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Abstract

Background The urgent need for multifunctional, nature-based solutions has been produced by the
increased environmental, social, and economic strains on cities because of accelerated urbanization.
Urban green infrastructure (UGI), which includes parks, green roofs, wetlands, and street trees,
provides critical ecosystem services (ES) that enhance climate resilience, enhance environmental
quality, and support social well-being. The current research is divided, with an excessive emphasis
on regulatory services and an inadequate consideration of co-benefits and equality issues. Methods
A systematic review was conducted by integrating 690 empirical articles published from 2000 to 2022,
utilizing the Collaboration for Environmental Evidence criteria. The advantages of urban green
infrastructure in the supplies, regulating, sustaining, and cultural ecosystem service categories, as
defined by the Millennium Ecosystem Assessment, were examined using bibliometric mapping,
quantitative synthesis, and narrative theme analysis. Results The most frequently documented topics
were urban heat reduction, stormwater management, and air quality enhancement, with regulatory
services comprising most of the literature (77.5%). Green roofs in tropical regions decreased air
temperature by 1.4°C, while parks in temperate regions decreased mean air temperature by 2°C and
land surface temperature by 6.2°C. Provisioning, supporting, and cultural services were each
underrepresented, with less than 8% each. Affluent countries were favored by geographic bias, while
only 17.7% of heat-related research evaluated co-benefits. Operational feasibility, equity evaluations,
and longitudinal performance data were rarely considered. Conclusions Although UGI provides
significant, quantifiable environmental and social benefits, its integration into urban policy is
complicated by a lack of research on underrepresented service categories, equality, and
operationalization. Standardized assessment frameworks, interregional research, and innovative
finance methods are essential for the expansion of urban green infrastructure as a cost-effective and
equitable climate adaptation strategy.

Keywords: urban green infrastructure; ecosystem services; climate resilience; heat mitigation;
sustainable urban planning; co-benefits; equity; nature-based solutions

Introduction

Background

In recent decades, urbanization has advanced rapidly, with more than half of the global
population currently residing in urban areas. This figure is expected to rise to 68% by 2050 (UN DESA,
2018). Environmental, social, and economic stresses on urban systems are intricately linked to this
demographic transition (Bai et al., 2017; Grimm et al., 2008). The energy and water dynamics of urban
areas are significantly impacted by urban growth, particularly the conversion of vegetated areas into
impermeable, heat-absorbing surfaces (ADB, 2015; Jiang et al., 2018). These modifications exacerbate
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the urban heat island phenomenon, reduce thermal comfort, increase the energy requirements for
cooling and heating (Li et al., 2019b; Lundgren & Kjellstrom, 2013; Waite et al., 2017), and result in
increased morbidity and mortality during heat events (Lam et al., 2018; Lemonsu et al., 2015; Patricola
& Wehner, 2018; Shi et al., 2017; Zhang et al., 2018).

Cities are making concerted efforts to enhance their climate resilience using strategies such as
sustainable urban design, climate-proofing, and low-carbon development (Albers et al., 2015; Bai et
al., 2018; Revi et al., 2014; Satterthwaite, 2010; UN, 2013). Urban green infrastructure (UGI), which
includes public parks, forests, green roofs, vertical vegetation, wetlands, urban agriculture, and street
trees, has emerged as a viable nature-based solution to address these challenges (ClimateADAPT,
2023; Mell, 2013; Meerow & Newell, 2017). UGI is defined as a network of natural and semi-natural
areas that have been intentionally designed to offer a variety of environmental, social, and economic
benefits (ClimateADAPT, 2023). The integration of this into urban systems offers the potential to
enhance sustainability, mitigate the effects of climate change, and promote the provision of ecosystem
services.

Ecosystem services (ES), which are defined as the benefits that individuals derive from natural
processes (MEA, 2005; Haase et al., 2014), offer a valuable framework for evaluating the contributions
of urban green infrastructure (UGI). Some of the specific functions of UGIs that have been the subject
of previous reviews include temperature regulation (Bowler et al., 2010; Yu et al., 2020), air quality
enhancement (Abhijith et al., 2017), climate change adaptation (Ramyar et al., 2021), and individual
ecosystem service categories, such as cultural (La Rosa et al., 2016) and provisioning services (Haase
et al., 2014). Certain types of infrastructure (Roy et al., 2012) or restricted geographic contexts
(Amorim et al., 2021; DasGupta et al,, 2019; Lindley et al., 2018) have been the focus of certain
researchers. Although the analysis was limited to six categories, Veerkamp et al. (2021) examined
numerous ecosystem services. This division limits a comprehensive understanding of UGI's full
potential and limits its implementation in policy and planning.

Gap Analysis

This review addresses numerous deficiencies which are evident in the current literature.
Numerous studies emphasize on one service or benefit, overlooking UGI's capacity to generate
numerous, interconnected economic, social, and environmental impacts (Cabana et al., 2020).
Secondly, the study coverage is inconsistent, with regulatory services, particularly climate control,
receiving an excessive amount of attention, while supporting, providing, and cultural services are
inadequately examined (Bai, 2018; Saarikoski et al., 2018). Third, evaluations frequently lack
empirical field data, relying primarily on modeling or experimental configurations that have limited
real-world applicability (Herath et al., 2023; Hunziker et al., 2017). Fourth, assessment frameworks
hardly incorporate co-benefits, despite their importance in cost-effective, multi-objective urban
design (Raymond et al., 2017). Ultimately, research frequently disregards operational challenges,
including governance, financing mechanisms, and long-term maintenance, which are essential for
the scalability of UGI solutions (Gelan & Girma, 2021).

The formulation of comprehensive, achievable strategies for integrating UGI into urban policy
is restricted by the disjointed research base. It also runs the risk of underestimating its importance by
failing to consider the interdependencies among services and the geographical, climatic, and socio-
political factors that influence performance and feasibility.

Objectives and Review Questions

Using a comprehensive systematic-narrative framework, this study methodically examines the
numerous advantages and ancillary benefits of UGI. Six thematic areas of contemporary and
developing research focus are identified through the synthesis of evidence from 690 peer-reviewed
case studies published between 2000 and 2020: (1) The benefits of urban green infrastructure (UGI)
as urban ecosystem services, (2) the mitigation of climate and urban climate impacts, (3) the
contribution to the United Nations Sustainable Development Goals (SDGs), (4) the use of greenspaces

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1246.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2025 d0i:10.20944/preprints202508.1246.v1

3 of 30

as secure refuges, (5) public recognition and supportive governance, and (6) the operationalizability
of UGL

The review is organized around the subsequent research question, which is derived from the
PECO (Population, Exposure, Comparator, Outcome) framework:

e  Urban areas worldwide: Population.

e  Exposure: The presence or implementation of Urban Green Infrastructure (UGI), including street
trees, green roofs, wetlands, parks, and forests.

e  Comparator: Urban environments that include alternative gray infrastructure options or have
minimal or no urban green infrastructure (UGI).

e  Result: Evaluated the operational efficacy, co-benefits, and environmental, social, and economic
benefits.

This framework gives rise to the primary review question: What are the documented advantages
and ancillary benefits of urban green infrastructure in the environmental, social, and economic
domains, and how can these insights be used to facilitate the effective, equitable, and scalable
integration of urban green infrastructure into urban planning and policy?

The objective of this review is to resolve the subject by achieving three objectives.

1. Synthesis Aggregate evidence regarding the spectrum of advantages and co-benefits provided
by Urban Green Infrastructure (UGI), in accordance with the categories of the Millennium
Ecosystem Assessment (provisioning, regulating, cultural, and sustaining).

2. Identification of Deficits Identify thematic, methodological, and contextual deficiencies in
current UGI research, with a particular emphasis on the integration of co-benefits, inadequately
examined service categories, and practical practicality.

3. Policy Relevance Convert the findings into practical insights for academics, urban planners, and
policymakers, emphasizing evidence-based strategies for extending the implementation of UGI
in a variety of climatic and governance contexts.

This investigation aims to offer a thorough comprehension of UGI's potential to contribute to
the creation of climate-resilient, sustainable cities by utilizing qualitative, bibliometric, and statistical
analysis. The urgent need for multi-functional urban solutions that balance environmental objectives
with economic feasibility and social justice is addressed by the emphasis on equity issues, operational
limitations, and co-benefits (Anguelovski et al., 2022; Herreros-Cantis & McPhearson, 2021).

Methods

Protocol Registration

The review was conducted in accordance with the Collaboration for Environmental Evidence
(2013) criteria for systematic literature reviews and incorporated narrative synthesis components to
enable a comprehensive theme analysis. The protocol was not registered with PROSPERO or any
other registries; rather, it was developed to guarantee repeatability and transparency.

Eligibility Criteria
Studies were qualified if they met all the following criteria:

e  Population: Urban areas in any geographic region or climatic zone.

e Intervention/Exposure: The presence or implementation of urban green infrastructure (UGI),
which includes urban wetlands, street trees, vertical vegetation, green roofs, blue-green
infrastructure, and urban agriculture.

e  Comparator: Urban regions that lack urban green infrastructure (UGI), utilize alternative gray
infrastructure, or exhibit multiple forms of UGI for comparative analysis.

e  Results: Environmental, social, and economic advantages, including secondary benefits, that
have been recorded and classified in accordance with the Millennium Ecosystem Assessment
framework (provisioning, regulating, cultural, and supporting).
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e  Study Design: Empirical, peer-reviewed investigations that include observational, experimental,
modeling, or mixed-methods research.

e  Period of publication: January 2000 to December 2022.

¢ Language: English.

Reviews, conference abstracts, editorials, and non-peer-reviewed publications were excluded.

Search Strategy

A comprehensive search was conducted in the Web of Science Core Collection, which includes
the Science Citation Index Expanded (SCI-E) and the Social Sciences Citation Index (SSCI). The search
terms combined urban-related terminology (city, urban, metropolitan) and benefit-related
terminology (service, impact, climate, air quality, social, economic, water) with variations of "green
infrastructure” (e.g., nature-based solutions, ecosystem-based adaptation, blue—green infrastructure),
utilizing Boolean operators AND and OR (Pauleit et al., 2017; Ghofrani et al., 2017). The entire search
query is included in the appendix of the original article.

5,812 records were obtained during the preliminary inquiry. To exclude non-original research
and eliminate duplicates, filters were implemented to limit the results to peer-reviewed journal
articles in English.

Study Selection

Screening was conducted at three distinct levels:

e  Tier 1: Relevant titles and metadata were assessed, resulting in 3,144 articles.

e  Tier 2: Titles and abstracts were assessed to eliminate irrelevant research, resulting in 706
publications.

e Tier 3: A comprehensive text evaluation was conducted to confirm eligibility, resulting in the
inclusion of 690 studies.

A single reviewer conducted all screening phases, consistently applying uniform inclusion and
exclusion criteria throughout the process.

Identification
Records identified from:
Web of Sdence Core Collection (n=5,812)

Records after duplicates removed and filtered for peer-reviewed English articdes
(n=3,144)

Title/abstract screening
Records screened (n=3,144)
Records excluded (n=2,438)

Full-text articles assessed for eligibility (n=706)
Full-text articles excluded, with reasons (n=16)
- Not empirical (n=9)

- Not UGI-related (n=5)

- Outside date range (n=2)

Studies induded in review (n=680)

Data Extraction

1. The characteristics of UGI and the description of the intervention were documented by a
systematic extraction framework.
2. Documented advantages and ancillary benefits.
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3. Climate zone and geographic location.

4. Research design and methods (hybrid approaches, surveys, remote sensing, modeling, or field
measurement).

5. Quantified indices, such as the mean radiant temperature, air temperature, land surface
temperature, and physiological equivalent temperature.

6. 6Solutions and methodologies for modeling (e.g., ENVI-met, WRF, CFD).

7. Quantitative findings, when they are available.

To guarantee methodological consistency, data extraction was performed manually by a single
reviewer. VOSviewer was employed to conduct bibliometric and keyword co-occurrence analyses to
identify theme clusters and study focal points (Van Eck & Waltman, 2010).

Quality Assessment

Each study underwent a comprehensive assessment that prioritized the clarity of intervention
descriptions, methodological appropriateness, and transparency in statistical reporting, despite the
absence of obvious bias assessment measures such as the Cochrane Risk of Bias or Newcastle-Ottawa
Scale. Studies that lacked sufficient methodological information were incorporated; however, the
synthesis was conducted with caution.

Statistical Methodology

The evaluation covered quantitative analysis in two primary formats:

1. Bibliometric Data Theme groupings of interest have been identified through keyword co-
occurrence mapping, which evaluated phrase frequency and connection strength. Through
treemap analysis, the proportional representation of ecosystem service categories was
demonstrated, with regulatory services accounting for 77.5% of studies, supporting services for
7.8%, provisioning services for 7.4%, and cultural services for 7.4%.

2. Analysis of Climate-Related Data for Theme 2, quantitative decreases in air temperature (Tair),
land surface temperature (LST), and thermal comfort indices (PET, PMV, UTCI) were assessed
in research that examined the impacts of UGI on heat mitigation. The data were categorized by
climatic zone, and the average reductions and ranges were calculated for each UGI type. The
statistical overview comprised solely studies that produced quantifiable results, which
accounted for 87% of heat-related cases. In lieu of conducting a meta-analysis, data were
compared by climatic zone and intervention type. This was necessary due to the variability in
research designs and models.

Data Synthesis

The evaluation employed a dual-phase synthesis methodology:

¢  Quantitative/Bibliometric Analysis Mapping the distribution of research by theme grouping,
UGI type, and geographic location.

e  Thematic and Narrative Synthesis Detailing advantages, ancillary benefits, methodological
trends, and study deficiencies, data is organized into six designated topics.

This comprehensive strategy ensured systematic scope and qualitative depth, thereby
facilitating the identification of trends in the literature, as well as voids and practical issues that are
relevant to the implementation of UGL
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Search Strategy Table
Database Years Search Search Query Filters Number of
Covered Date Applied Records
Retrieved
Web of 2000- January (city OR urban | Peer- 5812
Science 2022 15,2023 OR reviewed
Core metropolitan) | journal
Collection AND ("green articles,
(SCI-E, infrastructure” | English
SSCI) OR "nature- language
based
solutions"” OR
"ecosystem-
based
adaptation” OR
"blue-green
infrastructure™)
AND (service
OR impact OR
climate OR "air
quality” OR
social OR
economic OR
water)
Results
Study Selection

The preliminary search produced 5,812 entries in the Web of Science Core Collection. 3,144

articles were chosen for screening following the implementation of linguistic and peer-review

criteria. The selection was narrowed to 706 articles by analyzing the titles and abstracts, and a full-

text evaluation was conducted for each article. A total of 690 studies were included in the synthesis,

as they met the inclusion criteria. The PRISMA flow diagram (Figure 1 in the original paper) defines

the selection process and provides reasons for exclusion at each phase.

Risk of Bias / Quality Assessment Table

Criterion Studies Meeting Criterion (%)
Clear description of UGI intervention | 92.5

Appropriate study design for research | 88.1

question

Transparent statistical reporting 74.6

Use of empirical field data 63.2

Inclusion of co-benefits analysis 17.7

Consideration of equity/distributional | 12.0

impacts
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Study Characteristics

The research was a combination of environmental sciences, urban studies, ecology, forestry,
engineering, water resources, and sustainable technologies. Europe was the site of the diversity of
the investigations (38.6%), with Asia (29.3%) and North America (19.5%) following in that order.
Nevertheless, Oceania (5.5%), Africa (3.9%), and South America (3.2%) were underrepresented. The
National Presences of the United States (17.3%) and China (18.2%) were the most significant. In
numerous investigations conducted after 2015, the advantages of UGI were increasingly
acknowledged (Escobedo et al., 2019).

The primary forms of urban green infrastructure that were examined were street trees (5.8%),
urban trees (5.3%), general green areas (7.5%), and green roofs (10%). Urban agricultural land and
rooftop farming are initiatives that are rarely investigated.
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Study Characteristics Table
Author/Ye | Country/Regi | Climate® | UGIE'ypel | Study@ Keyl
arf onf Zonel Design/Meth | Outcomes/Measur
od@ esl
Capotortil | ItalyfEurope)B Temperat | Urban Field® AirQualityl
et@l, 20191 el parks, measurement | enhancement@
biodiversit | ,@&&ISEnapping| (NO,,O,,B0,
y@ reduction),?
corridorsf biodiversity
habitat@rovision
Sdumel@tl | Germanyl Temperat | Rooftop® | Field® Food@roduction,
al,20190 (Europe)@ el gardens,@ | measurement | community
urbanf ,BurveysQ engagement,
agricultur microclimatel
el regulationf
Threlfall@t@| Australial Temperat | Urbanf Field® Habitat@rovision[
al.,2017@ (Oceania)@ el parks, observation,? | for@rban[
street@ biodiversity® | biodiversity,®
treesf surveysl pollinator@®
abundancel
Herath@t@ | Sriflankal Tropical@ | Greenf Modeling® Reductionn@Aira
al., 20230 (Asia)@ roofs, (ENVI-met),2 | temperatureby?
greenf field® 1.4°C,Bmprovedl
walls@ measurement® thermal@omfortd
(PETHndex)
Meili@t@l,B| Switzerland® | Temperat | Urbanf Field® Impact®fiireel
20218 (Europe)@ el parks,@ measurement | canopy@ensity@n@
streetl ,@nicroclimated microclimatel
treesfll modelingll regulationf

Distribution of UGI Types in Included Studies

Street trees

Urban trees

General green areas

Green roofs

Urban agriculture

Wetlands
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Proportional Representation of Ecosystem Service Categories

Cultural services 7.4%
Provisioning services 7.4%
Supporting services 7.8%

Regulating services 77.5%

0 10 20 30 40 50 60 70 80
Percentage of studies (%)

Thematic Synthesis of Results

Theme 1: The Advantages of Urban Green Infrastructure as Urban Ecosystem Services

The Millennium Ecosystem Assessment categories were employed to disproportionately apply
the research concentration in the analysis. Supporting services, provisioning services, and cultural
services were present in 7.8%, 7.4%, and 7.4% of the studies, respectively, while regulatory services
were present in 77.5% of the studies. The most prevalent regulatory advantages were urban climate
control (20% of all instances) and stormwater management (16.5%). The context of air quality
enhancement has been extensively documented for the reduction of NO,, CO,, SO,, O3, PM.. 5, and
PMy, (Capotorti et al., 2019; Santiago et al., 2019).

Supporting services typically included habitat provision for urban biodiversity (Threlfall et al.,
2017; Kowarik, 2019), whereas provisioning services included food production from rooftop gardens
and urban agriculture (Grard et al., 2018; Sdumel et al., 2019). Spiritual development, tourism, and
relaxation were all facilitated by cultural services, despite their underrepresentation (Ngulani &
Shackleton, 2019).

The critical assessment revealed methodological variability, which is characterized by unequal
valuation methodologies and overlapping service categories, complicating cross-study comparisons.

Theme 2: The Mitigation of Climate and Urban Climate Impacts

Boxplot of Tair Reduction by UGI Type and Climate Zone
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Approximately 44% of all ecosystem services research was centered on climate control.
According to a quantitative synthesis of 108 heat-related case studies, temperate-region urban parks
decreased air temperature (Tair) by an average of 2°C (range 0.02-9.4°C) and land surface
temperature (LST) by 6.2°C.

A 1.4°C decrease in Tair was observed in tropical regions with green roofs, with a range of 0.02—
2.6°C.

The most significant decrease in land surface temperature among subtropical street trees was
14°C.

Modeling for future timeframes was infrequent, occurring in only 4.4% of cases, despite the
frequent use of thermal comfort indices (PET, PMV, UTCI). Co-benefits in conjunction with heat
reduction were examined in only 17.7% of the research.

Boxplot of LST Reduction (Where Reported)
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The mixed-methods approach (modelling, field measurement, GIS/RS) and comprehensive
climatic zone coverage were strengths. Nevertheless, the absence of multi-year studies, an
overreliance on modeling rather than observational data, and an inadequate representation of high
heat situations were all shortcomings (Herath et al., 2023).
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- Mean Tair Reduction by UGI Type and Climate Zone
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Theme 3: The Sustainable Development Goals (SDGs)

UGI has supported specific Sustainable Development Goals, including SDG 11 (Sustainable
Cities and Communities), SDG 13 (Climate Action), and SDG 6 (Clean Water and Sanitation) (United
Nations, 2018). Wetland restoration facilitated the purification and storage of water (Hettiarachchi et
al., 2022), while urban agriculture enhanced food security and community engagement (Sdumel et
al., 2019).

Nevertheless, the great majority of research (82.3%) concentrated on a single benefit, while only
a small number of studies conducted systematic investigations of co-benefits. Equity concerns,
including the distribution of green spaces among socio-economic groups, were not adequately
examined (Herreros-Cantis & McPhearson, 2021).

Theme 4: Greenspaces as "Sanctuaries"

During the COVID-19 pandemic, the demand for green spaces increased significantly, with the
use of these spaces in numerous locations increasing by more than 200% (Venter et al., 2020). The
benefits of physical activity participation, tension alleviation, and mental health assistance were
documented (Astell-Burt & Feng, 2019).

The potential misuse of public spaces, such as criminal activity or allergy exposure, and safety
concerns were, however, infrequently addressed (Lyytiméki et al., 2008). This division complicates
the understanding of UGI's role in catastrophe resilience planning.

Theme 5: Public Recognition and Governance Endorsement

The general public's perception of UGI was mainly favorable, particularly considering its
evident environmental benefits, such as the regulation of temperature and the enhancement of air
quality (Gashu & Gebre-Egziabher, 2019). Perceived inconveniences, such as the loss of parking or
maintenance issues, were the source of adverse attitudes (Culligan, 2019).

The evidence on financing strategies was limited, as there was a lack of research on public-
private partnerships or willingness-to-pay models (Mell et al., 2016).

Theme 6: The Operational Capability of UGI

Operational obstacles consist of financial constraints, geographical constraints, maintenance
complications, and inadequate interinstitutional collaboration (Gelan & Girma, 2021). Innovative
solutions, such as the integration of solar panels with vegetative rooftops, were demonstrated in case
studies, resulting in an energy efficiency increase of up to 16% (Cavadini & Cook, 2021).

There is a dearth of comprehensive study that has compared the cost-effectiveness of UGI to
traditional infrastructure. Although the impact of spatial arrangement, specifically the density of tree
canopy, on microclimate has been recognized, it has not been adequately examined (Meili et al., 2021).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1246.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2025 d0i:10.20944/preprints202508.1246.v1

12 of 30

Keyword Co-occurrence Network - Thematic Clusters
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Agreements and Disagreements

Across themes, there was agreement that UGI is essential for livability, urban resilience, and
climate adaptation (Raymond et al., 2017; Bai et al., 2018). The assessment of cultural services, the
extent of climate control advantages in various climatic zones, and the possibility of scaling UGI
without significant government transformation were the primary focal points of the disputes.

Discussion

Summary of Main Findings

This analysis provides a comprehensive overview of the environmental, social, and economic
benefits of urban green infrastructure (UGI) by combining the results of 690 empirical studies
published between 2000 and 2022. The research determined that regulatory services are the most
extensively examined advantages in the literature, with urban heat control, stormwater management,
and air quality enhancement being among the most common (Capotorti et al., 2019; Santiago et al,,
2019). Despite their acknowledged contribution to urban resilience, cultural, provisioning, and
supporting services are significantly underrepresented (Ngulani & Shackleton, 2019; Threlfall et al.,
2017).

The findings suggest regional and thematic disparities, as evidenced by a substantial
concentration of research in high-income nations, particularly China and the United States, with
minimal representation from Africa, South America, and certain regions of Asia. The utilization of a
variety of methodologies, such as field measurements, remote sensing, and computer modeling, has
provided valuable insights; however, it has also resulted in variance that limits cross-study
comparisons (Herath et al., 2023). In most assessments, equity issues are largely disregarded, and
there is a lack of research that examines the co-benefits of UGI within an integrated framework
(Herreros-Cantis & McPhearson, 2021).
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Comparison with Existing Literature

This review's emphasis on regulatory services is consistent with previous meta-analyses that
also suggested an imbalanced concentration on hydrological control and heat mitigation (Bowler et
al.,, 2010; Yu et al,, 2020). This synthesis expands upon prior research by employing bibliometric
network analysis to identify underexamined service categories and delineate theme connections.
Compared to Veerkamp et al. (2021), which limited its analysis to six ecosystem services, this
assessment considered all categories of the Millennium Ecosystem Assessment, thereby offering a
more comprehensive evaluation.

This work provides a cross-typology synthesis that identifies multifunctional advantages and
trade-offs, in contrast to assessments that focus only on specific UGI categories, such as urban forests
(Amorim et al., 2021) or green roofs (Roy et al., 2012). This thorough examination demonstrated that
while certain types of urban green infrastructure (UGI), such as urban parks, consistently offer
quantifiable cooling benefits across all temperature zones, others, such as rooftop farms, are rarely
assessed beyond their food production outcomes (Saumel et al., 2019).

The absence of equity-focused research is in direct opposition to the increasing number of global
initiatives that promote solutions based on nature that are socially equitable (Anguelovski et al.,
2022). The recurring deficiency previously identified by Herreros-Cantis and McPhearson (2021) is
underscored by the conclusion of this review that most of the research neglects the distributional
dimensions of UGI benefits.

Strengths and Limitations of the Evidence Base

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1246.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2025 d0i:10.20944/preprints202508.1246.v1

14 of 30

The evidence base has been enhanced by a diverse and extensive collection of empirical
investigations that span various continents, climates, and methodologies. The theme analysis was
improved by the utilization of bibliometric mapping, which provided an unbiased representation of
research clusters (Van Eck & Waltman, 2010). Additionally, the quantitative synthesis of the benefits
of heat mitigation across climatic zones establishes practical criteria for policymakers and planners.

However, limitations continue to exist. Results from affluent regions may be subject to distortion
due to the geographic bias, as they may not be important to low- and middle-income nations with
unique socio-economic and governance frameworks (Bai, 2018). Secondly, the comparability and
aggregability of findings are limited by methodological variability, which is characterized by a
variety of measurements, modeling scales, and observation durations. The comprehension of UGI
performance over time is restricted, particularly in the context of anticipated climate change
scenarios, due to the absence of longitudinal and multi-seasonal investigations (Herath et al., 2023).

The review's dependency on English-language literature introduces linguistic bias, potentially
excluding geographically relevant studies published in alternative languages. The absence of grey
literature from the search may result in publication bias, as it could have provided more
comprehensive documentation of the operational and maintenance issues associated with UGI.

Strengths and Limitations of This Review

The primary strength of this study is its integrated approach, which combines narrative
synthesis with rigorous literature screening, ensuring a comprehensive and in-depth analysis. The
empirical foundation for determining research priorities was established by the statistical element,
which included bibliometric analysis and quantitative synthesis of climate mitigation.

The likelihood of selection bias is increased in comparison to multi-reviewer methodologies due
to the use of a single reviewer for data extraction and screening, despite the consistent application of
these methods. Additionally, the elimination of non-English sources and non-peer-reviewed
materials may have led to an underrepresentation of practitioner-generated or localized information.

Implications for Practice, Research, and Policy

The research indicates that UGI has the potential to offer substantial benefits for climate
adaptation and mitigation, particularly in the management of runoff and the regulation of urban
temperatures. Planners should prioritize multifunctional urban green infrastructure types, such as
urban parks with integrated water management systems, that are capable of simultaneously
providing a variety of ecosystem services. The necessity for climate-sensitive urban green
infrastructure design that is tailored to local conditions is underscored by the observed heterogeneity
in cooling advantages across temperature zones.

It is imperative to reevaluate the emphasis on ecosystem service categories from a research
perspective. Focused empirical research is required for culturally and provisionally significant topics,
with a preference for blended methodologies that integrate social, economic, and environmental data.
Comprehensive evaluation necessitates an increased emphasis on co-benefits, and subsequent
research must incorporate distributional equity evaluations to address socio-economic disparities in
access to urban green infrastructure (Anguelovski et al., 2022; Herreros-Cantis & McPhearson, 2021).

The results of the study recommend the integration of urban green infrastructure (UGI) into
urban climate action plans and Sustainable Development Goal strategies (United Nations, 2018). The
resolution of operational impediments, including funding, governance coordination, and long-term
maintenance planning, is essential for successful scaling (Gelan & Girma, 2021). The expansion of
implementation beyond pilot initiatives may be facilitated by the examination of innovative finance
structures, such as public—private partnerships and ecosystem service payment systems.

Unanswered Questions and Research Gaps
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There are numerous deficiencies that require immediate attention. The comprehension of UGI's
viability and efficacy in resource-limited environments is limited by the absence of empirical research
in low- and middle-income nations. Secondly, the incorporation of co-benefits is restricted, with only
17.7% of heat-related research evaluating supplementary advantages. Accurate predictions of UGI
performance in the face of evolving environmental conditions are made difficult by the limited
application of future-climate scenario modeling. Fourth, despite their importance to policymakers,
operational feasibility studies, such as cost-benefit evaluations, are rarely conducted.

Additionally, there is a lack of research that examines the unanticipated or adverse consequences
of UGI, including the generation of allergens, increased maintenance costs, and gentrification
pressures (Lyytimaki et al., 2008). It is important to address these concerns to ensure that UGI
initiatives are ecologically sustainable and socially equitable.

Controversies and Ongoing Debates

The extent to which UGI can either supplement or replace traditional gray infrastructure in the
provision of essential urban services remains a topic of debate. Although numerous studies have
shown substantial hydrological advantages, some have questioned whether they are adequate for
reducing the consequences of excessive precipitation in the context of future climate projections
(Patricola & Wehner, 2018). Even though cooling advantages are well-established in a variety of
scenarios, there is a persistent debate about the sustainability of these effects in densely populated
metropolitan centers, where vegetation is limited (Meili et al., 2021).

The role of UGI in encouraging social equity is a contentious domain. Certain individuals
contend that investments in green spaces could contribute to environmental gentrification, resulting
in the displacement of at-risk groups (Anguelovski et al., 2022). Some argue that strategic planning
and equitable allocation may reduce these consequences and improve social resilience (Herreros-
Cantis & McPhearson, 2021).

The optimal measures for evaluating environmental services continue to be the subject of
methodological disputes, particularly when the benefits are intangible or context dependent. The
establishment of uniform, interdisciplinary frameworks would improve the comparability and policy
significance of assessments.

Conceptual Framework: UGI Benefits and Cross-Cutting Themes
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Conclusion

Key Messages

Capotorti et al. (2019) and Santiago et al. (2019) emphasized that urban green infrastructure
(UGI) offers substantial environmental, social, and economic benefits. The most frequently reported
regulatory services include heat mitigation, stormwater management, and air quality enhancement.
This review established evidence from 690 empirical studies. Despite their potential to improve urban
resilience and well-being, cultural, provisioning, and supporting services are not adequately
represented (Ngulani & Shackleton, 2019; Threlfall et al., 2017). The research is geographically
concentrated in high-income nations, which reveals significant deficiencies in low- and middle-
income regions. The evidence base is improved by methodological variety; however, it introduces
variation that limits comparison. A comprehensive comprehension of the role of UGI in sustainable
urban systems is restricted by the absence of equitable analysis and integrated co-benefit evaluation
(Herreros-Cantis & McPhearson, 2021).

Recommendations

In order to improve comparability and policy relevance, researchers must implement
standardized evaluation measures and integrate social, environmental, and economic variables into
a cohesive assessment framework. Particularly in service categories that have been less extensively
investigated, such as cultural and provisioning benefits, there should be a greater emphasis on co-
benefit analysis. To contextualize performance across a variety of socio-economic, climatic, and
governance scenarios, cross-regional comparative analyses are indispensable (Anguelovski et al.,
2022).

To maximize the benefits across multiple service categories, practitioners should prioritize
multifunctional urban green infrastructure solutions, such as urban parks that incorporate water-
sensitive design features. The selection and configuration of UGI must be informed by climate-
sensitive planning, which includes local climatic circumstances and anticipated climate change effects
(Herath et al., 2023). Evaluation of operational and maintenance potential must commence at the start
of the project to ensure the project's long-term functionality and community approval.

By incorporating Urban Green Infrastructure (UGI) into urban climate action policies, resilience
planning, and Sustainable Development Goal (SDG) frameworks, policymakers can achieve cost-
effective adaptation and mitigation results (United Nations, 2018). Policies must address challenges
such as the unequal distribution of natural space, insufficient finance sources, and fragmented
governance. Expanding beyond prototype projects may be facilitated by innovative finance
strategies, including ecosystem service payment systems, public—private partnerships, and green
bonds (Mell, 2021; Gelan & Girma, 2021).

Future Research Directions

The following research must be prioritized: 1. Equity-Centric Research Examining the
distribution of advantages and liabilities of UGI across socio-economic categories to facilitate
equitable planning (Herreros-Cantis & McPhearson, 2021).

1. Integration of Co-Benefits Improving research that simultaneously assesses numerous benefits,
identifying synergies and trade-offs to inform multi-objective urban planning.

2. Modeling of Climate Scenarios Evaluating the efficacy of UGI in the context of potential climatic
scenarios to ensure that it can overcome the escalating heatwaves and severe precipitation events
(Patricola & Wehner, 2018).

3. Operational Feasibility and Cost-Benefit Analysis — Evaluating the life-cycle costs and
maintenance requirements in conjunction with the advantages to inform investment decisions.
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4. Geographic Areas with Inadequate Representation Conducting context-specific research in
Africa, South America, and low- to middle-income regions to improve the global relevance of
UGI findings (Bai, 2018).

5. Risk Assessment and Adverse Effects Mitigating potential disadvantages, such as the
establishment of insect habitats, allergen generation, and unforeseen socio-economic effects like
gentrification (Lyytimaki et al., 2008).

The discipline may advance toward a more equitable, evidence-based comprehension of UGI's
capabilities and constraints by confronting these research objectives. This will enable the
development of solutions that are financially viable, practically realistic, socially equitable, and
ecologically fruitful.
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