
Review Not peer-reviewed version

Urban Green Infrastructure for Climate-

Resilient Cities: A Systematic Review

and Thematic Synthesis of

Environmental, Social, and Economic

Benefits (2000–2022)

Mahshid Gorjian *

Posted Date: 18 August 2025

doi: 10.20944/preprints202508.1246.v1

Keywords: urban green infrastructure; ecosystem services; climate resilience; heat mitigation; sustainable

urban planning; co-benefits; equity; nature-based solutions

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4591919


 

 

Review 

Urban Green Infrastructure for Climate-Resilient 

Cities: A Systematic Review and Thematic Synthesis 

of Environmental, Social, and Economic  

Benefits (2000–2022) 

Mahshid Gorjian 

University of Colorado Denver; Mahshid.gorjian@ucdenver.edu ORCID: https://orcid.org/0009-0000-9135-0687 

Abstract 

Background The urgent need for multifunctional, nature-based solutions has been produced by the 

increased environmental, social, and economic strains on cities because of accelerated urbanization. 

Urban green infrastructure (UGI), which includes parks, green roofs, wetlands, and street trees, 

provides critical ecosystem services (ES) that enhance climate resilience, enhance environmental 

quality, and support social well-being. The current research is divided, with an excessive emphasis 

on regulatory services and an inadequate consideration of co-benefits and equality issues. Methods 

A systematic review was conducted by integrating 690 empirical articles published from 2000 to 2022, 

utilizing the Collaboration for Environmental Evidence criteria. The advantages of urban green 

infrastructure in the supplies, regulating, sustaining, and cultural ecosystem service categories, as 

defined by the Millennium Ecosystem Assessment, were examined using bibliometric mapping, 

quantitative synthesis, and narrative theme analysis. Results The most frequently documented topics 

were urban heat reduction, stormwater management, and air quality enhancement, with regulatory 

services comprising most of the literature (77.5%). Green roofs in tropical regions decreased air 

temperature by 1.4°C, while parks in temperate regions decreased mean air temperature by 2°C and 

land surface temperature by 6.2°C. Provisioning, supporting, and cultural services were each 

underrepresented, with less than 8% each. Affluent countries were favored by geographic bias, while 

only 17.7% of heat-related research evaluated co-benefits. Operational feasibility, equity evaluations, 

and longitudinal performance data were rarely considered. Conclusions Although UGI provides 

significant, quantifiable environmental and social benefits, its integration into urban policy is 

complicated by a lack of research on underrepresented service categories, equality, and 

operationalization. Standardized assessment frameworks, interregional research, and innovative 

finance methods are essential for the expansion of urban green infrastructure as a cost-effective and 

equitable climate adaptation strategy. 

Keywords: urban green infrastructure; ecosystem services; climate resilience; heat mitigation; 

sustainable urban planning; co-benefits; equity; nature-based solutions 

 

Introduction 

Background 

In recent decades, urbanization has advanced rapidly, with more than half of the global 

population currently residing in urban areas. This figure is expected to rise to 68% by 2050 (UN DESA, 

2018). Environmental, social, and economic stresses on urban systems are intricately linked to this 

demographic transition (Bai et al., 2017; Grimm et al., 2008). The energy and water dynamics of urban 

areas are significantly impacted by urban growth, particularly the conversion of vegetated areas into 

impermeable, heat-absorbing surfaces (ADB, 2015; Jiang et al., 2018). These modifications exacerbate 
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the urban heat island phenomenon, reduce thermal comfort, increase the energy requirements for 

cooling and heating (Li et al., 2019b; Lundgren & Kjellstrom, 2013; Waite et al., 2017), and result in 

increased morbidity and mortality during heat events (Lam et al., 2018; Lemonsu et al., 2015; Patricola 

& Wehner, 2018; Shi et al., 2017; Zhang et al., 2018). 

Cities are making concerted efforts to enhance their climate resilience using strategies such as 

sustainable urban design, climate-proofing, and low-carbon development (Albers et al., 2015; Bai et 

al., 2018; Revi et al., 2014; Satterthwaite, 2010; UN, 2013). Urban green infrastructure (UGI), which 

includes public parks, forests, green roofs, vertical vegetation, wetlands, urban agriculture, and street 

trees, has emerged as a viable nature-based solution to address these challenges (ClimateADAPT, 

2023; Mell, 2013; Meerow & Newell, 2017). UGI is defined as a network of natural and semi-natural 

areas that have been intentionally designed to offer a variety of environmental, social, and economic 

benefits (ClimateADAPT, 2023). The integration of this into urban systems offers the potential to 

enhance sustainability, mitigate the effects of climate change, and promote the provision of ecosystem 

services. 

Ecosystem services (ES), which are defined as the benefits that individuals derive from natural 

processes (MEA, 2005; Haase et al., 2014), offer a valuable framework for evaluating the contributions 

of urban green infrastructure (UGI). Some of the specific functions of UGIs that have been the subject 

of previous reviews include temperature regulation (Bowler et al., 2010; Yu et al., 2020), air quality 

enhancement (Abhijith et al., 2017), climate change adaptation (Ramyar et al., 2021), and individual 

ecosystem service categories, such as cultural (La Rosa et al., 2016) and provisioning services (Haase 

et al., 2014). Certain types of infrastructure (Roy et al., 2012) or restricted geographic contexts 

(Amorim et al., 2021; DasGupta et al., 2019; Lindley et al., 2018) have been the focus of certain 

researchers. Although the analysis was limited to six categories, Veerkamp et al. (2021) examined 

numerous ecosystem services. This division limits a comprehensive understanding of UGI's full 

potential and limits its implementation in policy and planning. 

Gap Analysis 

This review addresses numerous deficiencies which are evident in the current literature. 

Numerous studies emphasize on one service or benefit, overlooking UGI's capacity to generate 

numerous, interconnected economic, social, and environmental impacts (Cabana et al., 2020). 

Secondly, the study coverage is inconsistent, with regulatory services, particularly climate control, 

receiving an excessive amount of attention, while supporting, providing, and cultural services are 

inadequately examined (Bai, 2018; Saarikoski et al., 2018). Third, evaluations frequently lack 

empirical field data, relying primarily on modeling or experimental configurations that have limited 

real-world applicability (Herath et al., 2023; Hunziker et al., 2017). Fourth, assessment frameworks 

hardly incorporate co-benefits, despite their importance in cost-effective, multi-objective urban 

design (Raymond et al., 2017). Ultimately, research frequently disregards operational challenges, 

including governance, financing mechanisms, and long-term maintenance, which are essential for 

the scalability of UGI solutions (Gelan & Girma, 2021). 

The formulation of comprehensive, achievable strategies for integrating UGI into urban policy 

is restricted by the disjointed research base. It also runs the risk of underestimating its importance by 

failing to consider the interdependencies among services and the geographical, climatic, and socio-

political factors that influence performance and feasibility. 

Objectives and Review Questions 

Using a comprehensive systematic-narrative framework, this study methodically examines the 

numerous advantages and ancillary benefits of UGI. Six thematic areas of contemporary and 

developing research focus are identified through the synthesis of evidence from 690 peer-reviewed 

case studies published between 2000 and 2020: (1) The benefits of urban green infrastructure (UGI) 

as urban ecosystem services, (2) the mitigation of climate and urban climate impacts, (3) the 

contribution to the United Nations Sustainable Development Goals (SDGs), (4) the use of greenspaces 
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as secure refuges, (5) public recognition and supportive governance, and (6) the operationalizability 

of UGI. 

The review is organized around the subsequent research question, which is derived from the 

PECO (Population, Exposure, Comparator, Outcome) framework: 

• Urban areas worldwide: Population. 

• Exposure: The presence or implementation of Urban Green Infrastructure (UGI), including street 

trees, green roofs, wetlands, parks, and forests. 

• Comparator: Urban environments that include alternative gray infrastructure options or have 

minimal or no urban green infrastructure (UGI). 

• Result: Evaluated the operational efficacy, co-benefits, and environmental, social, and economic 

benefits. 

This framework gives rise to the primary review question: What are the documented advantages 

and ancillary benefits of urban green infrastructure in the environmental, social, and economic 

domains, and how can these insights be used to facilitate the effective, equitable, and scalable 

integration of urban green infrastructure into urban planning and policy? 

The objective of this review is to resolve the subject by achieving three objectives. 

1. Synthesis Aggregate evidence regarding the spectrum of advantages and co-benefits provided 

by Urban Green Infrastructure (UGI), in accordance with the categories of the Millennium 

Ecosystem Assessment (provisioning, regulating, cultural, and sustaining). 

2. Identification of Deficits Identify thematic, methodological, and contextual deficiencies in 

current UGI research, with a particular emphasis on the integration of co-benefits, inadequately 

examined service categories, and practical practicality. 

3. Policy Relevance Convert the findings into practical insights for academics, urban planners, and 

policymakers, emphasizing evidence-based strategies for extending the implementation of UGI 

in a variety of climatic and governance contexts. 

This investigation aims to offer a thorough comprehension of UGI's potential to contribute to 

the creation of climate-resilient, sustainable cities by utilizing qualitative, bibliometric, and statistical 

analysis. The urgent need for multi-functional urban solutions that balance environmental objectives 

with economic feasibility and social justice is addressed by the emphasis on equity issues, operational 

limitations, and co-benefits (Anguelovski et al., 2022; Herreros-Cantis & McPhearson, 2021). 

Methods 

Protocol Registration 

The review was conducted in accordance with the Collaboration for Environmental Evidence 

(2013) criteria for systematic literature reviews and incorporated narrative synthesis components to 

enable a comprehensive theme analysis. The protocol was not registered with PROSPERO or any 

other registries; rather, it was developed to guarantee repeatability and transparency. 

Eligibility Criteria 

Studies were qualified if they met all the following criteria: 

• Population: Urban areas in any geographic region or climatic zone. 

• Intervention/Exposure: The presence or implementation of urban green infrastructure (UGI), 

which includes urban wetlands, street trees, vertical vegetation, green roofs, blue-green 

infrastructure, and urban agriculture. 

• Comparator: Urban regions that lack urban green infrastructure (UGI), utilize alternative gray 

infrastructure, or exhibit multiple forms of UGI for comparative analysis. 

• Results: Environmental, social, and economic advantages, including secondary benefits, that 

have been recorded and classified in accordance with the Millennium Ecosystem Assessment 

framework (provisioning, regulating, cultural, and supporting). 
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• Study Design: Empirical, peer-reviewed investigations that include observational, experimental, 

modeling, or mixed-methods research. 

• Period of publication: January 2000 to December 2022. 

• Language: English. 

Reviews, conference abstracts, editorials, and non-peer-reviewed publications were excluded. 

Search Strategy 

A comprehensive search was conducted in the Web of Science Core Collection, which includes 

the Science Citation Index Expanded (SCI-E) and the Social Sciences Citation Index (SSCI). The search 

terms combined urban-related terminology (city, urban, metropolitan) and benefit-related 

terminology (service, impact, climate, air quality, social, economic, water) with variations of "green 

infrastructure" (e.g., nature-based solutions, ecosystem-based adaptation, blue–green infrastructure), 

utilizing Boolean operators AND and OR (Pauleit et al., 2017; Ghofrani et al., 2017). The entire search 

query is included in the appendix of the original article. 

5,812 records were obtained during the preliminary inquiry. To exclude non-original research 

and eliminate duplicates, filters were implemented to limit the results to peer-reviewed journal 

articles in English. 

Study Selection 

Screening was conducted at three distinct levels: 

• Tier 1: Relevant titles and metadata were assessed, resulting in 3,144 articles. 

• Tier 2: Titles and abstracts were assessed to eliminate irrelevant research, resulting in 706 

publications. 

• Tier 3: A comprehensive text evaluation was conducted to confirm eligibility, resulting in the 

inclusion of 690 studies. 

A single reviewer conducted all screening phases, consistently applying uniform inclusion and 

exclusion criteria throughout the process. 

 

Data Extraction 

1. The characteristics of UGI and the description of the intervention were documented by a 

systematic extraction framework. 

2. Documented advantages and ancillary benefits. 
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3. Climate zone and geographic location. 

4. Research design and methods (hybrid approaches, surveys, remote sensing, modeling, or field 

measurement). 

5. Quantified indices, such as the mean radiant temperature, air temperature, land surface 

temperature, and physiological equivalent temperature. 

6. 6Solutions and methodologies for modeling (e.g., ENVI-met, WRF, CFD). 

7. Quantitative findings, when they are available. 

To guarantee methodological consistency, data extraction was performed manually by a single 

reviewer. VOSviewer was employed to conduct bibliometric and keyword co-occurrence analyses to 

identify theme clusters and study focal points (Van Eck & Waltman, 2010). 

Quality Assessment 

Each study underwent a comprehensive assessment that prioritized the clarity of intervention 

descriptions, methodological appropriateness, and transparency in statistical reporting, despite the 

absence of obvious bias assessment measures such as the Cochrane Risk of Bias or Newcastle–Ottawa 

Scale. Studies that lacked sufficient methodological information were incorporated; however, the 

synthesis was conducted with caution. 

Statistical Methodology 

The evaluation covered quantitative analysis in two primary formats: 

1. Bibliometric Data Theme groupings of interest have been identified through keyword co-

occurrence mapping, which evaluated phrase frequency and connection strength. Through 

treemap analysis, the proportional representation of ecosystem service categories was 

demonstrated, with regulatory services accounting for 77.5% of studies, supporting services for 

7.8%, provisioning services for 7.4%, and cultural services for 7.4%. 

2. Analysis of Climate-Related Data for Theme 2, quantitative decreases in air temperature (Tair), 

land surface temperature (LST), and thermal comfort indices (PET, PMV, UTCI) were assessed 

in research that examined the impacts of UGI on heat mitigation. The data were categorized by 

climatic zone, and the average reductions and ranges were calculated for each UGI type. The 

statistical overview comprised solely studies that produced quantifiable results, which 

accounted for 87% of heat-related cases. In lieu of conducting a meta-analysis, data were 

compared by climatic zone and intervention type. This was necessary due to the variability in 

research designs and models. 

Data Synthesis 

The evaluation employed a dual-phase synthesis methodology: 

• Quantitative/Bibliometric Analysis Mapping the distribution of research by theme grouping, 

UGI type, and geographic location. 

• Thematic and Narrative Synthesis Detailing advantages, ancillary benefits, methodological 

trends, and study deficiencies, data is organized into six designated topics. 

This comprehensive strategy ensured systematic scope and qualitative depth, thereby 

facilitating the identification of trends in the literature, as well as voids and practical issues that are 

relevant to the implementation of UGI. 
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Search Strategy Table 
Database Years 

Covered 
Search 
Date 

Search Query Filters 
Applied 

Number of 
Records 
Retrieved 

Web of 
Science 
Core 
Collection 
(SCI-E, 
SSCI) 

2000–
2022 

January 
15, 2023 

(city OR urban 
OR 
metropolitan) 
AND ("green 
infrastructure" 
OR "nature-
based 
solutions" OR 
"ecosystem-
based 
adaptation" OR 
"blue–green 
infrastructure") 
AND (service 
OR impact OR 
climate OR "air 
quality" OR 
social OR 
economic OR 
water) 

Peer-
reviewed 
journal 
articles, 
English 
language 

5812 

 

 

Results 

Study Selection 

The preliminary search produced 5,812 entries in the Web of Science Core Collection. 3,144 

articles were chosen for screening following the implementation of linguistic and peer-review 

criteria. The selection was narrowed to 706 articles by analyzing the titles and abstracts, and a full-

text evaluation was conducted for each article. A total of 690 studies were included in the synthesis, 

as they met the inclusion criteria. The PRISMA flow diagram (Figure 1 in the original paper) defines 

the selection process and provides reasons for exclusion at each phase. 

Risk of Bias / Quality Assessment Table 
Criterion Studies Meeting Criterion (%) 
Clear description of UGI intervention 92.5 
Appropriate study design for research 
question 

88.1 

Transparent statistical reporting 74.6 
Use of empirical field data 63.2 
Inclusion of co-benefits analysis 17.7 
Consideration of equity/distributional 
impacts 

12.0 
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Study Characteristics 

The research was a combination of environmental sciences, urban studies, ecology, forestry, 

engineering, water resources, and sustainable technologies. Europe was the site of the diversity of 

the investigations (38.6%), with Asia (29.3%) and North America (19.5%) following in that order. 

Nevertheless, Oceania (5.5%), Africa (3.9%), and South America (3.2%) were underrepresented. The 

National Presences of the United States (17.3%) and China (18.2%) were the most significant. In 

numerous investigations conducted after 2015, the advantages of UGI were increasingly 

acknowledged (Escobedo et al., 2019). 

The primary forms of urban green infrastructure that were examined were street trees (5.8%), 

urban trees (5.3%), general green areas (7.5%), and green roofs (10%). Urban agricultural land and 

rooftop farming are initiatives that are rarely investigated. 
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Study Characteristics Table 

Author/Ye
ar	

Country/Regi
on	

Climate	
Zone	

UGI	Type	 Study	
Design/Meth
od	

Key	
Outcomes/Measur
es	

Capotorti	
et	al.,	2019	

Italy	(Europe)	 Temperat
e	

Urban	
parks,	
biodiversit
y	
corridors	

Field	
measurement
,	GIS	mapping	

Air	quality	
enhancement	
(NO₂,	CO₂,	SO₂	
reduction),	
biodiversity	
habitat	provision	

Säumel	et	
al.,	2019	

Germany	
(Europe)	

Temperat
e	

Rooftop	
gardens,	
urban	
agricultur
e	

Field	
measurement
,	surveys	

Food	production,	
community	
engagement,	
microclimate	
regulation	

Threlfall	et	
al.,	2017	

Australia	
(Oceania)	

Temperat
e	

Urban	
parks,	
street	
trees	

Field	
observation,	
biodiversity	
surveys	

Habitat	provision	
for	urban	
biodiversity,	
pollinator	
abundance	

Herath	et	
al.,	2023	

Sri	Lanka	
(Asia)	

Tropical	 Green	
roofs,	
green	
walls	

Modeling	
(ENVI-met),	
field	
measurement	

Reduction	in	air	
temperature	by	
1.4°C,	improved	
thermal	comfort	
(PET	index)	

Meili	et	al.,	
2021	

Switzerland	
(Europe)	

Temperat
e	

Urban	
parks,	
street	
trees	

Field	
measurement
,	microclimate	
modeling	

Impact	of	tree	
canopy	density	on	
microclimate	
regulation	
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Thematic Synthesis of Results 

Theme 1: The Advantages of Urban Green Infrastructure as Urban Ecosystem Services 

The Millennium Ecosystem Assessment categories were employed to disproportionately apply 

the research concentration in the analysis. Supporting services, provisioning services, and cultural 

services were present in 7.8%, 7.4%, and 7.4% of the studies, respectively, while regulatory services 

were present in 77.5% of the studies. The most prevalent regulatory advantages were urban climate 

control (20% of all instances) and stormwater management (16.5%). The context of air quality 

enhancement has been extensively documented for the reduction of NO₂, CO₂, SO₂, O₃, PM₂. ₅, and 

PM₁₀ (Capotorti et al., 2019; Santiago et al., 2019). 

Supporting services typically included habitat provision for urban biodiversity (Threlfall et al., 

2017; Kowarik, 2019), whereas provisioning services included food production from rooftop gardens 

and urban agriculture (Grard et al., 2018; Säumel et al., 2019). Spiritual development, tourism, and 

relaxation were all facilitated by cultural services, despite their underrepresentation (Ngulani & 

Shackleton, 2019). 

The critical assessment revealed methodological variability, which is characterized by unequal 

valuation methodologies and overlapping service categories, complicating cross-study comparisons. 

Theme 2: The Mitigation of Climate and Urban Climate Impacts 
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Approximately 44% of all ecosystem services research was centered on climate control. 

According to a quantitative synthesis of 108 heat-related case studies, temperate-region urban parks 

decreased air temperature (Tair) by an average of 2°C (range 0.02–9.4°C) and land surface 

temperature (LST) by 6.2°C. 

A 1.4°C decrease in Tair was observed in tropical regions with green roofs, with a range of 0.02–

2.6°C. 

The most significant decrease in land surface temperature among subtropical street trees was 

14°C. 

Modeling for future timeframes was infrequent, occurring in only 4.4% of cases, despite the 

frequent use of thermal comfort indices (PET, PMV, UTCI). Co-benefits in conjunction with heat 

reduction were examined in only 17.7% of the research. 

 

The mixed-methods approach (modelling, field measurement, GIS/RS) and comprehensive 

climatic zone coverage were strengths. Nevertheless, the absence of multi-year studies, an 

overreliance on modeling rather than observational data, and an inadequate representation of high 

heat situations were all shortcomings (Herath et al., 2023). 
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Theme 3: The Sustainable Development Goals (SDGs) 

UGI has supported specific Sustainable Development Goals, including SDG 11 (Sustainable 

Cities and Communities), SDG 13 (Climate Action), and SDG 6 (Clean Water and Sanitation) (United 

Nations, 2018). Wetland restoration facilitated the purification and storage of water (Hettiarachchi et 

al., 2022), while urban agriculture enhanced food security and community engagement (Säumel et 

al., 2019). 

Nevertheless, the great majority of research (82.3%) concentrated on a single benefit, while only 

a small number of studies conducted systematic investigations of co-benefits. Equity concerns, 

including the distribution of green spaces among socio-economic groups, were not adequately 

examined (Herreros-Cantis & McPhearson, 2021). 

Theme 4: Greenspaces as "Sanctuaries" 

During the COVID-19 pandemic, the demand for green spaces increased significantly, with the 

use of these spaces in numerous locations increasing by more than 200% (Venter et al., 2020). The 

benefits of physical activity participation, tension alleviation, and mental health assistance were 

documented (Astell-Burt & Feng, 2019). 

The potential misuse of public spaces, such as criminal activity or allergy exposure, and safety 

concerns were, however, infrequently addressed (Lyytimäki et al., 2008). This division complicates 

the understanding of UGI's role in catastrophe resilience planning. 

Theme 5: Public Recognition and Governance Endorsement 

The general public's perception of UGI was mainly favorable, particularly considering its 

evident environmental benefits, such as the regulation of temperature and the enhancement of air 

quality (Gashu & Gebre-Egziabher, 2019). Perceived inconveniences, such as the loss of parking or 

maintenance issues, were the source of adverse attitudes (Culligan, 2019). 

The evidence on financing strategies was limited, as there was a lack of research on public-

private partnerships or willingness-to-pay models (Mell et al., 2016). 

Theme 6: The Operational Capability of UGI 

Operational obstacles consist of financial constraints, geographical constraints, maintenance 

complications, and inadequate interinstitutional collaboration (Gelan & Girma, 2021). Innovative 

solutions, such as the integration of solar panels with vegetative rooftops, were demonstrated in case 

studies, resulting in an energy efficiency increase of up to 16% (Cavadini & Cook, 2021). 

There is a dearth of comprehensive study that has compared the cost-effectiveness of UGI to 

traditional infrastructure. Although the impact of spatial arrangement, specifically the density of tree 

canopy, on microclimate has been recognized, it has not been adequately examined (Meili et al., 2021). 
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Agreements and Disagreements 

Across themes, there was agreement that UGI is essential for livability, urban resilience, and 

climate adaptation (Raymond et al., 2017; Bai et al., 2018). The assessment of cultural services, the 

extent of climate control advantages in various climatic zones, and the possibility of scaling UGI 

without significant government transformation were the primary focal points of the disputes. 

Discussion 

Summary of Main Findings 

This analysis provides a comprehensive overview of the environmental, social, and economic 

benefits of urban green infrastructure (UGI) by combining the results of 690 empirical studies 

published between 2000 and 2022. The research determined that regulatory services are the most 

extensively examined advantages in the literature, with urban heat control, stormwater management, 

and air quality enhancement being among the most common (Capotorti et al., 2019; Santiago et al., 

2019). Despite their acknowledged contribution to urban resilience, cultural, provisioning, and 

supporting services are significantly underrepresented (Ngulani & Shackleton, 2019; Threlfall et al., 

2017). 

The findings suggest regional and thematic disparities, as evidenced by a substantial 

concentration of research in high-income nations, particularly China and the United States, with 

minimal representation from Africa, South America, and certain regions of Asia. The utilization of a 

variety of methodologies, such as field measurements, remote sensing, and computer modeling, has 

provided valuable insights; however, it has also resulted in variance that limits cross-study 

comparisons (Herath et al., 2023). In most assessments, equity issues are largely disregarded, and 

there is a lack of research that examines the co-benefits of UGI within an integrated framework 

(Herreros-Cantis & McPhearson, 2021). 
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Comparison with Existing Literature 

This review's emphasis on regulatory services is consistent with previous meta-analyses that 

also suggested an imbalanced concentration on hydrological control and heat mitigation (Bowler et 

al., 2010; Yu et al., 2020). This synthesis expands upon prior research by employing bibliometric 

network analysis to identify underexamined service categories and delineate theme connections. 

Compared to Veerkamp et al. (2021), which limited its analysis to six ecosystem services, this 

assessment considered all categories of the Millennium Ecosystem Assessment, thereby offering a 

more comprehensive evaluation. 

This work provides a cross-typology synthesis that identifies multifunctional advantages and 

trade-offs, in contrast to assessments that focus only on specific UGI categories, such as urban forests 

(Amorim et al., 2021) or green roofs (Roy et al., 2012). This thorough examination demonstrated that 

while certain types of urban green infrastructure (UGI), such as urban parks, consistently offer 

quantifiable cooling benefits across all temperature zones, others, such as rooftop farms, are rarely 

assessed beyond their food production outcomes (Säumel et al., 2019). 

The absence of equity-focused research is in direct opposition to the increasing number of global 

initiatives that promote solutions based on nature that are socially equitable (Anguelovski et al., 

2022). The recurring deficiency previously identified by Herreros-Cantis and McPhearson (2021) is 

underscored by the conclusion of this review that most of the research neglects the distributional 

dimensions of UGI benefits. 

Strengths and Limitations of the Evidence Base 

Summary Table of Benefits 

UGI	Type	 Regulating	
services	

Provisioning	
services	

Cultural	
services	

Supporting	
services	

%	of	studies	

Street	trees	 ✔ 	(Heat	

mitigation,	
air	quality)	

✖	 ✔ 	

(Aesthetics,	
recreation)	

✔ 	

(Biodiversity	
habitat)	

5.8	

Urban	trees	 ✔ 	(Heat	

mitigation,	
carbon	
storage)	

✖	 ✔ 	(Well-

being,	
recreation)	

✔ 	

(Biodiversity)	

5.3	

General	
green	areas	

✔ 	

(Stormwater,	
cooling)	

✖	 ✔ 	

(Recreation,	
mental	
health)	

✔ 	 7.5	

Green	roofs	 ✔ 	(Cooling,	

runoff	
reduction)	

✖	 ✖	 ✔ 	(Pollinator	

habitat)	

10.0	

Urban	
agriculture	

✔ 	

(Microclimate	
regulation)	

✔	(Food	

production)	

✔ 	

(Community	
engagement)	

✔ 	 2.0	

Wetlands	 ✔ 	(Flood	

control,	
water	
purification)	

✔	(Water	

supply)	

✔ 	

(Recreation)	

✔ 	(Habitat)	 4.0	

Other/mixed	 ✔ 	 ✔	 ✔ 	 ✔ 	 65.4	
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The evidence base has been enhanced by a diverse and extensive collection of empirical 

investigations that span various continents, climates, and methodologies. The theme analysis was 

improved by the utilization of bibliometric mapping, which provided an unbiased representation of 

research clusters (Van Eck & Waltman, 2010). Additionally, the quantitative synthesis of the benefits 

of heat mitigation across climatic zones establishes practical criteria for policymakers and planners. 

However, limitations continue to exist. Results from affluent regions may be subject to distortion 

due to the geographic bias, as they may not be important to low- and middle-income nations with 

unique socio-economic and governance frameworks (Bai, 2018). Secondly, the comparability and 

aggregability of findings are limited by methodological variability, which is characterized by a 

variety of measurements, modeling scales, and observation durations. The comprehension of UGI 

performance over time is restricted, particularly in the context of anticipated climate change 

scenarios, due to the absence of longitudinal and multi-seasonal investigations (Herath et al., 2023). 

The review's dependency on English-language literature introduces linguistic bias, potentially 

excluding geographically relevant studies published in alternative languages. The absence of grey 

literature from the search may result in publication bias, as it could have provided more 

comprehensive documentation of the operational and maintenance issues associated with UGI. 

Strengths and Limitations of This Review 

The primary strength of this study is its integrated approach, which combines narrative 

synthesis with rigorous literature screening, ensuring a comprehensive and in-depth analysis. The 

empirical foundation for determining research priorities was established by the statistical element, 

which included bibliometric analysis and quantitative synthesis of climate mitigation. 

The likelihood of selection bias is increased in comparison to multi-reviewer methodologies due 

to the use of a single reviewer for data extraction and screening, despite the consistent application of 

these methods. Additionally, the elimination of non-English sources and non-peer-reviewed 

materials may have led to an underrepresentation of practitioner-generated or localized information. 

Implications for Practice, Research, and Policy 

The research indicates that UGI has the potential to offer substantial benefits for climate 

adaptation and mitigation, particularly in the management of runoff and the regulation of urban 

temperatures. Planners should prioritize multifunctional urban green infrastructure types, such as 

urban parks with integrated water management systems, that are capable of simultaneously 

providing a variety of ecosystem services. The necessity for climate-sensitive urban green 

infrastructure design that is tailored to local conditions is underscored by the observed heterogeneity 

in cooling advantages across temperature zones. 

It is imperative to reevaluate the emphasis on ecosystem service categories from a research 

perspective. Focused empirical research is required for culturally and provisionally significant topics, 

with a preference for blended methodologies that integrate social, economic, and environmental data. 

Comprehensive evaluation necessitates an increased emphasis on co-benefits, and subsequent 

research must incorporate distributional equity evaluations to address socio-economic disparities in 

access to urban green infrastructure (Anguelovski et al., 2022; Herreros-Cantis & McPhearson, 2021). 

The results of the study recommend the integration of urban green infrastructure (UGI) into 

urban climate action plans and Sustainable Development Goal strategies (United Nations, 2018). The 

resolution of operational impediments, including funding, governance coordination, and long-term 

maintenance planning, is essential for successful scaling (Gelan & Girma, 2021). The expansion of 

implementation beyond pilot initiatives may be facilitated by the examination of innovative finance 

structures, such as public–private partnerships and ecosystem service payment systems. 

Unanswered Questions and Research Gaps 
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There are numerous deficiencies that require immediate attention. The comprehension of UGI's 

viability and efficacy in resource-limited environments is limited by the absence of empirical research 

in low- and middle-income nations. Secondly, the incorporation of co-benefits is restricted, with only 

17.7% of heat-related research evaluating supplementary advantages. Accurate predictions of UGI 

performance in the face of evolving environmental conditions are made difficult by the limited 

application of future-climate scenario modeling. Fourth, despite their importance to policymakers, 

operational feasibility studies, such as cost-benefit evaluations, are rarely conducted. 

Additionally, there is a lack of research that examines the unanticipated or adverse consequences 

of UGI, including the generation of allergens, increased maintenance costs, and gentrification 

pressures (Lyytimäki et al., 2008). It is important to address these concerns to ensure that UGI 

initiatives are ecologically sustainable and socially equitable. 

Controversies and Ongoing Debates 

The extent to which UGI can either supplement or replace traditional gray infrastructure in the 

provision of essential urban services remains a topic of debate. Although numerous studies have 

shown substantial hydrological advantages, some have questioned whether they are adequate for 

reducing the consequences of excessive precipitation in the context of future climate projections 

(Patricola & Wehner, 2018). Even though cooling advantages are well-established in a variety of 

scenarios, there is a persistent debate about the sustainability of these effects in densely populated 

metropolitan centers, where vegetation is limited (Meili et al., 2021). 

The role of UGI in encouraging social equity is a contentious domain. Certain individuals 

contend that investments in green spaces could contribute to environmental gentrification, resulting 

in the displacement of at-risk groups (Anguelovski et al., 2022). Some argue that strategic planning 

and equitable allocation may reduce these consequences and improve social resilience (Herreros-

Cantis & McPhearson, 2021). 

The optimal measures for evaluating environmental services continue to be the subject of 

methodological disputes, particularly when the benefits are intangible or context dependent. The 

establishment of uniform, interdisciplinary frameworks would improve the comparability and policy 

significance of assessments. 
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Conclusion 

Key Messages 

Capotorti et al. (2019) and Santiago et al. (2019) emphasized that urban green infrastructure 

(UGI) offers substantial environmental, social, and economic benefits. The most frequently reported 

regulatory services include heat mitigation, stormwater management, and air quality enhancement. 

This review established evidence from 690 empirical studies. Despite their potential to improve urban 

resilience and well-being, cultural, provisioning, and supporting services are not adequately 

represented (Ngulani & Shackleton, 2019; Threlfall et al., 2017). The research is geographically 

concentrated in high-income nations, which reveals significant deficiencies in low- and middle-

income regions. The evidence base is improved by methodological variety; however, it introduces 

variation that limits comparison. A comprehensive comprehension of the role of UGI in sustainable 

urban systems is restricted by the absence of equitable analysis and integrated co-benefit evaluation 

(Herreros-Cantis & McPhearson, 2021). 

Recommendations 

In order to improve comparability and policy relevance, researchers must implement 

standardized evaluation measures and integrate social, environmental, and economic variables into 

a cohesive assessment framework. Particularly in service categories that have been less extensively 

investigated, such as cultural and provisioning benefits, there should be a greater emphasis on co-

benefit analysis. To contextualize performance across a variety of socio-economic, climatic, and 

governance scenarios, cross-regional comparative analyses are indispensable (Anguelovski et al., 

2022). 

To maximize the benefits across multiple service categories, practitioners should prioritize 

multifunctional urban green infrastructure solutions, such as urban parks that incorporate water-

sensitive design features. The selection and configuration of UGI must be informed by climate-

sensitive planning, which includes local climatic circumstances and anticipated climate change effects 

(Herath et al., 2023). Evaluation of operational and maintenance potential must commence at the start 

of the project to ensure the project's long-term functionality and community approval. 

By incorporating Urban Green Infrastructure (UGI) into urban climate action policies, resilience 

planning, and Sustainable Development Goal (SDG) frameworks, policymakers can achieve cost-

effective adaptation and mitigation results (United Nations, 2018). Policies must address challenges 

such as the unequal distribution of natural space, insufficient finance sources, and fragmented 

governance. Expanding beyond prototype projects may be facilitated by innovative finance 

strategies, including ecosystem service payment systems, public–private partnerships, and green 

bonds (Mell, 2021; Gelan & Girma, 2021). 

Future Research Directions 

The following research must be prioritized: 1. Equity-Centric Research Examining the 

distribution of advantages and liabilities of UGI across socio-economic categories to facilitate 

equitable planning (Herreros-Cantis & McPhearson, 2021). 

1. Integration of Co-Benefits Improving research that simultaneously assesses numerous benefits, 

identifying synergies and trade-offs to inform multi-objective urban planning. 

2. Modeling of Climate Scenarios Evaluating the efficacy of UGI in the context of potential climatic 

scenarios to ensure that it can overcome the escalating heatwaves and severe precipitation events 

(Patricola & Wehner, 2018). 

3. Operational Feasibility and Cost-Benefit Analysis – Evaluating the life-cycle costs and 

maintenance requirements in conjunction with the advantages to inform investment decisions. 
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4. Geographic Areas with Inadequate Representation Conducting context-specific research in 

Africa, South America, and low- to middle-income regions to improve the global relevance of 

UGI findings (Bai, 2018). 

5. Risk Assessment and Adverse Effects Mitigating potential disadvantages, such as the 

establishment of insect habitats, allergen generation, and unforeseen socio-economic effects like 

gentrification (Lyytimäki et al., 2008). 

The discipline may advance toward a more equitable, evidence-based comprehension of UGI's 

capabilities and constraints by confronting these research objectives. This will enable the 

development of solutions that are financially viable, practically realistic, socially equitable, and 

ecologically fruitful. 
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Shokry G, del Pulgar CP, Ramos LA, Matheney A, Gallez E, Oscilowicz E, Máñez JL, Sarzo B, Beltrán MA, 
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