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Article

Towards a Recognition System for the Mexican Sign
Language: Arm Movement Detection
Gabriela Hilario-Acuapan , Keny Ordaz-Hernández * , Mario Castelán
and Ismael Lopez-Juarez *

Robotics and Advanced Manufacturing Department, Centre for Research and Advanced Studies (CINVESTAV), Ramos Arizpe
25900, Mexico
* Correspondence: keny.ordaz@cinvestav.edu.mx (K.O.-H.); ismael.lopez@cinvestav.edu.mx (I.L-J.)

Abstract: This paper describes ongoing work in the creation of a recognition system for the Mexican
Sign Language (LSM). We propose a general sign decomposition into three parts: hand configuration
(HC), arm movement (AM) and non-hand gestures (NHG). This paper focuses on the AM features and
reports the approach created to analyze visual patterns in arm joint movements (wrists, shoulders and
elbows). For this research, a proprietary dataset —that do not limit the recognition of arm movements—
was developed, with active participation from the deaf community and LSM experts. We conduct
analysis on two case studies of three sign subsets. For each sign, the pose was extracted to generate
shapes of the joint paths during the arm movements and feeded to a CNN classifier. YOLOv8 was
used for pose estimation and visual patterns classification purposes. The proposed approach, based on
pose estimation, shows promising results for constructing CNN models to classify a wide range of
signs.

Keywords: mexican sign language; dynamic signs; pattern analysis; pose-based approach; pose
estimation; computer vision; machine learning; cnn; yolov8; arm movement

1. Introduction
Deafness or hearing loss is the partial or total loss of the ability to hear sounds in one or both ears.

The World Health Organization’s most recent World Hearing Report [1] estimates that more than 1.5
billion people have some degree of hearing loss. Approximately 430 million people have moderate or
greater hearing loss in the better ear, and it is expected to increase to 700 million people by 2050.

According to the Ministry of Health [2], approximately 2.3 million people in Mexico have hearing
disabilities. This vulnerable group faces significant levels of discrimination and limited employment
opportunities. Additionally, this health condition restricts access to education, healthcare, and legal
services, further exacerbating social inequalities and limiting opportunities for integration. One of
the primary challenges faced by the deaf community is communication with hearing individuals, as
linguistic differences hinder social and workplace interactions. While technology has proven useful
in reducing some of these barriers, deaf individuals often rely on the same technological tools as the
hearing population, such as email and text messaging applications. However, these tools are not
always effective, as not all deaf individuals are proficient in written Spanish.

In the Americas, the most widely studied sign languages are the American Sign Language
(ASL) and the Brazilian Sign Language (LIBRAS), which have facilitated research and technological
advancements aimed at improving communication with the deaf community. An example of such
innovation is SLAIT [3], a startup that emerged from a research project at Aachen University of Applied
Sciences in Germany. During this research, an ASL recognition engine was developed using MediaPipe
and recurrent neural networks (RNNs). Similarly, [4] announced an innovative project in Brazil that
uses computer vision and artificial intelligence to translate from LIBRAS to text and speech in real
time. Although this technology is still undergoing internal testing, the developers claim that after four
years of work, the system has reached a significant level of maturity. This technology was developed
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by Lenovo researchers in collaboration with the Center for Advanced Studies and Systems in Recife
(CESAR), which has already patented part of this technology [5]. The system is capable of recognizing
the positions of arm joints, fingers, and specific points on the face, similar to SLAIT. From this data, it
processes facial movements and gestures to identify sentence flow and convert it from sign language
into text. CESAR and Lenovo consider that their system has the potential to become a universally
applicable tool.

Compared to speech recognition and text translation systems, applications dedicated to sign
language (SL) translation remain scarce. This is partly due to the relatively new nature of the field
and the inherent complexity of sign language recognition (SLR); which involves visual, spatial, and
gestural elements. Recognizing sign language presents a significant challenge, primarily due to limited
research and funding. This highlights the importance of promoting research in the development of
digital solutions that improve the quality of life of the deaf community (c.f. [6]). However, researchers
agree that the key factor for developing successful machine learning models is data (c.f. [7]). In this
regard, for SLs as the LSM, existing databases are often inadequate in terms of both size and quality,
which hinders the advancement of these technologies. Also, the sensing technology has a fundamental
role, in the reliability of the incoming data. This is the main reason that SLR is broadly divided into
two branches: contact sensing and contactless sensing.

Sign data acquisition with contact depend on gloves [8], armbands [9], wearable inertial sensors
[10,11], or Electromyographic (EMG) Signals [12]. In contrast, contactless sign data acquisition is mainly
divided into two types, depending on the kind of hardware: simple hardware (color or infrared
cameras) vs specialized hardware (depth sensors, optical 3D sensors [13], commercial WiFi devices
[14], ultrasonic devices [15]).

This classification is similar to the one presented by ([16], Fig. 1), except that their sign data
acquisition approaches are divided into sensor-based approaches and vision-based approaches. We
present several examples of sign language research and related work, along with various approaches
to sign data acquisition, as detailed in Table 1.

Table 1. Sign Language research and related work.

Ref. SL Sign group* Sign type Sign features† Sensor/Tool

Chiradeja et al. (2025) [8] - S Dynamic HC Gloves
Rodríguez-Tapia et al.
(2019) [10] ASL W Dynamic HC Myoelectrical bracelets

Filipowska et al. (2024) [12] PSL W Dynamic HC EMG
Umut and Kumdereli
(2024) [9] TSL W Dynamic HC, AM Myo armbands (IMU + sEMG)

Gu et al. (2024) [11] ASL W, S Dynamic HC, AM IMUs

Urrea et al. (2023) [17] ASL L, W Static HC Camera/MediaPipe
Al-Saidi et al. (2024) [16] ArSL L Static HC Camera/MediaPipe
Niu (2025) [18] ASL L Static HC Camera
Hao et al. (2020) [14] - W Dynamic HC WiFi
Galván-Ruiz et al. (2023)
[13] LSE W Dynamic HC Leap motion

Wang et al. (2023) [15] CSL W, P Dynamic HC Ultrasonic
Raihan et al. (2024) [19] BdSL L, N, W, P Dynamic HC Kinect
Woods and Rana (2023) [20] ASL W Dynamic AM, NHG Camera/OpenPose
Eunice et al. (2023) [21] ASL W Dynamic HC, AM, NHG Camera/Sign2Pose, YOLOv3
Gao et al. (2024) [22] ASL, TSL W Dynamic HC, AM, NHG Camera, Kinect
Kim and Baek (2023) [23] DGS, KSL W, S Dynamic HC, AM, NHG Camera/AlphaPose
Current study LSM W, P Dynamic AM Camera/YOLOv8

* L: alphabet letters; N: numbers; W: words; P: phrases; S: sentences. †HC: hand configurations; AM: arm movement; NHG:
non-hand gestures. SLs names are provided in the Abbreviations section. Top part: sign data acquisition with contact sensing.
Bottom part: Contactless sign data acquisition.

In Table 1, we have included information regarding the features of signs that are included in the
sign data acquisition, for each reported work. Instead of using the separation employed by [22] (facial,
body and hand features), we propose our own decomposition into hand configurations (HC), arm
movement (AM) and non-hand gestures (NHG), see Figure 1. This is a fundamental concept of our
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research, so this decomposition is discussed in more detail in Section 1.1.2. The facial, body and hand
features separation is a concept commonly seen in pose estimators —such as MediaPipe [24]– that
are also common in SL research, as presented in Table 1. It is also possible to observe, that most SL
research is focused on the HC features.

Figure 1. Sign Features: hand configurations (HC), arm movement (AM) and non-hand gestures (NHG).
"Surprise!" sign images were taken from screenshots of the corresponding YouTube video of the GDLSM
[25], see Appendix A.

We will now present the scientific context of the LSM research. First, we present the known
datasets and then studies about LSM recognition and analysis.

The LSM is composed by two parts: dactylology (fingerspelling) and ideograms ([26], p.12).
Dactylology is a small subset of the LSM and basically consists of letters of the alphabet, where the
most part are static signs. A few signs for numbers are also static. Due to the small, nevertheless
important, role of dactylology, we are interested in LSM ideograms datasets. To the best of our
knowledge, there are three public available ideogram-focused datasets. Two of them are visual: (i) the
MX-ITESO-100 preview [27] with videoclips of 11 signs from 3 signers (out of 100 signs, but not all
are currently available), and (ii) the Mexican sign language dataset [28,29] with image sequences of
249 signs from 11 signers. The third dataset, consisting in keypoints, is provided by [30]; this dataset
has 3000 samples of 30 signs from 4 signers (8 letters, 20 words and 2 phrases). This was constructed
by processing the RGBD data into keypoints by means of MediaPipe [24] tool, but the unprocessed
visual data is not provided. A comparison of these datasets, along with LSM glossaries are provided
in Tables 2 and 3.

Table 2. LSM Datasets and Glossaries.

Ref. Type Sign group* Sign Signal Samples

DIELSEME 1 (2004) [31] Glossary† 535 W Visual 1 video per sign
DIELSEME 2 (2009) [32] Glossary† 285 W Visual 1 video per sign
GDLSM (2024) [25] Glossary 27 L, 49 N, 667 W, 4 P Visual 1 video per sign‡

MX-ITESO-100 (2023)
[27] Dataset 96 W, 4 P Visual 50 videos per sign

Mexican sign language
dataset (2024) [29] Dataset 243 W, 6 P Visual 11 image sequences per sign

Mexican Sign Language
Recognition (2022) [30] Dataset 8 L, 20 W, 2 P Keypoints 100 samples per sign

* L: alphabet letters; N: numbers; W: words; P: phrases. † According to [33], DIELSEME 1 and 2 are actually glossaries and not
dictionaries. The three LSM glossaries only have one sample by sign, while datasets have multiple samples by sign. ‡ Their site
reports 719 videos, but only 715 were found; also, the 32 videos in the "Estados y capitales" thematic category include two
signs per video.
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Table 3. LSM Datasets and Glossaries: Sign and signal properties.

Ref. Sign Features Signal Properties File Format Comments

DIELSEME 1 (2004) [31] HC, AM*, NHG 320×234 @ 12 fps SWF videos
DIELSEME 2 (2009) [32] HC, AM, NHG 720×405 @ 30 fps FLV videos

GDLSM (2024) [25] HC, AM, NHG 1920×1080 @ 60 fps videos
Hosted on a stream-
ing platform; c.f. Ap-
pendix A

MX-ITESO-100 (2023)
[27] HC, AM, NHG 512×512 @ 30 fps MP4 videos Preview only‡

Mexican sign language
dataset (2024) [29] HC, AM* 640×480 JPEG images Blurred faces

Mexican Sign Language
Recognition (2022) [30] HC, AM, NHG 20×201 array CSV files One row per frame, 67

(x, y, z) keypoints
* In those cases, the background and clothing are black, so segmentation of skin (hand and face) are easier, but tracking joints for
AM is more difficult. ‡ Only 11 signs (words) are available in the public preview. Also, the 50 samples of every sign are done by
a single subject.

Regarding LSM studies, most of the SLR research of the LSM focuses mainly on classifying static
letters and numbers using classical machine learning techniques and convolutional neural networks
(CNN) [34–41]. Using the classification provided by [16], there are four classes of signs: (i) continuous
signs, (ii) isolated signs, (iii) letter signs and (iv) number signs. In the LSM, most of the signs in
the three last categories are static signs. But signing in the LSM is generally highly dynamic and
continuous, since most signs are ideograms, as mentioned before.

In terms of dynamic sign recognition, early studies focused on classifying letters and numbers
with motion. For example, [42] used the CamShift algorithm to track the hand trajectory, generating
a bitmap that captures the pixels of the hand path, these bitmaps are then classified using a CNN.
Another approach, presented in [43], is to obtain coordinates (x,y) of 22 key points of the hand using
Intel RealSense sensor, which are used as training data for a multilayer perceptron (MLP) neural
network. Finally, in [44], 3D body cue points obtained with MediaPipe are used to train two recurrent
neural network models (RNN): LSTM and GRU.

In more recent research, in addition to letters and numbers, some simple words and phrases have
been included. Studies such as that of [45–47], continue to use MLP-type neural networks. While
others, such as [30], use more advanced RNN models. In the case of [27], CNNs are used to extract
features from the frames of a series of videos, which will be the input data of an LSTM model.

On the other hand, the work of [48] presents a method for the classification of dynamic signs,
which involves the extraction of a sequence of frames, which go through a segmentation process using
neural networks based on color, resulting on the skin of hands and face. To classify the signs, four
classical machine learning algorithms are compared: bayesian classifier, decision trees, SVM and NN.

Although research on LSM recognition has been conducted for several years, progress in this area
has been slow and limited compared to other SLs. A common approach is to use computer vision
techniques such as CNNs to build automatic sign recognition systems. However, with the recent
emergence of pose recognition models such as MediaPipe and YOLOv8, there is a trend in both LSM
and other sign languages to use these tools to train more complex models such as RNNs or more
sophisticated architectures such as Transformers. A comparison of the studies mentioned here, with
additional details, is shown in Table 4.
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Table 4. LSM research.

Ref. Sign group* Sign type Sign feature Sensor/Tool

Solís et al. (2016) [34] L Static HC Camera
Carmona-Arroyo et al.
(2021) [35] L Static HC Leap Motion, Kinect

Salinas-Medina and Neme-
Castillo (2021) [36] L Static HC Camera

Rios-Figueroa et al. (2022)
[37] L Static HC Kinect

Morfín-Chávez et al. (2023)
[38] L Static HC Camera/MediaPipe

Sánchez-Vicinaiz et al.
(2024) [39] L Static HC Camera/MediaPipe

García-Gil et al. (2024) [40] L Static HC Camera/MediaPipe
Jimenez et al. (2017) [41] L, N Static HC Kinect
Martínez-Gutiérrez et al.
(2019) [43] L Both HC RealSense f200

Rodriguez et al. (2023) [44] L, N Both HC Camera/MediaPipe
Rodriguez et al. (2025) [49] L, N Both HC Camera/MediaPipe
Martinez-Seis et al. (2019)
[42] L Both AM Camera

Mejía-Peréz et al. (2022) [30] L, W Both HC, AM, NHG OAK-D/MediaPipe
Sosa-Jiménez et al. (2022)
[50] L, N, W Both HC, body but not NHG Kinect

Sosa-Jiménez et al. (2017)
[45] W, P Dynamic HC, AM Kinect/Pose extraction

Varela-Santos et al. (2021)
[51] W Dynamic HC Gloves

Espejel-Cabrera et al. (2021)
[48] W, P Dynamic HC Camera

García-Bautista et al. (2017)
[46] W Dynamic AM Kinect

Martínez-Guevara and
Curiel (2024) [52] W, P Dynamic AM Camera/OpenPose

Martínez-Guevara et al.
(2019) [53] W Dynamic HC, AM Camera

Trujillo-Romero and García-
Bautista (2023) [47] W, P Dynamic HC, AM Kinect

Martínez-Guevara et al.
(2023) [54] W, P Dynamic HC, AM Camera

Martínez-Sánchez et al.
(2023) [27] W Dynamic HC, AM, NHG Camera

González-Rodríguez et al.
(2024) [55] P Dynamic HC, AM, NHG Camera/MediaPipe

Current study W, P Dynamic AM Camera/YOLOv8
* L: alphabet letters; N: numbers; W: words; P: phrases.

1.1. Towards a Recognition System for the LSM

We present the sign data acquisition, the hardware selected and the fundamental concepts of our
research towards a recognition system for the LSM.

1.1.1. Contactless Sign Data Acquisition with Simple Hardware

Due to the socioeconomic conditions of the main users of the LSM, this research uses contactless
simple hardware for the sign data acquisition; i.e. a pure vision-based approach, since color cameras are
widely accessible and available in portable devices, that are very common in Mexico. One important
remark is —as presented in Table 4— that only one LSM research work [51] uses contact sensing for
sign data acquisition.
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1.1.2. Sign Features

From a Linguistics perspective, LSM signs present six documented parameters: basic articulatory
parameters that simultaneously combine to form signs [31,56–58]. We propose a simplified Kinematics
perspective, already shown in Figure 1, that combines four of those parameters into Arm Movement
(AM):

1. Hand configuration (HC): the shape adopted by one or both hands. As seen in Table 1 and Table 3,
most research focuses on the HC only. Hand segmentation [59] and hand pose detectors are very
promising technologies for this feature. The number of HCs required to perform a sign is variable
in the LSM, some examples regarding the number of HCs required for a sign are: number "1" (1
HC), number "9" (2 HCs), number "15" (2 hands, 1 HCs), "grandmother" (2 hands, 3 HCs). See
Appendix A, for samples these signs.

2. Non-hand gestures (NHG): refers to facial expressions (frowning, raising eyebrows), gestures
(puffing out cheeks, blowing) and body movements (pitching, nodding). While most signs do not
require non-hand gestures, some of the LSM signs do. Some signs that require one or more NHG
are: "How are you?", "I’m sorry", "Surprise!" (two NHGs of this sign are shown in Figure 1).
See Appendix A, for links to samples of these signs.

3. Arm movement (AM): it can be characterized by tracking the joint movements of wrists, shoulders
and elbows. It is enough to obtain the following basic articulatory parameters [31,56–58]:

(a) Articulation location: the location on the signer’s body or space where the signs are
executed.

(b) Hand movement: the type of movement made by the joints from one point to another.
(c) Direction of movement: the trajectory followed by the hand when making the sign.
(d) Hand orientation: orientation of the palm of one or both hands, with respect to the signer’s

body when making the manual configuration.

This part can be studied from pose-based approaches (c.f. [21,23] with pose estimation using
AlphaPose).

Other decompositions have been proposed, in order to simplify sign analysis, such as ([60], Fig. 1)
were a LSM sign is decomposed into fixed postures and movements. We consider that this approach could
loose important information, since transitions in hand postures are also important as documented in
the Hamburg Notation System (HAMNOSYS) [61].

The use of pose estimators, in particular the use of MediaPipe, allow having information of face,
hands and body features, c.f [22,30]. While, the use of pose estimator is quite frequent in SL research,
there are still areas of improvements (c.f. [17], Fig. 8) where they designed a PhBFC to improve
mediapipe hand pose estimation) and complementary approaches like bimodal frameworks [22] that
show the current limitations of those estimators.

We consider that focusing on a single element to describe the LSM would not be adequate given
their meaning and contribution to the sign. But covering everything at the same time is also very
complex, as seen in most LSM research. Since most of the LSM work focused on HC, this paper focuses
on the AM part and reports the approach created to analyze visual patterns in arm joint movements.
Our current work uses YOLOv8 [62,63] for pose estimation. While it is 2D, and MediaPipe is better for
3D; we discuss our decision in Section 2.3.1.

The main contribution of this work is the use of arm movement keypoints, particularly wrist
position, as a partial feature for sign language recognition. This is motivated by the observation in
[30] that wrist location plays a crucial role in distinguishing similar signs. For instance, the same hand
configuration used at different vertical positions (e.g., near the head to indicate headache, or near the
stomach to indicate stomachache) conveys different meanings. By isolating and analyzing this spatial
feature, we aim to better understand its discriminative power in sign recognition tasks.

An overview of the paper is as follows. Section 2 describes the custom dataset, the experimental
design, software and hardware, data processing and methodologies. Section 3 describes the results
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from the analysis of two case studies. The conclusions and the limitations of our approach are presented
in Section 5.

2. Materials and Methods
2.1. Custom Dataset

In this research, a proprietary dataset was developed with the active participation of the deaf
community and LSM experts, ensuring no restrictions on recognizing hand configurations, arm
movements and facial expressions. The creation of the dataset was reviewed and approved by the
Bioethics Committee for Human Research at Cinvestav, and all participants provided written informed
consent.

This dataset was divided into three subsets, see Tables 5, 6, and 7 for a list of the signs in each
subset.

Table 5. Signs for the first subset.

No. Semantic field Sign

1 family son*
2 greetings hello*
3 days of the week Monday*
4 family godfather*
5 animals deer*

*These signs are also in the second subset.

Table 6. Signs for the second subset.

No. Semantic field Sign No. Semantic field Sign
1 verbs hug 32 verbs to arrive
2 adjectives tall 33 days of the week Monday*
3 drinks atole 34 kitchen tablecloth
4 transport airplane 35 miscellaneous sea
5 school flag 36 fruits melon
6 transport bicycle 37 kitchen table
7 greetings Good afternoon! 38 verbs to swim
8 greetings Good morning! 39 colors dark
9 cities capital 40 family godfather*

10 house† house 41 animals bird
11 miscellaneous sky 42 clothing pants
12 questions How? 43 animals penguin
13 questions How are you? 44 school blackboard
14 school classmate 45 food pizza
15 house curtains† 46 room iron
16 days of the week day 47 miscellaneous please
17 house broom† 48 questions Why?
18 living room light bulb 49 time present
19 animals rooster 50 professions president
20 adjectives fat 51 bathroom shower
21 adjectives big 52 living room living room
22 verbs to like 53 food sauce
23 family daughter 54 cities Saltillo
24 family son* 55 clothing shorts
25 greetings hello* 56 verbs to dream
26 time hour 57 transport taxi
27 time today 58 bathroom towel
28 animals giraffe 59 animals deer*
29 verbs to play 60 house window†

30 drinks milk 61 clothing dress
31 vegetables lettuce 62 person widower

*These signs are also in the first training set. †These signs are also in the third subset.
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Table 7. Signs for the third subset.

No. Semantic field Sign

1 house garbage
2 house trash can
3 house house*
4 house curtains*
5 house electricity
6 house stairs
7 house broom*
8 house internet
9 house garden

10 house keys
11 house wall
12 house floor
13 house door
14 house roof
15 house mop
16 house window*

*These signs are also in the second subset.

The dataset comprises 74 signs: 73 performed by 17 subjects and one ("iron") performed
by 16 subjects. In total we have 1257 color videos (900×720 @ 90 fps). All signs show HCs and
AM, and 3 of them have NHGs ("How?", "How are you?", "Why?"). There are four phrases in the
dataset: "Good morning!" ("¡Buenos días! "), "Good afternoon!" ("¡Buenas tardes! "), "How are
you?" ("¿Cómo estás? "), and "Why?" ("¿Por qué? "). The latter is a question word in English; but it
is constructed with two words in Spanish, and also in LSM it is a sign composed of two signs with
independent meaning. This information is summarized in Table 8.

Table 8. Custom dataset.

Feature Description

Signs* 70 W, 4 P
Signers 17
Samples 73 signs with 17 samples, 1 sign with 16 samples
Sign features HC, AM, NHG
Sign signal Visual
Signal properties 900×720 @ 90 fps
File format MKV videos
Samples for training 10 samples
Samples for validation 2 samples
Samples for testing 5 samples

* W: words; P: phrases.

2.2. Experimental Design

The goal of these experiments is to classify dynamic LSM signs by detecting and tracking the
wrist, elbow and shoulder joints, in order to characterize the AM. For this purpose, since the sign
production involves motion and changes in shape in space, we have decided to use a pose-based
approach for the sign signals acquisition and CNN for classification.

Two case studies are presented in this experiment. The first only considers shoulders and wrists,
as the wrists exhibit the predominant movement while the shoulders serve as base joints with minimal
displacement. The second case study includes the elbows, in addition to the shoulders and wrists, as
the elbows also experience significant movement.
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2.3. Software and Hardware

For the study, a pose detector and a CNN classifier framework are needed. For pose estimation, we
conducted preliminary experiments to compare the commonly used MediaPipe and the YOLOv8-pose
detector. MediaPipe detects 33 keypoints with its Pose landmarker (Heavy) model, and it can provide
2D and 3D coordinates. YOLOv8 detects 17 keypoints with its YOLOv8x-pose-p6 model and provides
2D coordinates. YOLOv8x-pose-p6 keypoints 5–10 are for the shoulder, elbow and wrist joins, and
MediaPipe keypoints 11–16 are for the same joints; see Figure 2.

Figure 2. Keypoints in YOLOv8 and MediaPipe.

2.3.1. Comparison Between MediaPipe and YOLOv8 Pose Detection Models

We compared the above mentioned models for pose detection in several signs, and we decided to
use YOLOv8 over MediaPipe due to frequent tracking failures of the wrist joint in many of the signs,
particularly in occluded conditions of the hands. An example of this issue is shown in Figure 3.

Figure 3. Comparison in wrist joint tracking between YOLOv8 vs MediaPipe. Example with the "state" sign. Top
row: MediaPipe. Bottom row: YOLOv8 pose detector. Four inner frames: MediaPipe loses track of the wrist joint;
while YOLOv8 keeps track of the AM in all frames.

As YOLOv8-pose was selected for pose estimation, we decided to use YOLOv8-cls to analyze
visual patterns of the arm joint movements. Using a single technology for multiple tasks offers several
advantages: a unified architecture reduces the need for format adaptation between different models,
simplifies implementation and streamlines the workflow. Also, reduces the possible problems of
training and running multiple models across different frameworks.

A micromamba environment was employed for the installation and implementation of the
YOLOv8 pose detection and image classification models used in this work. Table 9 provides a
summary of the technical specifications of the hardware and the key required software packages.
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Table 9. Software and Hardware Specifications.

Software/Hardware Version/Model

Operating System Ubuntu 22.04.2
Graphics card NVIDIA GeForce RTX 2080 Ti

CUDA 12.4
Python 3.11.8
PyTorch 2.2.2

Ultralytics YOLO 8.1.47

2.4. Data Processing

Since YOLOv8 works internally with square images, the scene was cropped to 720×720 pixels (see
Figure 4). This adjustment does not affect sign visibility, as all relevant joints remain within the square
frame.

Figure 4. Dimensions of original and cropped frames.

LSM defines that only the upper part of the body is meaningful in signing; so only the upper 13
keypoints (out of 17) are considered, the 4 keypoints for knees and ankles are discarded. If the model
fails to detect a joint, it is assigned a null value, which allows to easily discard these missing values in
further processing. Below is an example of pose estimation applied to the initial and final poses of
"deer" sign (Figure 5), as well as the extraction of the 13 keypoints.
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Figure 5. Pose detection in the "deer" sign. Left: neutral pose. Right: final pose.

The keypoints are stored in NPY format, a file type used by NumPy for efficiently storing data
arrays. These arrays have dimensions of (13, 2, N): keypoints, 2D (x, y) coordinates and the number of
frames in each video. From these arrays, the coordinates corresponding to the wrists, shoulders, and
elbows are extracted accordingly to each case studies. The position of these coordinates was plotted
for each frame, illustrating the movement pattern of each joint, as shown in Figure 6.

Figure 6. Movement shapes for the "deer" sign. Left: only wrists and shoulder. Right: also elbows.

2.5. Neural Network Training
2.5.1. First Subset

This subset consists of a small group of five signs, chosen for their distinguishable shapes based
on a qualitative evaluation. The primary objective of this group is to conduct a more controlled
evaluation of the neural network, which allows for a clearer analysis of what the network is learning
in an environment with fewer variables. Examples of these signs are presented in Figure 7, while the
corresponding words are listed in Table 5.
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Figure 7. Shapes of the first subset (see words in Table 5). Top: only wrists and shoulders. Bottom: also elbows.

2.5.2. Second Subset

In this group, the signs are similarly distinguishable, but with a larger set consisting of 62 signs.
The goal now is to assess whether the neural network’s behavior remains consistent with that of the
first set, despite the increased number of classes. Some examples of these signs are presented in Figure
8, and the corresponding words are listed in Table 6.

Figure 8. Shapes examples of the second subset ("hug", "tall", "atole", "airplane", "flag" and "bicycle"). Top:
only wrists and shoulders. Bottom: also elbows.

2.5.3. Third Subset

The fourth set consists of 16 words related to the semantic field of house. This group is particularly
notable for the high number of variants in its signs. As such, this experiment aims to assess the model’s
accuracy, as well as its ability to generalize and identify distinctive features within more complex
sign language contexts. Examples of the sign forms from this set can be seen in Figure 9, and the
corresponding vocabulary is outlined in Table 7.
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Figure 9. Shapes examples of the third subset ("garbage", "trash can", "house", "curtains", "electricity" and
"stairs"). Top: only wrists and shoulders. Bottom: also elbows.

2.6. Training Parameters

The maximum number of examples per sign in all selected sets is 17: 10 examples were used for
training, 2 for validation, and 5 for the testing phase. Image classification consists of assigning each
image a label within a set of predefined classes. The image classification model used was yolov8x-cls.
This classifier is the most robust of the classification models and maintains a deep CNN structure.
The classifier output is a single class label and a confidence score. Table 10 shows the most relevant
hyperparameters for model training and configuration.

Table 10. Training parameters and their descriptions.

Parameter Value Description

epochs 50 Number of epochs or training cycles.
batch 16 Number of images processed in each iteration.
imgsz 224 Size of the images input into the model.

patience 100 Number of epochs without improvement before stopping the training.
lr0 0.01 Initial learning rate.

pretrained True Indicates that the model uses pre-trained weights (ImageNet).
single_cls False If set to True, the model classifies into a single class.

dropout 0.0 Dropout rate. This is a regularization technique used to reduce overfitting in
artificial neural networks.

Table 11 details the data augmentation related hyperparameters handled by YOLOv8 (not all
parameters are active).
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Table 11. Image augmentation parameters and their descriptions.

Parameter Value Description

hsv_h 0.015 Hue of the image in the HSV color space.
hsv_s 0.7 Saturation of the image in the HSV color space.
hsv_v 0.4 Brightness of the image in the HSV color space.

degrees 0.0 Random rotation applied to the images.
translate 0.1 Random translation of the images.

scale 0.5 Random scaling factor applied to the images.
shear 0.0 Random shear angle applied to the images.

perspective 0.0 Perspective transformation applied to the images.
flipud 0.0 Probability of flipping the image vertically.
fliplr 0.5 Probability of flipping the image horizontally.
bgr 0.0 BGR to RGB color space correction factor.

mosaic 1.0 Probability of using the mosaic technique to combine images.
mixup 0.0 Probability of mixing two images.

copy_paste 0.0 Technique of copying and pasting objects between images.
auto_augment randaugment Type of data augmentation used.

erasing 0.4 Probability of erasing parts of the image to simulate occlusions.

crop_fraction 1.0 Proportion of the image to be cropped. A value of 1.0 indicates
no cropping.

2.7. Testing

Once the training stage is completed, the corresponding weights are saved in a custom model,
which is then utilized for the subsequent testing phase. During this phase, key performance metrics are
collected, such as Top-1 Accuracy and Top-5 Accuracy. Top-1 Accuracy measures how often the model’s
first prediction is correct, while Top-5 Accuracy evaluates whether the correct class appears among
the five most probable predictions. These metrics are crucial for assessing the model’s performance
in a multi-class classification environment. Additionally, a confusion matrix is generated for each
experiment, providing a detailed overview of correct and incorrect predictions for each class. The
results, along with their interpretation and analysis, are discussed in the following section.

3. Results
The results are primarily evaluated using Top-1 Accuracy, Top-5 Accuracy, and the confusion

matrix, which offer a comprehensive view of the model’s performance across each subset. In addition,
performance graphs depicting loss and accuracy across training epochs are included, allowing to
observe the model’s learning curve over time.

3.1. First Set

In the first experiment, five of the most distinguishable classes were selected (see confusion
matrices in Figure 10). The results reveal that using only the shoulder and wrist coordinates achieved
a Top-1 Accuracy of 0.9599. However, when the elbow coordinates were included, the Top-1 Accuracy
decreased to 0.8799, suggesting that the additional information had a negative impact on perfor-
mance. On the other hand, for Top-5 Accuracy, both configurations achieved a perfect score of 1.0,
demonstrating the model’s ability to correctly identify the target class within its top five predictions.
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Figure 10. Confusion matrices for the first subset. Left: only wrists and shoulders. Right: also elbows.

Both the "son" and "deer" classes were classified with high accuracy in both case studies. However,
slight confusion was observed between the "monday" and "hello" classes in the first case. Additionally,
when elbow coordinates were included, the model made errors in three of the five classes, indicating
greater difficulty in differentiating between them. The performance graphs show that the accuracy in
both models tends to stabilize around the 30th epoch, while the loss continues to decrease. Despite
this, the model using only the wrist and shoulder coordinates outperformed the version with elbow
coordinates, achieving higher accuracy (see graphs in Figure 11). In summary, the results are highly
favorable in the best-case scenario, with a classification rate exceeding 95%. This suggests that the
model is capable of effectively distinguishing between a limited number of well-defined classes.
However, it is preferable to restrict the analysis to wrist and shoulder data, as including elbow data
appears to negatively impact performance.

Figure 11. Performance charts for the first subset. Left: only wrists and shoulders. Right: also elbows.

3.2. Second Set

In the second experiment, we expanded the number of classes to 62, while ensuring that the
shapes remained distinguishable from one another (see confusion matrices in Figure 12). The model

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 April 2025 doi:10.20944/preprints202504.0981.v1

https://doi.org/10.20944/preprints202504.0981.v1


16 of 23

using only wrist and shoulder coordinates achieved a Top-1 Accuracy of 0.6375, whereas including
elbow information resulted in a slight improvement to 0.6537.

For Top-5 Accuracy, the results were similar, with the first model achieving an accuracy of 0.8640,
which improved to 0.8932 when elbow data was included. Performance analysis during training
and validation revealed a consistent trend in both models: accuracy steadily increased while loss
progressively decreased (see Figures 6.4a and 6.4b), indicating effective learning. The best model
achieved an overall accuracy of 65%, which is acceptable but showed variability in class performance.
Some classes were classified nearly perfectly, while others exhibited notable precision issues. This
suggests that, despite clear visual distinctions between classes, the large number of classes (62)
combined with the limited number of examples per class (5) may be hindering the model’s ability to
generalize effectively. In conclusion, although incorporating elbow information improves classification
accuracy, the inconsistent performance underscores the need for more examples per class to optimize
the model’s results.

Figure 12. Confusion matrices for the second subset. Left: only wrists and shoulders. Right: also elbows.

Figure 13. Performance charts for the second subset. Left: only wrists and shoulders. Right: also elbows.
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3.3. Third Set

In this experiment, the set is comprised of 16 words in the home semantic field. The complexity of
this group lies in the fact that some signs have variants. It is interesting to note that in both models,
words such as "internet", "keys", "mop" and "window" were classified correctly, since they showed
less variability. In contrast, words like "curtains", "garden" and "wall" performed poorly, with poor
predictions in both models (see confusion matrices in Figure 14).

The model using only wrist and shoulder information achieved a top-1 accuracy of 0.6875, while
including the elbow coordinates increased the accuracy to 0.7125. For top-5 accuracy, both models
achieved a value of 0.9250.

Figure 14. Confusion matrices for the third subset. Left: only wrists and shoulders. Right: also elbows.

The performance in both studies was quite similar (see the graphs in Figure 15), showing fluctu-
ations during training, but with a tendency to stabilize at a constant value towards the later stages.
This suggests that the model has managed to learn the main features of the characters, although its
generalization capacity is limited by the complexity of the variants within the set. The classification
rate reached up to 71% when the elbow information was included, which indicates that this additional
information contributes positively to the recognition, although the increase in accuracy is not very
significant.

Figure 15. Performance charts for the third subset. Left: only wrists and shoulders. Right: also elbows.

Despite the limitations, the model was able to detect patterns in some cases. However, its ability
to generalize across a large number of classes, variants and a limited number of examples is insufficient.
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Notwithstanding, the performance graphs reveal a tendency toward stabilization, suggesting that
while the model holds potential for certain datasets, it requires additional information —such as finger
movements— to enhance its classification accuracy in more complex scenarios.

4. Discussion
Table 12 presents the accuracy values based on the Top-1 Accuracy metric obtained using the

YOLOv8 model. The results indicate that including elbow coordinates led to better performance in
two out of the three experiments. Although the improvement was modest (ranging from 3% to 4%), it
suggests that incorporating additional joint information can contribute to more accurate classifications.

Table 12. Comparative table with the values of Top-1 Accuracy.

Dataset No. clases Description With elbows Without elbows

1 5 More distinguishable 0.8799 0.9599
2 62 More or less distinguishable 0.6537 0.6375
3 16 group house 0.7125 0.6875

The experiments with various datasets allowed us to observe the behavior of the convolutional
neural network (CNN) based on the input data. It became evident that the network’s performance
is heavily influenced by the selection of classes. Using all available classes from the database is not
always ideal, as this tends to yield suboptimal results. Therefore, a more focused approach, where
only relevant classes are included, is recommended for improving model classification.

Despite certain limitations —such as the small number of examples per class, the presence of
variants, and the high similarity between some signs— the neural network was still able to classify a
significant number of signs correctly and recognize patterns in the movement data. This demonstrates
the potential of the YOLOv8 model for this type of task.

In comparison to other CNNs, YOLOv8 stands out due to its optimized architecture, which allows
for the use of pre-trained models on large datasets like ImageNet. This enables the model to achieve
high accuracy and efficiency, making it suitable for real-time applications. However, as with any
model, performance is largely dependent on the quality and quantity of the input data. In this case, the
limited number of examples (17 per class) restricts the network’s ability to achieve optimal accuracy.

5. Conclusions
This paper presents the ongoing work towards the creation of a recognition system for the LSM.

A sign features decomposition is proposed into HC, AM and NHG. Contactless simple hardware was
selected for sign signal acquisition. A custom proprietary dataset of 74 signs (70 words, 4 phrases) was
constructed for this research. In contrast to most of the LSM research, this paper reports the analysis
focused on the AM part of signs, instead of HC focused or a holistic approach (HC + AM + NHG).

The analysis were conducted through a series of classification experiments using YOLOv8, aimed
at identifying visual patterns in the movement of key joints: wrists, shoulders, and elbows. A pose
detection model was used to extract joint movements, followed by an image classification model (both
integrated into YOLOv8) to classify the shapes generated by these movements.

The results, discussed in the previous section, highlight both the potential and the limitations of
our approach. The experiments demonstrated that it is possible to classify a considerable number of
signs, indicating that this dataset and strategy could serve as a useful tool for training a convolutional
neural network (CNN), such as YOLOv8. However, the analysis also reveals that the current struc-
ture of the dataset, characterized by a limited number of examples, variations between classes, and
high similarity among some signs, presents challenges that must be addressed through alternative
approaches.
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These experiments are the first stage of a larger project. For now, we are focusing on the analysis
of arm movement (shoulders, elbows, and wrists) because it is a less studied feature and information
can be extracted from it using a relatively simple methodology.

The comparison between the two case studies was intended to assess whether the inclusion of a
greater number of keypoints improves the performance of the model. This seems to indicate that this
assumption is correct. The next immediate step is to optimize these results, either by using a different
convolutional neural network (CNN) or by exploring different architectures, such as recurrent neural
networks (RNN), but keeping the focus on the use of keypoints; i.e. using pose-based approaches.

Later, the goal will be to integrate other essential components of sign language, such as manual
configuration and non-hand gesture, to develop a more complete system. Ultimately, this will allow
progress towards automatic sign language recognition.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Arm Movement
ArSL Arabic Sign Language
ASL American Sign Language
BdSL Bangladeshi Sign Language
CESAR Recife Center for Advanced Studies and Systems
CSL Chinese Sign Language
CNN Convolutional Neural Network
DGS German Sign Language (Deutsche Gebärdensprache)
EMG Electromyography
FLV Flash Video
fps Frames per second, frame rate
HC Hand Configuration
IMU Inertial measurement unit
JPEG Joint Photographic Experts Group, ISO/IEC 10918
LIBRAS Brazilian Sign Language (Língua Brasileira de Sinais)
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LSM Mexican Sign Language (Lengua de Señas Mexicana)
LSTM Long Short-Term Memory
MKV Matroska Video
MLP Multilayer Perceptron
MP4 MPEG-4 Part 14, ISO/IEC 14496-14:2003
NHG Non-Hand Gesture
NN Neural Network
NPY NumPy standard binary file format
PJM Polish Sign Language
RGBD Red, Green, Blue and Depth
RNN Recurrent Neural Network
sEMG Surface EMG
SL Sign Language
SLR Sign Language Recognition
SVM Support Vector Machine
SWF Small Web Format
TSL Turkish Sign Language
YOLO You Only Look Once

Appendix A. Digital Glossary of LSM
The GDLSM [25] has 747 signs grouped in 19 thematic categories. We provide direct links to some

of the signs included in this digital glossary, that were mentioned in Section 1.1.2.

• Numbers (Números):

– 1 one: https://youtu.be/zcd4GfYz-fA
– 9 nine: https://youtu.be/MgnvumQM-cQ
– 15 fifteen (first variant): https://youtu.be/yZ3X38cFWUM
– 15 fifteen (second variant): https://youtu.be/64jBCZXv6rY

• Family (Familia):

– Grandmother (abuela) : https://youtu.be/lckOvtr0lZU

• Everyday expressions (Expresiones cotidianas):

– How are you? (¿Cómo estás?) https://youtu.be/x7zFMacTe04
– I’m sorry (Disculpa) https://youtu.be/bWwIisAtYCI
– Surprise! (¡Sorpresa!) https://youtu.be/Q0OqTBjoIjU, this sign was used in Figure 1.
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