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Abstract: The high spatial complexities of soil temperature modelling over semiarid land have challenged the 

calibration—predication framework, whose composited objective lacks comprehensive evaluation. Therefore, 

this study, based on the Noah land surface model and its full parameter table, utilizes two global searching 

algorithms  and  eight  kinds  of  objective with dimensional—varied metrics,  combined with dense  site  soil 

moisture  and  temperature observations of  central Tibet,  to  explore different metrics’ performances on  the 

spatial  heterogeneity  and  uncertainty  of  regional  land  surface  parameters,  calibration  efficiency  and 

effectiveness, as well as spatiotemporal complexities in surface forecasting. Results have shown that metrics’ 

diversity has shown greater  influence on  the calibration—predication  framework  than  the global searching 

algorithms  themselves. Besides being  significantly better  than  other metrics,  the  enhanced multi objective 

metric (EMO) and the enhanced Kling‐Gupta efficiency (EKGE) have their own advantages and disadvantages 

in simulations and parameters respectively. Especially, EMO that composited with four metrics as correlated 

coefficient, root mean square error, mean absolute error, and Nash–Sutcliffe efficiency, has shown relatively 

balanced performance in surface forecasting when compared to EKGE. In general, the calibration—predication 

framework  that  benefited  from  EMO  could  greatly  reduce  the  spatial  complexities  in  soil  temperature 

modelling of the semiarid land.   

Keywords:  metrics  diversity;  Kling‐Gupta  efficiency;  soil  temperature  modelling;  spatial 

complexity; land surface parameters 

 

1. Introduction 

Soil moisture (SM) and soil temperature (ST) are crucial variables modulating land‐atmosphere 

fluxes  [1–4].  However,  due  to  the  complexity  of  ST modelling  over  semi‐arid  regions,  the  ST 

simulations directly  produced  by  land  surface model  (LSM)  exhibit  spatiotemporal  deficiencies, 

posing  challenges  in  their  regional  weather  and  climate  applications  [5,6].  Research  efforts  in 

improving  ST  simulations  have  suggested  that  the  manually  corrected  high‐sensitivity  land 

parameters could benefit the greater scale ST modeling physics [7,8], and the auto‐calibrated LSM’s 

parameter table could benefit the joint SM‐ST modeling configuration [9]. Given the great challenges 

in  solving  the  highly  non‐linearity  in  joint  SM‐ST  modeling,  e.g.,  the  high‐dimensional  land 

parameters  and  nonlinear  physics,  the  composited  objectives  evaluating  the  distance  between 
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simulations  and  observations  is proposed  to  enhance  calibration performance  (e.g., Kling‐Gupta 

efficiency)  [10], whose various  internal multi‐metrics’ credits need more endeavor  to meet with a 

robust  real‐world  application  [11,12].  Therefore,  evaluating  the  effects  of  the  objective metrics’ 

diversity on calibration performance in solving the spatial complexities of surface simulations is of 

great significance for improving ST modeling and forecasting over semiarid land. 

The LSM  parameters  optimization  or  identification  has  been  evolving  for decades with  the 

regional  application of  auto‐calibration  techniques, primarily  achieved by utilizing global  search 

algorithms (GSA, e.g., particle swarm optimization and shuffled complex evolution; PSO [13–18] and 

SCE  [19–22])  to seek optima against specific model objective. As LSM parameter number usually 

decreases GSA’  efficiency  and  effectiveness,  especially  in  high‐dimensional  cases,  early  research 

advocated  for dimensionality  reduction  through  generalized  land parameter  sensitivity  analysis, 

such as  focusing on reducing  insensitive parameters  for specific objectives, based on  land surface 

parameter  categorization  (e.g.,  soil,  vegetation,  general,  and  initial  types)  to  enhance  calibration 

optima [23–25]. Moreover, given the intensifying diversity of land surface model applications (e.g., 

runoff, fluxes), globally applicable  land surface parameter estimation has garnered great attention 

[26–29], but this    has been challenged by the largely varied sensitivities of the distinguished LSM 

parameters    in arid and semi‐arid land (ASAL) [30,31].   

The well‐known Noah LSM though has been widely employed in finer numerical studies [32], 

but faces increasingly prominent issues related to the representativeness of parameters in complex 

ASAL applications, such as varying sensitivities of vegetation and general parameters to thermal flux 

respectively  [25,33,34]. This poses  continuous  challenges  for  refined  land  surface  applications  in 

Tibet,  a  region with diverse  climatic  zones,  e.g., LSM parameter diverse  advantages  in different 

regions of  a  similar  surface  [18,28,29]. Despite  the  establishment of  a  refined SM‐ST observation 

network under a semiarid climate over central east Tibet (i.e., northwest Naqu) [35], which features 

grassland as  the primary  land  cover and  clay as  the dominant  soil  texture, more  comprehensive 

calibration objective against the LSM parameter uncertainties reduction and surface enhancement is 

still required for the robust ST modeling [9,36–38]. 

In fact, with the development of land remote sensing, given the diversity of GSA’ strategies and 

application  objectives  (such  as  SM, ST,  runoff,  and  fluxes),  the  objective metric designs  of  auto‐

calibration  have  greatly developed  to  enhance LSM modelling  performances.  For  instance, LSM 

calibration using multi‐source remote sensing data, the multi‐objective design concentrates on the 

comprehensive inversion characteristics of remote sensing SM and/or ST observations are essential 

[39–41]. Similarly, in calibrating applications aimed at improving the spatial accuracy of surface state 

predictions,  a multi‐objective  design  that  considers  horizontal  variations  [42–45]  and/or  vertical 

stratification [46–59] of states and observations is crucial. Generally, the multi‐objective metrics can, 

to a certain extent, address  the  issues of observational data  fusion and multi‐state complex error 

measurement  in  specific  calibration  applications,  emphasizing  the  enhanced  role  of  spatial 

dimensions of single or multiple land surface state errors as holistic objectives.   

Moreover, as  the  inherent scale uncertainties of  land surface state  (e.g.,  the distance between 

simulation and observation could fall into the non‐Euclidean space) lead to challenges in assessing 

and  ranking LSM’ performances  in high‐dimensional searching space,  the holistic objectives with 

differentiated metrics have been widely developed to simplify and enhance the calibration [50–52]. 

And they can be primarily categorized into flexible (e.g., Pareto front [53–56], and dominated Pareto 

[57–59]) and deterministic approaches. The Pareto front adjusts the cumulative distribution of metrics 

based on external algorithm storage and aims at general LSM modelling with globally applicable 

parameters, which  can be  an  expensive  evaluator  that  independent  from GSA. While within  the 

GSA’s evaluator, the dominated Pareto compares relationships among metrics and the deterministic 

approach combines various metrics, and then aims at determining the optimally combined solution 

of various simulations. 

However,  though metrics offer  the deterministic  reference  for  estimating diversity of model 

performances, research indicates that the application of computational methods employed by these 

metrics often exhibits blindness against same datasets. For instance, integrated metrics such as Nash–
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Sutcliffe  efficiency  and Kling–Gupta  efficiency  can be utilized  for  algorithm  comparison, yet  for 

actual  model  evaluation,  direct  metrics  are  still  necessary  to  indicate  [60–63].  The  optimal 

applicability of direct metrics like root mean square error and mean absolute error in describing data 

is premised on  their distributions conforming  to normal and Laplacian distributions, respectively 

[64,65]. Furthermore, correlated coefficient (CC) is susceptible to the monotonicity and nonlinearity 

of two types of data [66,67]. Consequently, the performance of these metrics, when combined across 

different dimensions, often necessitates a comprehensive evaluation of their calibration suitability 

tailored to varied spatiotemporal requirements of LSM simulations [68,69]. 

Overall, due  to  the high short‐term surface simulation biases and  the high dimensionality of 

parameter space of Noah LSM, there is a lack of comparisons for the multi‐objective metric methods 

targeted at SM‐ST joint calibration to validate their ability in reducing spatial complexities of regional 

land simulations over ASAL. Therefore, to fill this gap, this study, based on the Noah LSM and its 

full parameter table, utilizes the PSO/SCE method and various SM‐ST objective metrics, combined 

with intensive regional soil site observations, to explore the impacts of metric objective differences 

on  the  spatial  heterogeneity  and  uncertainty  of  regional  land  surface  parameters,  calibration 

efficiency  and  effectiveness,  as well  as  temporal  and  spatial  errors  in  surface  forecasting. And 

suggestions are provided for the regional ST modeling configuration, aiming to improve medium‐

range ST forecasting of semi‐arid regions.   

2. Methods   

2.1. Calibration Schemes 

2.1.1. Evolution Algorithms 

Group and  individual  social behaviors are  incorporated  into  the core PSO algorithm process 

[13–18]. The algorithm first randomly selects the scaled (or normalized) parameters (x) to generate 
the  initial  population  including  the  individual  position  and  the  speed  of  position  change,  i.e., 

ሺx୧
଴, v୧

଴ሻ, i ∈ ሺ1, … , npሻ, and further obtain the local and global optimal position (Pୠ
଴  and  gୠ

଴) through 

evaluating and sorting, where  the superscript    represents  the  time slice  (Figure 1). Then proceed 

with  following  steps  repeatedly  till  the  stop  criteria  is met. Comparing  individuals’  current  and 

previous evaluation values to obtain the current local optima (Pୠ
୲); then sorting local optima to find 

the current global optima (gୠ
୲ ); each particle’s speed and position are updated using  v୧

୲ାଵ ൌ ሾwv୧
୲ ൅

cଵrଵሺpୠ౟
୲ െ x୧

୲ሻ ൅ cଶrଶሺgୠ
୲ െ x୧

୲ሻሿ ൈ √nv୫ ൈ ሾሺrଷ െ 1ሻv୰ ൅ 1ሿ ൅ cଷv୰   and  x୧
୲ାଵ ൌ x୧

୲ ൅ v୧
୲ାଵ   respectively, 

where  v୫  and  v୰  equal to 0.5 and 0.15,  rଵ  and  rଶ  equal to 0.5 and 0.15, w  equal to 0.9,  cଵ,  cଶ, and 
cଷ  equal  to 2.0, 2.0, and 10‐7  [9]. Note  that except  np, all  the other parameters  that can affect  the 

generality of PSO were vaguely related to the dimension of the parameter space. 
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Figure 1. The pseudo code of the algorithms used in this study. 

Community and induvial social behaviors are incorporated into the core SCE algorithm process 

[19–22]. The algorithm first randomly selects the scaled (or normalized) parameters (x) to generate 
the  initial  population,  then  further  obtain  initial  local  and  global  optima  (D଴   and  gୠ

଴ )  through 

evaluating and sorting with marked orders. Then proceed with following steps repeatedly till the 

stop criteria is met.    Evaluating and marking the individuals to reorganize the original population 
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into  nc  communities  (each  community has m  points)  ;  through  complex  competitive  evaluation 

(CCE) of    each point where    the  triangular probability distribution  P୩ൌ
ଶൈሺ୫ାଵି୩ሻ

୫ൈሺ୫ାଵሻ
, k ൌ 1, … , m,  to 

determine the previous generation, and the new individuals from each community are mixed to form 

a new population; then reorder the individuals to form  nc  new communities and    obtain the current 

local and global optima  (D୪  and  gୠ
୲ )  (Figure 1). Also,  nc  and m  equal  to 2 and  2n ൅ 1, while  the 

outer cycling number (ne), the internal and external iteration number of CCE (α  and  β) equal to  n ൅
1,  nc, and m, respectively. Note that except  α  and  β, all five parameters that can affect the generality 

of SCE were only related to the dimension of the parameter space. 

Note that  x  is scaled with equation as 
୶౟౤౟౪ି୶ౣ౟౤

୶ౣ౗౮ି୶ౣ౟౤
  for both PSO and SCE. The totals individual 

number (nc ൈ m) of SCE and total particle number (np) of PSO both equal to  2ሺ2n ൅ 1ሻ. And for both 
SCE and PSO, the GSA stops when the evaluation contour (ie) is greater than 105 Noah runs [9]. The 

equitable population size and stop criteria intend to reduce that the objective metrics’ impact could 

be affected by the algorithms themselves and ensure the relatively equitable investigation. 

2.2.2. Optional Evaluator 

The evaluator of the above‐mentioned GSA algorithms used in our study is shown in Figure 2, 

which includes a fixed physical constraint and an optional objective function. The physical constraint 

formula (fୡ) represents the soil moisture of the first two surface soil layers (SMC1  and  SMC2) only 
varies between the wilting point (WLTSMC) and the soil moisture where transpiration stress begins 

(REFSMC) [9,24,39].   

 

Figure 2. The pseudo code of the evaluator used in this study. 

Under  this  constraint  (r ൏ 0 ),  the  unscaled  parameters will  drive  the  target model  to  run 

simulation once  for evaluation based on  the corresponding objective value, which can be selected 

based on the objective type (Z), and  Z  is a constant that varies between 1 and 8. Note that once  t  is 
determined,  the  predefined  corresponding  objective  metric  or  function  ( f୭ )  that  measures  the 

distances between simulation (s) and observation (o) is also determined at the very beginning.   
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2.2. Composited Metrics 

For calibration schemes based on GSA, the parameter simulation problem in LSM is addressed 

by  searching  for  the  optimal  parameters  and/or  simulations  that minimizes  or maximums  the 

objective function (f୭). Especially,  f୭  has been extended into multi‐dimensions, i.e., layers (nl) and 
variables  ሺneሻ, to meet the multiple dimensional SM and ST objectives, and eight different metrics 

are investigated during present study (Table 1).   

Table 1. Description of the objective metrics used in this study. 

Metri

c 

Descriptio

n 
Reference Formula* 

Direction, 

Optima 

CCS 
Correlation 

coefficients 

ଵ

୬ୣ
∑ ଵ

୬୪
∑

∑ ሾሺୱ౟
౛,ౢିୱ౤౪

౛,ౢതതതതത
ሻሺ୭౟

౛,ౢି୭౤౪
౛,ౢതതതതത
ሻ౤౪

౟సభ ሿ

ඨ∑ ቀୱ౟
౛,ౢିୱ౤౪

౛,ౢതതതതത
ቁ
మ

౤౪
౟సభ ∙∑ ቀ୭౟

౛,ౢି୭౤౪
౛,ౢതതതതത
ቁ
మ

౤౪
౟సభ

୬୪
୪

୬ୣ
ୣ    

maximum, 1 

EKGE 

Enhanced 

Kling‐Gupta 

efficiency 

CC෪ሺs, oሻ ≡
ଵ

୬ୣ
∑ ଵ

୬୪
∑

∑ ሾሺୱ౟
౛,ౢିୱ౤౪

౛,ౢതതതതത
ሻሺ୭౟

౛,ౢି୭౤౪
౛,ౢതതതതത
ሻ౤౪

౟సభ ሿ

∑ ቀୱ౟
౛,ౢିୱ౤౪

౛,ౢതതതതത
ቁ
మ

౤౪
౟సభ ∑ ቀ୭౟

౛,ౢି୭౤౪
౛,ౢതതതതത
ቁ
మ

౤౪
౟సభ

୬୪
୪

୬ୣ
ୣ ,   

M෩ሺs, oሻ ≡ ଵ

୬ୣ
∑ ଵ

୬୪
∑

ୱ౤౪
౛,ౢതതതതത

୭౤౪
౛,ౢതതതതത

୬୪
୪

୬ୣ
ୣ ,   

STD෪ ሺs, oሻ ≡
భ
౤౛

∑ భ
౤ౢ
∑

ඨ∑ ൬౩౟
౛,ౢష౩౤౪

౛,ౢതതതതത
൰
మ

౤౪
౟సభ

౤౪
౤ౢ
ౢ

౤౛
౛

భ
౤౛

∑ భ
౤ౢ
∑

ඨ∑ ൬౥౟
౛,ౢష౥౤౪

౛,ౢതതതതതത
൰
మ

౤౪
౟సభ

౤౪
౤ౢ
ౢ

౤౛
౛

 ,   

1 െ

ට൫CC෪ሺs, oሻ െ 1൯
ଶ
൅ ൫STD෪ ሺs, oሻ െ 1൯

ଶ
൅ ൫M෩ሺs, oሻ െ 1

maximum, 1 

EMO 

Enhanced 

multiple 

objectives 

0.25 ൈ
ଵ

୬ୣ
∑ ଵ

୬୪
∑ ቀ൫1 െ absሺccሻ൯ ൅ rmse ൅୬୪
୪

୬ୣ
ୣ

ሺ1 െ nseሻ ൅ aeቁ   
minimum, 0 

MAES 
Mean absolute 

errors 
ଵ

୬ୣ
∑ ଵ

୬୪
∑ ଵ

୬୲
∑ ሺ|ሺs୧

ୣ,୪ െ o୧
ୣ,୪|ሻ୬୲

୧ୀଵ
୬୪
୪

୬ୣ
ୣ     minimum, 0 

NSES 

Nash 

Sutcliffe 

efficiencies 

ଵ

୬ୣ
∑ ଵ

୬୪
∑ ൭1 െ

∑ ቀୱ౟
౛,ౢି୭౟

౛,ౢቁ౤౪
౟సభ

మ

∑ ቀୱ౟
౛,ౢିୱ౤౪

౛,ౢതതതതത
ቁ
మ

౤౪
౟సభ

൱୬୪
୪

୬ୣ
ୣ     maximum, 1 

PKGE 

Pareto 

dominant 

KGE 

ൣkgeୣ,୪, e ∈ ሺ1, … , neሻ, l ∈ ሺ1, … , nlሻ൧;   
if kgeୣ,୪ାଵ ൏

kgeୣ,୪, dominated;  else, nondominated   
maximum, 1 

PMO 

Pareto 

dominant 

MO 

ቄቂ൫1 െ absሺccሻ൯
ୣ,୪

, rmsesୣ,୪, ሺ1 െ

nseሻୣ,୪, maeୣ,୪ቃ , e ∈ ሺ1, … , neሻ, l ∈ ሺ1, … , nlሻቅ ;   

if ൫1 െ absሺccሻ൯
ୣ,୪
൏ ൫1 െ

absሺccሻ൯
ୣ,୪ାଵ

, rmsesୣ,୪ ൏ rmsesୣ,୪ାଵ, ሺ1 െ
nseሻୣ,୪ ൏ ሺ1 െ nseሻୣ,୪ାଵ, and maeୣ,୪ ൏

maeୣ,୪ାଵ, dominated;  else, nondominated   

minimum, 0 

RMSE

S 

Root mean 

square 

errors 

1
ne
෍

1
nl
෍ඨ∑ ൫s୧

ୣ,୪ െ o୧
ୣ,୪൯

ଶ୬୲
୧ୀଵ

nt

୬୪

୪

୬ୣ

ୣ

 
 

minimum, 0 

*Note that the superscripts  e  and  l  are the variable and layer indexes, respectively, and  ne  and  nl  are the total 
numbers of variables and layers.  s  and  o  represent for the simulation and observation respectively. For EKGE, 

the factors  CC෪ , M෩and  STD෪   indicate the vectored objective statistics such as correlation coefficient, mean value, 

and standard deviation respectively. For EMO, PKGE and PMO, the lower cases (e.g.,  kge,  cc,  nse, and mae) 
represent  for only one‐dimensional objectives. The superiority and  inferiority relationship between different 

objectives  in  Pareto  optimality  is  determined  using  non  dominated  sorting  method,  e.g.,  the  top  layer 

dimensional objective is assumed to be the dominated Pareto solution. 
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This study mainly examines fixed metrics composed of  fundamental measures such as  linear 

correlation  coefficient  (cc)  [66], Kling‐Gupta  efficiency  (kge)  [10],  absolute  error  (ae)  [65], Nash‐

Sutcliffe efficiency  (nse)  [63], and root mean square error  (rmse)  [64] across different dimensions. 

Specifically, correlation coefficients (CCS), enhanced Kling‐Gupta efficiencies (EKGE), mean absolute 

errors (MAES), Nash‐Sutcliffe efficiencies (NSES), and root mean square errors (RMSES) represent 

the  average  of  cc ,  kge ,  ae ,  nse ,  and  rmse   across  both  the  variable  and  layer  dimensions. 

Additionally, the enhanced multiple objectives (EMO) integrate the average values of the measure 

that combines  cc,  ae,  nse, and  rmse  in the variable and layer dimensions.   

Furthermore,  since  the  surface  variations  of  the  topsoil  layer  could  often  determine  the 

sublayer’s variations according to infiltration [32], therefore, the dimensional target of the upper layer 

is assumed to be the dominated Pareto solution, and the top layer’s objective that is larger (or smaller) 

than  sublayers’  is  taken  as  the  current  optimally  maximum  (or  minimum)  solution  [57—59]. 

Consequently, the Pareto‐dominant KGE (PKGE) and the Pareto‐dominant multi objectives (PMO) 

indicates the dominated top layer’s value of EKGE and EMO respectively. 

All the above‐mentioned multi‐objective metrics’ variable and layer dimensional number are 2 

(e.g., SM and ST) and 4 respectively. CCS varies in [－1, 1]. EKGE and NSES both vary in (－∞, 1], 

EMO, MAES, and RMSES all vary in [0, ＋∞). PKGE varies in (－∞, 1], and PMO varies in [0, ＋∞).   

Therefore, the value of the metric determines the performance of the evaluator, and the direction of 

the metric determines the direction of the search, that is, continuously approaching the optimal value 

of the metric (i.e. the final ideal termination condition) towards the calibrated optimal solution. 

2.3. Performance Evaluation 

2.3.1. Parameter 

During  this study, parameter heterogeneity was defined as variations or sensitivities of  land 

parameters  across  sites.  Due  to  the  immense  dimensionality  of  parameter—site  sensitivities, 

parameter  relative  sensitivities  based  on  the  two  predefined  limits  of  the  parameter  space  are 

suggested, e.g.,  if more  (fewer)  sites met  (failed  to meet) a parameterʹs  limit compared  to others, 

indicating sitesʹ relative sensitivity to that parameter within the limitʹs confidence [9,24]. Since the 

parameter relative sensitivities (or heterogeneity) are usually large while their homogeneity could be 

small (and thus be easily observed), here to qualify this and simplify metrics’ diversity investigation, 

we  further  propose  the  parameter  numbers  with  low  site  sensitivities  as  homogeneity  (H). 

Consequently, low H (>0) of this study indicates high heterogeneity of one metric quantitatively. Note 

that when all and no sites cross the parameter’s limits, H equals 0 and  0෨   respectively.   
The parameter’ spatial uncertainty is defined as the land parameter range and outlier against 

the sites, e.g., one parameter’s inter quartile range (IQR, >0), smaller parameter ranges and outlier 

numbers indicated fewer uncertainties and fewer unaccountable factors respectively [9]. Especially, 

to  simplify  different  metrics’  effects  on  parameter  uncertainty,  the  whole  parameter  space’s 

uncertainty is defined as the inter quartile range of all the IQR ensembles of different parameters (or 

IQRD) in the parameter space. Consequently, the IQRD’s inter quartile range and outlier indicate the 

quantitative parameter—uncertainties among metrics.   

Especially, compared to SCE, the parameter number with less parameter uncertainties (PNL, >0) 

and the outlier number reduction of parameter uncertainties (ONR) in PSO are summarized in this 

study to qualify the justice that if the metrics’ parameter uncertainty is affected by GSA itself or not. 

As the heterogeneity and uncertainty differences of different metrics could account for the metric‐

informed method’s performance in solving parameter spatial complexities during SM‐ST calibration, 

thereby, the metric with  less parameter uncertainties and heterogeneity could meet the preferable 

LSM configuration demand in surface forecasting.   

2.3.2. Objective 

As the population position of on generation, e.g., the best (Pb) or medium (Pm, if non solution is 

met) locations  that known as fitness against the number of LSM runs (or the convergence speed), 
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could indicate the method’s performance in calibration efficiency, therefore, the better fitness values 

(e.g.,  larger EKGE values or smaller EMO values) with  fewer LSM  runs  indicate more efficiency, 

where the success rate exploring evolution abilities is usually put alongside with.   

Moreover,  as  the  optimal  objectives  (e.g.,  the  final  EKGE  or  EMO  values)  could  indicate 

method’s  performance  in  calibration  effectiveness,  the  larger  or  smaller  optimal  objectives  that 

depend on the direction of predefined metrics  indicate more effectiveness. Furthermore, since the 

kernel  density  distribution  of  optimal  values  across  different  sites  demonstrates  their  spatial 

enrichment characteristics, the variation in enrichment between different algorithms (such as PSO or 

SCE) to a certain extent reflects their capacity to address the spatial disparity in SM‐ST simulation. 

2.3.3. Simulation 

To  simplify  the  spatial  complexity  among  regional  datasets,  linear  fitting  between  the 

observations (OBS) and simulations (SIM) for all sites is conducted [68]. The linear fitting’s slope (s) 

demonstrates the sensitivity of SIM to OBS, while its coefficient of determination (r2) or the goodness 

of fit demonstrates if the sensitivity or linear model is robust or not. Moreover, under the assumption 

of the normal distribution of the errors between SIM and OBS (E୓ିୗ) of all sites, Gaussian fit of  E୓ିୗ 
that are resampled with 100 bins 100 is conducted to generate at most two signals determining the 

main distribution characteristic., e.g.,  the amplitude  (or  frequency, f) and center  (c)  [69]. Here  the 

compound feature of f and c that is closer to the normal distribution indicates the better performance 

or more consistent with the assumption. 

The method’s performance  in  optimal  simulation  and  forecast  is  qualified using  the  spatial 

differences  and  similarities  of  surface  conditions  among  different  datasets,  e.g.,  ST  and  SM 

simulations or reanalysis, and observations, by the following equation: 

RMSEୗ ൌ ට
∑ ሺୱౠି୭ౠሻమ
౤౩
ౠసభ

୬ୱ
,  CCୗ ൌ

∑ ሾሺୱౠିୱ౤౩തതതതതሻሺ୭ౠି୭౤౩തതതതതሻ౤౩
ౠసభ ሿ

∑ ሺୱౠିୱ౤౩തതതതതሻమ౤౩
ౠసభ ∑ ሺ୭ౠି୭౤౩തതതതതሻమ౤౩

ౠసభ
)  (1) 

where  i  and  j  represent  the  i୲୦  time and  the  j୲୦  site,  respectively, and  ns  represent  for  the  total 
number of stations. And smaller  RMSEୗ  and/or high  CCୗ  indicate better performance.   

Meanwhile, the Taylor diagram [60–63] that could assemble the comprehensive statistics (i.e., 

standard deviation, root‐mean‐square difference, and correlation) in a temporal sequence between 

SIM and OBS was also created for comparison with the method’s skills. Usually, a smaller distance 

away from the reference location (OBS) indicated more skills. Note that the SIM datasets (30 min) 

were linearly interpolated into 3 h for a broad comparison with the land reanalysis.   

In addition, aside from the uncertainties and heterogeneous requirements in surface prediction 

parameters (manifested as variations in calibration performance), addressing the precision demands 

inherent  to  surface  prediction  (evidenced  by  differences  in  calibration  robustness),  this  study 

employs  indicators  such  as KGE  increment,  RMSEୗ   reduction,  and  CCୗ   increment  to  clarify  the 

performance  of  various  SM‐ST  objectives  in  the  parameter—simulation  and/or  calibration—

prediction  frameworks, aiming to explore  the  target metrics  for both the optimal configuration of 

LSM and    the maximum benefits of surface predictions. 

3. Experiments 

3.1. Model and Data 

The Unified Noah LSM  is  created  to  better predict  the  effects  of  land  surface processes  on 

regional weather, climate, and hydrology.  It  is  intended  to comprehend  the  intricate biophysical, 

hydrological, and biogeochemical interactions between the land surface and the atmosphere at micro‐ 

and  mesoscales  (Figure  3A)  [32].  The  simple  driver  Noah  LSM  (version  3.4.1, 

https://ral.ucar.edu/model/unified‐noah‐lsm, accessed on 31  July 2024) has been recently extended 

into the muti‐point applications over central Tibet [9]. 
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Figure 3.  (A) Noah LSM description.  (B) Soil observation network,  (a) Tibet and  soil observation 

network  location  (boxes),  (b) site  locations (filled dots)  in  the soil observation network, with  three 

types of observation networks  (rectangular boxes),  roads  (white  line), and sites  (red dots),  (c) soil 

sampling sites (filled dots) in the study area (bold black dots were our study sites). 

The SM‐ST observations that are firstly derived from the highest altitude soil moisture network 

in the world (Figure 3B, whose elevations are above 4470 m), which is constructed by the Institute of 

Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS) with four soil depths (i.e., 0–5, 10, 

20, and 40 cm) [35], and are further assembled into the multi‐site (i.e., 12) observations of the local 

warm season (i.e., covering from 1 April to 31 July 2014) over northwest Naqu city that has a typical 

semiarid climate by using simple quality control based time continuity correction (detailed described 

in Ref [9]). Also, the global land data assimilation system (GLDAS) [70] grid soil reanalysis data with 

resolutions of 3 h/0.25°is collected for broader comparison with the surface simulations during this 

study. 

The gridded meteorological surface datasets that merging a variety of data sources are firstly 

developed by ITPCAS, with a 3 h interval (3 h) and a resolution of 0.1° × 0.1°, were produced by [71], 

and are further reassembled into the multi‐site LSM forcing dataset by using the inverse distance‐

weighted quadratic spline interpolation method to drive the Noah LSM. 

According  to  the  observational  soil  and  surface  characteristics,  the multi‐site Noah  LSM  is 

configured with a  4‐layer depth  and  30‐min  runtime  step, and  the  soil and vegetation  types  are 

mainly silt and grassland, while the slop type is assumed to be flat (e.g., 1). And the forcing time step 

(3 h) and screen height (10 m for winds and 2 m for temperature) for the LSM are the same as the 

input forcing data [9]. 

3.2. Experimental Description 

Three month long warm‐up run (covering the period from April 1 to July 1 of 2014) of the multi‐

site LSM, that initialized with the unobserved default parameters (i.e., the “General”, “Vegetation”, 

“Soil”, and partial “Initial” types) [32] and partially observational “Initial” parameters (i.e. SMC1‐4 

and STC1‐4), is firstly conducted to obtain the default multi‐site parameter tables including spatially 

distinguished “Initial” parameters for the following experimental runs [9]. Based on this, one‐month 

long run ranged from July 1 to July 31 (or the control run briefed as CTR hereafter) is conducted as 

the referenced surface conditions resulted from the default LSM parameter table configuration.   

The multi‐objective metrics  varied  calibration  runs  that  ranged  from  July  1  to  July  15  are 

conducted to obtain the calibrated multi‐site LSM models with metrics  informed parameter tables 

and further investigate the metrics’ impact on calibration’s abilities in solving the spatial complexities 

of Noah LSM. Then the abovementioned various objective informed LSM models run from July 15 to 

July 31 to obtain the hopefully improved surface forecasts and further investigate metrics’ impact on 

surface forecast.   
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Therefore,  the  difference  between  CTR  and  calibration  could  account  for  the  calibration 

performance,  and  the difference  among different  calibration  runs  could  account  for  the metric’s 

impact on the calibration. Meanwhile, the difference between CTR and calibrated forecast runs could 

account  for  the  calibrated models’  performances,  and  the  difference  among  different  calibrated 

forecast runs should account for the metric’s impact on surface forecast. Note that all objective metrics 

within both PSO and SCE algorithms are conducted to explore if the potentially improved surface 

forecast could be highly affected by the calibration algorithms themselves or not. 

4. Results 

4.1. Case Perspective 

As land surface models utilize parameters and forcing inputs to prepare land surface forecasts, 

the  issues  of  surface  simulation  and  local  application  in  typical  semi‐arid  regions  (i.e.,  rapidly 

applying calibrated parameters to surface forecasts) are exemplified here. To this end, a review of the 

spatiotemporal characteristics of the default forcing, initial parameters, and their overall simulation 

status across different periods, including control, simulation calibration, and forecast verification, is 

conducted to clarify the fundamental manifestations of the issues involved in this study. 

4.1.1. Model Configure 

The site averaged 3‐h meteorological forcing values against time during the study period are 

shown in Figure 4 a~d. During July 2014, the diurnal variation in temperature (Tଶ୫) mostly ranged 

between 5 and 15 C, with an extremely dry atmosphere whose relative humidity (RHଶ୫) values were 

mostly below 1%. The relatively low wind speed (WSଵ଴୫) generally varied between 0 and 6 m s–1, and 

the wind direction (WDଵ଴୫) was mostly dominated by southern flow (between 180 and 270) from 
July 1  to  July 10 and  from  July 16  to  July 21,  respectively, but  the opposite  in other periods. The 

incoming shortwave radiation (SW) exhibited strong diurnal variation between 0 and 600 W m–2, and 

the  incoming  longwave  radiation  (LW) varied between 250 and 350 W m–2. The pressure  (P) was 

generally around 586 hPa and the maximum hourly precipitation (Rଵ୦) was about 5 mm h‐1 on July 

10. 

 

Figure  4. The  case  overview  in CTR  experiment.  (a)~(d) The meteorological  forcing, which were 

derived from Ref [9]. (e) The threshold normalized default parameters of different sites (colored) for 

calibration.  (f)~(g) The  linear and Gaussian  fits of  the errors between observation and  simulation 

(E୓ିୗ)  for  SM଴ହୡ୫   of different periods  (colored,  the whole  study period was  in  black, while  the 
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calibration and validation periods were in red and blue respectively). (h)~(i) were the same as (f)~(g), 

but for  ST଴ହୡ୫. 

The  initial  land parameters of all  the  sites  (or default parameters)  that needs  calibration has 

shown great variety  for  the “Initial”  types  (Figure 4 e), and  this  is especially pronounced  for  the 

moisture‐related parameters, i.e., the SMC and the SH2O. This should attribute to the differences in 

pre‐experiment  3‐month  simulation  of  different  sites.  Furthermore,  due  to  the  lack  of  direct 

observations  for other  types of  land surface parameters,  they are configured using statistical data 

from optimization experiments based on limited benchmarks from the previous study (serving only 

as  reference  inputs  for  control  experiments,  consistent  with  conventional  numerical  model 

configurations) [9]. Therefore, in numerical operations, parameter variations among different stations 

mainly exist in the initial types. Consideration of multi‐site calibration can account for the differences 

among stations with unobserved parameters under existing observational constraints, namely, the 

spatial heterogeneity and uncertainty of the parameter space. Consequently, the spatial heterogeneity 

of parameters (i.e., the sensitivity of commonly used parameters to different stations or the number 

of  intersections  of  the  same  parameters  at  different  stations  in  the  parameter  space)  and  the 

characteristics of uncertainty (such as the inter quartile range and outlier features of parameters at 

different stations) in relation to the differences in various optimization objectives are the key areas of 

focus for further investigation in this study. 

4.1.2. Forecast Problem 

The CTR  simulations  and observation datasets  (OBS)  for  the  surface  layer  are  compared  in 

Figure 4 e~f. For the whole experimental period, the linear fit for the surface soil moisture (SM଴ହୡ୫) 

exhibited  a  small  increasing  slope  (about  0.21)  with  weak  consistency,  and  the  surface  soil 

temperature (ST଴ହୡ୫) had a larger decreasing slope (about –0.45) with strong differences. Moreover, 

the linear fits of  SM଴ହୡ୫  for the calibration and forecast periods were 0.22 and 0.15 respectively, and 

the  linear  fits of  ST଴ହୡ୫  for calibration and  forecast periods were  ‐0.48 and  ‐0.4  respectively. This 

indicates  that  the  surface  conditions  of  the  forecast  period  were  slightly  better  than  those  for 

calibration period.   Generally,    SM଴ହୡ୫  fits better than  ST଴ହୡ୫. 
In addition, the Gaussian fits of the errors between  SM଴ହୡ୫  observation and simulation (E୓ିୗ) 

for whole experimental period had a sharp and narrow distribution, which was centered around 0.15 

mଷ ∙ mିଷ  with  a  frequency  of    around  800, while  the  E୓ିୗ   distributions  of  the  calibration  and 
forecast periods had centered around 0.16 and 0.13 mଷ ∙ mିଷ, with the frequency of around 500 and 

300 respectively. This indicates  SM଴ହୡ୫ were mostly underestimated for all periods and this is more 

pronounced at  the  calibration period. Nevertheless,  the  E୓ିୗ  of  ST଴ହୡ୫  for different periods had 
shown  bimodal distributions  (Figure  4i), whose  centers were  located  around  ‐4  and  9 K  (whole 

period), ‐5 and 9 K (calibration period), and ‐4 and 8 K (forecast period) respectively.    This indicates 

ST଴ହୡ୫  were  both under‐  and  over‐estimated,  and  the  later were more  pronounced.    Generally, 

SM଴ହୡ୫  and  ST଴ହୡ୫ were both underestimated. 

In  general,  though  SM଴ହୡ୫   in CTR  exhibited  better  consistency with OBS  than  ST଴ହୡ୫ ,  the 
overall surface simulation underestimation of Noah LSM could be great for regional surface forecast 

applications. Note that either the ITPCAS forcing data sets or the improved heat‐sensitive parameter 

Z0h (also known as CZIL) to improve  ST଴ହୡ୫ with the Noah LSM over a surface near our study area 

[7],  and  the  non‐negligible  biased  ST଴ହୡ୫   and  the  spatially  diversed  parameter  space  in  CTR 

indicated a more effective calibration in present study. Since multi‐objective calibration can reduce 

these spatiotemporal errors through parameter identification to improve subsequent forecasts [9], the 

next focus is on how different target metrics affect the performance of calibration and forecasting. 

4.2. Effects on Calibration 

4.2.1. Optimal Parameters 

Due to the significant spatial heterogeneity exhibited by most optimal parameters in PSO and 

SCE,  this  study  conducted  a  statistical  analysis  of  spatially  homogeneous  (or  heterogeneous) 
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parameters based on parameter  type  classifications  (see Figure  S1‐1, briefed  in Table  2). For  the 

ʺVegetationʺ  type,  except  for  the  SCE  scenario  considering  CCS,  the  number  of  homogeneity 

parameters in other scenarios is zero, indicating heterogeneity. Regarding the ʺSoilʺ type, the counts 

(Hp, Hs) of homogeneity parameters for PSO and SCE calibration schemes based on EKGE, EMO, 

MAES, and RMSES metrics are (1, 3), (2, 2), (1, 1), and (2, 1), respectively. For the ʺGeneralʺ type, the 

(l1, l2) based on CCS, EKGE, EMO, MAES, and RMSES metrics are (1, A), (2, 2), (2, 2), (1, 1), and (1, 

1), respectively. For the ʺInitialʺ type, the (l1, l2) based on EKGE, EMO, and MAES metrics are (4, 2), 

(3,  2),  and  (2,  1),  respectively.  Evidently,  among  all  pairs,  the  spatial  homogeneity  of  optimal 

parameters for all ʺVegetationʺ types in PSO and SCE is relatively minimal, suggesting the strongest 

heterogeneity. Conversely, ʺSoilʺ and ʺGeneralʺ types exhibit minimal spatial heterogeneity, while 

ʺInitialʺ  types  fall  in  the middle. Notably, QTZ  and SBETA parameters  consistently demonstrate 

homogeneity, below  the parameter space  threshold  (0.03), across PSO and SCE schemes based on 

EKGE, EMO, MAES, and RMSES metrics. 

Table 2. Parameter spatial homogeneity for all metrics. 

Metrics  Vegetation (Hp, Hs) *  Soil (Hp, Hs) 
General (Hp, 

Hs) 
Initial (Hp, Hs) 

CCS  0,  0෨   0,  0෨   1,  0෨   0, 1 

EKGE  0, 0  1, 3  2, 2  4, 2 

EMO  0, 0  2, 2  2, 2  3, 2 

MAES  0, 0  1, 1  1, 1  2, 1 

NSES  0, 0  0, 0  0, 0  2, 0 

PKGE  0, 0  0, 0  0, 0  0, 0 

PMO  0,0  0, 0  0, 0  0, 0 

RMSES  0, 0  2, 1  1, 1  2, 0 

*Note that Hp and Hs represent for the parameter numbers with low site sensitivities (or homogeneity) of PSO 

and SCE, respectively. 

Regarding the counts of homogeneity parameters in PSO and SCE schemes, when considering 

the  disparities  among  metrics,  we  observe  the  following:  for  CCS,  the  counts  are  1  and  40, 

respectively; for EKGE, both schemes yield 7; for EMO, the counts are 7 and 6; for MAES, 4 and 3; for 

NSES,  2 and none; both PKGE  and PMO  register none; and  for RMSES,  the  counts are  5  and  2. 

Evidently,  there  exist  substantial  variations  in  the  homogeneity  or  heterogeneity  of  parameters 

among calibration schemes based on different metrics. Notably, CCS exhibits the lowest parameter 

heterogeneity, followed by EKGE, then EMO, and subsequently MAES and RMSES. NSES displays 

relatively poor parameter heterogeneity, whereas PKGE and PMO manifest  the highest degree of 

parameter heterogeneity. 

In addition, the inter quartile ranges (IQR) of various parameters and the entire parameter space 

of PSO and SCE contributed by different metrics are shown in Figure 5. For PSO, the maximum IQR, 

which has about 4.8 of the parameter SNP  in the “Vegetation” type, had the  largest uncertainties, 

while the EMO made the largest contribution. However, the IQR, which is about 1.2 of the SBETA 

parameter  in  the  “General”  type,  behaves  oppositely, while  EKGE, EMO  and RMSES make  the 

smallest contributions (Figure 5a). For SCE, the maximum IQR around 1.82 of the CZIL parameter in 

the  “General”  type  has  the  largest  uncertainties,  while  EMO  has  the  largest  contribution. 

Nevertheless,  the  IQR  that  is around 0.61 of  the parameter CSOIL  in  the “General”  type behaves 

conversely, while EKGE, EMO and RMSES make the smallest contributions (Figure 5b). In general, 

PSOs have achieved higher IQRs than SCEs on most metrics. And PSO and SCE achieved the lowest 

uncertainties of the parameters SBETA and CSOIL in the “General” type. 
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Figure 5. The different metrics’ parameter spatial uncertainties. (a) The stacked inter quartile ranges 

(IQR, colored) of different optimal parameters  for PSO. (b)  is  the same as  (a), but  for SCE.  (c) The 

boxplot of the IQR ensembles (or the IQR distributions; IQRD) of the optimal parameter space for 

various metrics, and their outlier numbers (d). 

The Inter quartile Range (IQR) distribution of the global optimal parameter space for the PSO 

schemes across various metrics exhibits a broader and more scattered range compared to that of the 

SCE (Figure 5c). For PSO, the median sizes of the IQR distributions (IQRD) within the global optimal 

parameter space, ranked from highest to lowest, are PKGE > PMO > NSES > CCS > EMO > EKGE > 

RMSES > MAES. In contrast, for SCE, the order is PMO > PKGE > EKGE > EMO > MAES > RMSES > 

CCS. Furthermore, for PSO, the number of outliers in the IQRD is highest for EKGE with 3, followed 

by EMO and CCS with 2, while the rest of the metrics have 0 outliers. For SCE, EKGE and RMSES 

share the highest number of outliers at 2, followed by EKGE and MAES with 1 outlier each, and the 

rest are 0  (Figure 5d). In summary, significant differences exist  in  the  IQRD of  the global optimal 

parameter spaces across different metrics, with SCE exhibiting  smaller  IQRD but  relatively more 

outliers. Notably, EKGE and EMO exhibit relatively large numbers of outliers in both PSO and SCE. 

Furthermore,  the PSO’s parameter spatial  IQRs are compared with SCE  in different  types  in 

Table 3, e.g., the parameter number with less uncertainties (PNL) and the outlier number reduction 

of parameters’ uncertainties (ONR)  in PSO when compared  to SCE. For  the  ʺVegetationʺ  type, all 

metrics are null except for the PNL value of EKGE, which is 2, while the ONR of all metrics is non‐

positive. For the ʺSoilʺ type, the PNL values are positive for all metrics except for CCS, NSES, and 

PKGE, which  are null. The ONR values  are positive  for EKGE, EMO, PMO,  and RMSES, while 

negative for the rest. Regarding the ʺGeneralʺ type, all metrics exhibit positive PNL values except for 

NSES, PKGE, and PMO, whose PNL values are null. The ONR values are positive for EKGE, EMO, 

MAES, and RMSES, and negative  for  the others.  In  the  ʺInitialʺ  type, only EKGE and EMO have 

positive PNL values, with the rest being null. The ONR values are positive for all metrics except for 

CCS, PKGE, and PMO, which are non‐positive. In summary, summing the PNL values across types, 

EKGE has the highest total (8), followed by EMO and RMSES (7), then MAES (5), with PMO and CCS 

having the lowest totals (1). PKGE has no PNL value. For the ONR values, EMO has the highest total 

(9), followed by EKGE (3), then RMSES (3), while PMO has the lowest (2). The rest of the metrics have 

negative ONR values. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.1085.v1

https://doi.org/10.20944/preprints202408.1085.v1


  14 

 

Table 3. Parameter spatial uncertainties comparison for all metrics. 

Metrics 
Vegetation 

(PNL, ONR) * 

Soil 

(PNL, ONR) * 

General 

(PNL, ONR) * 

Initial 

(PNL, ONR) * 

CCS  NA, ‐2  NA, ‐1  1, ‐2  NA, ‐1 

EKGE  2, ‐1  2, 2  2, 1  2, 1 

EMO  NA, ‐1  3, 3  3, 2  1, 5 

MAES  NA, ‐5  2, ‐1  3, 0  NA, 2 

NSES  NA, ‐5  NA, ‐1  NA, ‐2  NA, 2 

PKGE  NA, ‐1  NA, ‐2  NA, ‐2  NA, ‐4 

PMO  NA, 0  1, 3  NA, ‐1  NA, 0 

RMSES  NA, ‐3  4, 4  3, 1  NA, 1 

*Note that PNL represents for the parameter number with less uncertainties in PSO compared to SCE, where 

NA represents for none. While ONR represents for the outlier number reduction of parameters’ uncertainties in 

PSO compared to SCE. 

In  summary,  for  the SM‐ST  calibration of  the  same metric, SCE  consistently  achieves  lower 

parameter  uncertainty  than  PSO,  albeit  at  the  cost  of  relatively  higher  spatial  heterogeneity. 

Specifically, in terms of parameter uncertainty, MAES in PSO and CCS in SCE exhibit the smallest 

metrics. As for parameter spatial heterogeneity, EKGE and EMO in PSO yield the smallest metrics, 

while SCE solely displays the smallest EKGE. 

4.2.2. Effectiveness and Efficiency 

Figure 6 shows the different metrics’ fitness (i.e., the best position of one population, Pb) curves 

of calibration, the median convergency position, and the median converged Noah run numbers of 

PSO (C୔
୔, C୔

୒) and SCE (Cୗ
୔, Cୗ

୒) for all sites. For CCS, both PSO and SCE had both sharply increased 

before 3,000 Noah runs, and both converged to 1 but at around 79,475 and 66,663 runs respectively. 

For EKGE, PSO and SCE have both sharply increased before 10,000 Noah runs but converge to 0.56 

at 99,017 runs and 0.53 at 90,731 runs respectively. For EMO, PSO and SCE both decrease to 1 before 

8,000 Noah runs but converge to 1 at 99,297 runs and 1.08 at 82,709 runs respectively. For MAES, PSO 

and SCE both quickly decrease to the range of 0.7‐1.1 before 10,000 Noah runs but converge to 0.79 

at 99,765  runs and 0.81 at 94,795  runs  respectively. For NSES, PSO and SCE have both  instantly 

reaching 1 at 187 runs, indicating the most rapid convergence among all metrics. However, for PKGE 

and PMO, since volatile finesses (e.g., who vary within  ሺെ∞, 1ሿ  and  ሾ1,൅∞ሻ  respectively) are found 
for all sites in each generation, nonstrict solutions can be observed. For RMSES, PSO and SCE both 

sharply decrease to 1 before 5,000 Noah runs but converge to 0.97 at 99,391 runs and 0.98 at 94,029 

runs respectively.   

Generally, except PKGE and PMO, other metrics of PSO have achieved better effectiveness as 

indicated  their better  fitness values, but with  relatively worse  efficiency as  indicated  their  larger 

converged runs compared to those of SCE. The non solution performance for the metric PKGE and 

PMO  of  both  PSO  and  SCE  have  indicated  their  requirements  of more Noah  runs  in  achieving 

convergence, or the potential failure of the Paetro dominated  logic (i.e., that surface improvement 

likely improve the subsurface). For MAES, NSES, and RMSES, fitness curve of site C4 is found to be 

notably biased from (or worse than) that of other sites. Nevertheless, for all the metrics’ convergences, 

MAES has the largest range, and this could indicate the divergent convergence domain. 
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Figure 6. The different metrics’ impact on calibration effectiveness and efficiency.    Fitness curves of 

different sites (colored) against Noah runs for PSO (solid) and SCE (dashed). Except PKGE and PMO 

whose fitness were Pm, others were Pb. 

Figure 7 presents the success rate curves for calibration across various metrics. For CCS, PSO 

experiences a decline  from 70%  to 20% during  the  first 10,000 Noah  runs,  followed by a gradual 

decrease to near zero. In the case of EKGE, PSO initially shows a decline from 80% within the first 

5,000 Noah runs, subsequently exhibiting two distinct patterns: fluctuations around 40% and 20%, 

respectively. For EMO, PSO drops from 80% to nearly 0% within the initial 25,000 Noah runs, with 

some stations subsequently exhibiting strong  fluctuations between 0% and 80%. MAES  follows a 

similar  trend, with  PSO  declining  from  80%  to  near  0% within  the  first  15,000 Noah  runs,  and 

subsequent intense fluctuations between 0% and 80% at certain stations. For NSES, PSO gradually 

decreases from 80% to 20% within the first 35,000 Noah runs and remains stable thereafter. PKGE 

and PMO exhibit similar behavior, with PSO slowly declining from 80% to 20% within the first 20,000 

Noah runs and  fluctuating slightly around 20% thereafter. SCEʹs performance  in PKGE resembles 

that of CCS. In contrast, RMSES displays a fluctuating decline from 80% to 0% within the initial 20,000 

Noah  runs  for  PSO,  followed  by  drastic  fluctuations  between  20%  and  80%.  However,  SCE 
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consistently  demonstrates  a  rapid  initial  decrease  from  80%  to  20%  across  nearly  all  metrics, 

maintaining this level thereafter. 

 

Figure 7. Success rate curves of different sites  (colored) against Noah runs  for PSO  (top) and SCE 

(bottom). 

For all metrics, the search domain of SCE exhibits a consistent pattern, characterized by an L‐

shaped  thin  linear  region.  In  contrast, PSOʹs  search domain displays  significant  fluctuations  and 

notable variations across different metrics (e.g., EKGE, EMO, MAES, RMSES), albeit with an overall 

larger area than SCE. This suggests that for most metrics, PSO demonstrates stronger evolutionary 

capabilities compared to SCE, which primarily contributes to PSOʹs slightly slower convergence rate 

compared to SCE. 

Figure  8 presents  the  statistical performance of  the optimal objectives  across  all  stations  for 

various metrics. For CCS, both PSO and SCE exhibit a concentrated distribution near 1, with PSO 

displaying a tighter clustering and an outlier at 0.973. In the case of EKGE, PSO and SCE concentrate 

around 0.58 and 0.53, respectively, with PSO showing a more focused distribution and an outlier at 
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0.34.  For  EMO,  PSO  and  SCE  are  centered  near  1  and  1.1,  respectively, with  PSO  displaying  a 

relatively dispersed distribution and an outlier at 1.5. MAES values for PSO and SCE are centered 

around 0.79 and 0.81, respectively, demonstrating similar distributions. For NSES, PKGE, and PMO, 

both PSO  and  SCE have  concentrated distributions near  1, with NSES  exhibiting  a more  tightly 

clustered distribution  compared  to  the other  two metrics. Finally,  for RMSES, PSO  and  SCE  are 

centered around 0.9 and 1.1, respectively, with SCE displaying a more focused distribution, and both 

having outliers at around 2.4. 

 

Figure 8. The different metrics’ impact on optimal objective uncertainties against sites for PSO and 

SCE. 

It is evident that for the optimal solutions of PKGE and PMO, both PSO and SCE yield values of 

1, indicating the absence of optimal solutions or the need for more time to locate them. In contrast, 

numerical optimal solutions were achieved for other metrics. Furthermore, while PSO consistently 

outperformed  SCE  in  attaining  better  optimal  solutions  across  almost  all  metrics,  significant 

variations were observed in the enrichment levels of optimal solutions between PSO and SCE under 

different metrics. For instance, PSO surpassed SCE in CCS and EKGE, whereas SCE surpassed PSO 

in EMO, MAES, and RMSES. Notably, PSO and SCE exhibited similar performance in NSES. This 

underscores the disparate spatial variability characteristics of optimal solutions influenced by distinct 

metrics  (whereby  the enrichment  levels of optimal solutions at different sites  reflect  the extent of 

spatial variability). Additionally, notable outliers were identified in PSOʹs performance within CCS, 
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EKGE, and EMO metrics, while both PSO and SCE exhibited outliers  in  the RMSES metric. This 

indicates that for RMSES, unquantifiable factors within the spatial variability of optimal solutions are 

more pronounced, whereas for other metrics, PSOʹs performance relative to SCE is more significantly 

influenced. 

In summary, apart from PKGE and PMO, for other metrics, PSO typically exhibits better optimal 

solutions,  i.e.,  enhanced  effectiveness,  compared  to  SCE,  albeit  at  the  cost  of  relatively  lower 

efficiency. Notably, for CCS, EKGE, and RMSES, the optimal solutions obtained by PSO demonstrate 

higher kernel densities than those by SCE. Conversely, for EMO and MAES, the performance trend 

is reversed. 

4.2.3. Optimal Simulation 

Figure S2‐1 presents linear fitting (s, r²) between simulations and observations of  SM଴ହୡ୫  and 

ST଴ହୡ୫  under varying metrics. For  SM଴ହୡ୫, PSO s  (in descending order) are EMO, EKGE, RMSES, 

MAES, PMO, NSES, CCS, PKGE, with r² values also descending from EMO to PKGE. In contrast, SCE 

slope (s) are EMO, PMO, EKGE, MAES, PKGE, NSES, RMSES, CCS, with r² following a similar but 

slightly different descending order. For  ST଴ହୡ୫ʹs linear fitting (Figure S2‐1‐2), PSO s are EKGE, EMO, 

MAES, RMSES, CCS, NSES, PKGE, PMO, while r² values show a distinct ordering: PMO, followed 

closely by EMO/PKGE,  then MAES/RMSES/NSES, EKGE, and  finally CCS. SCE  fitting  for  ST଴ହୡ୫ 
exhibits a different ordering  for s  (EKGE, EMO, CCS, RMSES, MAES, NSES, PMO, PKGE) and r² 

values (PKGE, PMO, NSES, EKGE, EMO, RMSES, with CCS and MAES closely grouped). 

Generally,  for  ST଴ହୡ୫, except  for NSES, PKGE, and PMO metrics, both PSO and SCE exhibit 

negative s values, while the rest are positive (Table 4). This indicates that most linear relationships 

between  calibrated  simulations and observations are positively  correlated, which aligns with  the 

improvement objectives of this study. Specifically, for EMO and EKGE, the s values of PSO (SCE) in 

the  calibration of  SM଴ହୡ୫  and  ST଴ହୡ୫  are 0.96  (0.83) and 0.18  (0.23),  respectively,  showcasing  the 

optimal calibration performance (Figure 9). Furthermore, it is noteworthy that for  ST଴ହୡ୫, the highest 
r²  value  of  0.11  is  comparable  to  the  lowest  r²  value  observed  in  SM଴ହୡ୫   (PKGE),  implicitly 

suggesting a greater challenge in modeling  ST଴ହୡ୫. 

Table 4. Linear fits between SIM and OBS against sites for all metrics. 

Metrics  PSO SM (s, r2) *  SCE SM (s, r2)  PSO ST (s, r2)  SCE ST (s, r2) 

CCS  0.29, 0.11  0.03, 0.01  0, 0  0.1, 0.01 

EKGE  0.91, 0.9  0.73, 0.75  0.18, 0.03  0.23, 0.05 

EMO  0.96, 0.92  0.83, 0.84  0.14, 0.1  0.11, 0.04 

MAES  0.76, 0.6  0.44, 0.55  0.13, 0.05  0.06, 0.01 

NSES  0.57, 0.39  0.25, 0.2  ‐0.41, 0.05  ‐0.44, 0.08 

PKGE  0.19, 0.04  0.26, 0.11  ‐0.57, 0.1  ‐0.56, 0.11 

PMO  0.68, 0.31  0.74, 0.48  ‐0.63, 0.11  ‐0.51, 0.09 

RMSES  0.77, 0.57  0.16, 0.13  0.12, 0.05  0.09, 0.02 

*Note that s and r2 represent for the slope and determination coefficient, respectively. Bold numbers indicate 

the best performance among all metrics, while italics indicate a negative slope. 
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Figure 9. Different metrics’ best  linear  fits against  sites  for  (a)  SM଴ହୡ୫  and  (b)  ST଴ହୡ୫  during  the 
calibration period. CRT, PSO and SCE are plotted in black, red and blue respectively. 

The Gaussian fitting, i.e., center (frequency) as c(f) with units of mଷ ∙ mିଷ(1), of  E୓ିୗ  for  SM଴ହୡ୫ 

in Figure S2‐2‐1 reveals: CTR’s  E୓ିୗ  are widely distributed, peaking at ~0.15 (f=297). CCS, PSO, SCE 

errors  span widely around  ‐0.04, 0.11  (f≈350,  295). EKGEʹs PSO, SCE  errors narrowly  center  at 0 

(f≈1276, 608). EMOʹs PSO, SCE errors narrowly peak at 0, 0.01 (f≈1178, 700). MAESʹs PSO, SCE errors 

widen slightly at 0.01, 0.02 (f≈344, 416). NSESʹs PSO, SCE errors are wide at 0.05 (f≈274, 230). PKGEʹs 

PSO, SCE errors widely center at 0.08, 0.11 (f≈322, 325). PMOʹs PSO, SCE errors narrowly peak at 0.02, 

0.03  (f≈480, 444). RMSESʹs PSO, SCE errors narrowly center at  ‐0.02, 0 (f≈426, 296). Moreover, The 

Gaussian fitting, i.e., center (frequency) as c (f) with units of K (1), of OBS‐SIM for  ST଴ହୡ୫  (Figure S2‐
2‐2) shows: CTR errors have a wide bimodal dist. centered at ~7.1, ‐3.8 (f≈192, 134). CCS, PSO, SCE 

errors widely center at ~2.3, 1.1 (f≈216, 167). EKGEʹs PSO, SCE errors widely center at ~1.3, 2.5 (f≈200, 

203). EMOʹs PSO, SCE errors center at ~0.85, 1.23 (f≈170, 207). MAESʹs PSO, SCE errors center at ~‐

0.06, 0.88 (f≈200, 230). NSESʹs PSO, SCE errors widely center at ~5.86, 5.03 (f≈169, 213). PKGEʹs PSO, 

SCE errors widely center at ~4.91, 5.01 (f≈237, 152). PMOʹs PSO, SCE errors widely center at ~6.1, 5.19 

(f≈300, 224). RMSESʹs PSO, SCE errors center at ~0.16, 1.29 (f≈200, 206). 

In  summary,  for  E୓ିୗ   of  SM଴ହୡ୫ , EKGEʹs performance  in both PSO  and SCE  is  closest  to  a 

normal distribution, whereas for that of  ST଴ହୡ୫, MAES exhibits the closest resemblance to normality 

(Figure  10), with  EKGE  performing  relatively  poorly  (Table  5).  This  underscores  the  significant 

influence  of  metric  discrepancies  on  calibration  simulation  errors,  contingent  upon  distinct 

calibration  objectives.  Furthermore,  excessively  wide  peaks  with  low  frequencies  in  unimodal 

distributions  (e.g.,  CCS,  NSES,  PKGE,  and  PMO)  indicate  the  dispersed  fitting  distribution, 

potentially necessitating  the multimodal  (e.g., more  than  two peaks)  fitting. Conversely, bimodal 

distributions characterized by narrower peaks may call for a single‐peak fitting centered around the 

modes.   

Table 5. Gaussian fits of OBS‐SIM against sites for all metrics. 

Metrics  PSO SM (f, c) *  SCE SM (f, c)  PSO ST (f, c)  SCE ST (f, c) 

CCS  350, ‐0.04  295, 0.11  216, 2.13  167, 1.07 

EKGE  1276, 0  608, 0  142, 4.37  204, 2.48 

EMO  1178, 0  386, 0.01  170, 0.85  206, 1.23 

MAES  344, 0.01  416, 0.02  200, ‐0.06  230, 0.88 

NSES  274, 0.05  230, 0.05  169, 5.86  213, 5.03 
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PKGE  322, 0.08  325, 0.11  237, 4.91  152, 5.01 

PMO  480, 0.02  444, 0.03  300, 6.10  224, 5.19 

RMSES  426, ‐0.02  296, 0  200, 0.16  206, 1.29 

*Note that f and c represent for the maximum amplitude (i.e. frequency) and its center (i.e. location), respectively. 

Bold numbers indicate the best performance among all metrics. 

 

Figure 10. Different metrics’ best Gaussian fits of  E୓ିୗ  against sites for (a)  SM଴ହୡ୫  and (b)  ST଴ହୡ୫ 
during the calibration period. CRT, PSO and SCE are plotted in black, red and blue respectively. Also, 

the  two  typically  characterized  “amplitude  [peak  position,  peak width]”  in Gaussian  fitting  are 

displayed  together.  Note  that  two  amplitudes  with  one  same  peak  could  be  summed  to  one 

amplitude. 

Figure 11a depicts temporal  RMSEୗ  (mଷ ∙ mିଷ) variations for  SM଴ହୡ୫. CTRʹs  RMSEୗ  is generally 
largest, 0.15  (decreasing during July 5th and 10th rainfalls), with a slight upward  trend. For CCS, 

PSOʹs  RMSEୗ  0.15  increases slightly, while SCEʹs  RMSEୗ  fluctuates around 0.07. EKGE and EMO 

show PSO(SCE) RMSEs of 0.01(0.03) and 0.01(0.02), respectively, both trending downward. MAESʹs 

PSO/SCE  RMSEୗ  0.04, both declining. NSESʹs  RMSEୗ  around 0.07, up trending. PKGEʹs PSO(SCE) 
RMSEୗ   0.12(0.1), up  trending. PMOʹs PSO  RMSEୗ   decreases  from  0.1  to  0.05, SCEʹs  0.07,  slightly 
down. RMSESʹs PSO(SCE)  RMSEୗ  0.04(0.05), both declining. Moreover, Figure 11b  illustrates  the 

overall RMSES distribution for  SM଴ହୡ୫. Median  RMSEୗ  ranking from highest to lowest for PSO: CCS 

(0.13) > PKGE (0.12) > NSES (0.08) > PMO (0.07) > RMSES (0.039) > MAES (0.038) > EMO (0.018) > 

EKGE (0.017); for SCE: PKGE (0.1) > CCS (0.09) > NSES (0.085) > PMO (0.065) > RMSES (0.056) > MAES 

(0.039) > EKGE (0.03) > EMO (0.02). Notably, EKGE and EMO exhibit the lowest median  RMSEୗ  for 
PSO and SCE, respectively, whereas CCS and PKGE have the highest. 
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Figure 11. The different metrics’ impact on the optimal surface simulation. (a) The temporally varied 

and (b) the boxplot of spatial errors (RMSES) for  SM଴ହୡ୫. (c)~(d) are the same as (a)~(b) but showing 

the spatial correlation coefficients (CCS) for  SM଴ହୡ୫. (e)~(h) are the same as (a)~(d), but for  ST଴ହୡ୫, 
note that only the best metric performance is shown in (e) and (g) to avoid overlaps. 

Figure  11c  depicts  temporal  variations  in  spatial  correlation  coefficients  (CCୗ )  for  SM଴ହୡ୫ 

simulations. CTRʹs  CCୗ  significantly drops  Jul 5‐6  (0.5  to  ‐0.6),  fluctuating at ~0.2 otherwise. CCS: 

PSOʹs  CCୗ  stable at ‐0.5, SCE increases Jul 5 (‐0.4 to 0.5), fluctuating ‐0.2. EKGE: PSO 1, SCE 0.8. EMO: 

Both are ~1. MAES: PSO increases (0.2 to 1), SCE initially declines (0.4 to 0), then ~0.2. NSES: PSO 

~0.7, drops post‐Jul 10  to ~0.5; SCE ~0.2. PKGE: PSO ~0.45,  sharp drop  Jul 5  to ~‐0.4; SCE  ‐0.4  to 

unspecified, sharp drop, ~‐0.3. PMO: PSO 0.6, sharp drop Jul 6 to ‐0.5, rises to 0.2; SCE 0.8, drops to 

0, rises to 0.4. RMSES: PSO increases (0.5 to 0.8), stabilizes ~0.8 post‐Jul 4; SCE ~0.45, declines Jul 4‐6, 

rises to ~0.26. EMO and EKGE consistently outperform MAES for PSO and SCE in  SM଴ହୡ୫  CCୗ, with 

other metrics displaying varied trends. Moreover, Figure 11d illustrates the overall  CCୗ  distribution 
for  SM଴ହୡ୫. Median  CCୗ  ranking from highest to lowest for PSO: EMO > EKGE > MAES > RMSES > 

NSES > PMO > PKGE > CCS; for SCE: EKGE > EMO > MAES > PMO > PKGE > NSES > RMSES > CCS. 

Notably, EMO and EKGE exhibit the highest median  CCୗ  for PSO and SCE, respectively, whereas 

CCS have the lowest. 
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For  ST଴ହୡ୫, CTRʹs  RMSEୗ  shows a marked diurnal variation, averaging 8K fluctuations (Figure 

S2‐3‐1). Due  to  overlapping diurnal  error  ranges,  its performance  complexity  surpasses  SM଴ହୡ୫ . 

Notably, NSES,  PKGE,  PMO peak  RMSEୗ   >14K  (CTRʹs max),  indicating  inferiority  (Figure  11e). 

Conversely, MAES and RMSES peak at 8K, surpassing CTR. EKGE and EMO, excluding initial days, 

also peak near 8K, outperforming CTR. Median  RMSEୗ  (K) ranking from highest to lowest yields the 

following order for PSO: PMO (7.5) > PKGE (6) > NSES (5.8) > CCS (4) > EKGE (3.5) > MAES (2.8) > 

RMSES (2.5) > EMO (2.48); and for SCE: PKGE (6.1) > PMO (5.8) > NSES (5.6) > CCS (3.6) > EKGE (3.3) 

> MAES (2.9) > RMSES (2.7) > EMO (2.5) (Figure 11f). In both PSO and SCE, EMO exhibits the lowest 

median  RMSEୗ, whereas PMO and PKGE respectively possess the highest. 

Furthermore,  for  ST଴ହୡ୫, CTRʹs  CCୗ  varies  from  ‐0.5  to 0.7, showing distinct diurnal patterns 

(Figure 11g). Overlapping diurnal error ranges complicate performance compared to  SM଴ହୡ୫  (Figure 

S2‐3‐2). CCS and EKGEʹs max  CCୗ  < 0.7 (CTRʹs max), indicating inferiority. NSE, PKGE, PMO max 

CCୗ   rival  CTR,  but  min  CCୗ   >  ‐0.5,  outperforming  CTR.  EMO,  MAES,  RMSE  max  CCୗ   ~0.8, 
exceeding CTR. Hence,  for  ST଴ହୡ୫,  CCୗ  performance ranks EMO, MAES, RMSE best,  followed by 

NSE,  PKGE,  PMO;  CCS,  EKGE  perform  bad. Moreover,  Figure  11h  illustrates  the  overall  CCୗ 
distribution for  ST଴ହୡ୫. Median  CCୗ  ranking from highest to lowest for PSO: EMO > MAES > RMSES 

> NSES > PMO > PKGE > EKGE > CCS; for SCE: EMO > RMSES > CCS > EKGE > MAES > PKGE > 

PMO > NSES. Notably, EMO exhibit the highest median  CCୗ  for both PSO and SCE, whereas CCS 

and NSES have the lowest. 

In summary,  for  SM଴ହୡ୫, EKGE and EMO exhibit  the  lowest median  RMSEୗ  and  the highest 
median  CCୗ  for PSO and SCE, respectively, whereas CCS and PKGE have  the highest  RMSEୗ  for 
PSO and SCE, respectively, and CCS have the lowest  CCୗ  for both. For  ST଴ହୡ୫, in both PSO and SCE, 
EMO exhibits the lowest median  RMSEୗ, whereas PMO and PKGE respectively possess the highest; 

EMO exhibit the highest median  CCୗ  for both PSO and SCE, whereas CCS and NSES have the lowest. 

Generally, EKGE and EMO have the best  RMSEୗ  and  CCୗ  performances of  SM଴ହୡ୫  for PSO and SCE 

respectively, while EMO has the best  RMSEୗ  and  CCୗ  performances of  ST଴ହୡ୫    for both. 

4.3. Effects on Forecast 

4.3.1. Linear and Gaussian Fitting 

Figure S3‐1 illustrates disparities in linear fitting (s, r2) between SIM and OBS for  SM଴ହୡ୫  and 

ST଴ହୡ୫  across metrics. For  SM଴ହୡ୫ʹs  linear  fit (Figure S3‐1‐1), PSO s  (descending): EKGE > EMO > 

MAES > RMSES > NSES > PMO > CCS > PKGE; r² order matches. For SCE, s: EMO > EKGE > PMO > 

MAES > NSES > RMSES > CCS > PKGE; r² differs: EKGE > EMO > MAES > PMO > NSES > PKGE > 

RMSES > CCS. For  ST଴ହୡ୫ʹs fit (Figure S3‐1‐2), PSO s: MAES > RMSES > EMO ≥ EKGE/CCS > NSES > 

PKGE > PMO; r²: PMO > PKGE > EMO > RMSES ≥ MAES/NSES > EKGE > CCS. SCEʹs s: MAES/CCS 

> RMSES > EMO/EKGE > NSES > PMO > PKGE; r²: PKGE > RMSES/PMO > MAES/EMO > NSES > 

CCS/EKGE. 

Generally, in addition to NSES, PKGE, PMO in  ST଴ହୡ୫, and PKGE in  SM଴ହୡ୫, both PSO and SCE 

exhibit positive s values (Table 6). This indicates that most linear relationships between validation 

forecasts and observations are positively correlated, which aligns with the improvement objectives 

of this study. Specifically, for EKGE and MAES, the s values of PSO (SCE) in the validation of  SM଴ହୡ୫ 

and  ST଴ହୡ୫  are 0.98  (0.84) and 0.14  (0.15),  respectively, showcasing  the best  forecast performance 

(Figure 12). Furthermore, it is noteworthy that for  ST଴ହୡ୫, the highest r² value of 0.1 is much smaller 

than the highest r² value observed in  SM଴ହୡ୫  (EKGE), implicitly suggesting a greater challenge  in 

forecasting  ST଴ହୡ୫. 

Table 6. Linear fits between surface SIM and OBS against sites for all metrics. 

Metrics 
PSO SM (s, r2) 

* 
SCE SM (s, r2)  PSO ST (s, r2)  SCE ST (s, r2) 

CCS  ‐0.32, 0.08  ‐0.07, 0.02  0.04, 0  0.15, 0.04 

EKGE  0.98, 0.84  0.84, 0.84  0.04, 0.01  0.1, 0.04 
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EMO  0.96, 0.78  0.86, 0.82  0.09, 0.08  0.1, 0.07 

MAES  0.83, 0.58  0.42, 0.37  0.14, 0.07  0.15, 0.07 

NSES  0.75, 0.45  0.31, 0.27  ‐0.45, 0.07  ‐0.33, 0.05 

PKGE  ‐0.04, 0  ‐0.21, 0.14  ‐0.53, 0.1  ‐0.54, 0.1 

PMO  0.52, 0.30  0.46, 0.31  ‐0.58, 0.11  ‐0.46, 0.09 

RMSES  0.77, 0.56  0.16, 0.08  0.13, 0.08  0.14, 0.09 

*Note that s and r2 represent for the slope and determination coefficient, respectively. Bold numbers indicate the 

best performance among all metrics, while italics indicate a negative slope. 

 

Figure 12. Different metrics’ best  linear  fits against sites for  (a)  SM଴ହୡ୫  and (b)  ST଴ହୡ୫  during  the 
forecast period. CRT, PSO and SCE are plotted in black, red and blue respectively. 

The Gaussian  fitting  (c  (f))  of  E୓ିୗ   for  SM଴ହୡ୫   (Figure S3‐2‐1)  reveal: CTR  centered  at  0.19 

(f=272); CCS, PSO, SCE at 0.15, 0.07 (f=189, 225); EKGE, PSO, SCE narrowly at 0 (f=383, 363); EMO, 

PSO, SCE at 0 (f=416, 359); MAES, PSO, SCE at  ‐0.01, 0 (f=359, 284); NSES, PSO, SCE at 0.06, 0.05 

(f=343, 322); PKGE, PSO bimodal at 0.13, 0.04  (f=234, 220), SCE bimodal at 0.16, 0.06  (f=199, 365); 

PMO,  PSO,  SCE widely  at  0.01,  0.04  (f=367,  323);  RMSES,  PSO,  SCE  at  ‐0.02,  0.01  (f=293,  326). 

Similarly, for  ST଴ହୡ୫  (Figure S3‐2‐2): CTR bimodal at 7.28, ‐3.57 (f=211, 160); CCS, PSO, SCE widely 

at 3.2, ‐0.38 (f=187, 181); EKGE, PSO, SCE at ‐0.09, 3.39 (f=143, 189); EMO, PSO, SCE at ‐1.41, ‐0.98 

(f=175, 148); MAES, PSO, SCE at 0.49, 0.29 (f=181, 206); NSES, PSO, SCE widely at 5.81, 4.56 (f=204, 

210); PKGE, PSO, SCE widely at 4.9, 5.7 (f=214, 217); PMO, PSO, SCE widely at 6.17, 5.47 (f=221, 187); 

RMSES, PSO, SCE at 0.55, 0.32 (f=194, 198). 

Generally,  for  E୓ିୗ   of  SM଴ହୡ୫ , EMO’s  and EKGEʹs performances  in both PSO  and SCE  are 

closest to the normal distribution, whereas for that of  ST଴ହୡ୫, EKGE in PSO and MAES in SCE exhibit 

the closest resemblance to normality (Figure 13), with EKGE performing relatively poorly (Table 7). 

This underscores  the significant  influence of metric discrepancies on  forecast errors. Furthermore, 

excessively wide peaks with low frequencies in unimodal distributions (e.g., CCS, NSES, PKGE, and 

PMO) indicate the dispersed fitting distribution, potentially necessitating the multimodal (more than 

two peaks) fitting.   

Table 7. Gaussian fits of OBS‐SIM against sites for all metrics. 

Metrics  PSO SM (f, c) *  SCE SM (f, c)  PSO ST (f, c)  SCE ST (f, c) 

CCS  189, 0.15  225, 0.07  187, 3.2  181, ‐0.38 

EKGE  383, 0  363, 0  143, ‐0.09  189, 3.39 
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EMO  416, 0  359, 0  175, ‐1.41  148, ‐0.98 

MAES  359, ‐0.01  284, 0  181, 0.49  206, 0.29 

NSES  343, 0.06  322, 0.05  204, 5.81  210, 4.56 

PKGE  234, 0.13  365, 0.06  214, 4.9  217, 5.69 

PMO  367, 0.01  323, 0.04  221, 6.17  187, 5.47 

RMSES  293, ‐0.02  326, 0.01  194, 0.55  198, 0.32 

*Note that f and c represent for the maximum amplitude (i.e. frequency) and its center (i.e. location), respectively. 

Bold numbers indicate the best performance among all metrics. 

. 

Figure 13. Different metrics’ best Gaussian fits of  E୓ିୗ  against sites for (a)  SM଴ହୡ୫  and (b)  ST଴ହୡ୫ 
during the calibration period. CRT, PSO and SCE are plotted in black, red and blue respectively. Also, 

the  two  typically  characterized  “amplitude  [peak  position,  peak width]”  in Gaussian  fitting  are 

displayed  together.  Note  that  two  amplitudes  with  one  same  peak  could  be  summed  to  one 

amplitude. 

4.3.2. Spatial Difference and Similarity 

Figure  14a  depicts  the  temporal  RMSEୗ   (mଷ ∙ mିଷ )  variations  for  SM଴ହୡ୫ .  CTRʹs  RMSEୗ   is 
largest (~0.15), fluctuating with a dip on Jul 24. CCSʹs PSO RMSES ranges around 0.13, trending up, 

while SCEʹs remains stable at 0.1. EKGE’s and EMOʹs PSO/SCE  RMSEୗ  (~0.02 / 0.01) and (~0.02), both 
trends slightly up. MAESʹs  RMSEୗ  are ~0.04. NSESʹs hover at 0.07, declining slightly. PKGEʹs  RMSEୗ 
is ~0.12. PMOʹs decline  from ~0.07  to 0.05. RMSESʹs PSO/SCE  RMSEୗ  are ~0.04/0.06. Furthermore, 

Figure  14b  illustrates  the  overall  RMSEୗ   distribution  for  SM଴ହୡ୫ . Median  RMSEୗ   ranking  from 
highest  to  lowest  for  PSO,  CCS(0.12)  >  PKGE(0.11)  > NSES(0.07)  >  PMO(0.05)  > MAES(0.04)  > 

RMSES(0.036)  >  EMO(0.028)  >  EKGE(0.02);  for  SCE,  PKGE(0.11)  >  CCS(0.1)  >  NSES(0.07)  > 

RMSES(0.052) > PMO(0.05) > MAES(0.04) > EMO(0.02) > EKGE(0.019). Notably, EKGE has the lowest 

median  RMSEୗ  for both PSO and SCE, whereas CCS and PKGE have the highest, respectively. 
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Figure 14. The different metrics’ impact on the optimal surface simulation. (a) The temporally varied 

and (b) the boxplot of spatial errors (RMSEୗ) for  SM଴ହୡ୫. (c)~(d) are the same as (a)~(b) but showing 

the spatial correlation coefficients (CCୗ) for  SM଴ହୡ୫. (e)~(h) are the same as (a)~(d), but for  ST଴ହୡ୫, 
note that only the best metric performance is shown in (e) and (g) to avoid overlaps. 

Figure 14c shows temporal  CCୗ  variations for  SM଴ହୡ୫. CTRʹs  CCୗ  significantly drops from July 
20th to 21st (0.1 to ‐0.7), stable at ~0.2 otherwise. PSO and SCE  CCୗin CCS hover around ‐0.3. EKGEʹs 
PSO  CCୗ   remains  ~0.8, SCE  jitters  ~0.3. EMOʹs  CCୗ   ~1  for both methods. MAESʹs PSO  CCୗ   ~0.8, 
declining gradually; SCEʹs drops from 0.4 to 0 (July 5th), rises slightly to ~0.2. NSESʹs PSO  CCୗ  starts 
at 0.7, dropping to ~0.5 post‐July 10th; SCE jitters ~0.2. PKGEʹs PSO CCS ~0.45, sharply drops to ~‐0.4 

post‐July 5th; SCE initially jitters ~‐0.4, spikes, then jitters ~‐0.3. PMOʹs PSO CCS starts ~0.6, sharply 

drops to ~‐0.5 (July 6th), rises to ~0.2; SCE similar, starts ~0.8, drops to 0, rises to ~0.4. RMSESʹs PSO 

CCୗ  jitters, rises (0.5 to 0.8), stabilizing ~0.8 post‐July 4th; SCE starts ~0.45, drops to ~0 (July 4th‐6th), 
rises,  fluctuating ~0.26. For  SM଴ହୡ୫ʹs  CCୗ, PSO and SCE consistently rank EMO > EKGE > MAES; 

others  exhibit  unstable/inferior  performance.  Figure  14d depicts  the  overall  CCୗ   distribution  for 
SM଴ହୡ୫. Ranking metrics by the median  CCୗ, from highest to lowest for PSO: EKGE > EMO > MAES 

> RMSES > NSES > PMO > PKGE > CCS; for SCE: EKGE > EMO > MAES > PMO > NSES > RMSES > 

PKGE > CCS. Notably, EKGE has  the highest median  CCୗ  for both PSO and SCE, while CCS and 

PKGE have the lowest, respectively. 

Figure 14e displays temporal  RMSEୗ  variations for  ST଴ହୡ୫. CTRʹs  RMSEୗ  exhibits pronounced 
diurnal  fluctuations 10K.  Metric  performances  are  intricate  due  to  overlapping  diurnal  error 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.1085.v1

https://doi.org/10.20944/preprints202408.1085.v1


  26 

 

amplitudes (Figure S3‐3‐1). NSES, PKGE, PMO peak  RMSEୗ  > 15K (CTRʹs max), indicating inferior 

performance.  EMO,  MAES,  RMSES  max  RMSEୗ   <  7K,  superior  to  CTR.  CCS,  EKGE  extreme 

RMSEୗ  8K  (except  July  1‐2),  also outperform CTR. For  ST଴ହୡ୫ ,  RMSEୗ   hierarchically  show EMO, 

MAES, RMSES best, followed by CCS, EKGE, with NSES, PKGE, PMO worst. Moreover, Figure 14f 

shows the  RMSEୗ  distribution for  ST଴ହୡ୫, ranked by median  RMSEୗ. For PSO: PMO (7.5) > PKGE 

(6.9) > NSES (6.6) > CCS (4) > EKGE (3) > RMSES (2.9) > MAES (2.7) > EMO (2); for SCE: PKGE (7) > 

PMO (6.8) > NSES (6.4) > CCS (3.8) > EKGE (3.3) > MAES (2.7) > RMSES (2.5) > EMO (2.3). EMO has 

the lowest median  RMSEୗ  for both methods, whereas PMO and PKGE have the highest for PSO and 

SCE, respectively. 

Figure  14g  presents  temporal  CCୗ   variations  for  ST଴ହୡ୫ , with CTRʹs  CCୗ   displaying  strong 
diurnal  fluctuations  between  ‐0.7  and  0.7.  Overlapping  diurnal  error  amplitudes  complicate 

performance  compared  to  SM଴ହୡ୫   (Figure  S3‐3‐2). Notably,  EMO, MAES, RMSE metrics  exceed 

CTRʹs extremes, demonstrating superior performance. Moreover, Figure 14h depicts the overall CCS 

distribution for  ST଴ହୡ୫. Ranking metrics by the median CCS, from highest to lowest for PSO: EMO > 

RMSES > MAES > NSES > PMO > PKGE > CCS > EKGE; for SCE: RMSES > CCS > EMO > MAES > 

EKGE > NSES > PKGE > PMO. Notably, EMO and RMSES has the highest median  CCୗ  for PSO and 
SCE, respectively, while CCS and PMO have the lowest, respectively. 

In summary, for  SM଴ହୡ୫, EKGE has the lowest median  RMSEୗ  and the highest median  CCୗ  for 
both PSO and SCE, whereas CCS and PKGE behave oppositely, respectively. For ST05cm, EMO has 

the lowest median  RMSEୗ  for both methods, whereas PMO and PKGE have the highest for PSO and 

SCE,  respectively; EMO and RMSES has  the highest median  CCୗ  for PSO and SCE,  respectively, 
while CCS and PMO have the lowest, respectively. Generally, EKGE have the best  RMSEୗ  and  CCୗ 
performances of  SM଴ହୡ୫  for both PSO and SCE, while EMO and RMSES has  the best  RMSEୗ  and 
CCୗ  performances of  ST଴ହୡ୫    for PSO and SCE, respectively. 

4.3.3. Surface States Intercomparison   

Figure 15 presents Taylor Diagram plots of calibrated and CTR simulations of  SM଴ହୡ୫  during 

the forecast period, compared with observations and/or GLDAS data, across various metrics. For the 

comparison of  SM଴ହୡ୫  simulations with observations (Figure 15a), CTR exhibits a root mean square 

difference  (RMSD)  greater  than  0.02  mଷ ∙ mିଷ ,  surpassing  other  simulated metrics  and GLDAS. 

However, the correlation coefficient (CC) between CTR and observations is above 0.5, outperforming 

other  simulations and GLDAS  except  for EKGE and EMO metrics. Additionally, CTRʹs  standard 

deviation  ( STD )  reaches  approximately  0.03  mଷ ∙ mିଷ ,  significantly  higher  than  that  of  other 

simulated metrics and GLDAS. Thus, EKGE and EMO metrics, when applied in PSO and/or SCE, 

effectively improve the simulation of  SM଴ହୡ୫. In the comparison of  ST଴ହୡ୫ with observations (Figure 

15b),  CTR,  GLDAS,  and multiple  simulations  demonstrate  no  skill. Nevertheless,  like  SM଴ହୡ୫ , 

simulations using EKGE and EMO metrics consistently yield the lowest  RMSD  and  STD, as well as 

the highest  CC  among all evaluated metrics. 
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Figure 15. The different metrics’ impact on surface forecast. (a) and (b) The Taylor diagram against 

observations for  SM଴ହୡ୫  and  ST଴ହୡ୫  respectively, and the CTR and GLDAS are shown in cross and 

asterisk markers, while PSO and SCE are shown in circles and triangles respectively. (c) and (d) The 

Taylor  diagram  against GLDAS  for HFX  and  LH  respectively,  and  the CTR  are  shown  in  cross 

markers. 

Furthermore,  for  the comparison of sensible heat  flux  (HFX) with GLDAS  (Figure 15c), CTR 

displays higher  RMSD  and lower  CC  than other simulated metrics, albeit with a relatively low  STD. 
This suggests that while most other metricsʹ HFX simulations outperform CTR in terms of  RMSD  and 
CC, their STD values are relatively increased, with EKGE and EMO ranking top two in both PSO and 

SCE for  STD. In contrast, for the comparison of latent heat flux (LH) with GLDAS (Figure 15d), CTR 

exhibits lower RMSD and higher  CC  than other simulated metrics, but with a relatively high  STD. 
Notably, CTRʹs LH simulation surpasses other metrics in both  RMSD  and  CC. Specifically, EKGE and 
EMO rank top two for both  STD  and  RMSD  in both PSO and SCE, which is a notable contrast to the 

findings for HFX. 

In summary, compared with observations,  the  SM଴ହୡ୫  and  ST଴ହୡ୫  simulations of EKGE and 

EMO exhibit higher Taylor diagram skill (TDS) in both PSO and SCE, significantly outperforming 

CTR. In contrast, when compared with GLDAS reanalysis, the TDS of HFX simulations for all metrics 

in both PSO and SCE are superior to CTR, whereas the performance of LH simulations is the opposite. 

Evidently, the enhancement of surface SM and ST simulations often yields more divergent surface 

flux simulation results, indicating the high complexity of modeling surface states and fluxes in arid 

regions. 
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4.4. Configure and Benefit 

Figure 16 compares the parameter ranges of the ʺbest metric’s simulationsʺ between PSO and 

SCE,  alongside  the KGE  values  of  various metrics  for  surface  soil moisture  simulations  against 

observations. It is observable that in PSO, the optimal parameter range of EMO is larger than that of 

EKGE, whereas the opposite holds true for SCE, where EMOʹs optimal parameter range is smaller 

than EKGEʹs (Figure 16A). The KGE values of  SM଴ହୡ୫  from optimal simulations of different metrics 

indicate that in PSO, EKGE achieves the highest KGE value, whereas in SCE, EMO attains the peak 

(Figure 16a). For  ST଴ହୡ୫, however, EKGEʹs optimal simulation yields the highest KGE value in both 

PSO and SCE (Figure 16b). In terms of forecasted  SM଴ହୡ୫, EKGE consistently produces the highest 

KGE values in both PSO and SCE. Conversely, for  ST଴ହୡ୫, CCS achieves the highest KGE values in 
both PSO and SCE, with EKGE following closely. 

 

Figure 16. The best LSM parameters’ configuration (A), and the different metrics’ impact on the KGE 

indicators of surface simulation (B) in PSO and SCE. Among B, (a) and (b) represent the KGEs of the 

calibration and forecast periods respectively for  SM଴ହୡ୫, while (c) and (d) are the same as (a) and (b), 

but for  ST଴ହୡ୫. 

Figure 17 illustrates the changes in  RMSEୗ  reductions and  CCୗ  increases of the simulations for 

various metrics  and CTR during  the  calibration  and  validation periods.  For  SM଴ହୡ୫ , during  the 

calibration period, most metrics, except CCS, exhibit a reduction in  RMSEୗ  compared to CTR, with 

EMO and EKGE showing the most significant improvements (Figure 17a), which is also reflected in 

their highest  CCୗ  (Figure 17e). During the validation period, EKGE and EMO stand out among the 

metrics, excluding CCS and PKGE, in terms of  RMSEୗ  reduction (Figure 17b), again accompanied by 

the highest  CCୗ  (Figure 17e). For  ST଴ହୡ୫, during the calibration period,  RMSEୗ  reductions relative 
to CTR are observed for most metrics except PKGE, PMO, and NSES, with MAES, RMSES, and EMO 

demonstrating  the most  pronounced  improvements  (Figure  17c), which  also  correspond  to  the 

highest  CCୗ  (Figure 17g). Similarly, during  the validation period,  RMSEୗ  reductions are observed 
for most metrics except PKGE, PMO, and NSES, with MAES, RMSES, and EMO continuing to show 

the most significant improvements (Figure 17d), accompanied by the highest  CCୗ  (Figure 17h). 
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Figure  17. The different metrics’  impact on  the LSM’s  spatial difference  reduction  and  similarity 

increment. (a) Time varied  RMSEୗ  reduction (PSO, solid; SCE, dotted) compared to CTR (left) and 

the box‐plotted  RMSEୗ  reduction during the calibration period for  SM଴ହୡ୫, (b) is same to (a), but for 

the validation period. (c) and (d) are the same as (a) and (b), but for  ST଴ହୡ୫. (e)~(h) are the same to 

(a)~(d), but for the  CCୗ  increments when compared to CTR. 

In summary, the parameter uncertainty range of EMO is slightly smaller than that of EKGE in 

both PSO and SCE, but  the  two metrics exhibit a  trade‐off  in  terms of  RMSEୗ  reduction and  CCୗ 
increase  during  the  forecast  and  calibration  periods  for  SM଴ହୡ୫   and  ST଴ହୡ୫ .  Specifically,  EKGE 
shows  the greatest  RMSEୗ  reduction  for both calibration and  forecast periods of  SM଴ହୡ୫, and  the 

largest  CCୗ  increase during the forecast period of  SM଴ହୡ୫. Notably, EMO demonstrates the largest 

RMSEୗ  reduction and  CCୗ  increase for both forecast and calibration of  ST଴ହୡ୫, while EKGE performs 

poorest. This is notably different from the clear advantage of EKGE observed in our previous studies 

[9], which can be attributed to the use of four layers in all objective metrics in this study. This suggests 

that the EKGE metric with different vertical dimensions (number of layers) can significantly impact 

the improvement capability of  ST଴ହୡ୫  forecasts. Additionally, the failure of PKGE and PMO during 

the  forecast  and  calibration of  ST଴ହୡ୫  (e.g.,  even  inferior  to CTR)  indicates  the  ineffectiveness of 
using  surface‐layer‐dominated  Pareto  objectives  and  highlights  the  limitations  of  adjusting 

subsurface simulations through improvements in surface simulations within Noah LSM. 

5. Discussion 

Though a comparative analysis of eight kinds of the introduced multi‐objective calibration has 

effectively portrayed the multifaceted impacts of metric differences on the joint SM—ST calibration 

under the month—long calibration—prediction framework, offering  insights for ST modeling and 

prediction  in  semi‐arid  regions,  this  study  is nevertheless  subject  to  limitations:  1)  the  imperfect 

datasets such as the unavailability of    the site scale forcing data [35,71], which may lay certain spatial 

effects on the simulations; 2) the absence of solutions for calibration schemes based on the dominant 

Pareto metrics (e.g., PKGE and PMO) (Figure 6), which might indicate a need for extended search 

time or fewer physical constraints. 
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Significant heterogeneities in optimal parameters are observed across different objective metrics 

(Figure S1‐1 and Table 2), while within the same metric, the heterogeneities are relatively closer across 

different algorithms (e.g., PSO and SCE),  indicating that the parameter heterogeneities are  largely 

determined  by  the  choice of metrics  rather  than  the  algorithms  themselves. Furthermore,  for  all 

metrics, the uncertainty of optimal parameters associated with PSO is higher than that of SCE (Figure 

5), consistent with our previous findings [9]. Additionally, the ʺVegetationʺ type exhibits a general 

pattern of null values (e.g., NA) in PNL and non‐positive values in ONR compared to other types 

(Table  3),  suggesting  higher  relative  uncertainty  and  more  unexplainable  factors  within  the 

ʺVegetationʺ  type  parameters.  In  particular,  the EKGE metric  comprehensively  performs  best  in 

reducing spatial heterogeneities and uncertainties in LSM parameters compared to other metrics. 

Moreover, significant disparities exist in the fitness curves of identical algorithms with different 

metrics, whereas the differences are relatively minor in the fitness curves of distinct algorithms with 

the same metric (Figure 6), indicating that metric variations exert a more profound influence on the 

convergence  efficiency  of  calibration  than  the  algorithm  itself.  Notably,  the  rapid  convergence 

observed in CCS and NSES, as well as the non‐convergence in PKGE and PMO,  likely signify the 

presence  of  locality  and  sub‐optimality  in  the numerical  solutions  [50]. Furthermore,  substantial 

variations in success rates across different metrics are evident in PSO, whereas minimal changes are 

observed  in  SCE  (Figure  7),  suggesting  that  the  evolutionary  capability  of  the PSO  algorithm  is 

constrained by metric differences. Analogous to convergence efficiency, the degree of enrichment in 

numerical  solutions  also  exhibits  greater  disparities  between  identical  algorithms with  different 

metrics than between distinct algorithms with the same metric (Figure 8), highlighting that metric 

variations have  a more profound  impact on  the validity of numerical  solutions  compared  to  the 

algorithm itself. 

There  are  considerable  discrepancies  among  different  metrics  in  addressing  the  spatial 

complexity of land surface modeling (e.g., fitting, errors, and similarities of land surface states during 

calibration and forecasting), and they are sensitive to algorithmic variations (Section 4.3). Specifically, 

the EKGE metric and the EMO metric exhibit the best overall performance for  SM଴ହୡ୫  and  ST଴ହୡ୫, 
respectively  (Figure 9‐14). However,  the EKGE metricʹs performance  for  ST଴ହୡ୫  is  inferior  to our 
previous study [9], which can be attributed to the consideration of subsurface soil in the SM‐ST target 

dimension,  also  demonstrating  significant  vertical  variability  in  regional  land  surface modeling 

targets [36,49]. Although the EMO metric is not the overall best for  SM଴ହୡ୫, its relatively balanced 

performance with no notable weaknesses can mitigate this issue to some extent (Figure 16‐17). 

Overall, the selection of calibration objectives must be carefully considered due to the profound 

impact of metric differences on the spatial heterogeneity of parameters in calibration, the efficiency 

and  effectiveness  of  calibration,  and  the  spatial  complexity  of  surface  conditions. Especially,  the 

establishment of an automated soil observation network at regional stations, with the entire SM—ST 

sates  serving as  the  joint calibration objective,  can enhance operational  land surface applications. 

Considering the less restrictive nature of EMO that combine multiple metrics in various applications, 

the benefits are relatively more robust. Future research should strengthen the regional application of 

EMO  to  improve  the  representation  of  surface  characteristics  in  regional  weather  and  climate 

numerical forecasting. 

6. Conclusions 

The  surface  conditions  are  crucial  for both  regional hydrology  and weather. Using  ITPCAS 

dataset from April 1 to July 31, 2014, the present study investigates the performance of various multi‐

objective  metrics  that  combined  with  the  multi‐parameter  tables  as  varied  criteria  of  GSA  on 

enhancing  the Noah LSM calibration and  forecasting. Comprehensive comparisons are conducted 

among these enhancements such as the optimal land parameters, objectives, and simulations, and the 

objective‐informed forecasts that brought by these different metrics, to identify the effect of metric’s 

diversity on SM‐ST calibration and surface forecast. Results have shown that: 

  The case study presented herein can be succinctly characterized as a configuration‐forecasting 

problem.  Initially,  in  terms of model  configuration,  the  forcing manifestations  encompass  locally 
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elevated surface temperatures (>5°C), low relative humidity (<1%), feeble wind speeds (<5m s‐1), a 

shift in wind direction from south to north, low atmospheric pressure (586hPa), and minor hourly 

rainfall  intensities  (<5mm  h‐1).  Subsequently, within  the  default model  parameter  configuration, 

significant spatial disparities emerge in the parameter space due to the static parameters being set as 

the globally optimal defaults, while the initial parameters are derived from forecasts spanning the 

preceding three months. The surface forecasting challenge manifests in the form of consistent  SM଴ହୡ୫ 

simulations but poor  ST଴ହୡ୫  simulations. Considering  the variations  in default model parameters 

across  the  calibration and validation  (or  forecast) periods,  these periods are analyzed  separately. 

Specifically, during the calibration and forecasting periods, the slope (s) and goodness of fit (r²) for 

the  SM଴ହୡ୫   simulations  under  the  default  parameter  configuration  are  0.22/0.14  and  0.15/0.05, 

respectively, with Gaussian fits of their errors exhibiting positive skew distributions centered at 0.16 

and 0.13 m³.m‐³. In contrast, the s/r² values for the ST05cm simulations are ‐0.48/0.17 and ‐0.4/0.15, 

with their errors displaying broader bi‐modal distributions. 

Firstly,  for  the optimal parameters of SM‐ST calibration of  the same metric, SCE consistently 

achieves  lower  parameter  uncertainty  than  PSO,  albeit  at  the  cost  of  relatively  higher  spatial 

heterogeneity; specifically, in terms of parameter uncertainty, MAES in PSO and CCS in SCE exhibit 

the smallest; as for parameter spatial heterogeneity, EKGE and EMO in PSO yield the smallest, while 

EKGE  in  SCE  displays  smallest. Moreover,  apart  from  PKGE  and  PMO,  for  other metrics,  PSO 

typically exhibits better optimal solutions, i.e., enhanced effectiveness, compared to SCE, albeit at the 

cost  of  relatively  lower  efficiency;  notably,  for  CCS,  EKGE,  and  RMSES,  the  optimal  solutions 

obtained by PSO demonstrate higher kernel densities than those by SCE; conversely, for EMO and 

MAES, the performance trend is reversed. Furthermore,    EMO’s and EKGE’s    PSO (SCE) calibration 

of  SM଴ହୡ୫  and  ST଴ହୡ୫ with the maximum upward slope as 0.96 (0.83) and 0.18 (0.23), respectively, 

showcase the optimal linear fitting (Figure 9); for  E୓ିୗ  of  SM଴ହୡ୫, EMO’s and EKGEʹs performances 

in both PSO and SCE are closest to the normal distribution, whereas for that of  ST଴ହୡ୫, EKGE in PSO 
and MAES in SCE exhibit the closest resemblance to normality (Figure 13); EKGE and EMO have the 

best  RMSEୗ  and  CCୗ  performances of  SM଴ହୡ୫  for PSO and SCE  respectively, while EMO has  the 

best  RMSEୗ  and  CCୗ  performances of  ST଴ହୡ୫    for both. 
EKGE’s and MAES’s PSO (SCE)  SM଴ହୡ୫  and  ST଴ହୡ୫  forecasts with the maximum upward slope 

as 0.98 (0.84) and 0.14 (0.15), respectively, showcase the best linear fitting (Figure 12).    For  E୓ିୗ  of 
SM଴ହୡ୫, EMO’s and EKGEʹs performances in both PSO and SCE are closest to the normal distribution, 

whereas  for  that of  ST଴ହୡ୫, EKGE  (in PSO) and MAES  (in SCE) exhibit  the closest resemblance to 

normality (Figure 13). EKGE have the best  RMSEୗ  and  CCୗ  performances of  SM଴ହୡ୫  for both PSO 

and SCE, while EMO and RMSES has the best  RMSEୗ  and  CCୗ  performances of  ST଴ହୡ୫  for PSO and 
SCE, respectively. Furthermore, compared with observations, the  SM଴ହୡ୫  and  ST଴ହୡ୫  simulations of 

EKGE  and  EMO  exhibit  higher  Taylor  diagram  skill  (TDS)  in  both  PSO  and  SCE,  significantly 

outperforming  CTR.  In  contrast,  when  compared  with  GLDAS  reanalysis,  the  TDS  of  HFX 

simulations for all metrics in both PSO and SCE are superior to CTR, whereas the performance of LH 

simulations is the opposite. 

The parameter uncertainty range of EMO is slightly smaller than that of EKGE in both PSO and 

SCE, but the two metrics exhibit a trade‐off in terms of  RMSEୗ  reduction and  CCୗ  increase during 
the forecast and calibration periods for  SM଴ହୡ୫  and  ST଴ହୡ୫. However, due to the failure of vertical 

dimension  expansion,  EKGE  performs  poor  in  ST଴ହୡ୫   simulation  improvement.  Evently,  EMO 

showcases  the  greatest  benefit  in  surface  forecast  improvement  among  all metrics  and with  the 

hopeful low parameter uncertainties, which shows the most promising application performance. 

Specifically, in the SM‐ST calibration of Noah LSM, for optimal parameters, MAES (in PSO) and 

CCS (in SCE) exhibit the lowest levels of uncertainty; EKGE/EMO (in PSO) and EKGE (in SCE) yield 

the  smallest  spatial  heterogeneity,  while  other  metrics  demonstrate  nearly  irregular  or  non‐

discriminatory patterns. For optimal  solutions,  apart  from Pareto dominance‐based metrics  (e.g., 

PKGE and PMO), other metrics do not alter the generality of GSA algorithms (such as effectiveness 

and convergence domain). Notably, although CCS and NSES can accelerate GSA convergence, their 

impacts on model calibration and prediction remain highly uncertain or even negative. Furthermore, 
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regarding  optimal modeling performance  for  calibration  and  forecast  compared  to observations, 

substantial variations exist among different metrics, among  them, EMO and EKGE yield  the best 

SM଴ହୡ୫  modeling  abilities,  while  EKGE  and MAES  exhibit  the  best  ST଴ହୡ୫  modeling  abilities, 

respectively.  In  terms  of  observation‐simulation  error  fitting,  EMO  and  EKGE  in  SM଴ହୡ୫   both 

perform  optimally, while  EKGE  (in  PSO)  and MAES  (in  SCE)  in  ST଴ହୡ୫   demonstrate  the  best 

performance. For optimal spatial error and similarity performance in calibration and forecast periods, 

EKGE’s  SM଴ହୡ୫  performs best, while EMO’s  ST଴ହୡ୫  excels. 
Overall, the metrics, apart from their impact on GSA itself (e.g., convergence), could significantly 

influence the performances (including parameters, numerical solutions, and simulations) in SM‐ST 

calibration and prediction. Furthermore, the vertical dimensionality of the objective metrics in this 

study  notably  affects  the modeling  of  ST଴ହୡ୫ ,  indicating  that  the  improvement  of  surface  states 

through metrics based on subsurface soil conditions is not absolute. Additionally, since the optimal 

performance  of  different metrics  in  individual  or  joint modeling  of  SM଴ହୡ୫   and  ST଴ହୡ୫   is  not 
entirely consistent, the selection criteria for metrics in GSA applications are not unique. Specifically, 

EMO outperforms others in calibrating and predicting the surface layer states. These findings could 

enhance  our  understanding  of  the  spatial  complexity  of  parameters  and  simulations  in  surface 

forecasting in semi‐arid regions, thereby facilitating the improvement of regional surface forecasting. 
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