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Abstract: This review paper explores the intersection of user engagement and user experience studies with 

Electroencephalography (EEG) analysis by investigating the existing literature in this field. User engagement 

describes the immediate, session-based experience of using interactive products and is commonly used as a 

metric to assess the success of games, online platforms, applications, and websites, while user experience 

encompasses the broader and longer-term aspects of user interaction. This review focuses on the use of EEG as 

a precise and objective method to gain insights into user engagement. EEG recordings capture brain activity as 

waves, which can be categorized into different frequency bands. By analyzing patterns of brain activity 

associated with attention, emotion, mental workload, and user experience, EEG provides valuable insights into 

user engagement. The review follows the PRISMA statement. The search process involved an extensive 

exploration of multiple databases, resulting in the identification of 74 relevant studies. The review encompasses 

the entire information flow of the experiments, including data acquisition, pre-processing analysis, feature 

extraction, and analysis. By examining the current literature, this review provides a comprehensive overview 

of various algorithms and processes utilized in EEG-based systems for studying user engagement and 

identifies potential directions for future research endeavors. 

Keywords: EEG analysis; systematic review; data acquisition; pre-processing analysis; feature 

extraction; user engagement; user experience; signal processing 

 

1. Introduction 

User engagement (UE) shares a close connection with User Experience (UX) [1]. In [2], UE, after 

an extensive, critical multi-disciplinary literature review and an exploratory study, is defined as "a 

quality of UX characterized by attributes of challenge, positive affect, endurability, aesthetic and 

sensory appeal, attention, feedback, variety/novelty, interactivity, and perceived user control". This 

definition emphasizes the multidimensional nature of UE, encompassing cognitive, affective, and 

interactive aspects of the UX with technology. On the other hand, UX, within the framework of UE, 

encompasses the holistic set [3] of perceptions, emotions, and interactions that users have with 

technology. 

Thus, UE focuses on the attraction of individuals to interactive products within a session and 

highlights how well-designed UE enhances the immediate, session-based experience, making it both 

exciting and enjoyable. This concept is closely tied to affect and mood. It is the measure of how much 

an individual is involved and interested in a particular activity, product, service or experience. It is 

often used as a metric to assess the success of online platforms, applications, and websites. Cognition 

and emotions play a critical role in UE. Cognition refers to the mental processes involved in 

understanding, processing, and remembering information. Emotions, on the other hand, refer to the 

subjective feelings that arise in response to internal or external stimuli. 
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UX includes UE but goes beyond, addressing the comprehensive perspective of why individuals 

choose and sustain the use of a specific design across numerous sessions and even over extended 

periods. Influenced more profoundly by memory and motivation, UX extends beyond the immediate, 

session-based encounter. In essence, UE pertains to the immediate, session-based aspects of 

interactive product usage, while UX encompasses the broader and longer-term dimensions of user 

interaction and experience. Creating engaging UX and User Engagement UE is a complex and 

dynamic process that involves the interplay of three primary attributes: emotional, cognitive, and 

behavioral [2]. These attributes are interrelated and can often overlap. 

Emotional engagement refers to the affective or emotional response of the user to the technology. 

It includes attributes such as positive affect, endurability, aesthetic and sensory appeal, and attention. 

Cognitive engagement refers to the user's cognitive or mental involvement with the technology. It 

includes attributes such as challenge, feedback, variety/novelty, and perceived user control. 

Behavioral engagement refers to the user's observable actions or behaviors related to the technology. 

It includes attributes such as interactivity and sustained use.  

Positive emotions can increase engagement, as extensively discussed in [1]: When users feel 

happy, satisfied, or excited about a product or service, they are more likely to engage with it. For 

example, if a user has a positive experience while using a mobile app, they may be more likely to 

spend more time in the app or to recommend it to others. On the other hand, negative emotions can 

decrease engagement [1]: Negative emotions, such as frustration, anger, or disappointment, can lead 

to disengagement or even abandonment of a product or service. If a user has a bad experience with 

a product, they may be less likely to use it again in the future or to recommend it to others. Although 

positive emotions have the potential to enhance UE, they do not consistently result in high 

engagement levels. As O'Brien outlines in [2], engagement is a multifaceted process encompassing 

various attributes, including challenge, positive affect, endurability, aesthetic and sensory appeal, 

attention, feedback, variety/novelty, interactivity, and perceived user control. While positive 

emotions like enjoyment and satisfaction can play a role in fostering engagement, they are not the 

sole determinants. Instances exist where users may encounter positive emotions yet disengage due 

to factors such as fatigue, boredom, or lack of interest. Conversely, users may experience negative 

emotions and still maintain high engagement if they are motivated to overcome challenges or achieve 

goals. Therefore, although positive emotions contribute to engagement, they do not invariably lead 

to heightened levels of engagement. 

Emotional engagement is often seen as a key driver of user behavior and emotions can also 

influence user behavior. When users feel a strong emotional connection to a product or service, they 

are more likely to engage with it repeatedly and recommend it to others. This emotional connection 

can be built through various means, such as personalized messaging, interactive content, and social 

features. For example, users who feel anxious or stressed may be more likely to abandon a checkout 

process, while users who feel excited or curious may be more likely to explore a new feature or 

product offering. In this context, emotional design can improve engagement: Emotions can also be 

deliberately designed into a product or service to improve engagement. For example, a mobile game 

may use bright colors, fun animations, and humorous characters to create a sense of joy and 

excitement that encourages users to keep playing [4,5]. 

Cognitive engagement is also important for sustained UE. This can be achieved by providing 

users with content that is relevant to their interests, challenges their thinking, and encourages them 

to learn new things. On the other hand, behavioral engagement highlights the importance of dialogue 

between the user and the reference point to achieve a purpose. It also emphasizes the role of 

interaction in promoting novelty, interest, aesthetics, and the potential to fulfill task-oriented or 

experiential goals, all of which contribute to user engagement. 

Electroencephalography (EEG) is a technique that measures the electrical activity in the brain 

through electrodes placed on the scalp. The electrical activity is recorded as waves, which can be 

categorized into different frequency bands. Overall, EEG is considered as the most aaccurate [6] and 

objective method that can provide valuable insights into UE by measuring patterns of brain activity 
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associated with attention, emotion, mental workload, and UX. The main frequency bands of EEG 

waves are: 

• Delta Waves (0.5-4 Hz) that are associated with deep sleep and unconsciousness, and their 

presence during wakefulness can indicate a brain injury. Therefore, they are not usually 

associated with engagement or emotions. 

• Theta Waves (4-8 Hz) that are associated with drowsiness, daydreaming, and meditative states. 

They are also associated with emotional processing and memory formation. An increase in theta 

waves has been linked to positive emotions, such as happiness and relaxation. 

• Alpha Waves (8-13 Hz) that are associated with relaxation, calmness, and focused attention. 

They are also associated with a decrease in sensory processing and a reduction in distractibility. 

An increase in alpha waves is often observed when individuals are engaged in activities that 

they find enjoyable or calming. 

• Beta Waves (13-30 Hz) that are associated with focused attention, concentration, and cognitive 

processing. An increase in beta waves is often observed when individuals are engaged in tasks 

that require high levels of concentration, such as problem-solving or decision-making. 

• Gamma Waves (30-100 Hz) that are associated with high levels of cognitive processing, 

perception, and attention. They are also associated with peak emotional experiences, such as 

excitement, happiness, and joy. 

Research has shown that different emotions and levels of engagement can be correlated with 

specific patterns of EEG waves [3,4]. For example, positive emotions, such as happiness and 

relaxation, are associated with an increase in theta and alpha waves, while negative emotions, such 

as fear and anxiety, are associated with an increase in beta and gamma waves. Additionally, 

engagement in a task is often associated with an increase in beta waves [5]. 

It's important to note that the interpretation of EEG waves and their correlation with emotions 

and engagement is still an active area of research [6], and there is ongoing debate about the exact 

relationships between brain activity and emotions. However, EEG is a useful tool for studying the 

brain's response [7] to different emotional and cognitive states and has the potential to inform the 

development of emotion recognition systems. 

Measuring and assessing UE and UX with EEG signals involves recording brain activity in 

response to specific stimuli, processing and extracting features from the EEG signals, and using 

machine learning algorithms to classify [8,9] the features into different emotional and cognitive states. 

The basic steps involved in measuring and assessing UE and UX with EEG signals are 1) stimulus 

presentation, such as images, sounds, or videos are presented to the participant, 2) EEG signals are 

recorded from the participant’s scalp using sensors attached to the scalp, 3) the raw EEG signals are 

pre-processed to remove noise and artifacts [10], and to extract features that are relevant to emotion 

and cognitive detection, 4) feature extraction, where various features, such as frequency bands, event-

related potentials (ERPs), and time-domain features, are extracted from the pre-processed EEG 

signals, 5) emotion and cognitive classification using machine learning algorithms, such as support 

vector machines (SVM) or deep learning models to classify the extracted features into different 

emotional states, such as happiness, sadness, fear, or anger, 6) evaluate the performance of the 

classification model using metrics such as accuracy, precision, recall, and F1-score. 
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Figure 1. Structured summary of the proposed systematic review. 

This paper reports studies including methods and approaches for analysing UE and UX based 

on EEG data. This systematic review focuses on a comprehensive and objective presentation of the 

studies following the entire information flow of the experiments, from the EEG recordings, the pre-

processing, the feature extraction and the analysis, which can be either statistical analysis or 

classification or even clustering. The methodological approach adopted to locate relevant studies 

meticulously adheres to the rigorous guidelines outlined in the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement. PRISMA, renowned for its systematic 

review and meta-analysis reporting standards, was deliberately selected to not only validate but also 

augment the credibility of our literature review. This strategic choice also serves to refine the scope 

of our review, ensuring that our objectives remain tightly focused on the core research questions at 

hand. By aligning with PRISMA, we are following a well-established protocol that promotes 

transparency, thoroughness, and methodological rigor in the identification, selection, and analysis of 

research records. The broad acceptance of PRISMA within the academic community underscores its 

reliability and effectiveness in facilitating systematic reviews, thereby enhancing the trustworthiness 

and impact of our study's findings. 

This document is organized as follows: Section 1 presents an introduction of the topic, with an 

overview of UE and its relation to emotions classification and EEG recordings. Sections 2 presents 

the research methodology that was followed, based on the PRISMA statement. Section 3 analyzes the 

components of our research and presents the studies. It is being categorized in several subsections, 

following the methodology of the review, including study of the papers according to ther application 

field, study design and used instruments for data acquisition, pre-processing methods, feature 

extraction and feature selection algorithms and analysis of EEG recordings. Section 4 features the 

conclusions for this survey and further discussion. 

2. Research Methodology 

The literature search was performed on August 2024 using the most popular and comprehensive 

search engines for scientific articles: Elsevier’s Scopus, IEEE Xplore and Elsevier’s ScienceDirect. The 

search was not limited to a specific time and focused exclusively on EEG analysis in non-clinical and 

non-automatic control cases. Therefore, only studies containing the keywords “EEG analysis” and 

“User engagement” or “User experience” in the title or abstract of the paper were included. On the 

other hand, studies containing the keywords “rehabilitation”, “robotics”, “driving”, “automatic 

control” in the paper’s title or abstract and in general all studies including patients were excluded. 

Papers that included those terms were not relevant to our objectives, because they focused on the 
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results of engagement in the specific domain they were involved, without further details about the 

methods of EEG analysis. 

After the first search results, during the screening phase, theoretical studies such as systematic 

Reviews, Books and Book Chapters of nonexperimental studies were excluded. Articles written in a 

language other than English were also removed. 

In the final stage, eligibility criteria are applied. Initially the paper’s title and abstract were read 

and then specific sections of the paper (i.e., Methodology and Discussion), wherever needed to clarify 

the objective and the methodology of the paper. Then, we reported the main aspects of the 

experimental papers in a data extraction sheet. For each experimental study all the 27 items listed in 

the PRISMA statement are extracted and organized into the following groups: 

• Study objectives, where the overall aim and objectives are being examined. 

• Study population, including the number of subjects or reporting the EEG open database that is 

used. 

• Experimental protocol, describing the experiment that was used for EEG data acquisition. 

• Methodology, including the preprocessing step, the feature extraction, the 

classification/statistical analysis. 

• Results and conclusion, including the findings from the study. 

Then, the data extraction sheet was studied, and papers were included or excluded based on the 

criteria that were specified. Studies meeting one or more of the following criteria were excluded: 

• Using EEG for automatic control (Brain Computer Interface). 

• Subjects of the experimental protocol including patients, disabled people, infants, and drivers. 

• Application of the EEG study to rehabilitation, Intensive Care Unit, and surgery. 

• Application of the EEG study to meditation. 

Afterwards, a second filtering process was applied and theoretical studies, such as Review 

papers were excluded, as well as studies that are not in English language and studies that do not 

present details for preprocessing, feature extraction and/or analysis of EEG signal. 

3. Results 

From the three search engines that were used (Elsevier’s Scopus, IEEE Xplore and Elsevier’s 

ScienceDirect) we identified 460 in total. The exact query that was applied in all three search engines 

was the following: “EEG AND analysis AND user AND engagement” OR “EEG AND analysis AND 

user AND experience” and was applied in the title and abstract of the papers. Then, using the Rayyan 

tool (an AI Powered Tool for Systematic Literature Reviews tool), 224 duplicate records were detected 

and removed, resulting to 236 papers that were proceed to the first evaluation phase. 

Finally, exclusion criteria were applied and eventually 116 papers were selected for thorough 

examination. The exclusion criteria are reported in Section 2. After applying the second filtering 

process, the number of papers were limited to 74. The flowchart in Figure 2 follows the PRISMA 

statement where at the chart’s top, the research query is presented. This is important, since following 

the PRISMA guidelines contributes to the credibility and reliability of systematic reviews and meta-

analyses, benefiting the scientific community and informing evidence-based practice. 
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Figure 2. Literature review flowchart according to PRISMA statement. 

Then, the various stages of the systematic literature review are displayed, showing the number 

of records detected, evaluated, and excluded as well as the reasons why the records were restricted. 

The papers are categorized based on their application field, while are analysed and studied 

based on their experimental data acquisition protocol details (participants in the study, EEG device 

used and EEG channels) and their methodology of analysis including the preprocessing steps, feature 

extraction methods, and EEG analysis including either classification or statistical analysis, as depicted 

in Figure 3. 

 

Figure 3. The steps towards EEG data analysis that are studied in this paper. 

3.1. Application Field 

The analysis that was conducted of several studies, resulted in the categorization of studies 

based on their application field, as indicated in Table 1. 

  

Search for “EEG AND analysis AND user AND 
engagement”

Scopus
# 50

IEEE Xplore
# 16

ScienceDirect
#5

Search for “EEG AND analysis AND user AND 
experience”

#460 Records

# 236 Records for eligibility

Duplicates
# 224

Exclusion criteria
# 120

#116 Records selected

Second filtering process
# 42

# 74 full text articles included

Scopus
# 257

IEEE Xplore
# 103

ScienceDirect
# 29
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Table 1. Different Application Fields of studies. 

Application Field References 

Architecture [11–15] 

Audiovisual / Media [16–40] 

Games [41–57] 

Interface-Product Design [58–72] 

Learning [73–79] 

Virtual Reality [14,51,80–88] 

Workplace [89,90] 

This categorization allowed for a deeper understanding of the diverse range of contexts in which 

the studies were conducted and the specific domains to which they contributed. The studies were 

carefully examined and grouped according to their primary application areas, such as architecture 

design, media (advertisements and in general audiovisual stimuli), games, aesthetic and usability of 

interface and product design, learning and education field, virtual reality navigation and immersion 

and applications in workplace. Within each category, key themes and trends emerged, shedding light 

on the unique challenges and opportunities associated with UE research in different fields. By 

categorizing the studies based on their application field, researchers and practitioners can gain 

insights into the specific contexts in which UE is relevant and tailor their approaches and 

interventions accordingly. Additionally, this categorization enables cross-domain comparisons and 

the identification of potential transferable findings or methodologies that could benefit multiple 

application areas. Overall, the categorization of studies based on their application field enhances the 

understanding and applicability of UE research, fostering advancements in various domains and 

facilitating targeted interventions and innovations. 

3.2. Study Design and Instruments for Data Acquisition 

The different works that have been studied can, also, be categorized based on the number of 

participants that were recruited towards data acquisition (Table 2). This categorization provides 

valuable insights into the sample sizes and participant characteristics across various studies in the 

field. The number of participants is a critical factor in research as it influences the statistical power, 

generalizability, and reliability of the findings. By examining the studies within different participant 

size categories, patterns and trends related to sample sizes can be identified. Some studies may have 

focused on small-scale investigations with a limited number of participants, as an experimental setup 

testing or as a first step towards a future and larger study. On the other hand, larger-scale studies 

with larger participant cohorts may have aimed to establish more robust statistical relationships or 

capture broader population characteristics. Categorizing the works based on participant numbers 

facilitates a comprehensive understanding of the research landscape, highlighting the variations in 

sample sizes and their implications for data interpretation and research outcomes. Additionally, it 

can guide researchers in selecting appropriate sample sizes for future studies and provide insights 

into the feasibility and practicality of different research designs. Overall, the categorization based on 

the number of participants contributes to a nuanced perspective on the research findings and 

methodology employed in UE studies. 

Table 2. Number of participants used in data collection studies. 

No. of Participants References 

1-10 (16,26,34,44,47,53,54,64,68,76,78,84,88] 

11-20 [15,17,20,24,28,32,45,48,49,59,60,62,63,65,67,71,72,74,78,80–

82,85,87,89,90] 

21-30 [23,25,31,33,43,51,52,58,61,69,70,73,75,86] 

31-40 [13,14,18,21,22,27,29,30,46,83] 

>40 [11,12,19,35,41,42,66] 
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Most of the studies have used their own dataset, with participants that were recruited in the 

framework of the study and EEG data were collected. This approach allows researchers to have full 

control over the experimental design, participant selection, and data collection procedures, ensuring 

that the data aligns closely with the specific research objectives. By utilizing their own dataset, 

researchers can tailor the data acquisition process to capture the necessary information relevant to 

their study's focus. This includes designing specific experimental paradigms, controlling 

environmental factors, and customizing the EEG recording setup to meet the study's requirements. 

Additionally, researchers can directly collaborate with participants, ensuring clear communication 

and informed consent throughout the data collection process. 

Alternatively, there are also public datasets, like the DEAP with EEG data that have been used 

in studied works, like in [18,21,27,29,30], but also the public datasets published in ACMMM 2015 [91], 

Kaggle [79] and AMIGOS [39,40]. Public datasets enable researchers to validate their findings on 

independent datasets, promote transparency and reproducibility, and facilitate comparisons and 

benchmarking of different analysis methods. Public datasets also encourage collaboration and 

knowledge sharing within the research community, allowing researchers to build upon existing work 

and explore novel research directions. The use of public datasets alongside proprietary datasets 

contributes to a comprehensive understanding of UE in EEG-based studies, drawing from a variety 

of data sources and ensuring the robustness and generalizability of research findings. 

This systematic review highlights the diverse range of EEG devices utilized in various studies 

for experiment setup and data acquisition, as indicated in Table 3. Researchers have employed EEG 

devices with varying numbers of channels and different levels of installation complexity to suit the 

specific research objectives and experimental requirements. Some studies have utilized EEG devices 

with a limited number of channels, focusing on capturing activity from specific brain regions of 

interest. These devices are often lightweight and portable, allowing for flexibility in experimental 

settings and participant comfort. On the other hand, other studies have employed high-density EEG 

systems with a large number of channels, enabling more comprehensive coverage of the scalp and 

capturing activity from multiple brain regions simultaneously. These systems typically require 

meticulous placement of numerous electrodes and may involve more complex calibration and setup 

procedures. 

Table 3. Pre-processing steps of EEG signals. 

Device EEG Channels References 
BEmicro, Ebneuro 24 [15] 
BIOPAC MP 150 6 [71] 

Biosemi 32 / 64 [29,34,43,65] 
BrainAmps 32 / 64 [16,17,49,78] 

BrainCo Focus 1 [89] 
Emotiv 16 [51,55] 

Emotiv EPOC+ 14 [19,25,31,35,42,44,45,62,66,69,88] 
Emotiv Insight 5 [22,73] 

SMARTING (mBrainTrain) 24 [90] 
EEGO 24 [67] 

EGI’s Geodesic EEG System (GES) 

300 
256 [28,84] 

ElectroCap Inc. 19 [54] 
Elemaya Visual Energy Tester 4 [52,53] 

ENOBIO 20 [48,74] 
g.GAMMAcap2 32 [81] 

HeadCoach™, Alpha-Active Ltd 2 [33] 
Liveamp EEG cap 32 [82] 

Looxid Link Package for VIVE Pro 6 [80] 
MindSet-1000 16 [77] 

MindWave Mobile 1 [26,75,85] 
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Muse 4 [68,76] 
NeurOne Bittium 32 [58] 

Neuroscan 32 / 64 [23,60,61] 
NeXus-32 Mindmedia 24 [70] 

OPENBCI 8 [47] 
QUASAR EEG headset 21 [64] 

The choice of EEG device depends on the specific research goals, the desired spatial resolution, 

and the trade-off between measurement accuracy and experimental practicality. Researchers must 

carefully consider the balance between the number of channels, the spatial coverage, and the level of 

participant burden during the experimental sessions. Additionally, the selection of EEG devices may 

be influenced by factors such as budget constraints, availability, and compatibility with existing data 

analysis pipelines. By documenting the variety of EEG devices used across different studies, this 

systematic review sheds light on the methodological considerations and technical aspects involved 

in EEG-based UE research. It also provides researchers with insights into the range of available 

options when planning their own experimental setups and data acquisition protocols. 

3.3. Pre-Processing Analysis 

Preprocessing is important for EEG signal analysis because it helps to improve the quality and 

reliability of the data, making it easier to detect and analyze the underlying neural activity. EEG 

signals are often contaminated by various types of noise and artifacts, such as power line interference, 

electrode drift, and muscle activity. Preprocessing techniques such as filtering, artifact removal, and 

baseline correction can help to remove or reduce these sources of noise and artifacts. Also, these 

signals are often weak and buried in noise. Preprocessing techniques such as filtering and artifact 

removal can help to enhance the signal-to-noise ratio, making it easier to detect and analyze the 

underlying brain activity. In addition, preprocessing is an important step towards standardization of 

data. More specifically, EEG data can be recorded using different systems, settings, and electrode 

placements. Preprocessing techniques such as referencing and downsampling can help to 

standardize the data and ensure that it is comparable across different participants and experiments. 

Table 4. Pre-processing steps of EEG Signals. 

Step References 

Filtering [11,12,14–19,22–27,30,33–

35,43,45,47,49,51,54,58,60–

63,65,66,68,70,78,81,82,84,87,88,90] 

Artifact removal [12,16,19,23–26,30,43–

45,49,51,52,54,55,57,61,65,66,68,70,75,81,84,86,90] 

Epoching [15,16,23,51,52,58,61,65,78,81,86,87] 

Independent Component Analysis [12,15,16,24,34,43,51,58,61–63,65,68,70,87,88,90] 

Referencing [15–17,24,30,34,49,51,58,61,65,81,87,90] 

Baseline correction [14,24,28,33,51,58,62,65,68,78,82,84,88] 

Downsampling [18,30,34,43,49,61,68] 

Furthermore, since EEG data is typically recorded continuously over a period of time, some 

techniques, such as epoching, can help to segment the data into smaller segments that correspond to 

specific events or stimuli, making it easier to analyze the data.  

Thus, preprocessing includes several steps that can be applied to EEG signals. The specific 

preprocessing steps used will depend on the research question and the characteristics of the EEG data 

being analyzed, including: 
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3.3.1. Filtering 

Various types of noise, such as power line interference, muscle artifact, and electrode drift, is 

usually included in capturing EEG signals. Filtering techniques such as high-pass, low-pass, band-

pass, and notch filters can be used to remove these noise sources and enhance the signal-to-noise ratio 

of the EEG. Filtering is being used in almost all publications that have been studies in this systematic 

review by usually applying a band pass filter. 

The choice of filter will depend on the specific research question and the characteristics of the 

EEG signal being analyzed. However, notch filters and high-pass filters are among the most 

commonly used filters for EEG preprocessing. Notch filters are used to remove power line 

interference at 50 or 60 Hz, which is a common source of noise in EEG recordings. Since power line 

interference is a ubiquitous source of noise in EEG data, it is often necessary to apply a notch filter to 

remove it. High-pass filters are used to remove low-frequency drifts and noise from the EEG signal 

and are an important step in EEG preprocessing. The specific cutoff frequency for the high-pass filter 

will depend on the characteristics of the data being analyzed and the research question, but 

commonly used cutoff frequencies range from 0.1 Hz to 1 Hz. The Butterworth filter is also used in 

several studies, which is a type of infinite impulse response (IIR) filter, which is a category of digital 

filters. The Butterworth filter is a type of low-pass filter that provides a maximally flat passband, 

meaning that it has a very smooth frequency response without any ripples or oscillations in the 

passband. The Butterworth filter is commonly used in EEG signal processing for noise and artifact 

removal, as well as for extracting specific frequency bands of interest. 

In addition to these filters, other preprocessing techniques can be used to remove artifacts from 

the EEG signal, including Independent Component Analysis (ICA), which can be used to separate 

out independent components corresponding to different sources in the signal and will be studied 

independently due to its significance. 

3.3.2. Artifact Removal 

Even after filtering, EEG signals can still contain artifacts that may affect the interpretation of 

the data. Artifacts can be caused by eye movements, muscle activity, and other sources. Techniques 

such as wavelet denoising can be used to identify and remove artifacts from the EEG. 

It is a method of artifact removal that uses wavelet transforms to decompose the EEG signal into 

different frequency bands. The wavelet transform is a mathematical technique that allows the 

decomposition of a signal into different scales and frequencies, which can then be selectively filtered 

or modified. Wavelet denoising can be used to remove a variety of different types of artifacts from 

EEG data, including line noise, muscle artifacts, and other types of high-frequency noise. The specific 

wavelet transforms and denoising algorithm used will depend on the characteristics of the EEG data 

being analyzed and the specific research question. 

While wavelet denoising can be an effective method for removing artifacts from EEG data, it is 

important to note that it is not a substitute for proper preprocessing techniques such as filtering and 

artifact rejection. These techniques should be used in combination with wavelet denoising to ensure 

the best possible signal quality and to minimize the risk of introducing bias or artifacts into the 

analysis. 

3.3.3. Epoching 

EEG signals are typically recorded over a long period of time. In order to analyze the data, the 

signal is often segmented into smaller segments or epochs, typically with a duration of a few hundred 

milliseconds to a few seconds. The purpose of epoching is to isolate specific events or time periods 

of interest in the EEG signal, such as the presentation of a stimulus, the onset of a cognitive process 

in response to specific stimuli or events. 
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By segmenting the EEG signal into epochs, it becomes easier to analyze specific features of the 

signal, such as the timing, amplitude, or frequency content of EEG events. Additionally, epoching 

can help to reduce the impact of noise and artifact on the analysis, as these can be more easily 

identified and removed or corrected on a per-epoch basis. 

Epoching can be performed manually, using software tools that allow the researcher to visually 

inspect the continuous EEG signal and select specific time periods of interest. Alternatively, 

automated methods can be used to detect and segment EEG epochs based on predefined criteria, 

such as amplitude thresholds, event markers, or statistical features of the signal. The Hanning 

window, widely used in preprocessing, can be considered as part of the epoching step in EEG pre-

processing, but it can also be used as a stand-alone pre-processing step for spectral analysis. In the 

context of EEG analysis, epoching involves dividing the continuous EEG signal into small segments 

or "epochs" of equal duration. Each epoch is then windowed with a Hanning window or another type 

of window function before performing a Fourier transform or other spectral analysis. 
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3.3.4. Independent Component Analysis (ICA)  

ICA typically applied as a separate step in the preprocessing of EEG signals, after the initial steps 

of filtering, artifact removal, and epoching have been performed. ICA is a blind source separation 

technique that separates the EEG signal into a set of statistically independent components, each of 

which represents a different neural or non-neural source of activity. ICA is typically applied after the 

initial preprocessing steps of filtering, artifact removal, and epoching. Once the EEG signal has been 

filtered to remove noise and artifacts, and segmented into epochs corresponding to different 

experimental conditions, ICA can be used to further separate out the neural and non-neural sources 

of activity. The independent components that are identified by ICA can be further inspected and 

evaluated to determine which components are related to neural activity and which components are 

related to non-neural sources of activity, such as eye movements, muscle activity, or environmental 

noise. The non-neural components can then be removed from the EEG data, leaving behind a cleaned 

EEG signal that is more representative of the underlying neural activity. 

3.3.5. Referencing 

A reference electrode is usually used in capturing EEG signals. However, the choice of reference 

can affect the interpretation of the data. Common reference choices include linked mastoids, average 

reference, and reference-free methods. The goal of referencing is to eliminate the common noise that 

is present in all EEG channels by subtracting a reference signal from each channel. This helps to 

reduce the influence of common noise sources such as environmental electrical fields, electrode drifts, 

and amplifier offsets. Average referencing is the most common referencing method used in EEG data 

analysis. In this method, the signal at each electrode is referenced to the average of all the electrodes. 

This method is simple to implement and is widely used in EEG research. However, it is important to 

note that the choice of referencing method should be carefully considered based on the specific 

research question, the characteristics of the EEG data, and the goals of the analysis. Some studies may 

require alternative referencing methods such as Laplacian or common average referencing, 

depending on the nature of the experimental design and the EEG signals being recorded. The choice 

of referencing method will depend on the specific research question, the characteristics of the EEG 

data, and the goals of the analysis. In general, it is important to carefully consider the referencing 

method and to use a consistent referencing method across all participants and conditions in the study. 

3.3.6. Baseline Correction 

EEG signals often contain baseline fluctuations that can be attributed to changes in the 

participant's arousal or attention. Baseline correction involves subtracting the mean or median 

amplitude of the baseline period from each epoch.  

This can be done to correct for drift, remove low-frequency noise, or normalize the signal prior 

to further analysis. The choice of baseline correction method in EEG analysis depends on the specific 

characteristics of the EEG signal and the goals of the analysis. Thus, mean subtraction and linear 

detrending may be appropriate for correcting for drift in stationary signals, while high-pass filtering, 

and wavelet-based methods may be more appropriate for removing low-frequency noise or baseline 

drift in non-stationary signals. Polynomial fitting may be useful for removing more complex trends 

or baseline artifacts. 

3.3.7. Downsampling 

EEG signals are often sampled at a high rate to capture high-frequency components of the signal. 

However, high sampling rates can lead to large data files and computational complexity. 

Downsampling involves reducing the sampling rate of the EEG signal while preserving its 

information content. 

The most common way to downsample an EEG signal is to apply a low-pass filter with a cutoff 

frequency below half of the new sampling rate, followed by discarding the unwanted samples. This 

Device EEG Channels References 

BEmicro, Ebneuro 24 [19] 

BIOPAC MP 150 6 [75] 

Biosemi 32 / 64 [33], [47], 

[69] 

BrainAmps 32 / 64 [20], [21], [53] 

BrainCo Focus 1 [93] 

E-motive 16 [55] 

E-motive EPOC+ 14 [23], [29], 

[35], [46], 

[48], [49], 

[66], [70], 

[73] 

E-motiv Insight 5 [26], [77] 

SMARTING 

(mBrainTrain) 

24 [94] 

EEGO 24 [71] 

EGI’s Geodesic EEG 

System (GES) 300 

256 [32], [88] 

ElectroCap Inc. 19 [58] 

Elemaya Visual Energy 

Tester 

4 [56], [57] 

ENOBIO 20 [52], [78] 

g.GAMMAcap2 32 [85] 

HeadCoach™, Alpha-

Active Ltd 

2 [37] 

Liveamp EEG cap 32 [86] 

Looxid Link Package for 

VIVE Pro 

6 [84] 

MindSet-1000 16 [81] 

MindWave Mobile 1 [30], [79], 

[89] 

Muse 4 [72], [80] 

NeurOne Bittium 32 [62] 

Neuroscan 32 / 64 [27], [64], 

[65] 

NeXus-32 Mindmedia 24 [74] 

OPENBCI 8 [51] 

QUASAR EEG headset 21 [68] 

 

 

No. of Participants References 

1-10 [20], [30], [48], [51], [57], 

[58], [68], [72], [80], [88] 

11-20 [19], [21], [24], [28], [32], 

[36], [49], [52], [53], [63], 

[64], [66], [67], [69], [71], 

[75], [78], [84], [85], [86], 

[89], [93], [94] 

21-30 [27], [29], [35], [37], [47], 

[55], [56], [62], [65], [73], 

[74], [77], [79], [90] 

31-40 [17], [18], [22], [25], [26], 

[31], [33], [34], [50], [87] 

>40 [15], [16], [23], [45], [46], 

[70] 

 

Application Field References 

Αrchitecture [15], [16], [17], [18], [19] 

Audiovisual / Media [20], [21], [22], [23], [24], 

[25], [26], [27], [28], [29], 

[30], [31], [32], [33], [34], 

[35], [36], [37] 

Games [45], [46], [47], [48], [49], 

[50], [51], [52], [53], [54], 

[55], [56], [57], [58] 

Interface-Product Design [62], [63], [64], [65], [66], 

[67], [68], [69], [70], [71], 

[72], [73], [74], [75] 

Learning [77], [78], [79], [80], [81] 

Virtual Reality [18], [55], [84], [85], [86], 

[87], [88], [89], [90] 

Workplace [93], [94] 

 

Step References 

Filtering [15], [16], [18], [19], [20], 

[21], [22], [23], [26], [27], 

[28], [29], [30], [31], [34], 

[37], [47], [49], [51], [53], 

[55], [58], [62], [64], [65], 

[66], [67], [69], [70], [72], 

[74], [85], [86], [88], [94] 

Artifact removal [16], [20], [23], [27], [28], 

[29], [30], [34], [47], [48], 

[49], [53], [55], [56], [58], 

[65], [69], [70], [72], [74], 

[79], [85], [88], [90], [94] 

Epoching [19], [20], [27], [55], [56], 

[62], [65], [69], [85], [90] 

Independent Component 

Analysis 

[16], [19], [20], [28], [47], 

[55], [62], [65], [66], [67], 

[69], [72], [74], [94] 

Referencing [19], [20], [21], [28], [34], 

[53], [55], [62], [65], [69], 

[85], [94] 

Baseline correction [18], [28], [32], [37], [55], 

[62], [66], [69], [72], [86], 

[88] 

Downsampling [22], [34], [47], [53], [65], 

[72] 
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filtering step is necessary to prevent aliasing, which is a distortion of the signal that can occur when 

the sampling rate is insufficient to capture the high-frequency content of the signal. Once the signal 

has been low pass filtered, it can be decimated by removing the unwanted samples, resulting in a 

lower sampling rate. The amount of downsampling required will depend on the specific 

requirements of the analysis and the processing power available, as higher levels of downsampling 

can lead to faster processing times but may also result in a loss of information in the signal. 

3.4. Feature Extraction and Selection 

Feature extraction and selection are important steps in EEG signal analysis that involve 

identifying and extracting relevant features from the EEG data and selecting the most informative 

features for subsequent analysis. 

Feature extraction is the process of identifying and extracting relevant features from the EEG 

data. These features can be derived from various aspects of the EEG signal, such as the amplitude, 

frequency, phase, and time-domain characteristics. Some common features that are extracted from 

EEG signals include spectral power, coherence, cross-correlation, and event-related potentials (ERPs). 

The choice of features to extract will depend on the research question and the characteristics of the 

EEG data being analyzed. Table 5 summarizes the most common methods of feature extraction 

methods that have found in the studied works. The references regarding the frequency domain 

methods are split, due to their high presences in studies, to PSD, FFT and Other methods, including 

Discrete wavelet transform (DWT), Discrete Fourier transform (DFT) and Welch method. 

Table 5. Feature Extraction methods of EEG Signals. 

Method References 

Time-domain methods [21,23,55,58,67,74,78,87,90] 

Frequency-domain methods - PSD [15,16,18,19,47,52,61,63,65,75,77,84,89,90] 

Frequency-domain methods - FFT [12–14,25,35,44,47,51,52,54,61,70,86,90] 

Frequency-domain methods – Other [20,22,34,44,45,57,60,69,74] 

Time-frequency-domain methods [18,26,30,51,58,65,66,82,88] 

Spatial-feature based methods [23,43,62] 

3.4.1. Time-Domain Methods 

These are popular methods to analyze the amplitude and temporal characteristics of the EEG 

signal. The Event-related potential (ERP) analysis is one of the most common time-domain methods 

used for EEG signal analysis. The ERP waveform is obtained by averaging the EEG signals time-

locked to a specific stimulus or event, typically over multiple trials. The resulting waveform is 

characterized by several temporal features such as peak latency, amplitude, and duration, which can 

provide insights into the neural mechanisms underlying cognitive processes such as perception, 

attention, and memory. ERP analysis is widely used in both clinical and research settings to 

investigate various aspects of brain function, such as sensory processing, cognitive control, and 

language processing, among others. Other common time-domain features include peak-to-peak 

amplitude, root mean square (RMS), zero-crossing rate, and waveform morphology descriptors such 

as slope, curvature, and asymmetry. Time-domain methods are computationally efficient and can 

capture fast temporal changes in the signal, but they may not capture frequency-specific information. 

3.4.2. Frequency-Domain Methods 

These methods analyze the spectral content of the EEG signal by decomposing it into its 

frequency components. Common frequency-domain features include spectral power, spectral 

entropy, peak frequency, and coherence between different frequency bands. Frequency-domain 

methods can capture frequency-specific information and are often used to investigate EEG 

oscillations related to different brain functions, such as alpha, beta, and gamma oscillations. The 
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power spectral density (PSD) analysis is a powerful and common method for investigating brain 

activity using EEG signals. PSD analysis provides information about the frequency content of the 

EEG signal, which can be useful for identifying specific frequency bands of interest, such as alpha, 

beta, theta, and delta. This can help in understanding the underlying neural processes associated with 

different cognitive or behavioral states. It is non-invasive, since EEG signals can be easily and non-

invasively recorded from the scalp and a relatively simple method that involves calculating the 

power spectrum of the EEG signal, which can be easily implemented using software packages such 

as MATLAB or Python. PSD analysis can be used to compare the spectral power between different 

groups, such as patients and healthy controls, or between different experimental conditions. This can 

help in identifying differences in neural processing between groups or conditions. Finally, it can be 

used for real-time monitoring of brain activity, which can be useful in applications such as 

neurofeedback or brain-computer interfaces. Another popular frequency domain method is the Fast 

Fourier Transform (FFT), which is a mathematical algorithm used to transform a time-domain signal 

into a frequency-domain signal. In EEG signal analysis, FFT is commonly used to extract frequency-

domain features such as power spectra, coherence, and phase locking. These features can provide 

information about the distribution of energy across different frequency bands, which can be used to 

investigate various aspects of brain function, such as arousal, attention, and cognitive processing. 

3.4.3. Time-Frequency-Domain Methods 

Time-frequency-domain methods analyze both the temporal and spectral characteristics of the 

EEG signal. Common time-frequency features include spectrograms, wavelet transform coefficients, 

and Hilbert-Huang transform coefficients. Time-frequency methods can capture frequency-specific 

information and temporal changes in the signal and are often used to investigate event-related 

spectral perturbations (ERSPs) or event-related synchronization and desynchronization (ERS/ERD) 

related to specific cognitive or motor tasks. Another time-frequency domain method commonly used 

in EEG signal analysis is the Short-Time Fourier Transform (STFT). It is a modification of the Fourier 

Transform that allows us to analyze the frequency content of a signal as it changes over time. The 

STFT involves breaking down the signal into overlapping segments and applying the Fourier 

Transform to each segment. The resulting spectrum at each time point reflects the frequency content 

of the signal over that segment of time. The STFT is often used to extract time-frequency domain 

features from EEG signals, such as power spectra, ERS/ERD, and phase-locking. These features can 

provide important information about the temporal dynamics of neural activity, and how they relate 

to specific cognitive or behavioral processes. 

3.4.4. Spatial-Feature Based Methods 

These methods analyze the spatial distribution of the EEG signal by extracting features from 

different electrode locations or brain regions. Common spatial features include scalp potential maps, 

current density maps, and inter-electrode coherence. Spatial-feature based methods can capture the 

topographic distribution of the EEG signal and are often used for source localization and functional 

connectivity analysis. 

3.4.5. Feature Selection Methods 

On the other hand, feature selection is the process of selecting the most informative features 

from the extracted set of features. The goal of feature selection is to reduce the dimensionality of the 

feature space, and to identify the most relevant features that are most informative for the EEG 

analysis. 

There are various techniques for feature selection, such as filter methods, wrapper methods, and 

embedded methods. Filter methods involve ranking the features based on their statistical significance 

and selecting the top-ranked features. The correlation-based feature selection (CFS) can be considered 

a type of filter method for feature selection [44]. CFS specifically uses the correlation between features 

and the target variable, as well as the redundancy between features, to select the most informative 
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subset of features. Other filter methods may use different statistical measures to rank the relevance 

of features, such as t-tests or ANOVA (see Table 6). 

Wrapper methods involve evaluating the performance of a model using different subsets of 

features, and selecting the subset that gives the best performance. Embedded methods, like the least 

absolute shrinkage and selection operator (LASSO) [74]. involve selecting features as part of the 

model-building process, such as in a regularized regression model. The choice of feature selection 

method will depend on the size of the feature space, the number of samples, and the goals of the 

analysis. Feature selection can help to improve the performance of subsequent analyses, such as 

classification or clustering of the EEG data. 

3.5. Analysis of EEG Recordings 

Feature extraction involves identifying and extracting relevant features from the raw EEG signal, 

which can then be used for further analysis, such as classification, clustering, or correlation analysis 

to gain insights into the patterns and relationships in the EEG data. These analyses are typically 

performed on the extracted features or on the raw EEG data itself. They can be used to identify 

differences in neural activity between conditions or groups, classify EEG data into different 

categories, identify subgroups of individuals with similar patterns of neural activity, examine the 

relationship between EEG data and other variables, or identify network-level changes in neural 

activity. 

There are several types of analyses that can be performed on EEG data, based on the available 

features and the outcome that should be reached. In general, the different methods are presented in 

Table 6, along with their references to the studied works, and can be categorized into the following 

categories: statistical analysis, machine learning and graph theory. 

3.5.1. Statistical Analysis 

Statistical analysis can be useful for identifying differences in neural activity that are associated 

with different cognitive states or clinical conditions. It includes several methods and metrics 

spanning from basic descriptive statistics, such as mean and, up to more advanced like correlation 

analysis that examines the relationship between EEG data and other variables, such as behavioral 

measures or other physiological signals. Correlation analysis can be useful for identifying neural 

correlates of behavior or other physiological processes. More specifically, Pearson correlation is a 

statistical method used to assess the relationship between two variables, and it can be applied to EEG 

data to study the relationship between different brain regions or between EEG signals and behavioral 

performance. Pearson correlation can be used to quantify the strength and direction of the 

relationship between two variables, and to assess the significance of the correlation using hypothesis 

testing. 

Other popular methods are regression analysis that involves modeling the relationship between 

EEG signals and other variables, such as behavioral data and hypothesis testing identifying whether 

there is a difference between two groups of subjects. The most popular hypothesis testing method is 

ANOVA, which can be used to compare means between two or more groups of EEG data to 

determine if there are significant differences in activity between these groups. 

Traditional statistical analysis methods may be preferred over machine learning methods in EEG 

data analysis for certain applications or domains where the data are relatively simple, or the research 

questions are well-defined. For example, in studies of cognitive processes such as attention or 

memory, researchers may use traditional statistical methods such as ANOVA or regression to analyze 

the relationship between EEG signals and behavioral performance. Similarly, in studies of sensory 

processing or perception, researchers may use traditional statistical methods such as signal averaging 

or spectral analysis to analyze the EEG data. 
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Due to the high frequency of ANOVA presence in the studied works, that statistical analysis 

methods in Table 6 are divided in ANOVA-like methods and rest of statistical tests, mainly the 

Pearson Correlation [15,21,29,33,43,65,73,83,90] and the t-test [14,20,29,44,45,61,69,73,83]. 

Table 6. Methods for analysis of EEG Signals. 

Method References 

Statistical Analysis - ANOVA [16,19,23,24,28,31,33,35,43,46,48,51,53,54,58,59,65,67,71,77,78,86,87,89] 

Statistical Analysis – other tests [11,13–15,21,29,33,41,43,45,49,50,61,63,65,69,73,82,83,88,90] 

Machine Learning [12,17,18,20–22,25–27,30,32,34,44,52,53,55,62,68,70,71,74–77,80,84,90] 

Graph theory [29] 

In some cases, traditional statistical methods may also be preferred for applications that involve 

a small number of participants or a relatively simple experimental design. For example, in studies of 

media engagement or virtual reality, researchers may use traditional statistical methods to analyze 

the EEG data and identify patterns of brain activity associated with specific stimuli or tasks. 

3.5.2. Machine Learning 

This category includes more advanced methods that are all included in the same row of Table 6, 

like i) classification of EEG data into different categories or groups. Classification analysis can be 

useful for identifying patterns of neural activity that are associated with different cognitive tasks or 

clinical conditions, mainly using Support Vector Machines (SVM), Random Forest and k-Nearest 

Neighbors (k-NN) [20,27,30,32,44,52,53,66,75,76,80,84,85] or using a Bayesian classifier [22,44]. 

Classification is a type of supervised learning where a model is trained to predict the class or category 

of a given input, based on the features extracted from that input. ii) Clustering to group EEG data 

into clusters based on their similarity [17,66,68] all using the k-means algorithm. Clustering analysis 

can be useful for identifying subgroups of individuals with similar patterns of neural activity. iii) 

Deep learning to analyze the EEG data and identify complex patterns. Deep learning is a subset of 

machine learning that involves training deep neural networks to learn and represent complex 

patterns in the data. Mainly, convolutional Neural Networks (CNN) are used In EEG analysis 

[18,21,40,62] to automatically learn features from the EEG data, without the need for manual feature 

engineering. Deep learning models can also be used for classification tasks, where the model learns 

to predict the class or category of a given EEG signal, but here are considered as a separate category 

due to its significance. iv] Model predictions, using shapley additive explanation (SHAP) values [12] 

or other algorithms like Random Forests [50,74]. SHAP values are used to estimate the contribution 

of each feature to the final prediction of a machine learning model. They provide a way to understand 

the importance of individual features in the model and how they contribute to the final prediction. 

This can be useful for identifying which features are most important in a task and for identifying 

potential issues with the model. 

Overall, machine learning methods are particularly useful in EEG data analysis when dealing 

with large and complex datasets and when traditional statistical analysis methods may not be 

sufficient to capture the complex relationships between brain activity and cognitive variables. In 

addition, machine learning methods can be useful even in applications where traditional statistical 

methods are typically used. For example, machine learning methods are used to identify patterns or 

clusters of EEG activity that may be difficult to detect using traditional statistical methods, or to 

classify EEG data into different categories or groups based on complex features or variables. Main 

applications of machine learning methods include: 

• Brain-Computer Interface (BCI): Machine learning methods are widely used in BCI applications 

to classify EEG signals and decode user intentions. These methods can be used to analyze EEG 

data in real-time and make predictions based on the user's brain activity, which can be used to 

control external devices or applications. 
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• Cognitive Neuroscience: Machine learning methods are increasingly used in cognitive 

neuroscience research to analyze EEG data and identify patterns of brain activity associated with 

different cognitive processes or tasks. These methods can be used to model the complex 

relationships between brain activity and cognitive variables, such as attention, memory, or 

decision-making. 

• Clinical Neurology: Machine learning methods are also used in clinical neurology applications, 

such as diagnosis and treatment of neurological disorders, such as epilepsy, Alzheimer's disease, 

or depression. These methods can analyze EEG data to identify biomarkers and predict disease 

progression or treatment outcomes. 

• Neuromarketing: Machine learning methods are used in neuromarketing research to analyze 

EEG data and identify patterns of brain activity associated with consumer preferences and 

decision-making. These methods can be used to optimize marketing strategies and product 

designs based on the user's brain activity. 

3.5.3. Graph Theory 

This type of analysis involves examining the properties of the neural networks that are inferred 

from EEG data. Graph theory analysis can be useful for identifying network-level changes in neural 

activity that are associated with different cognitive states or mainly clinical conditions. 

Indeed, graph theory analysis is often used to identify patterns of abnormal connectivity in EEG 

data from patients with epilepsy and assess their relationship with seizures or other clinical outcomes 

or even to study changes in the functional connectivity and topology of brain networks with age and 

their relationship with cognitive decline or neurodegenerative disorders such as Alzheimer's disease. 

Overall, graph theory analysis is preferred in EEG data analysis when the research question is 

focused on the functional connectivity and topology of brain networks, and when the data can be 

represented as a complex network. 

4. Discussion and Conclusions 

In recent years, there has been a growing interest in EEG analysis and EEG-based user 

engagement analysis and applications in several fields, which has had a significant impact on the 

field of computing. The development of cost-effective EEG devices with improved usability has 

spurred numerous research studies in this area. 

This article provides a comprehensive review of various algorithms and processes involved in 

EEG-based systems. These include: (1) Data acquisition, (2) pre-processing analysis, (3) feature 

extraction and selection and (4) EEG recordings analysis including classification and clustering 

techniques. To conduct this review, we conducted an extensive search across multiple databases, 

identifying 74 relevant studies conducted from a computer science perspective. This allowed us to 

gain insights into the current state of the art and identify potential directions for future research 

endeavors. Most of the studies are recent, published in the last 5 years, as depicted in Figure 4. 

To the best of our knowledge, there is presently no comprehensive systematic review in the 

existing literature dedicated specifically to this area. Covering a diverse timeframe, this review 

primarily highlights research carried out on general population and healthy subjects. It encompasses 

the broadest range of studies and incorporates the largest volume of articles within this domain. 

Moreover, it functions as an extensive resource for neuroscience researchers, providing a thorough 

overview of experimental procedures, including participant numbers, stimuli, frequency band 

ranges, data preprocessing, feature extraction and EEG signal analysis. 
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Figure 4. Publications per year included in the current review study. 

Our review reveals that there is currently a lack of standardized computational methods for 

different applications in EEG-based user engagement analysis. Researchers are actively exploring 

new solutions and continuously introducing novel methods and implementations. On the other 

hand, the data scarcity problem can be solved with data augmentation techniques [92]. Other data 

related challenges remain the the inter-subject variability of emotion-related EEG signals [93] and the 

fact that emotions are unstable and discrete during an extended period [94]. We anticipate that many 

of the existing challenges, specifically those regarding data, will be resolved in the near future since 

there are cur-rently a lot of steps forward [92–94], opening up a wide range of potential applications 

for EEG-based accurate UE measurement. 

4.1. Summary of Literature Review Findings 

As it occurs from our review study, the Games industry is a domain that measuring UE and UX 

through EEG devices has gained significant popularity the last years, since the accurate measurement 

of UE in games is of significant importance. Other domains that EEG-based research is extensively 

used are interface and product design as well as audiovisual related applications, like media and 

advertisements (see Figure 5). Specifically in the Games industry, understanding and quantifying UE 

can provide valuable insights for game developers, researchers, and marketers in terms of game 

improvement, player retention, gaining insights into the effectiveness of various design elements and 

identify areas for improvement as well as monetization and business decisions. 

Towards this direction, analysis of EEG data in the context of gameplay can provide an accurate 

and objective method towards a deeper understanding of the cognitive and emotional states of 

players, which can be directly related to their engagement levels. A significant asset towards 

traditional techniques of measuring UE, like self-assessment questionnaires, is that EEG can enable 

real-time monitoring of player engagement during gameplay. By continuously recording and 

analyzing EEG signals, researchers can detect fluctuations in cognitive states and emotional 

responses, providing a dynamic view of engagement levels. This can help identify critical moments 

in the game where engagement increases or decreases and inform design decisions to optimize the 

gaming experience. 
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Figure 5. Publications per application field included in the current study. 

In addition, based on Table 2 findings, most studies have recruited 11-20 participants in their 

experiments (see Figure 6, where N/D are the studies that do not have details for the number of 

recruited participants). There are some studies that have used existing datasets, like the DEAP 

[18,21,27,29,30], but most of the researchers have designed their own recruitment protocol and 

experiments. In these EEG data acquisition experiments, the different types of Emotiv devices seem 

to gain popularity, probably because of their compact size and cost-effective solution. 

 

Figure 6. Number of participants recruited in the studies. 

Although various methodological approaches have been suggested, a literature review reveals 

a predominant common approach employed in most studies. This approach consists of signal pre-

processing, feature extraction, and EEG analysis using either statistical methods or classification or 

clustering techniques. 

Preprocessing plays a crucial role in the analysis of EEG signals as it serves to enhance the data's 

quality and reliability, facilitating the detection and analysis of the underlying neural activity. EEG 

signals often suffer from contamination by various types of noise and artifacts, such as power line 

interference, electrode drift, and muscle activity. To address these issues, preprocessing techniques 
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like filtering, artifact removal, and baseline correction are employed to diminish or eliminate these 

sources of noise and artifacts. 

Moreover, EEG signals are frequently weak and embedded within noise. Preprocessing 

techniques such as filtering and artifact removal can improve the signal-to-noise ratio, thereby 

enhancing the detectability and analysis of the underlying brain activity. Additionally, preprocessing 

plays a pivotal role in standardizing the data. EEG data can be recorded using diverse systems, 

settings, and electrode placements, leading to potential inconsistencies. By applying preprocessing 

techniques such as referencing and downsampling, the data can be standardized, ensuring 

comparability across different participants and experiments. 

Feature extraction and selection play crucial roles in EEG-based systems and are constantly 

evolving. These components require a deep understanding of the brain's biology and physiology. 

The exploration of novel features holds great potential for enhancing the performance of emotion 

recognition systems. For example, time-domain features can be combined with frequency, time-

frequency characteristics, channel location, and connectivity criteria. The development of innovative 

feature extraction methods involves uncovering asymmetry patterns in different brain regions, 

identifying informative electrode locations, modeling channel connectivity, and investigating 

correlations that aid in understanding brain functionality. 

These evolving features highlight the relationship between EEG signals, their frequency bands, 

and various functional and connectivity considerations. Future research should focus on advancing 

our understanding of the connections between EEG and biological or psycho-emotional elements. By 

improving feature extraction, we can capture individual emotion dynamics more accurately and 

establish correlations across individuals and sessions. 

One particularly intriguing trend in feature extraction is the utilization of deep neural networks. 

These systems leverage raw data to avoid the loss of valuable information and harness the power of 

neural networks to automatically extract relevant features. This approach holds promise for 

improving the effectiveness of feature extraction in EEG analysis. 

4.2. Soft and Full Emerging Technologies 

Another remark that can be derived from the current study is that several studies, specifically 

recent studies, include technologies that can be classified to "soft" and "full" emerging, based on their 

level of innovation. However, it's important to note that the categorization may not be universally 

accepted or standardized, since the terms "soft" and "full" emerging are not commonly used in 

technology classification frameworks. In the soft emerging technologies, we would include mobile 

apps, which have been around for some time, but new and innovative apps continue to emerge, 

leveraging advancements in mobile technology and user experience [59,95]. In the full emerging 

technologies, we would include Virtual Reality (VR) technology that is continuously advancing and 

finding applications in various fields, such as gaming, education, and training [11–14,45,46,51,80–

83,86–88] or even CAVE experimental setup [15]. 

4.3. Comparative Study 

Numerous attempts have been undertaken in the literature to examine works related to UE and 

UX. Nevertheless, a limited number of these endeavors have focused their efforts on examining UE 

and UX through the analytical perspective of EEG. Moreover, the number of systematic 

investigations in this specific intersection of UE, UX, and EEG remains notably scarce. 

The field of emotion recognition using EEG has garnered significant attention, resulting in 

several comprehensive review papers [96–99] exploring the research in this domain. There is no 

review study (see Table 7) exploring the works regarding EEG signal analysis (including pre-

processing, feature extraction, analysis and classification as in the current study) in UE and UX field. 

These reviews delve into the methods and algorithms employed for EEG analysis and classification 

of emotional states, shedding light on the most commonly used feature extraction and classification 

methods in this rapidly evolving field. It is evident from these reviews that decoding EEG signals 

and associating them with specific emotions presents a complex challenge. Affective states do not 
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exhibit a straightforward mapping to distinct brain structures, as different emotions can activate 

overlapping brain regions, while a single emotion can engage multiple structures simultaneously. 

Table 7. Comparative Study with Review papers. 

Study Review Study Year Range Articles Included Main Objective Sub-Categories 

Our Study Systematic 2012-2023 74 

explores the 

intersection of user 

engagement and 

user experience 

studies with EEG  

General population 

Analysis of EEG 

[96] Literature 2014-2019 30 

m-learning 

applications and 

relation to 

educational 

engagement with 

EEG analysis 

physiological-based 

mobile computing 

[97] Survey 2014-2022 39 

Analysing virtual 

reality experience 

with EEG headsets 

Virtual reality 

event-related 

potentials 

Head-Mounted 

Displays 

[98] Systematic 2010-2021 19 

Studying the 

learning process 

and user experience 

with serious games 

and EEG 

Serious games 

Eye tracking signals 

skills and 

competencies 

[99] Survey 2015-2020 31 

Studying the 

algorithms and 

processes of EEG 

based BCI emotion 

recognition systems 

Emotion elicitation 

signal acquisition 

feature extraction, 

selection and 

classification 

performance 

evaluation 

[100] Comprehensive 2015-2021 82 

Reviews emotion 

recognition 

methods 

provides an 

overview of the 

datasets and 

methods used to 

elicit emotional states 

(feature extraction, 

feature 

selection/reduction, 

machine learning 

and deep learning 

methods) 

In the context of feature extraction analysis, researchers have employed various methods, 

including time domain analysis, frequency domain analysis, and time-frequency domain analysis, to 

capture the relevant information from EEG signals. On the other hand, classification approaches have 

leveraged machine learning algorithms such as Support Vector Machine (SVM), k-Nearest Neighbor 

(KNN), and Naive Bayes (NB), yielding classification accuracies ranging from 57.50% to 95.70%. 

Additionally, deep learning algorithms, including Neural Network (NN), Long and Short-Term 

Memory (LSTM), and Deep Belief Network (DBN), have demonstrated their efficacy in classification, 

achieving accuracy rates between 63.38% and 97.56%. These methods and techniques hold promise 

for advancing our understanding of emotion recognition using EEG and finding interdisciplinary 

applications for this rapidly growing field. 
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In a study by Hernández-Cuevas et al. [96], the focus is on exploring the existing research related 

to physiological-based mobile educational systems. The authors investigate the integration of EEG 

and other physiological signals into mobile learning (m-learning) applications.  

Another research paper by Marochko et al. [97] examines the applications of virtual reality (VR) 

in Event-Related Potential (ERP) research. The authors analyze the current approaches for combining 

Head-Mounted Displays (HMD) with EEG headsets to facilitate ecologically valid experiments. In a 

systematic review conducted by Ferreira et al. [98], the objective is to explore research concerning the 

learning process with (Serious) Business Games utilizing EEG or Eye tracking signals for data 

collection. Torres et al. [99] conduct a comprehensive survey of scientific literature published between 

2015 and 2020. The survey focuses on identifying trends and performing a comparative analysis of 

algorithm applications in new implementations from a computer science perspective. The survey 

covers various aspects, including datasets, emotion elicitation methods, feature extraction and 

selection, classification algorithms, and performance evaluation. 
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