272] and is required for TNFR1 signal transduction [273]. 

3. Physiological and Physiopathological Functions of TRAIL 

TRAIL exhibits pleiotropic physiological functions which are regulated by its cognate receptors 

due to their ability to trigger or not cell death. TRAIL and its receptors play an important role in 

maintaining tissue homeostasis [274–278]. Through transducing cell death, TRAIL and its agonist 

receptors are most notoriously known for their ability to kill cancerous cells and cells infected by 

viruses [91]. Yet, a tremendous amount of work also suggests that TRAIL and its receptors are also 

likely to play a role in several human diseases including, but not limited to, obesity and diabetes[279], 

associated with inflammation [32,63,280], neurological disorders [281] or cardiac diseases [282]. 

3.1. In immune System 

In the immune system, TRAIL helps maintain lymphocyte homeostasis. Likewise, while 

activated CD8+ cells were described to be more sensitive than CD4+ T cells to TRAIL-induced cell 

death [283], CD8+ T cells can protect themselves from apoptosis induced by TRAIL by up-regulating 

both the antagonist receptors and c-FLIP [77,284]. Variation of TRAIL sensitivity, in CD8+ T cell blast, 

is both time- and stimuli-dependent, explaining TRAIL’s ability to actively contribute to CD8+ T cell 

AICD and to generate memory-like CD8+ T-cells [285–291]. Interestingly, using experimental animal 

models, TRAIL was found to inhibit autoimmune lymphoproliferative syndrome as well as 

spontaneous idiopathic thrombocytopenia purpura, due to its active contribution during activation 

induced cell-death (AICD) [290,292]. 

Besides its role in adaptative immunity, TRAIL plays an important role during in innate 

immunity [293], such as in anti-tumour immune surveillance [80,99,101,293,294]. TRAIL is often 

instrumental for the cytotoxic activity of immune cells. It is upregulated and contributes to the 

cytolytic activity of T cells, neutrophiles or monocytes stimulated by type I interferons [71,72,284], or 

after stimulation with IL-2 plus phytohemagglutinin [65], contributing to their anti-tumoral activity. 

TRAIL expression can also be induced in plasmacytoid dendritic cells by microbial or viral products 

such as LPS or Toll receptor agonists, contributing to their cytotoxic activity [295]. TRAIL is also 

thought to contribute to ocular [296] and placental immune privilege [297]. 

A recent study analysing the immune repertoire, in TRAIL-deficient mice, found organ-

distribution differences of several types of immune cells, such as dendritic cells, in these animals as 

compared to parental mice [298]. Keeping in mind that CD8+ T cells were recently found to contribute 
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to tissue remodelling [299] and that TRAIL can be expressed by a large number of immune cells, as 

mentioned above, including CD8+ cells, these studies collectively suggest that TRAIL may play a 

wider role in the immune system than expected. Indeed, growing evidence suggests that TRAIL non-

apoptotic functions may also play a role in shaping and orchestrating the immune response to 

pathogens or cancer cells. TRAIL has for example recently been demonstrated to inhibit IL-15-

induced cytotoxic granule granzyme B production in NK cells during viral infection, limiting viral 

clearance [91]. By regulating inflammation, in the absence of apoptosis, TRAIL can also contribute to 

the dysregulation of the immune system. Likewise, using TRAIL-R-deficient mice, it was found that 

TRAIL, by inhibiting T cell activation, supresses gut inflammation [300] or arthritis [301,302], in an 

apoptosis-independent manner [303]. Injection of TRAIL itself was also found to be beneficial in 

experimental animal models to inhibit autoimmune thyroiditis [304] or arthritis [305]. Suppression 

of auto-immunity by TRAIL, can proceed both through caspase-dependent and independent manner, 

as it was shown that TRAIL can on the one hand inhibit Th1 cells proliferation and on the other 

promote that of regulatory T cells, as demonstrated in TRAIL- [306] and TRAIL-R- deficient mice 

[301]. TRAIL deficient mice also unveiled the critical role of TRAIL in supressing experimental 

autoimmune encephalomyelitis [307]. In a remarkable way, TRAIL functions in autoimmune diseases 

by transducing both canonical and non-canonical signalling pathways, holding promises in 

autoimmune therapy [308,309]. Yet in other instances, TRAIL has also been found to trigger 

inflammation and/or to amplify other autoimmune diseases such as lupus erythematosus [310] and 

lupus nephritis [311]. 

Finally, TRAIL may also play a role in allergy, given that oesinophils and granulocytes express 

TRAIL receptors, but are insensitive to TRAIL-induced cell death [312,313], TRAIL is abundantly 

expressed in the airway epithelium, in response to allergen provocation, in the initial step [313–315]. 

3.2. In Diseases 

TRAIL is associated with diseases beyond of the immune system. Likewise, TRAIL may play a 

physiological role in endothelial cell function [316], since it has been found to exhibit a pro-angiogenic 

activity [317,318] and to stimulate the proliferation of vascular smooth muscle cells [319]. In another 

study, TRAIL, on the contrary, was shown to inhibit angiogenesis-mediated by VEGF, through both 

a caspase-8-dependent and -independent manner [320]. In vivo, however, it was found, using Trail-/- 

mice, that TRAIL is able to promote angiogenesis and neovascularization after ischemia [321]. In the 

same line, an increasing number of studies also indicate that TRAIL could be involved during cell 

differentiation. Likewise, TRAIL induces the differentiation of intestinal cells [31], osteoblasts 

[322,323], skeletal muscle or myoblast cells [34,324] or keratinocytes [325], but appears to inhibit 

adipocyte differentiation [326]. 

TRAIL has also been described in lung and heart diseases. TRAIL induces survival, proliferation, 

and migration of human vascular smooth muscle cells (VSMC) in Pulmonary arterial hypertension 

(PAH) [327–329]. Its high expression levels in the serum of PAH patients correlates with the severity 

of the disease [329]. Through non-canonical signalling TRAIL promotes VSMC and fibroblasts 

proliferation and migration through ERK1/2 MAPK and the Serine/Threonine Kinase Akt activation, 

without affecting p38 MAPK or c-Jun N-terminal kinases (JNK) activation [330]. TRAIL stimulates 

proliferation of VSMC after Insulin-like growth factor-1 receptor (IGR1) regulation through NF-κB 

activation [319]. In addition to VSMC, TRAIL promotes survival and proliferation of primary human 

vascular endothelial cells, as well after Akt and ERK activation without affecting NF-κB pathway 

[331]. Activation of NF-κB in vascular smooth muscle cells by TRAIL has also been described to 

require the cleavage of protein kinase C-delta (PKC-δ) by caspases [332]. 

TRAIL and its three receptors, DR4, DR5 and DcR1, are highly expressed in human heart [127], 

and while cardiomyocytes express DR5, they are resistant to apoptosis, yet after TRAIL stimulation 

DR5 transduces the activation of the ERK1/2 pathway, in these cells, in a MMP-EGFR-dependent 

manner, as described by Panner et al. [333]. It has been proposed that TRAIL, by inducing the 

production of MMPs trigger the cleavage of the Epithelial Growth Factor Receptor ligand (HB-EGF) 
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in the cell membrane to induce EGFR signalling, which promotes cardiomyocyte proliferation and 

ERK 1/2 signalling [333]. 

TRAIL pro-apoptotic or non-apoptotic signalling is also suspected to contribute at some extent 

to Alzheimer’s disease [334–338], and non-alcoholic fatty liver disease [339–342]. Like cancer cells 

[52,63,343], the molecular mechanisms driving TRAIL-induced non-apoptotic signalling, including 

cell motility in normal cells remain poorly understood. 

4. Signalling Machinery Associated with TRAIL Non-Canonical Transduction 

TRAIL, as reported in a growing number of studies, triggers the differentiation, proliferation or 

survival of normal cells, such as macrophages [32,322], intestinal mucosal cells [31], Skeletal 

myoblasts [324], keratinocytes, osteoclasts [323,344], vascular smooth muscle cells [34,330,331,345] or 

mouse fibroblasts [346]. 

In cancer cells, on the other hand, if apoptosis is not efficiently triggered, TRAIL can be 

detrimental to patients given that this cytokine also exhibits pro-tumoral properties, associated with 

TRAIL’s ability to induce inflammation, tumour cell motility and invasion, ultimately leading to 

metastasis [35,38,39,43,193,347–350]. Likewise, TRAIL was found to promote the proliferation in 

human glioma cells through ERK1/2 phosphorylation and the stabilization of the long form of c-

FLIP(L) [351], in cholangiocarcinoma cells via NF-kB [40]. Migration and invasion were also 

promoted by TRAIL in NSCLC the A549 cell line in a RIPK1-dependent manner through 

phosphorylation of Src and STAT3 [39], in pancreatic ductal adenocarcinoma [38], in colorectal cancer 

cells, resistant [349] or not [193] to TRAIL-induced cell death, and in the triple negative breast cancer 

cell line MDA-MB-231 (TNBCs) [193]. In oesophageal squamous cell carcinomas (Figure 5), TRAIL 

induced epithelial-mesenchymal transition (EMT) and metastasis through ERK1/2 and stat3-

dependent upregulation of PD-L1 [352]. PD-L1 regulation through ERK phosphorylation induced by 

TRAIL was also reported in TNBCs [294]. Using a TNBC xenograft model, TRAIL was also 

demonstrated to promote skeletal metastasis [350]. Consistent with these findings, deletion of murine 

TRAIL-R, in a non-small-cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) 

using a KRAS-driven experimental model, was found to drastically impair metastasis, and this effect 

was associated with a loss of cell migration, proliferation, and invasion [35]. 
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Figure 5. TRAIL-induced non-canonical pro-tumoral signalling via DR5 secondary complex 

formation. TRAIL agonist receptors, especially DR5, depending on cancer type and stage, can 

promote tumour growth and metastasis either through complex I or through a soluble secondary 

complex. Complex II arises from complex I and contains amongst other FADD, caspase-8, RIPK1, 

TRAF2, TRADD, cIAP, LUBAC, NEMO and IKKs. While complex I. is associated with survival and 

proliferation through p38, JNK and NF-kB activation, complex II appears in addition able to activate 

ERK1/2 pathway and Src leading to metastasis in vivo (See text for explanations). DR5 can directly 

activate signalling proteins involved in metastasis, thanks to its membrane-proximal domain (MPD), 

represented in orange, which directly recruits a Ca2+ binding protein, the CaM whose recruitment, in 

the presence of calcium, induce the activation of the proto-oncogene Src and the ubiquitin ligase c-

Cbl, leading to PI3K, JUN, STAT3 and Rac1 activation. Activation of Rac1 promotes microtubules and 

cytoskeleton organization to activate cell migration. Rac1 was also found, as illustrated here to be 

activated by direct recruitment to DR5 MPD, in a ligand independent manner. See text for additional 

details. Colours: writing highlights and arrows illustrate TRAIL-induced proliferation and 

inflammation (in blue), or TRAIL-induced metastasis (in red). 

Mechanistically, TRAIL was shown to induce NF-κB activation[48,353,354] and by analogy with 

TNFR1 signalling [213], albeit in a distinct manner, it was next found that TRAIL could lead to the 

formation of two main distinct molecular complexes, explaining, at least in part, how TRAIL 

receptors can transduce cell death or pro-inflammatory pathways [39,43]. The primary pro-apoptotic 

complex, known as TRAIL DISC, is mostly composed of the TRAIL receptors, FADD, caspase-8 or -

10 and the inhibitor c-FLIP, and is localized at the level of cellular membranes [16,140,143,355,356]. 

RIPK1 is also present in this complex [52,357] as well as TRADD [48,353,358,359], albeit there might 

be some differences in TRADD binding to TRAIL receptors, given that TRADD seems to be 

preferentially recruited to DR4 [48,353,357]. In addition to these adaptor proteins and kinases, 

originally found to compose TRAIL membrane-Bound complex, kinases such as IKKα, IKKβ and 
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IKKγ, recruited to complex I, explaining how NF-κB may be induced by TRAIL [360]. Native 

recruitment of ubiquitin ligases can also happen in the TRAIL DISC as demonstrated with the 

presence of the linear ubiquitin chain assembly complex LUBAC (Figure 2), whose components 

SHARPIN and HOIP limits TRAIL-induced cell death as well as NF-κB activation [360–362], due to 

RIPK1 and FADD linear ubiquitination [360]. Moreover, other proteins such as c-IAPs, A20 and 

TRAF-2 are also recruited in complex I [360]. 

The secondary non-apoptotic complex, on the other hand, is found in the cytosol, albeit it arises 

from complex I [361] (Figure 3). Complex II contains not only FADD and caspase-8, but also RIPK1, 

TNF receptor-associated factor 2 (TRAF2), TRADD, as well as a large number of apoptosis inhibitors, 

NF-κB regulators, including IKK and NEMO [43], not to mention LUBAC [360] (Figure 4). It must be 

stressed here that RIPK1 can not only be directly recruited to TRAIL receptors, as evidenced in native 

complex I [360,363,364], because it contains a death-domain [365], but that the latter is required for 

TRAIL-induced NF-κB activation [366]. Of interest, similar to Fas DISC [173], membrane-proximal 

localization of RIPK1 allows its cleavage by the initiator caspase-8 within its intermediary domain, 

abolishing TRAIL-induced NF-kΒ activation [363,364].  

Given that RIPK1 is recruited to the TRAIL DISC and present in the cytosolic complex II, it is 

easy to understand how TRAIL triggers the NF-κB pathway. Yet, as demonstrated by Azijli and co-

workers, more than 10 years ago, in the TRAIL-resistant cancer cell line A549, TRAIL also induces 

besides NF-κB, the phosphorylation of a large number of substrates associated with activation of the 

P38, ERK1/2, JNK1, Src, AKT, Raf1 and ROCK [367]. While the implication of TRADD for TRAIL 

signalling is less investigated, TRADD was found to afford protection against TRAIL-induced 

apoptosis [358,368,369], but more interestingly TRADD could play an important role in the secondary 

complex to induces IL-8 secretion in NSCLC, under TRAIL treatment [370]. Furthermore, TRADD 

and RIPK1 redundantly mediate pro inflammatory signalling in response to TRAIL in human ovarian 

HeLa metastatic cell line [357]. Despite the fact that several experimental evidence link for example 

ERK1/2 activation in glioma cells with c-FLIP [351] or JNK activation with RIPK1 [366], it remains 

unclear how upstream kinases are integrated and activated in the molecular platforms triggered by 

TRAIL, whether it be complex I or complex II. 

Evidence accumulates demonstrating that TRAIL can be detrimental in oncology due to its 

ability to promote cell migration and metastasis, but it still remains unknown, however, whether both 

TRAIL agonist receptor trigger similar non canonical signalling activity. Contrary to rodents[8], 

primates express two TRAIL agonist receptors [1,4,6], and therefore findings obtained from 

genetically modified mice may not always transpose to primates. For instance, with the exception of 

one study [371], migration and metastasis promoting TRAIL’s activity seem to be mostly associated 
with DR5 [35,39,193,350]. While it remains unclear whether this peculiarity is due to DR5 splice 

variants or not [372], DR5 is found to be overexpressed in several cancer types and this 

overexpression is often associated with tumour aggressiveness and poor patient prognosis [373]. For 

example, DR5-positive staining is associated with increased risk of patient death in non-small cell 

lung cancer [126], breast [374] and renal cancer [375]. 

Activation of this non-canonical signalling pathway by DR5, which promotes tumour growth 

and metastasis through MAPK, PI3K/AKT or NF-κΒ signalling, is likely to be only visible in TRAIL-

resistant cancer cells [39,349], including cell expressing TRAIL decoy receptors [27,376]. 

Alternatively, transition of the receptors once engaged with the ligand to membrane lipid rafts, may 

as demonstrated for TNF[377], contribute to induction of the pro-migratory signal. It has been 

suggested for example, that lipid rafts may provide an adequate membrane platform for aggregation 

for DR4/DR5 to transduce apoptosis [378]. Localization to lipid raft may be differentially occurring 

depending on the receptor and its potential palmitoylation status. Likewise, DR4 can be 

palmitoylated, translocating to lipid raft, where it was proposed to form and activate the pro-

apoptotic complex I [269]. In B-cell hematologic malignant cells, DR4 was even proposed to be 

constitutively localized within lipid rafts [379]. Albeit DR5 was not found to be palmitoylated, it has 

also been described in lipid raft and described to recruit and activate the caspase-8 in these subcellular 

compartments [378,380–383]. However, while there is no doubt that TRAIL complex I may transit to 
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lipid rafts, native TRAIL DISC formation in these lipid rich structures have never been demonstrated. 

On the contrary, it was found that TRAIL DISC-mediated activation of the initiator caspase-8, which 

is required for initiating apoptosis, rather occurs in non-lipid rich membranes [16,384]. Nonetheless, 

it cannot be excluded that transient translocation to lipid raft may account for TRAIL pro-tumoral 

properties. 

4.1. Lessons from Fas/CD95 Induced Non-Canonical Signalling (Secondary Complex) 

Non-canonical pro-motile and pro-metastatic signalling was also documented for Fas, a receptor 

of the TNF superfamily which like DR4 and DR5 is able to engage apoptosis from the membrane in 

a FADD- and caspase-8 dependent manner [385]. Fas ligand (FasL) was found to redistribute its 

agonist receptor Fas dynamically into lipid rafts, contributing to the elimination of activated T cells 

[386]. Lipid rafts were, thus, soon considered as possible check point controls for FasL-induced Fas 

signalling cellular outcome [387,388]. Like TRAIL, but to a much lesser extent than TNFα, FasL is also 

able to transduce NF-κB, regardless of its ability to trigger apoptosis [53,389]. NF-κΒ activation by 

FasL was associated with resistance to apoptosis in cancer cells [44], but also appeared to be 

associated, in addition, to cell motility and invasiveness [57]. It was also demonstrated that naturally 

cleaved FasL could induce cell migration [390–392]. Fas was found to induce proinflammatory 

cytokines in human monocytes [54,393]. In dendritic cells, Fas stimulation induce IL1β and IL-12 

production and cell maturation [394]. 

Mechanistically, it remains unclear how Fas induce cytokine production or how it activates its 

pro-metastatic signalling pathway. FasL-induced cell motility and invasion has been associated with 

TRAF2 [395], PDGFR-β-mediated PLC-γ1 activation and PIP2 hydrolysis [396], activation of the 

kinase c-Yes and AKT and changes in cytosolic calcium [390], Rac1 [397], or through phosphorylation 

of Rock1 and involvement of the Na+/H+ exchanger NHE1 [392]. 

TRAF2 is recruited within the TRAIL DISC [360,398]. By allowing recruitment of ubiquitin 

ligases within the primary complex TRAF2 is able to limit caspase-8 activation [360,398,399]. TRAIL-

induced JNK activation was found in cancer cell lines to require RIP and TRAF2 [400], suggesting 

that many of the non-canonical signalling pathways may be readily engaged from complex I. 

Alternatively, it has recently been proposed that NF-κΒ-mediated initiation of inflammation upon 

TRAIL stimulation may be induced, at least in part, through TRAF-2-mediated recruitment of 

cIAP1/2 and LUBAC into complex I, leading to the formation of a secondary complex coined 

‘‘FADDosome’’ in which RIPK1 undergoes linear ubiquitination, allowing assembly of the NF-kB 

machinery and NF-κΒ-dependent regulation of inflammatory cytokines and chemokines [62] (Figure 

5). 

Linear ubiquitination and stabilization of the NF-κB signalling by LUBAC was first uncovered 

in TNFR1 complex I and found to rely on TRADD, whose absence precludes both TRAF2 and LUBAC 

recruitment to TNFR1 [401], consistent with the need of TRADD to induce NF-κB activation by 

TNFR1 [218] and to allow TRAF2 recruitment to TNFR1 [217]. Within the Fas DISC, the caspase-8 

inhibitor c-FLIP was also found in the early days as a protein that could integrate at TRAF2, to induce 

both NF-κB and ERK signalling [402,403]. Keeping in mind that TRADD could be essential too, for 

TRAIL-mediated non-apoptotic signalling, including induction of NF-κB [357,369], it is worth 

mentioning that TRADD is found both associated with TRAIL receptors membrane complex I 

[353,360] and soluble complex II [43]. An alternative molecular circuitry may explain the biological 

activity of TRAF2 in driving TRAIL pro-tumoral effects. Likewise, it was described that NF-kB 

activation by TNFR1 requires sphingosine-1-phosphate (S1P). S1P interacted with TRAF2 as a co-

factor to catalyze RIPK1 poly-ubiquitination and NF-κB activation [404]. Given that S1P may be 

critically linked to metastasis [405,406], it may be worth considering, in addition, the interesting work 

demonstrating that deletion of DR5 induce cell motility and promotes cell invasion in a TRAF2 and 

S1P-dependent manner, through activation of the JNK/AP-1 pathway in lung cancer cells [371,407] 

(Figure 4). 

Direct recruitment of kinases associated with non-apoptotic Fas signal transduction as also been 

found, including Rac1 activation after binding to Fas membrane proximal domain (MPD), located in 
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the intracellular part of the receptor, during neurite growth [397]. Albeit not characterized 

molecularly, TRAIL-induced cell motility was also associated with Rac1 activation in monocytes [408] 

and HeLa cells [409]. Interestingly, though, while Rac1 appears dispensable for the regulation of 

inflammatory proteins after TRAIL stimulation [410], Rac1 was required for DR5-mediated cancer 

cell motility and metastasis [35], and similar to Fas, the MPD of DR5 was also required to trigger this 

effect. (Figure 5). Rac1 was found to be directly recruited to DR5 [35], and consistent with mutated 

KRAS’s ability to inhibit ROCK1 [411], ROCK1 inhibitors allowed Rac1 recruitment to DR5 and 

transduction of a signalling pathway leading to invasion in non-mutated KRAS cells [35]. It is thus 

likely that direct recruitment of RAC1 into the TRAIL DISC may, due to its ability to promote 

filopodia and lamellipodia formation, lead to microtubules and cytoskeleton organization [412], 

accounting for the cell migration induced by DR5 [35] (Figure 5). 

4.1. Calcium Signalling Inducing Cell Motility and Metastasis 

Calcium signalling induced by ligands of the TNF family has initially been addressed with TNF 

[413] and FasL [414]. Increased cytosolic Ca2+ was found to occur almost immediately after 

stimulation, within the first 50 seconds. High calcium levels have been recorded after stimulation by 

FasL following activation of phospholipase C γ1 (PLCγ1), inositol 1,4,5-trisphosphate (IP3) 

generation, IP3 receptor (IP3R) calcium ionic channels stimulation and a late secondary Cytochrome-

c-triggered activation of endoplasmic reticulum (ER)-resident calcium channels [415]. The role of 

Ca2+ in cancer cell proliferation, migration, and invasion has been well established [416]. Likewise, 

Ca2+ signalling is a potential key regulator for breast cancer bone metastasis and prostate cancer cells 

proliferation, angiogenesis, EMT, migration, and bone colonization [417]. Interestingly, both TRAIL- 

and FasL-induced pro-metastatic pathways are associated with an early increase in intracellular Ca2+ 

and tyrosine kinase signalling [193,418,419]. The use of isogenic stable cancer cells deficient for either 

DR4 or DR5 [193], demonstrated that TRAIL-induced pro-metastatic signalling was solely triggered 

by DR5 and correlated with a rapid Ca2+ flux [193,420,421]. Furthermore, early increased cytosolic 

Ca2+ was shown to be activated upon TRAIL exposure in both Jurkat and NB4 leukemia cells, 

protecting the latter from apoptosis [421]. It was found in these cells that recruitment of both p62 and 

ATG7 to complex I was required for calcium influx induced by TRAIL [421]. 

Like TRAIL, FasL also induces an increase of cytosolic Ca2+, associated with cell-motility and 

metastasis [390,418,422–424]. Intracellular increase in Ca2+ is generally induced by PLCγ1 and IP3R 
activation, due to ER Ca2+ release [425], but may also be triggered, as demonstrated in leukemia cells, 

after ORAI1 activation and CRAC channels opening [421]. Autophagy Related 7 (ATG7) [426] and 

Sequestosome 1 (p62/SQSTM1) [427], are two autophagic proteins related to ORAI1 and CRAC 

channels, whose recruitment to DR5 induce the release of Ca2+ from the ER [421]. Keeping in mind 

that DR5 is also involved during apoptosis induced during the ER stress and that this process is 

associated with Ca2+ release [191,196], while DR5, but not DR4, is able to induce a change in calcium 

flux after TRAIL stimulation, these findings suggest that calcium regulation is probably important 

for the triggering of TRAIL-mediated non-apoptotic signalling. Indeed, FasL also can induce high 

intracellular levels of Ca2+ ions to promote, depending on the context and cancer cell type, apoptosis 

or non-canonical signalling [415]. How Fas or DR5 trigger these changes in intracellular calcium 

remain unknown. However, in two studies performed using breast cancer models DR5 was proposed 

to directly interact with a protein which has a calcium dependent activity, the calmodulin (CaM) 

[428,429] (Figures 5 and 6). CaM is a small Ca2+ binding protein that interacts with a large group of 

intracellular proteins and which participates in signalling pathways that regulate proliferation and 

motility [430,431]. In PDAC cells, CaM was also found to be recruited in the DR5 DISC together with 

c-FLIP and the proto-oncogene Src, contributing to cell resistance [432]. In NSCLC cells, CaM 

inhibition or Ca2+ deprivation inhibited the recruitment of Src and was associated with an increase 

in c-FLIP short degradation, sensitizing cells to DR5 agonist-induced apoptosis [433]. Src could play 

a role during TRAIL-induces non-canonical signalling [39], given that Src was described, in addition, 

to phosphorylate and, thus, to inhibit caspase-8 enzymatic activity [434]. Furthermore, CaM may 

allow recruitment and activation of the Src [435]. Interestingly, CaM has also been found to be 
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recruited within the Fas DISC [424,436,437], and associated with the regulation of Src pro-tumoral 

activity [424,435]. Last, caspase-8, alone, was found to bind to the Focal Adhesion Kinase (FAK) and 

Calpain-2 Ca2+ dependent protease (CPN2), displaying, thus, pro-metastatic function properties in 

glioblastoma cell lines [438], (Figure 6). 

 

Figure 6. TRAIL non-canonical signalling pathway associated with caspase-8 non-enzymatic 

functions. Caspase-8 is a pro-apoptotic protein that, in the presence of c-FLIP, can activate TRAIL 

non-canonical signalling in an enzymatic-independent manner. If an increase in Ca2+ ions from the ER 

is initiated at some point of the stimulation, the CaM can be recruited to DR5 MPD. Activated CaM, 

by inducing Src activation induces next the phosphorylation of the caspase-8, see text for details, 

enabling PI3K activation and subsequent activation of Rac1, leading to cell migration and invasion. 

Caspase-8 phosphorylation can also inhibit adhesion complex through complex elements FAC and 

CPN2 interaction. This interaction inhibits cell adhesion and allow complex elements activation. 

Then, cell migration and invasion can be induced by activating FAK and additional adhesion complex 

elements like PLCy, FAK, Rho, PI3K, and Src. Curiously, FADD seems to have the ability to trigger 

FAK-inhibited miR7a expression through unknown mechanisms. This is linked to the expression of 

pro-metastatic cytokines TGFβ and CCL5. Colours: writing highlights and arrows illustrate TRAIL-

induced proliferation and inflammation (in blue), or TRAIL-induced metastasis (in red). 

4.2. Nuclear DR5 Regulates Both Proliferation and Metastasis 

In other studies, regulation of TRAIL’s pro-tumoral signalling has been suggested to be due to 

the subcellular compartmentalization of DR5 in the nucleus [439,440]. It is not clear how DR5 goes to 

the nucleus, but it has been proposed that DR5 may undergo proteolytic cleavage or internalization 

upon ligand binding, allowing its translocation into the nucleus [441–443]. Interestingly, mostly DR5 
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but not DR4 is found in nuclear compartment in late cancer stage of NSCLC [440], pancreatic [444], 

and breast cancer [445]. DR5 harbours two nuclear localization signals (NLS) sequences which 

promote importin-β1 binding and nuclear translocation of the complex, limiting thus TRAIL-induced 

cell death sensitivity [442]. In the nucleus importin-β1/DR5 was found to regulates the micro-RNA 

let-7 maturation and to promote tumour cell proliferation [444]. 

Mature let-7 is known to control cell proliferation by inhibiting its targets, such as, the High 

mobility group AT-Hook protein-2 (HMGA2) and the Lin-28 homolog-B (Lin28B) protein expression. 

Upregulation of HMGA2 and Lin28B enhance cell proliferation and malignant progression [446–449] 

(Figure 4). HMGA2 and Lin28B are two proteins overexpressed in embryonic tissues and 

downregulated in differentiated tissues because of low expression of let-7. Let-7 overexpression 

prevent cell transformation in epithelial cells [450]. Furthermore, knockdown of DR5 using shRNA 

results in increased levels of mature let-7, consequently in reduced abundance of let-7 targets, which 

induce cell proliferation in pancreatic cancer cells [444]. Interestingly, knockdown of DR5 in 

metastatic breast cancer cells decrease bone homing and early colonization to the bone marrow and 

induce E-cadherin overexpression which contraries EMT in xenograft mice model [350]. Impaired 

cell migration was linked to decreased CXCR4 expression [350] and increased E-cadherin expression 

[451]. CXCR4 selectively binds the CXC chemokine stromal cell-derived factor-1 (SDF-1), also known 

as CXCL12, and plays a crucial role in several biological processes, including in cancer biology, where 

it was associated with tumour dissemination and metastasis [452]. CXCR4 is a marker of breast cancer 

cells poor prognosis. High CXCR4 expression is significantly correlated with lymph node status, 

distant metastasis, and poor survival [453]. Interestingly, nuclear DR5 regulates CXCR4 expression 

through inhibiting let-7 maturation [41,350], leading, as a consequence, to the expression of HMGA2 

and CXCR4, and bone metastases formation of breast primary tumours [350,444,454] (Figure 4). All 

these findings suggest that nuclear DR5 may also play an important function in tumour 

aggressiveness. Yet, whether translocation of DR5 to the nucleus is fast enough to explain and concur 

to calcium-mediated pro-motile and metastatic signalling after TRAIL treatment, remains to be 

determined? 

4.3. Caspase-8 Contribution in TRAIL Non-Canonical Signalling 

Caspase-8 and FADD are required for TRAIL to induce apoptosis and are both recruited to 

TRAIL DISC upon TRAIL treatment [140,141], but recent evidence suggest that they may also 

contribute to TRAIL non-canonical signalling. Likewise, caspase-8 has been reported to be recruited 

to a FADDosome complex, whose formation after TRAIL stimulation is associated with cell 

proliferation and/or migration [62]. Interestingly, mutations of caspase-8 in head and neck squamous 

cell carcinomas represent almost 9% of the cases, and three out of the four mutations examined in 

Li’s study conferred caspase-8 with pro-motile and pro-invasive properties [455]. Moreover, 

phosphorylation of caspase-8 on tyrosine 380 by the Src kinase, which inhibits its aspartate protease 

activity and, thus, protect cells from TRAIL-induced cell death [434], was associated the likelihood of 

a regulation of caspase-8 functions, switching its pro-apoptotic activity to cell migration by SH2 

kinases [456,457]. Caspase-8 Y380 residue was described to be essential for caspase-8 relocalization 

to lamella of migrating cells [458]. Src-induced phosphorylation of caspase-8 on Y380 was also found 

to drive the assembly of a soluble complex, containing IKKα, IKKβ and p65, that tiggers NF-kB 

activation in glioblastoma cells, leading to inflammation and angiogenesis [459]. 

Caspase-8 has been described to interact with p85α, subunit of PI3K to activate Rac1 through 
lipid products generation (PIP2 and PIP3) that activate guanine nucleotides-exchange factors (GEFs), 

[460] which are necessary to Rac1 activation [461]. In Neuroblastoma cell lines caspase-8 pro-

migratory signalling capability was associated with its ability to interact with the focal adhesion 

kinase (FAK) and calpain 2 (CPN2) [462], two components of the focal adhesion complex (FAC) [438] 

(Figure 6). FAC is a signalling complex anchored by cell actin cytoskeleton, membrane integrins and 

extracellular matrix (ECM). This complex is known to contain many cytosolic proteases, 

phosphatases, and kinases, including the FAK, a key effector of metastasis [463]. Cytoplasmic 

phosphorylated FAK induce cell migration and invasion, cytoskeleton organization and EMT 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 February 2024                   doi:10.20944/preprints202402.0485.v2

https://doi.org/10.20944/preprints202402.0485.v2


 17 

 

through FAC protein elements activation, like PI3K, Src and Rho [464]. Caspase-8 interacts with 

components of the FAC in a tyrosine-kinase dependent manner, promoting both cell migration and 

metastasis [456,464,465]. Of interest, it was also found that FADD, by inhibiting miR7a expression, is 

associated with an increase in FAK and spontaneous invasion and metastasis of the melanoma cell 

line B16 [466]. The increase in FAK overexpression, induced by a FADD-mediated downregulation 

of miR7a, leading to the expression of CCL5 and TGFβ expression, two cytokines involved in 

triggering metastasis [466,467] (Figure 6). Last, but not least, caspase-8 pro-motile and metastatic 

signalling has also been associated with its ability to promote Rab5-mediated internalization and 

recycling of β1 integrins [468,469]. 

Consistent with the findings described above and the work of Henry et al. [62], indicating that 

both FADD and caspase-8 may account for TRAIL non-apoptotic signalling, is the demonstration, in 

rheumatoid arthritis fibroblast-like synoviocytes, that caspase-8 is responsible for the cellular 

migration of these synoviocytes stimulated with PDGF, regardless of its enzymatic activity [470]. 

4.4. TRAIL Induce Cancer Metastasis after uPA and c-cbl Regulation 

TRAIL was found to enhance inflammation and promote invasion of PDAC cells in vitro and 

metastasis in vivo by inducing the up-regulation of the urokinase-type plasminogen activator (uPA), 

IL-8 and CCL2 [38]. uPA is an agonist of the urokinase-type plasminogen activator receptor (uPAR) 

which can induce metastasis [471]. It has been found to be involved in triggering FasL-induced 

invasiveness [57]. uPA converts plasminogen to plasmin then activates MMPs under matrix 

extracellular degradation [472]. Activated uPAR can also, on the other hand, interact with other 

transmembrane receptors, including integrins and growth factor receptors [473–475]. These 

interactions trigger activation of the ERK1/2, FAK, Src and PI3K/Akt signalling pathways [476,477]. 

Besides regulating metastasis, uPAR was found to inhibit TRAIL-induced apoptosis, in glioma 

cells by regulating the expression of DR4 and DR5 [478], in colon cancer by the intrinsic mitochondrial 

pathway [477] or in TNBC through the regulation of miR-17 and miR-20, two miRNAs that were 

shown to impair DR4 expression [479]. Using a RAS-derived stepwise tumorigenesis models to 

recapitulate TRAIL selectivity, Pavet et al. demonstrated that PLAU mRNA levels, encoding uPA, 

increase with transformation, preventing TRAIL-induced apoptosis [480]. Depletion of uPA restored 

TRAIL sensitivity, through inhibiting ERK1/2 activation and DcR2 recruitment to the TRAIL DISC 

[480]. Mechanistically, how uPA/uPAR regulate TRAIL signalling and more specifically cell motility 

and metastasis is still unknow. Yet given that uPA is known to promote, not only cancer cell survival 

or proliferation, but also migration from primary tissues to distant organs [481], it remains an 

interesting potential TRAIL receptor complex partner to study. 

In addition to uPA, the ubiquitin ligase Cbl proto-oncogene (c-Cbl) has also attracted attention 

as a potential TRAIL receptor partner for the triggering of TRAIL pro-metastatic signalling. This 

ubiquitin ligase was found to regulate both DR5 and DR4 expression levels [482–484]. 

c-Cbl was found to interact with the caspase-8 inhibitor c-FLIP and to induce its proteasomal 

degradation, sensitizing macrophages, infected by mycobacteria, to TNF-induced cell death [485]. A 

number of studies point to c-Cbl as a potential regulator of TRAIL non-canonical signalling pathways 

[486–488]. Likewise, after TRAIL stimulation, c-CBL appears to be involved in a complex involving 

Src and PI3K, which induces the phosphorylation of AKT [486]. CBL-b and c-CBL were found to 

interact with DR5, linking DR5 with TRAF2 and inducing ubiquitination of caspase-8 in TRAIL 

resistant gastric cancer cells [398]. CIN85 is an important c-Cbl binding protein which plays an 

essential role in cell survival (Dikic, 2002), such as for example in prostate adenocarcinoma cells, in 

which CIN85 was found to enhance the phosphorylation and activation of MAPKs during TRAIL 

treatment, leading to their survival [488]. 

Interestingly, and albeit only cell death was analysed in Xu and al.’s study, it was also found in 
these cells that deletion of CBL-b, restored TRAIL sensitivity, but also had an impact towards TRAIL 

receptor subcellular localization [487,489]. Besides TRAIL agonist receptors, it was found that 

activated c-Cbl induce EGFR redistribution into lipid rafts, facilitating its activation (L. Xu et al., 

2012), which might ultimately promote metastasis in gastric cancer cells (Figure 5). 
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5. Conclusions and Perspectives 

TRAIL has emerged as a promising anticancer agent, however, resistance to TRAIL is a major 

problem, not only because targeted tumours will likely survive to the treatment, but most of all 

because TRAIL may trigger, in resistant cells, a non-conventional signalling pathway that may 

ultimately lead to tumour spreading and metastasis. 

While signalling pathways triggering cell death are well understood, non-canonical signalling 

pathways driving cell motility and leading to metastasis are still unclear. As discussed in this review, 

a number of molecular complexes have been described, explaining how TRAIL receptors may drive 

cell survival, proliferation, inflammation, and metastatic signal transduction. Yet it is still unclear 

whether NF-κB or MAP Kinase signal transduction requires a secondary complex or not, given that 

main kinases or adaptor proteins, including RIPK1, TRADD or TRAF2 can readily interact with 

complex I. Comprehension of both the temporality and the subcellular localization and composition 

of these complexes is still missing to provide a comprehensive view of the molecular circuitry which 

dictate pro-apoptotic or non-apoptotic signalling pathways triggered by TRAIL receptors. 

Regardless, a better understanding of the molecular events involved during TRAIL-induced 

pro-metastatic signalling or non-apoptotic signalling pathways shall be beneficial for both cancer 

therapies and auto-immune diseases, as this will likely open interesting opportunities to prevent 

autoimmune diseases associated or not with inflammation or to inhibit or cure metastasis formation 

in patients. 
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