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Abstract: The high spatial complexities of soil temperature modelling over semiarid land have challenged the
calibration— predication framework, whose composited objective lacks comprehensive evaluation. Therefore,
this study, based on the Noah land surface model and its full parameter table, utilizes two global searching
algorithms and eight kinds of objective with dimensional —varied metrics, combined with dense site soil
moisture and temperature observations of central Tibet, to explore different metrics’ performances on the
spatial heterogeneity and uncertainty of regional land surface parameters, calibration efficiency and
effectiveness, as well as spatiotemporal complexities in surface forecasting. Results have shown that metrics’
diversity has shown greater influence on the calibration—predication framework than the global searching
algorithms themselves. Besides being significantly better than other metrics, the enhanced multi objective
metric (EMO) and the enhanced Kling-Gupta efficiency (EKGE) have their own advantages and disadvantages
in simulations and parameters respectively. Especially, EMO that composited with four metrics as correlated
coefficient, root mean square error, mean absolute error, and Nash-Sutcliffe efficiency, has shown relatively
balanced performance in surface forecasting when compared to EKGE. In general, the calibration—predication
framework that benefited from EMO could greatly reduce the spatial complexities in soil temperature
modelling of the semiarid land.

Keywords: metrics diversity; Kling-Gupta efficiency; soil temperature modelling; spatial
complexity; land surface parameters

1. Introduction

Soil moisture (SM) and soil temperature (ST) are crucial variables modulating land-atmosphere
fluxes [1-4]. However, due to the complexity of ST modelling over semi-arid regions, the ST
simulations directly produced by land surface model (LSM) exhibit spatiotemporal deficiencies,
posing challenges in their regional weather and climate applications [5,6]. Research efforts in
improving ST simulations have suggested that the manually corrected high-sensitivity land
parameters could benefit the greater scale ST modeling physics [7,8], and the auto-calibrated LSM’s
parameter table could benefit the joint SM-ST modeling configuration [9]. Given the great challenges
in solving the highly non-linearity in joint SM-ST modeling, e.g., the high-dimensional land
parameters and nonlinear physics, the composited objectives evaluating the distance between
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simulations and observations is proposed to enhance calibration performance (e.g., Kling-Gupta
efficiency) [10], whose various internal multi-metrics’ credits need more endeavor to meet with a
robust real-world application [11,12]. Therefore, evaluating the effects of the objective metrics’
diversity on calibration performance in solving the spatial complexities of surface simulations is of
great significance for improving ST modeling and forecasting over semiarid land.

The LSM parameters optimization or identification has been evolving for decades with the
regional application of auto-calibration techniques, primarily achieved by utilizing global search
algorithms (GSA, e.g., particle swarm optimization and shuffled complex evolution; PSO [13-18] and
SCE [19-22]) to seek optima against specific model objective. As LSM parameter number usually
decreases GSA’ efficiency and effectiveness, especially in high-dimensional cases, early research
advocated for dimensionality reduction through generalized land parameter sensitivity analysis,
such as focusing on reducing insensitive parameters for specific objectives, based on land surface
parameter categorization (e.g., soil, vegetation, general, and initial types) to enhance calibration
optima [23-25]. Moreover, given the intensifying diversity of land surface model applications (e.g.,
runoff, fluxes), globally applicable land surface parameter estimation has garnered great attention
[26-29], but this has been challenged by the largely varied sensitivities of the distinguished LSM
parameters in arid and semi-arid land (ASAL) [30,31].

The well-known Noah LSM though has been widely employed in finer numerical studies [32],
but faces increasingly prominent issues related to the representativeness of parameters in complex
ASAL applications, such as varying sensitivities of vegetation and general parameters to thermal flux
respectively [25,33,34]. This poses continuous challenges for refined land surface applications in
Tibet, a region with diverse climatic zones, e.g., LSM parameter diverse advantages in different
regions of a similar surface [18,28,29]. Despite the establishment of a refined SM-ST observation
network under a semiarid climate over central east Tibet (i.e., northwest Naqu) [35], which features
grassland as the primary land cover and clay as the dominant soil texture, more comprehensive
calibration objective against the LSM parameter uncertainties reduction and surface enhancement is
still required for the robust ST modeling [9,36-38].

In fact, with the development of land remote sensing, given the diversity of GSA’ strategies and
application objectives (such as SM, ST, runoff, and fluxes), the objective metric designs of auto-
calibration have greatly developed to enhance LSM modelling performances. For instance, LSM
calibration using multi-source remote sensing data, the multi-objective design concentrates on the
comprehensive inversion characteristics of remote sensing SM and/or ST observations are essential
[39-41]. Similarly, in calibrating applications aimed at improving the spatial accuracy of surface state
predictions, a multi-objective design that considers horizontal variations [42-45] and/or vertical
stratification [46-59] of states and observations is crucial. Generally, the multi-objective metrics can,
to a certain extent, address the issues of observational data fusion and multi-state complex error
measurement in specific calibration applications, emphasizing the enhanced role of spatial
dimensions of single or multiple land surface state errors as holistic objectives.

Moreover, as the inherent scale uncertainties of land surface state (e.g., the distance between
simulation and observation could fall into the non-Euclidean space) lead to challenges in assessing
and ranking LSM’ performances in high-dimensional searching space, the holistic objectives with
differentiated metrics have been widely developed to simplify and enhance the calibration [50-52].
And they can be primarily categorized into flexible (e.g., Pareto front [53-56], and dominated Pareto
[57-59]) and deterministic approaches. The Pareto front adjusts the cumulative distribution of metrics
based on external algorithm storage and aims at general LSM modelling with globally applicable
parameters, which can be an expensive evaluator that independent from GSA. While within the
GSA’s evaluator, the dominated Pareto compares relationships among metrics and the deterministic
approach combines various metrics, and then aims at determining the optimally combined solution
of various simulations.

However, though metrics offer the deterministic reference for estimating diversity of model
performances, research indicates that the application of computational methods employed by these
metrics often exhibits blindness against same datasets. For instance, integrated metrics such as Nash—
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Sutcliffe efficiency and Kling—Gupta efficiency can be utilized for algorithm comparison, yet for
actual model evaluation, direct metrics are still necessary to indicate [60-63]. The optimal
applicability of direct metrics like root mean square error and mean absolute error in describing data
is premised on their distributions conforming to normal and Laplacian distributions, respectively
[64,65]. Furthermore, correlated coefficient (CC) is susceptible to the monotonicity and nonlinearity
of two types of data [66,67]. Consequently, the performance of these metrics, when combined across
different dimensions, often necessitates a comprehensive evaluation of their calibration suitability
tailored to varied spatiotemporal requirements of LSM simulations [68,69].

Overall, due to the high short-term surface simulation biases and the high dimensionality of
parameter space of Noah LSM, there is a lack of comparisons for the multi-objective metric methods
targeted at SM-ST joint calibration to validate their ability in reducing spatial complexities of regional
land simulations over ASAL. Therefore, to fill this gap, this study, based on the Noah LSM and its
full parameter table, utilizes the PSO/SCE method and various SM-ST objective metrics, combined
with intensive regional soil site observations, to explore the impacts of metric objective differences
on the spatial heterogeneity and uncertainty of regional land surface parameters, calibration
efficiency and effectiveness, as well as temporal and spatial errors in surface forecasting. And
suggestions are provided for the regional ST modeling configuration, aiming to improve medium-
range ST forecasting of semi-arid regions.

2. Methods
2.1. Calibration Schemes
2.1.1. Evolution Algorithms

Group and individual social behaviors are incorporated into the core PSO algorithm process
[13-18]. The algorithm first randomly selects the scaled (or normalized) parameters (x) to generate
the initial population including the individual position and the speed of position change, i.e.,
(x2,v?),i € (1,..,np), and further obtain the local and global optimal position (P and gp) through
evaluating and sorting, where the superscript represents the time slice (Figure 1). Then proceed
with following steps repeatedly till the stop criteria is met. Comparing individuals’ current and
previous evaluation values to obtain the current local optima (Pf); then sorting local optima to find
the current global optima (g}); each particle’s speed and position are updated using vi*! = [wv{ +
i1 (Ph; = Xi) + €2r2(gh — xD] X Vv X [(r3 = v + 1] + ¢3v, and  x{*' = x{ + v{*" respectively,
where v, and v, equal to 0.5 and 0.15, r; and r, equal to 0.5 and 0.15, w equal to 0.9, ¢;, c,, and
c3 equal to 2.0, 2.0, and 10-7 [9]. Note that except np, all the other parameters that can affect the
generality of PSO were vaguely related to the dimension of the parameter space.
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Algorithm 1: Particle Swarm Optimization

n — parameter number, np — population size, x;,; — x' initial value, x,, . — X’ up limit,
Xmin — X low limit, ie — maximum evaluation count, f — evaluation function

¢, — particle coef ficient, c, — population coef ficient, c; — random coef ficient,

w — inertia weight, v,, — maximum limit of velocity, v, — velocity of random searching

Input

Output gf, — the optimum position (solution) found so far

1: do i=lnp
x? « arandom vector of scaled x;,; within [0,1]"%;
2: v «— arandom vector of scaled x;,, within [0,1]";
Py — x;
3:end do
4 g8 = xf(x?) = min({(f PP, i €(1,2,...,p} k €{1,2,...,1}
5:do t=lie
6: do i=Lnp
7 1, T2,73 < three independent vectors randomly generated from [0,1]";
8: vith = i + e (Ph, — %) + c2ra(gh — X)) x Vnvm x [(r3 — Dr + 1] + 650y
9: xt = x4 it
10: iff ) < fi;") then
11: f@h) < Fd;
12: end if
13:  end
14: g, = x| () = min(f )Y, i € {12,...,mp} k €{1,2,...,n}
15: end do

Algorithm 2: Shuffled Complex Evolution
n — parameter number,nc — complex size,m — complex’s member size, x;,; — X' initial value,
Input X0, — X" up Limit, X3, — X’ low limit, ie — maximum evaluation count, f — evaluation function
q — complex evolving number, a — inner iteration number, § — outter iteration number

Output gl — the optimum position (solution) found so far
L: Initilize {x}, i € {1,...,nc x m}, Y «— arandom vector of scaled x,, within [0,1]"
2: Sort D® — (XA < f(x3) <...,i €{1,...,ncxm}, gd =D°(i=1)
3:do t=lie
4 Construct complex ¢’ = {x};, f(x;)},j € {1,...,nc} k €{1,...,m}

5 do j=l,nc
6: dob=1
SubcomplexB® = CI{p1}0,ang = {(Ug, V1)), Pi = %,k € {1,...,m} ,Vyqnq < random vector,
7 k €{1,...,q}. Location index setL; = {L € [(j — )m + 1, jm]|(ug, vr) = (21, f(x1))}
8: doa=1,a
9 gravity center g = ﬁzg;} Uy reflection: v = 29 — Ug symmetric point of u about g
10: if r € [0,1], mutation r
11: iff(r) < f(uy) then
12: contruction: ¢ = g+2£
13: if f(c) < f(ug), mutation c
14: end if
15: Ug < ¢
16: end do
17: Bb « pb+1
18: end do
19: et
20: enddo
21:  Dle DMl gl =D'(I=1)
22: end do

Figure 1. The pseudo code of the algorithms used in this study.

Community and induvial social behaviors are incorporated into the core SCE algorithm process
[19-22]. The algorithm first randomly selects the scaled (or normalized) parameters (x) to generate
the initial population, then further obtain initial local and global optima (D° and gj) through
evaluating and sorting with marked orders. Then proceed with following steps repeatedly till the
stop criteria is met. Evaluating and marking the individuals to reorganize the original population
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into nc communities (each community has m points) ; through complex competitive evaluation
2x(m+1-k)
——,k=1
mX(m+1)
determine the previous generation, and the new individuals from each community are mixed to form

(CCE) of each point where the triangular probability distribution P,= , ., M, to

anew population; then reorder the individuals to form nc new communities and obtain the current
local and global optima (D! and gf) (Figure 1). Also, nc and m equal to 2 and 2n+ 1, while the
outer cycling number (ne), the internal and external iteration number of CCE (a and ) equal to n +
1, nc,and m, respectively. Note that except o and B, all five parameters that can affect the generality
of SCE were only related to the dimension of the parameter space.

Note that x is scaled with equation as 22— for both PSO and SCE. The totals individual

number (nc X m) of SCE and total particle number (np) of PSO both equal to 2(2n + 1). And for both
SCE and PSO, the GSA stops when the evaluation contour (ie) is greater than 105 Noah runs [9]. The
equitable population size and stop criteria intend to reduce that the objective metrics” impact could
be affected by the algorithms themselves and ensure the relatively equitable investigation.

2.2.2. Optional Evaluator

The evaluator of the above-mentioned GSA algorithms used in our study is shown in Figure 2,
which includes a fixed physical constraint and an optional objective function. The physical constraint
formula (f;) represents the soil moisture of the first two surface soil layers (SMC1 and SMC2) only
varies between the wilting point (WLTSMC) and the soil moisture where transpiration stress begins
(REFSMC) [9,24,39].

Function: Evaluator
Input x — parameter list vector, Z — objective type

Output 7 —number of constrained conditions, e — evaluation value
1: Initilizationr = 0
2. if (x(30) < x(20).0r. x(30) > x(16).07r.x(31) < x(20).07r.x(31) > x(16)) then

3: fer=r+1

4:end if

50 §f (r = 0) then

6: s = {s"} = M(x), s — simulation vector

M — model driver, i € {1,...,ne},j € {1,...,nl}
7: select case (Z)
case (1), f,: e = [1(s,0), 0 — observation vector

g case (2), f,: e = [,(s,0)
case (z), [, e = [,(s,0)
9: end select
10: else
11: fore=0
12: end if

Figure 2. The pseudo code of the evaluator used in this study.

Under this constraint (r < 0), the unscaled parameters will drive the target model to run
simulation once for evaluation based on the corresponding objective value, which can be selected
based on the objective type (Z), and Z is a constant that varies between 1 and 8. Note that once t is
determined, the predefined corresponding objective metric or function (f,) that measures the
distances between simulation (s) and observation (0) is also determined at the very beginning.
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2.2. Composited Metrics

For calibration schemes based on GSA, the parameter simulation problem in LSM is addressed
by searching for the optimal parameters and/or simulations that minimizes or maximums the

objective function (f,). Especially, f, has been extended into multi-dimensions, i.e., layers (nl) and
variables (ne), to meet the multiple dimensional SM and ST objectives, and eight different metrics
are investigated during present study (Table 1).

Table 1. Description of the objective metrics used in this study.

Metri D ipti Direction,
etri escriptio Reference Formula* 1rec. ion,
c n Optima
- ne Lymi__ 3 s -seD o 02D
CCSs Corrt—':‘lz';\tlon Z nl | = maximum, 1
coefficients pob (s —s8 ) ynt (oe 08 )
(::C(S 0) = Zne 1 nl PXEA(CH _;)(0 _OTe{tl)]
’ nt (.el_ el el el »
T (57 -s ) i (o -oRt)
M(S 0) = _Zne 1 nl Sné
= of,l'
Enhanced . elt -
EKGE Kling-Gupta Lypelyn jM maximum, 1
efficiency STD(S 0) = 2’
1 onl Zinil(of'l_oen'é)
—ypelypl SR
1 —
\[(E(Z(s, 0) — 1)2 + (STD(s,0) — 1)2 + (M(s,0) — 1
Enhanced 0.25 x izgel nl (1 — abs(cc)) + rmse +
. ne nl 1 P
EMO multiple minimum, 0
objectives (1 —nse) + ae)
M bsolut
MAES eaZriorS: ute —Z“e Lynil nt (s - o' minimum, 0
Nash 2
SRt (s§-of!
NSES Sutcliffe izgei {‘1 <1 - %) maximum, 1
n 3 5
efficiencies DEACEE
Pareto [kge®l,e € (1,..,ne),1 € (1, ...,nD];
PKGE dominant if kge®*1 < maximum, 1
KGE kgee'l, dominated; else, nondominated
1
{[(1 - abs(cc))e ,rmses®!, (1 —
Pareto nse)®!, maee'l] ,e€(1,..,ne),l € (1, ...,nl)};
. 1
PMO dominant if (1 - abS(CC))e <(1- minimum, 0
MO abs(cc))e'lﬂ,l"msese'1 < rmses®'*1, (1 —
nse)® < (1 — nse)®!*!, and mae®! <
mae®*1 dominated; else, nondominated
RMSE Root mean (sel o ])
square Z Z it1 .
S orrors ne Zanl minimum, 0

*Note that the superscripts e and | are the Varlable and layer indexes, respectively, and ne and nl are the total

numbers of variables and layers. s and o represent for the simulation and observation respectively. For EKGE,

the factors CC, Mand STD indicate the vectored objective statistics such as correlation coefficient, mean value,

and standard deviation respectively. For EMO, PKGE and PMO, the lower cases (e.g., kge, cc, nse, and mae)

represent for only one-dimensional objectives. The superiority and inferiority relationship between different

objectives in Pareto optimality is determined using non dominated sorting method, e.g., the top layer

dimensional objective is assumed to be the dominated Pareto solution.
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This study mainly examines fixed metrics composed of fundamental measures such as linear
correlation coefficient (cc) [66], Kling-Gupta efficiency (kge) [10], absolute error (ae) [65], Nash-
Sutcliffe efficiency (nse) [63], and root mean square error (rmse) [64] across different dimensions.
Specifically, correlation coefficients (CCS), enhanced Kling-Gupta efficiencies (EKGE), mean absolute
errors (MAES), Nash-Sutcliffe efficiencies (NSES), and root mean square errors (RMSES) represent
the average of cc, kge, ae, nse, and rmse across both the variable and layer dimensions.
Additionally, the enhanced multiple objectives (EMO) integrate the average values of the measure
that combines cc, ae, nse, and rmse in the variable and layer dimensions.

Furthermore, since the surface variations of the topsoil layer could often determine the
sublayer’s variations according to infiltration [32], therefore, the dimensional target of the upper layer
is assumed to be the dominated Pareto solution, and the top layer’s objective that is larger (or smaller)
than sublayers’ is taken as the current optimally maximum (or minimum) solution [57—59].
Consequently, the Pareto-dominant KGE (PKGE) and the Pareto-dominant multi objectives (PMO)
indicates the dominated top layer’s value of EKGE and EMO respectively.

All the above-mentioned multi-objective metrics” variable and layer dimensional number are 2
(e.g., SM and ST) and 4 respectively. CCS varies in [—1, 1]. EKGE and NSES both vary in (—e°, 1],
EMO, MAES, and RMSES all vary in [0, +e). PKGE varies in (—<°, 1], and PMO varies in [0, +<0).
Therefore, the value of the metric determines the performance of the evaluator, and the direction of
the metric determines the direction of the search, that is, continuously approaching the optimal value
of the metric (i.e. the final ideal termination condition) towards the calibrated optimal solution.

2.3. Performance Evaluation
2.3.1. Parameter

During this study, parameter heterogeneity was defined as variations or sensitivities of land
parameters across sites. Due to the immense dimensionality of parameter—site sensitivities,
parameter relative sensitivities based on the two predefined limits of the parameter space are
suggested, e.g., if more (fewer) sites met (failed to meet) a parameter's limit compared to others,
indicating sites' relative sensitivity to that parameter within the limit's confidence [9,24]. Since the
parameter relative sensitivities (or heterogeneity) are usually large while their homogeneity could be
small (and thus be easily observed), here to qualify this and simplify metrics’ diversity investigation,
we further propose the parameter numbers with low site sensitivities as homogeneity (H).
Consequently, low H (>0) of this study indicates high heterogeneity of one metric quantitatively. Note
that when all and no sites cross the parameter’s limits, H equals 0 and 0 respectively.

The parameter’ spatial uncertainty is defined as the land parameter range and outlier against
the sites, e.g., one parameter’s inter quartile range (IQR, >0), smaller parameter ranges and outlier
numbers indicated fewer uncertainties and fewer unaccountable factors respectively [9]. Especially,
to simplify different metrics’ effects on parameter uncertainty, the whole parameter space’s
uncertainty is defined as the inter quartile range of all the IQR ensembles of different parameters (or
IQRD) in the parameter space. Consequently, the IQRD’s inter quartile range and outlier indicate the
quantitative parameter —uncertainties among metrics.

Especially, compared to SCE, the parameter number with less parameter uncertainties (PNL, >0)
and the outlier number reduction of parameter uncertainties (ONR) in PSO are summarized in this
study to qualify the justice that if the metrics” parameter uncertainty is affected by GSA itself or not.
As the heterogeneity and uncertainty differences of different metrics could account for the metric-
informed method’s performance in solving parameter spatial complexities during SM-ST calibration,
thereby, the metric with less parameter uncertainties and heterogeneity could meet the preferable
LSM configuration demand in surface forecasting.

2.3.2. Objective

As the population position of on generation, e.g., the best (Pv) or medium (Pm, if non solution is
met) locations that known as fitness against the number of LSM runs (or the convergence speed),


https://doi.org/10.20944/preprints202408.1085.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 d0i:10.20944/preprints202408.1085.v1

could indicate the method’s performance in calibration efficiency, therefore, the better fitness values
(e.g., larger EKGE values or smaller EMO values) with fewer LSM runs indicate more efficiency,
where the success rate exploring evolution abilities is usually put alongside with.

Moreover, as the optimal objectives (e.g., the final EKGE or EMO values) could indicate
method’s performance in calibration effectiveness, the larger or smaller optimal objectives that
depend on the direction of predefined metrics indicate more effectiveness. Furthermore, since the
kernel density distribution of optimal values across different sites demonstrates their spatial
enrichment characteristics, the variation in enrichment between different algorithms (such as PSO or
SCE) to a certain extent reflects their capacity to address the spatial disparity in SM-ST simulation.

2.3.3. Simulation

To simplify the spatial complexity among regional datasets, linear fitting between the
observations (OBS) and simulations (SIM) for all sites is conducted [68]. The linear fitting’s slope (s)
demonstrates the sensitivity of SIM to OBS, while its coefficient of determination (r2) or the goodness
of fit demonstrates if the sensitivity or linear model is robust or not. Moreover, under the assumption
of the normal distribution of the errors between SIM and OBS (Eq_g) of all sites, Gaussian fit of Eg_g
that are resampled with 100 bins 100 is conducted to generate at most two signals determining the
main distribution characteristic., e.g., the amplitude (or frequency, f) and center (c) [69]. Here the
compound feature of f and c that is closer to the normal distribution indicates the better performance
or more consistent with the assumption.

The method’s performance in optimal simulation and forecast is qualified using the spatial
differences and similarities of surface conditions among different datasets, e.g.,, ST and SM
simulations or reanalysis, and observations, by the following equation:

X%, (sj—05)? 2;21((5j=Sns)(0j—=0ns)]
RMSEg = J_J nls . CCg = 2,"21](51—;75)22{‘51](01—@2) 1)

where i and j represent the i time and the j site, respectively, and ns represent for the total

number of stations. And smaller RMSEg and/or high CCs indicate better performance.

Meanwhile, the Taylor diagram [60-63] that could assemble the comprehensive statistics (i.e.,
standard deviation, root-mean-square difference, and correlation) in a temporal sequence between
SIM and OBS was also created for comparison with the method’s skills. Usually, a smaller distance
away from the reference location (OBS) indicated more skills. Note that the SIM datasets (30 min)
were linearly interpolated into 3 h for a broad comparison with the land reanalysis.

In addition, aside from the uncertainties and heterogeneous requirements in surface prediction
parameters (manifested as variations in calibration performance), addressing the precision demands
inherent to surface prediction (evidenced by differences in calibration robustness), this study
employs indicators such as KGE increment, RMSEg reduction, and CCg increment to clarify the
performance of various SM-ST objectives in the parameter—simulation and/or calibration—
prediction frameworks, aiming to explore the target metrics for both the optimal configuration of
LSM and the maximum benefits of surface predictions.

3. Experiments
3.1. Model and Data

The Unified Noah LSM is created to better predict the effects of land surface processes on
regional weather, climate, and hydrology. It is intended to comprehend the intricate biophysical,
hydrological, and biogeochemical interactions between the land surface and the atmosphere at micro-
and mesoscales (Figure 3A) [32]. The simple driver Noah LSM (version 3.4.1,
https://ral.ucar.edu/model/unified-noah-Ism, accessed on 31 July 2024) has been recently extended
into the muti-point applications over central Tibet [9].
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Figure 3. (A) Noah LSM description. (B) Soil observation network, (a) Tibet and soil observation
network location (boxes), (b) site locations (filled dots) in the soil observation network, with three
types of observation networks (rectangular boxes), roads (white line), and sites (red dots), (c) soil
sampling sites (filled dots) in the study area (bold black dots were our study sites).

The SM-ST observations that are firstly derived from the highest altitude soil moisture network
in the world (Figure 3B, whose elevations are above 4470 m), which is constructed by the Institute of
Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS) with four soil depths (i.e., 0-5, 10,
20, and 40 cm) [35], and are further assembled into the multi-site (i.e., 12) observations of the local
warm season (i.e., covering from 1 April to 31 July 2014) over northwest Naqu city that has a typical
semiarid climate by using simple quality control based time continuity correction (detailed described
in Ref [9]). Also, the global land data assimilation system (GLDAS) [70] grid soil reanalysis data with
resolutions of 3 h/0.25%s collected for broader comparison with the surface simulations during this
study.

The gridded meteorological surface datasets that merging a variety of data sources are firstly
developed by ITPCAS, with a 3 h interval (3 h) and a resolution of 0.1° x 0.1°, were produced by [71],
and are further reassembled into the multi-site LSM forcing dataset by using the inverse distance-
weighted quadratic spline interpolation method to drive the Noah LSM.

According to the observational soil and surface characteristics, the multi-site Noah LSM is
configured with a 4-layer depth and 30-min runtime step, and the soil and vegetation types are
mainly silt and grassland, while the slop type is assumed to be flat (e.g., 1). And the forcing time step
(3 h) and screen height (10 m for winds and 2 m for temperature) for the LSM are the same as the
input forcing data [9].

3.2. Experimental Description

Three month long warm-up run (covering the period from April 1 to July 1 of 2014) of the multi-
site LSM, that initialized with the unobserved default parameters (i.e., the “General”, “Vegetation”,
“Soil”, and partial “Initial” types) [32] and partially observational “Initial” parameters (i.e. SMC1-4
and STC1-4), is firstly conducted to obtain the default multi-site parameter tables including spatially
distinguished “Initial” parameters for the following experimental runs [9]. Based on this, one-month
long run ranged from July 1 to July 31 (or the control run briefed as CTR hereafter) is conducted as
the referenced surface conditions resulted from the default LSM parameter table configuration.

The multi-objective metrics varied calibration runs that ranged from July 1 to July 15 are
conducted to obtain the calibrated multi-site LSM models with metrics informed parameter tables
and further investigate the metrics” impact on calibration’s abilities in solving the spatial complexities
of Noah LSM. Then the abovementioned various objective informed LSM models run from July 15 to
July 31 to obtain the hopefully improved surface forecasts and further investigate metrics” impact on
surface forecast.
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Therefore, the difference between CTR and calibration could account for the calibration
performance, and the difference among different calibration runs could account for the metric’s
impact on the calibration. Meanwhile, the difference between CTR and calibrated forecast runs could
account for the calibrated models’ performances, and the difference among different calibrated
forecast runs should account for the metric’s impact on surface forecast. Note that all objective metrics
within both PSO and SCE algorithms are conducted to explore if the potentially improved surface
forecast could be highly affected by the calibration algorithms themselves or not.

4. Results
4.1. Case Perspective

As land surface models utilize parameters and forcing inputs to prepare land surface forecasts,
the issues of surface simulation and local application in typical semi-arid regions (i.e., rapidly
applying calibrated parameters to surface forecasts) are exemplified here. To this end, a review of the
spatiotemporal characteristics of the default forcing, initial parameters, and their overall simulation
status across different periods, including control, simulation calibration, and forecast verification, is
conducted to clarify the fundamental manifestations of the issues involved in this study.

4.1.1. Model Configure

The site averaged 3-h meteorological forcing values against time during the study period are
shown in Figure 4 a~d. During July 2014, the diurnal variation in temperature (T,,,) mostly ranged
between 5 and 15 °C, with an extremely dry atmosphere whose relative humidity (RH,y,) values were
mostly below 1%. The relatively low wind speed (WS, p,) generally varied between 0 and 6 m s, and
the wind direction (WD) was mostly dominated by southern flow (between 180° and 270°) from
July 1 to July 10 and from July 16 to July 21, respectively, but the opposite in other periods. The
incoming shortwave radiation (SW) exhibited strong diurnal variation between 0 and 600 W m-2, and
the incoming longwave radiation (LW) varied between 250 and 350 W m=2. The pressure (P) was
generally around 586 hPa and the maximum hourly precipitation (R;) was about 5 mm h on July
10.
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Figure 4. The case overview in CTR experiment. (a)~(d) The meteorological forcing, which were
derived from Ref [9]. (e) The threshold normalized default parameters of different sites (colored) for
calibration. (f)~(g) The linear and Gaussian fits of the errors between observation and simulation
(Eo-s) for SMysy of different periods (colored, the whole study period was in black, while the
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calibration and validation periods were in red and blue respectively). (h)~(i) were the same as (f)~(g),
but for STysem-

The initial land parameters of all the sites (or default parameters) that needs calibration has
shown great variety for the “Initial” types (Figure 4 e), and this is especially pronounced for the
moisture-related parameters, i.e., the SMC and the SH2O. This should attribute to the differences in
pre-experiment 3-month simulation of different sites. Furthermore, due to the lack of direct
observations for other types of land surface parameters, they are configured using statistical data
from optimization experiments based on limited benchmarks from the previous study (serving only
as reference inputs for control experiments, consistent with conventional numerical model
configurations) [9]. Therefore, in numerical operations, parameter variations among different stations
mainly exist in the initial types. Consideration of multi-site calibration can account for the differences
among stations with unobserved parameters under existing observational constraints, namely, the
spatial heterogeneity and uncertainty of the parameter space. Consequently, the spatial heterogeneity
of parameters (i.e., the sensitivity of commonly used parameters to different stations or the number
of intersections of the same parameters at different stations in the parameter space) and the
characteristics of uncertainty (such as the inter quartile range and outlier features of parameters at
different stations) in relation to the differences in various optimization objectives are the key areas of
focus for further investigation in this study.

4.1.2. Forecast Problem

The CTR simulations and observation datasets (OBS) for the surface layer are compared in
Figure 4 e~f. For the whole experimental period, the linear fit for the surface soil moisture (SMys¢p)
exhibited a small increasing slope (about 0.21) with weak consistency, and the surface soil
temperature (STyscm) had a larger decreasing slope (about -0.45) with strong differences. Moreover,
the linear fits of SMys., for the calibration and forecast periods were 0.22 and 0.15 respectively, and
the linear fits of STyscy, for calibration and forecast periods were -0.48 and -0.4 respectively. This
indicates that the surface conditions of the forecast period were slightly better than those for
calibration period. Generally, SMys., fits better than STyscp,-

In addition, the Gaussian fits of the errors between SMgs.,, observation and simulation (Eq_s)
for whole experimental period had a sharp and narrow distribution, which was centered around 0.15
m?-m~3 with a frequency of around 800, while the Eq_g distributions of the calibration and
forecast periods had centered around 0.16 and 0.13 m*® - m~3, with the frequency of around 500 and
300 respectively. This indicates SMysc, Were mostly underestimated for all periods and this is more
pronounced at the calibration period. Nevertheless, the Eq_g of STyscy, for different periods had
shown bimodal distributions (Figure 4i), whose centers were located around -4 and 9 K (whole
period), -5 and 9 K (calibration period), and -4 and 8 K (forecast period) respectively. This indicates
SToscm Were both under- and over-estimated, and the later were more pronounced. Generally,
SMysem and STysem were both underestimated.

In general, though SMyse, in CTR exhibited better consistency with OBS than STyscp,, the
overall surface simulation underestimation of Noah LSM could be great for regional surface forecast
applications. Note that either the ITPCAS forcing data sets or the improved heat-sensitive parameter
Z0h (also known as CZIL) to improve STysc, with the Noah LSM over a surface near our study area
[7], and the non-negligible biased STys., and the spatially diversed parameter space in CTR
indicated a more effective calibration in present study. Since multi-objective calibration can reduce
these spatiotemporal errors through parameter identification to improve subsequent forecasts [9], the
next focus is on how different target metrics affect the performance of calibration and forecasting.

4.2. Effects on Calibration
4.2.1. Optimal Parameters

Due to the significant spatial heterogeneity exhibited by most optimal parameters in PSO and
SCE, this study conducted a statistical analysis of spatially homogeneous (or heterogeneous)
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parameters based on parameter type classifications (see Figure S1-1, briefed in Table 2). For the
"Vegetation" type, except for the SCE scenario considering CCS, the number of homogeneity
parameters in other scenarios is zero, indicating heterogeneity. Regarding the "Soil" type, the counts
(Hp, Hs) of homogeneity parameters for PSO and SCE calibration schemes based on EKGE, EMO,
MAES, and RMSES metrics are (1, 3), (2, 2), (1, 1), and (2, 1), respectively. For the "General" type, the
(11, 12) based on CCS, EKGE, EMO, MAES, and RMSES metrics are (1, A), (2, 2), (2, 2), (1, 1), and (1,
1), respectively. For the "Initial" type, the (11, 12) based on EKGE, EMO, and MAES metrics are (4, 2),
(3, 2), and (2, 1), respectively. Evidently, among all pairs, the spatial homogeneity of optimal
parameters for all "Vegetation" types in PSO and SCE is relatively minimal, suggesting the strongest
heterogeneity. Conversely, "Soil" and "General" types exhibit minimal spatial heterogeneity, while
"Initial" types fall in the middle. Notably, QTZ and SBETA parameters consistently demonstrate
homogeneity, below the parameter space threshold (0.03), across PSO and SCE schemes based on
EKGE, EMO, MAES, and RMSES metrics.

Table 2. Parameter spatial homogeneity for all metrics.

Metrics Vegetation (Hy, Hs) * Soil (Hp, Hs) Gene}lz)l (Hy, Initial (Hp, Hs)
CCS 0,0 0,0 1, 0 0,1
EKGE 0,0 1,3 2,2 4,2
EMO 0,0 2,2 2,2 3,2
MAES 0,0 1,1 1,1 2,1
NSES 0,0 0,0 0,0 2,0
PKGE 0,0 0,0 0,0 0,0
PMO 0,0 0,0 0,0 0,0
RMSES 0,0 2,1 1,1 2,0

*Note that Hp and Hs represent for the parameter numbers with low site sensitivities (or homogeneity) of PSO
and SCE, respectively.

Regarding the counts of homogeneity parameters in PSO and SCE schemes, when considering
the disparities among metrics, we observe the following: for CCS, the counts are 1 and 40,
respectively; for EKGE, both schemes yield 7; for EMO, the counts are 7 and 6; for MAES, 4 and 3; for
NSES, 2 and none; both PKGE and PMO register none; and for RMSES, the counts are 5 and 2.
Evidently, there exist substantial variations in the homogeneity or heterogeneity of parameters
among calibration schemes based on different metrics. Notably, CCS exhibits the lowest parameter
heterogeneity, followed by EKGE, then EMO, and subsequently MAES and RMSES. NSES displays
relatively poor parameter heterogeneity, whereas PKGE and PMO manifest the highest degree of
parameter heterogeneity.

In addition, the inter quartile ranges (IQR) of various parameters and the entire parameter space
of PSO and SCE contributed by different metrics are shown in Figure 5. For PSO, the maximum IQR,
which has about 4.8 of the parameter SNP in the “Vegetation” type, had the largest uncertainties,
while the EMO made the largest contribution. However, the IQR, which is about 1.2 of the SBETA
parameter in the “General” type, behaves oppositely, while EKGE, EMO and RMSES make the
smallest contributions (Figure 5a). For SCE, the maximum IQR around 1.82 of the CZIL parameter in
the “General” type has the largest uncertainties, while EMO has the largest contribution.
Nevertheless, the IQR that is around 0.61 of the parameter CSOIL in the “General” type behaves
conversely, while EKGE, EMO and RMSES make the smallest contributions (Figure 5b). In general,
PSOs have achieved higher IQRs than SCEs on most metrics. And PSO and SCE achieved the lowest
uncertainties of the parameters SBETA and CSOIL in the “General” type.
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Figure 5. The different metrics’ parameter spatial uncertainties. (a) The stacked inter quartile ranges
(IQR, colored) of different optimal parameters for PSO. (b) is the same as (a), but for SCE. (c) The
boxplot of the IQR ensembles (or the IQR distributions; IQRD) of the optimal parameter space for
various metrics, and their outlier numbers (d).

The Inter quartile Range (IQR) distribution of the global optimal parameter space for the PSO
schemes across various metrics exhibits a broader and more scattered range compared to that of the
SCE (Figure 5¢). For PSO, the median sizes of the IQR distributions (IQRD) within the global optimal
parameter space, ranked from highest to lowest, are PKGE > PMO > NSES > CCS > EMO > EKGE >
RMSES > MAES. In contrast, for SCE, the order is PMO > PKGE > EKGE > EMO > MAES > RMSES >
CCS. Furthermore, for PSO, the number of outliers in the IQRD is highest for EKGE with 3, followed
by EMO and CCS with 2, while the rest of the metrics have 0 outliers. For SCE, EKGE and RMSES
share the highest number of outliers at 2, followed by EKGE and MAES with 1 outlier each, and the
rest are 0 (Figure 5d). In summary, significant differences exist in the IQRD of the global optimal
parameter spaces across different metrics, with SCE exhibiting smaller IQRD but relatively more
outliers. Notably, EKGE and EMO exhibit relatively large numbers of outliers in both PSO and SCE.

Furthermore, the PSO’s parameter spatial IQRs are compared with SCE in different types in
Table 3, e.g., the parameter number with less uncertainties (PNL) and the outlier number reduction
of parameters” uncertainties (ONR) in PSO when compared to SCE. For the "Vegetation" type, all
metrics are null except for the PNL value of EKGE, which is 2, while the ONR of all metrics is non-
positive. For the "Soil" type, the PNL values are positive for all metrics except for CCS, NSES, and
PKGE, which are null. The ONR values are positive for EKGE, EMO, PMO, and RMSES, while
negative for the rest. Regarding the "General" type, all metrics exhibit positive PNL values except for
NSES, PKGE, and PMO, whose PNL values are null. The ONR values are positive for EKGE, EMO,
MAES, and RMSES, and negative for the others. In the "Initial" type, only EKGE and EMO have
positive PNL values, with the rest being null. The ONR values are positive for all metrics except for
CCS, PKGE, and PMO, which are non-positive. In summary, summing the PNL values across types,
EKGE has the highest total (8), followed by EMO and RMSES (7), then MAES (5), with PMO and CCS
having the lowest totals (1). PKGE has no PNL value. For the ONR values, EMO has the highest total
(9), followed by EKGE (3), then RMSES (3), while PMO has the lowest (2). The rest of the metrics have
negative ONR values.
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Table 3. Parameter spatial uncertainties comparison for all metrics.

Metrics Vegetation Soil General Initial
(PNL, ONR) * (PNL, ONR) * (PNL, ONR) * (PNL, ONR) *
CCs NA, -2 NA, -1 1,-2 NA, -1
EKGE 2,-1 2,2 2,1 2,1
EMO NA, -1 3,3 3,2 1,5
MAES NA, -5 2,-1 3,0 NA,2
NSES NA, -5 NA, -1 NA, -2 NA,2
PKGE NA, -1 NA, -2 NA, -2 NA, -4
PMO NA, 0 1,3 NA, -1 NA, 0
RMSES NA, -3 4,4 3,1 NA, 1

*Note that PNL represents for the parameter number with less uncertainties in PSO compared to SCE, where
NA represents for none. While ONR represents for the outlier number reduction of parameters’ uncertainties in
PSO compared to SCE.

In summary, for the SM-ST calibration of the same metric, SCE consistently achieves lower
parameter uncertainty than PSO, albeit at the cost of relatively higher spatial heterogeneity.
Specifically, in terms of parameter uncertainty, MAES in PSO and CCS in SCE exhibit the smallest
metrics. As for parameter spatial heterogeneity, EKGE and EMO in PSO yield the smallest metrics,
while SCE solely displays the smallest EKGE.

4.2.2. Effectiveness and Efficiency

Figure 6 shows the different metrics’ fitness (i.e., the best position of one population, Pb) curves
of calibration, the median convergency position, and the median converged Noah run numbers of
PSO (CE, cY) and SCE (C&, CY) for all sites. For CCS, both PSO and SCE had both sharply increased
before 3,000 Noah runs, and both converged to 1 but at around 79,475 and 66,663 runs respectively.
For EKGE, PSO and SCE have both sharply increased before 10,000 Noah runs but converge to 0.56
at 99,017 runs and 0.53 at 90,731 runs respectively. For EMO, PSO and SCE both decrease to 1 before
8,000 Noah runs but converge to 1 at 99,297 runs and 1.08 at 82,709 runs respectively. For MAES, PSO
and SCE both quickly decrease to the range of 0.7-1.1 before 10,000 Noah runs but converge to 0.79
at 99,765 runs and 0.81 at 94,795 runs respectively. For NSES, PSO and SCE have both instantly
reaching 1 at 187 runs, indicating the most rapid convergence among all metrics. However, for PKGE
and PMO, since volatile finesses (e.g., who vary within (—oo,1] and [1,+o0) respectively) are found
for all sites in each generation, nonstrict solutions can be observed. For RMSES, PSO and SCE both
sharply decrease to 1 before 5,000 Noah runs but converge to 0.97 at 99,391 runs and 0.98 at 94,029
runs respectively.

Generally, except PKGE and PMO, other metrics of PSO have achieved better effectiveness as
indicated their better fitness values, but with relatively worse efficiency as indicated their larger
converged runs compared to those of SCE. The non solution performance for the metric PKGE and
PMO of both PSO and SCE have indicated their requirements of more Noah runs in achieving
convergence, or the potential failure of the Paetro dominated logic (i.e., that surface improvement
likely improve the subsurface). For MAES, NSES, and RMSES, fitness curve of site C4 is found to be
notably biased from (or worse than) that of other sites. Nevertheless, for all the metrics’ convergences,
MAES has the largest range, and this could indicate the divergent convergence domain.
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Figure 6. The different metrics” impact on calibration effectiveness and efficiency. Fitness curves of
different sites (colored) against Noah runs for PSO (solid) and SCE (dashed). Except PKGE and PMO

whose fitness were Pm, others were Pb.

Figure 7 presents the success rate curves for calibration across various metrics. For CCS, PSO
experiences a decline from 70% to 20% during the first 10,000 Noah runs, followed by a gradual
decrease to near zero. In the case of EKGE, PSO initially shows a decline from 80% within the first
5,000 Noah runs, subsequently exhibiting two distinct patterns: fluctuations around 40% and 20%,
respectively. For EMO, PSO drops from 80% to nearly 0% within the initial 25,000 Noah runs, with
some stations subsequently exhibiting strong fluctuations between 0% and 80%. MAES follows a
similar trend, with PSO declining from 80% to near 0% within the first 15,000 Noah runs, and
subsequent intense fluctuations between 0% and 80% at certain stations. For NSES, PSO gradually
decreases from 80% to 20% within the first 35,000 Noah runs and remains stable thereafter. PKGE
and PMO exhibit similar behavior, with PSO slowly declining from 80% to 20% within the first 20,000
Noah runs and fluctuating slightly around 20% thereafter. SCE's performance in PKGE resembles
that of CCS. In contrast, RMSES displays a fluctuating decline from 80% to 0% within the initial 20,000
Noah runs for PSO, followed by drastic fluctuations between 20% and 80%. However, SCE
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consistently demonstrates a rapid initial decrease from 80% to 20% across nearly all metrics,
maintaining this level thereafter.
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Figure 7. Success rate curves of different sites (colored) against Noah runs for PSO (top) and SCE
(bottom).

For all metrics, the search domain of SCE exhibits a consistent pattern, characterized by an L-
shaped thin linear region. In contrast, PSO's search domain displays significant fluctuations and
notable variations across different metrics (e.g.,, EKGE, EMO, MAES, RMSES), albeit with an overall
larger area than SCE. This suggests that for most metrics, PSO demonstrates stronger evolutionary
capabilities compared to SCE, which primarily contributes to PSO's slightly slower convergence rate
compared to SCE.

Figure 8 presents the statistical performance of the optimal objectives across all stations for
various metrics. For CCS, both PSO and SCE exhibit a concentrated distribution near 1, with PSO
displaying a tighter clustering and an outlier at 0.973. In the case of EKGE, PSO and SCE concentrate
around 0.58 and 0.53, respectively, with PSO showing a more focused distribution and an outlier at
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0.34. For EMO, PSO and SCE are centered near 1 and 1.1, respectively, with PSO displaying a
relatively dispersed distribution and an outlier at 1.5. MAES values for PSO and SCE are centered
around 0.79 and 0.81, respectively, demonstrating similar distributions. For NSES, PKGE, and PMO,
both PSO and SCE have concentrated distributions near 1, with NSES exhibiting a more tightly
clustered distribution compared to the other two metrics. Finally, for RMSES, PSO and SCE are
centered around 0.9 and 1.1, respectively, with SCE displaying a more focused distribution, and both
having outliers at around 2.4.
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Figure 8. The different metrics’ impact on optimal objective uncertainties against sites for PSO and
SCE.

It is evident that for the optimal solutions of PKGE and PMO, both PSO and SCE yield values of
1, indicating the absence of optimal solutions or the need for more time to locate them. In contrast,
numerical optimal solutions were achieved for other metrics. Furthermore, while PSO consistently
outperformed SCE in attaining better optimal solutions across almost all metrics, significant
variations were observed in the enrichment levels of optimal solutions between PSO and SCE under
different metrics. For instance, PSO surpassed SCE in CCS and EKGE, whereas SCE surpassed PSO
in EMO, MAES, and RMSES. Notably, PSO and SCE exhibited similar performance in NSES. This
underscores the disparate spatial variability characteristics of optimal solutions influenced by distinct
metrics (whereby the enrichment levels of optimal solutions at different sites reflect the extent of
spatial variability). Additionally, notable outliers were identified in PSO's performance within CCS,
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EKGE, and EMO metrics, while both PSO and SCE exhibited outliers in the RMSES metric. This
indicates that for RMSES, unquantifiable factors within the spatial variability of optimal solutions are
more pronounced, whereas for other metrics, PSO's performance relative to SCE is more significantly
influenced.

In summary, apart from PKGE and PMO, for other metrics, PSO typically exhibits better optimal
solutions, i.e., enhanced effectiveness, compared to SCE, albeit at the cost of relatively lower
efficiency. Notably, for CCS, EKGE, and RMSES, the optimal solutions obtained by PSO demonstrate
higher kernel densities than those by SCE. Conversely, for EMO and MAES, the performance trend
is reversed.

4.2.3. Optimal Simulation

Figure 52-1 presents linear fitting (s, 1) between simulations and observations of SMyscy, and
STosem under varying metrics. For SMysen, PSO s (in descending order) are EMO, EKGE, RMSES,
MAES, PMO, NSES, CCS, PKGE, with 12 values also descending from EMO to PKGE. In contrast, SCE
slope (s) are EMO, PMO, EKGE, MAES, PKGE, NSES, RMSES, CCS, with 12 following a similar but
slightly different descending order. For STysc,'s linear fitting (Figure 52-1-2), PSO s are EKGE, EMO,
MAES, RMSES, CCS, NSES, PKGE, PMO, while r? values show a distinct ordering: PMO, followed
closely by EMO/PKGE, then MAES/RMSES/NSES, EKGE, and finally CCS. SCE fitting for STyscm
exhibits a different ordering for s (EKGE, EMO, CCS, RMSES, MAES, NSES, PMO, PKGE) and r?
values (PKGE, PMO, NSES, EKGE, EMO, RMSES, with CCS and MAES closely grouped).

Generally, for STyscm, except for NSES, PKGE, and PMO metrics, both PSO and SCE exhibit
negative s values, while the rest are positive (Table 4). This indicates that most linear relationships
between calibrated simulations and observations are positively correlated, which aligns with the
improvement objectives of this study. Specifically, for EMO and EKGE, the s values of PSO (SCE) in
the calibration of SMys¢, and STyscy, are 0.96 (0.83) and 0.18 (0.23), respectively, showcasing the
optimal calibration performance (Figure 9). Furthermore, it is noteworthy that for STys.p,, the highest
12 value of 0.11 is comparable to the lowest 12 value observed in SMys., (PKGE), implicitly
suggesting a greater challenge in modeling STyscp.

Table 4. Linear fits between SIM and OBS against sites for all metrics.

Metrics PSO SM (s, 1?) * SCE SM (s, 1?) PSO ST (s, 1?) SCE ST (s, 1?)
CCs 0.29,0.11 0.03,0.01 0,0 0.1,0.01
EKGE 0.91,0.9 0.73,0.75 0.18, 0.03 0.23, 0.05
EMO 0.96, 0.92 0.83, 0.84 0.14,0.1 0.11, 0.04
MAES 0.76, 0.6 0.44, 0.55 0.13, 0.05 0.06, 0.01
NSES 0.57,0.39 0.25,0.2 -0.41, 0.05 -0.44, 0.08
PKGE 0.19, 0.04 0.26,0.11 -0.57,0.1 -0.56, 0.11
PMO 0.68, 0.31 0.74, 0.48 -0.63, 0.11 -0.51, 0.09
RMSES 0.77,0.57 0.16,0.13 0.12,0.05 0.09, 0.02

*Note that s and r2 represent for the slope and determination coefficient, respectively. Bold numbers indicate
the best performance among all metrics, while italics indicate a negative slope.
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Figure 9. Different metrics’ best linear fits against sites for (a) SMgscy and (b) STysey during the
calibration period. CRT, PSO and SCE are plotted in black, red and blue respectively.

The Gaussian fitting, i.e., center (frequency) as ¢(f) with units of m®* - m=3(1), of Eg_s for SMysem
in Figure S2-2-1 reveals: CTR’s Eq_g are widely distributed, peaking at ~0.15 (f=297). CCS, PSO, SCE
errors span widely around -0.04, 0.11 (£=350, 295). EKGE's PSO, SCE errors narrowly center at 0
(£=1276, 608). EMO's PSO, SCE errors narrowly peak at 0, 0.01 (f~1178, 700). MAES's PSO, SCE errors
widen slightly at 0.01, 0.02 (f=344, 416). NSES's PSO, SCE errors are wide at 0.05 (f=274, 230). PKGE's
PSO, SCE errors widely center at 0.08, 0.11 (f=322, 325). PMO's PSO, SCE errors narrowly peak at 0.02,
0.03 (f=480, 444). RMSES's PSO, SCE errors narrowly center at -0.02, 0 (f~426, 296). Moreover, The
Gaussian fitting, i.e., center (frequency) as c (f) with units of K (1), of OBS-SIM for STyscy, (Figure S2-
2-2) shows: CTR errors have a wide bimodal dist. centered at ~7.1, -3.8 (=192, 134). CCS, PSO, SCE
errors widely center at ~2.3, 1.1 (=216, 167). EKGE's PSO, SCE errors widely center at ~1.3, 2.5 (£=200,
203). EMO's PSO, SCE errors center at ~0.85, 1.23 (f=170, 207). MAES's PSO, SCE errors center at ~-
0.06, 0.88 (£=200, 230). NSES's PSO, SCE errors widely center at ~5.86, 5.03 (f#169, 213). PKGE's PSO,
SCE errors widely center at ~4.91, 5.01 (f=237, 152). PMO's PSO, SCE errors widely center at ~6.1, 5.19
(f=300, 224). RMSES's PSO, SCE errors center at ~0.16, 1.29 (=200, 206).

In summary, for Eg_g of SMyscm, EKGE's performance in both PSO and SCE is closest to a
normal distribution, whereas for that of STys.,, MAES exhibits the closest resemblance to normality
(Figure 10), with EKGE performing relatively poorly (Table 5). This underscores the significant
influence of metric discrepancies on calibration simulation errors, contingent upon distinct
calibration objectives. Furthermore, excessively wide peaks with low frequencies in unimodal
distributions (e.g., CCS, NSES, PKGE, and PMO) indicate the dispersed fitting distribution,
potentially necessitating the multimodal (e.g., more than two peaks) fitting. Conversely, bimodal
distributions characterized by narrower peaks may call for a single-peak fitting centered around the

modes.
Table 5. Gaussian fits of OBS-SIM against sites for all metrics.
Metrics PSOSM ({,¢) * SCE SM (£, ¢) PSO ST ({, ¢) SCE ST (f, ¢)
CCs 350, -0.04 295, 0.11 216,2.13 167,1.07
EKGE 1276, 0 608, 0 142, 4.37 204, 2.48
EMO 1178, 0 386, 0.01 170, 0.85 206, 1.23
MAES 344, 0.01 416, 0.02 200, -0.06 230, 0.88

NSES 274, 0.05 230, 0.05 169, 5.86 213, 5.03
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PKGE 322,0.08 325,0.11 237,491 152, 5.01
PMO 480, 0.02 444, 0.03 300, 6.10 224,5.19
RMSES 426, -0.02 296, 0 200, 0.16 206, 1.29

*Note that f and ¢ represent for the maximum amplitude (i.e. frequency) and its center (i.e. location), respectively.

Bold numbers indicate the best performance among all metrics.
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Figure 10. Different metrics’ best Gaussian fits of Eq_g against sites for (a) SMgscy, and (b) STosem
during the calibration period. CRT, PSO and SCE are plotted in black, red and blue respectively. Also,
the two typically characterized “amplitude [peak position, peak width]” in Gaussian fitting are
displayed together. Note that two amplitudes with one same peak could be summed to one
amplitude.

Figure 11a depicts temporal RMSEg (m? - m~3) variations for SMyscm. CTR's RMSEg is generally
largest, 0.15 (decreasing during July 5th and 10th rainfalls), with a slight upward trend. For CCS,
PSO's RMSEg 0.15 increases slightly, while SCE's RMSE; fluctuates around 0.07. EKGE and EMO
show PSO(SCE) RMSEs of 0.01(0.03) and 0.01(0.02), respectively, both trending downward. MAES's
PSO/SCE RMSEg 0.04, both declining. NSES's RMSEg around 0.07, up trending. PKGE's PSO(SCE)
RMSEg 0.12(0.1), up trending. PMO's PSO RMSEg decreases from 0.1 to 0.05, SCE's 0.07, slightly
down. RMSES's PSO(SCE) RMSEg 0.04(0.05), both declining. Moreover, Figure 11b illustrates the
overall RMSES distribution for SMyscy,. Median RMSEg ranking from highest to lowest for PSO: CCS
(0.13) > PKGE (0.12) > NSES (0.08) > PMO (0.07) > RMSES (0.039) > MAES (0.038) > EMO (0.018) >
EKGE (0.017); for SCE: PKGE (0.1) > CCS (0.09) > NSES (0.085) > PMO (0.065) > RMSES (0.056) > MAES
(0.039) > EKGE (0.03) > EMO (0.02). Notably, EKGE and EMO exhibit the lowest median RMSEg for
PSO and SCE, respectively, whereas CCS and PKGE have the highest.
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Figure 11. The different metrics’ impact on the optimal surface simulation. (a) The temporally varied
and (b) the boxplot of spatial errors (RMSES) for SMyscp,. (c)~(d) are the same as (a)~(b) but showing
the spatial correlation coefficients (CCS) for SMyscp. (e)~(h) are the same as (a)~(d), but for STyscm,
note that only the best metric performance is shown in (e) and (g) to avoid overlaps.

Figure 11c depicts temporal variations in spatial correlation coefficients (CCs) for SMysem
simulations. CTR's CCg significantly drops Jul 5-6 (0.5 to -0.6), fluctuating at ~0.2 otherwise. CCS:
PSO's CCg stable at-0.5, SCE increases Jul 5 (-0.4 to 0.5), fluctuating -0.2. EKGE: PSO 1, SCE 0.8. EMO:
Both are ~1. MAES: PSO increases (0.2 to 1), SCE initially declines (0.4 to 0), then ~0.2. NSES: PSO
~0.7, drops post-Jul 10 to ~0.5; SCE ~0.2. PKGE: PSO ~0.45, sharp drop Jul 5 to ~-0.4; SCE -0.4 to
unspecified, sharp drop, ~-0.3. PMO: PSO 0.6, sharp drop Jul 6 to -0.5, rises to 0.2; SCE 0.8, drops to
0, rises to 0.4. RMSES: PSO increases (0.5 to 0.8), stabilizes ~0.8 post-Jul 4; SCE ~0.45, declines Jul 4-6,
rises to ~0.26. EMO and EKGE consistently outperform MAES for PSO and SCE in SMys.,, CCs, with
other metrics displaying varied trends. Moreover, Figure 11d illustrates the overall CCs distribution
for SMyscm. Median CCg ranking from highest to lowest for PSO: EMO > EKGE > MAES > RMSES >
NSES > PMO > PKGE > CCS; for SCE: EKGE > EMO > MAES > PMO > PKGE > NSES > RMSES > CCS.
Notably, EMO and EKGE exhibit the highest median CCs for PSO and SCE, respectively, whereas
CCS have the lowest.
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For STyscm, CTR's RMSEg shows a marked diurnal variation, averaging 8K fluctuations (Figure
52-3-1). Due to overlapping diurnal error ranges, its performance complexity surpasses SMgscp-
Notably, NSES, PKGE, PMO peak RMSEg >14K (CTR's max), indicating inferiority (Figure 11le).
Conversely, MAES and RMSES peak at 8K, surpassing CTR. EKGE and EMO, excluding initial days,
also peak near 8K, outperforming CTR. Median RMSEg (K) ranking from highest to lowest yields the
following order for PSO: PMO (7.5) > PKGE (6) > NSES (5.8) > CCS (4) > EKGE (3.5) > MAES (2.8) >
RMSES (2.5) > EMO (2.48); and for SCE: PKGE (6.1) > PMO (5.8) > NSES (5.6) > CCS (3.6) > EKGE (3.3)
>MAES (2.9) > RMSES (2.7) > EMO (2.5) (Figure 11f). In both PSO and SCE, EMO exhibits the lowest
median RMSEg, whereas PMO and PKGE respectively possess the highest.

Furthermore, for STysc,, CTR's CCg varies from -0.5 to 0.7, showing distinct diurnal patterns
(Figure 11g). Overlapping diurnal error ranges complicate performance compared to SMysc,, (Figure
52-3-2). CCS and EKGE's max CCg < 0.7 (CTR's max), indicating inferiority. NSE, PKGE, PMO max
CCs rival CTR, but min CCg > -0.5, outperforming CTR. EMO, MAES, RMSE max CCs ~0.8,
exceeding CTR. Hence, for STysc,, CCs performance ranks EMO, MAES, RMSE best, followed by
NSE, PKGE, PMO; CCS, EKGE perform bad. Moreover, Figure 11h illustrates the overall CCg
distribution for STyscm. Median CCg ranking from highest to lowest for PSO: EMO > MAES > RMSES
> NSES > PMO > PKGE > EKGE > CCS; for SCE: EMO > RMSES > CCS > EKGE > MAES > PKGE >
PMO > NSES. Notably, EMO exhibit the highest median CCg for both PSO and SCE, whereas CCS
and NSES have the lowest.

In summary, for SMgsc,, EKGE and EMO exhibit the lowest median RMSEg and the highest
median CCg for PSO and SCE, respectively, whereas CCS and PKGE have the highest RMSEg for
PSO and SCE, respectively, and CCS have the lowest CCg for both. For STys.p,, in both PSO and SCE,
EMO exhibits the lowest median RMSEg, whereas PMO and PKGE respectively possess the highest;
EMO exhibit the highest median CCg for both PSO and SCE, whereas CCS and NSES have the lowest.
Generally, EKGE and EMO have the best RMSEg and CCg performances of SMyscy, for PSO and SCE
respectively, while EMO has the best RMSEg and CCg performances of STyscy, for both.

4.3. Effects on Forecast
4.3.1. Linear and Gaussian Fitting

Figure 53-1 illustrates disparities in linear fitting (s, 12) between SIM and OBS for SMys.y,, and
STosem across metrics. For SMyscy's linear fit (Figure S3-1-1), PSO s (descending): EKGE > EMO >
MAES > RMSES > NSES > PMO > CCS > PKGE,; r2 order matches. For SCE, s: EMO > EKGE > PMO >
MAES > NSES > RMSES > CCS > PKGE; r? differs: EKGE > EMO > MAES > PMO > NSES > PKGE >
RMSES > CCS. For STyscn's fit (Figure S3-1-2), PSO s: MAES > RMSES > EMO 2> EKGE/CCS > NSES >
PKGE > PMO; r%: PMO > PKGE > EMO > RMSES > MAES/NSES > EKGE > CCS. SCE's s: MAES/CCS
> RMSES > EMO/EKGE > NSES > PMO > PKGE; r= PKGE > RMSES/PMO > MAES/EMO > NSES >
CCS/EKGE.

Generally, in addition to NSES, PKGE, PMO in STyscp,, and PKGE in SMys¢yy,, both PSO and SCE
exhibit positive s values (Table 6). This indicates that most linear relationships between validation
forecasts and observations are positively correlated, which aligns with the improvement objectives
of this study. Specifically, for EKGE and MAES, the s values of PSO (SCE) in the validation of SMyscpy
and STyscy, are 0.98 (0.84) and 0.14 (0.15), respectively, showcasing the best forecast performance
(Figure 12). Furthermore, it is noteworthy that for STyscpy,, the highest r? value of 0.1 is much smaller
than the highest 12 value observed in SMys., (EKGE), implicitly suggesting a greater challenge in
forecasting STyscm.

Table 6. Linear fits between surface SIM and OBS against sites for all metrics.

PSO SM (s, 1)

Metrics .

SCE SM (s, 1?) PSO ST (s, r?) SCE ST (s, 1?)

CCS -0.32, 0.08 -0.07, 0.02 0.04,0 0.15, 0.04
EKGE 0.98, 0.84 0.84, 0.84 0.04,0.01 0.1, 0.04
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EMO 0.96, 0.78 0.86, 0.82 0.09, 0.08 0.1, 0.07
MAES 0.83, 0.58 0.42,0.37 0.14, 0.07 0.15, 0.07
NSES 0.75,0.45 0.31,0.27 -0.45, 0.07 -0.33, 0.05
PKGE -0.04, 0 -0.21, 0.14 -0.53, 0.1 -0.54, 0.1
PMO 0.52,0.30 0.46, 0.31 -0.58, 0.11 -0.46, 0.09
RMSES 0.77, 0.56 0.16, 0.08 0.13,0.08 0.14, 0.09

*Note that s and r? represent for the slope and determination coefficient, respectively. Bold numbers indicate the
best performance among all metrics, while italics indicate a negative slope.
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Figure 12. Different metrics’ best linear fits against sites for (a) SMoscm and (b) STpsey during the
forecast period. CRT, PSO and SCE are plotted in black, red and blue respectively.

The Gaussian fitting (¢ (f)) of Eg_g for SMyscy, (Figure S3-2-1) reveal: CTR centered at 0.19
(£=272); CCS, PSO, SCE at 0.15, 0.07 (£=189, 225); EKGE, PSO, SCE narrowly at 0 (=383, 363); EMO,
PSO, SCE at 0 (f=416, 359); MAES, PSO, SCE at -0.01, 0 (=359, 284); NSES, PSO, SCE at 0.06, 0.05
(f=343, 322); PKGE, PSO bimodal at 0.13, 0.04 (=234, 220), SCE bimodal at 0.16, 0.06 (=199, 365);
PMO, PSO, SCE widely at 0.01, 0.04 (£=367, 323); RMSES, PSO, SCE at -0.02, 0.01 (£=293, 326).
Similarly, for STys., (Figure S3-2-2): CTR bimodal at 7.28, -3.57 (£=211, 160); CCS, PSO, SCE widely
at 3.2, -0.38 (£=187, 181); EKGE, PSO, SCE at -0.09, 3.39 (£=143, 189); EMO, PSO, SCE at -1.41, -0.98
(=175, 148); MAES, PSO, SCE at 0.49, 0.29 (£=181, 206); NSES, PSO, SCE widely at 5.81, 4.56 (f=204,
210); PKGE, PSO, SCE widely at 4.9, 5.7 (f=214, 217); PMO, PSO, SCE widely at 6.17, 5.47 (=221, 187);
RMSES, PSO, SCE at 0.55, 0.32 (=194, 198).

Generally, for Eg_g of SMyscr, EMO’s and EKGE's performances in both PSO and SCE are
closest to the normal distribution, whereas for that of STz, EKGE in PSO and MAES in SCE exhibit
the closest resemblance to normality (Figure 13), with EKGE performing relatively poorly (Table 7).
This underscores the significant influence of metric discrepancies on forecast errors. Furthermore,
excessively wide peaks with low frequencies in unimodal distributions (e.g., CCS, NSES, PKGE, and
PMO) indicate the dispersed fitting distribution, potentially necessitating the multimodal (more than
two peaks) fitting.

Table 7. Gaussian fits of OBS-SIM against sites for all metrics.

Metrics PSO SM (f, c) * SCE SM (f, ¢ PSO ST (f, ¢) SCE ST (£, c)
CCSs 189, 0.15 225, 0.07 187,3.2 181, -0.38
EKGE 383,0 363, 0 143, -0.09 189, 3.39
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EMO 416, 0 359, 0 175, -1.41 148, -0.98
MAES 359, -0.01 284,0 181, 0.49 206, 0.29
NSES 343, 0.06 322,0.05 204, 5.81 210, 4.56
PKGE 234,0.13 365, 0.06 214, 4.9 217, 5.69
PMO 367, 0.01 323, 0.04 221, 6.17 187, 5.47
RMSES 293, -0.02 326, 0.01 194, 0.55 198, 0.32

*Note that f and ¢ represent for the maximum amplitude (i.e. frequency) and its center (i.e. location), respectively.
Bold numbers indicate the best performance among all metrics.
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Figure 13. Different metrics’ best Gaussian fits of Eq_s against sites for (a) SMysey and (b) STosem
during the calibration period. CRT, PSO and SCE are plotted in black, red and blue respectively. Also,
the two typically characterized “amplitude [peak position, peak width]” in Gaussian fitting are
displayed together. Note that two amplitudes with one same peak could be summed to one
amplitude.

4.3.2. Spatial Difference and Similarity

Figure 14a depicts the temporal RMSEg (m?®-m™3) variations for SMgscy,. CTR's RMSEg is
largest (~0.15), fluctuating with a dip on Jul 24. CCS's PSO RMSES ranges around 0.13, trending up,
while SCE's remains stable at 0.1. EKGE’s and EMO's PSO/SCE RMSEg (~0.02/0.01) and (~0.02), both
trends slightly up. MAES's RMSEg are ~0.04. NSES's hover at 0.07, declining slightly. PKGE's RMSEg
is ~0.12. PMO's decline from ~0.07 to 0.05. RMSES's PSO/SCE RMSEg are ~0.04/0.06. Furthermore,
Figure 14b illustrates the overall RMSEg distribution for SMysc,. Median RMSEg ranking from
highest to lowest for PSO, CCS(0.12) > PKGE(0.11) > NSES(0.07) > PMO(0.05) > MAES(0.04) >
RMSES(0.036) > EMO(0.028) > EKGE(0.02); for SCE, PKGE(0.11) > CCS(0.1) > NSES(0.07) >
RMSES(0.052) > PMO(0.05) > MAES(0.04) > EMO(0.02) > EKGE(0.019). Notably, EKGE has the lowest
median RMSEg for both PSO and SCE, whereas CCS and PKGE have the highest, respectively.
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Figure 14. The different metrics’ impact on the optimal surface simulation. (a) The temporally varied
and (b) the boxplot of spatial errors (RMSEg) for SMyscp,. (c)~(d) are the same as (a)~(b) but showing
the spatial correlation coefficients (CCs) for SMyscmy. (e)~(h) are the same as (a)~(d), but for STyscm,
note that only the best metric performance is shown in (e) and (g) to avoid overlaps.

Figure 14c shows temporal CCg variations for SMyscm- CTR's CCg significantly drops from July
20th to 215t (0.1 to -0.7), stable at ~0.2 otherwise. PSO and SCE CCgin CCS hover around -0.3. EKGE's
PSO CCg remains ~0.8, SCE jitters ~0.3. EMO's CCs ~1 for both methods. MAES's PSO CCg ~0.8,
declining gradually; SCE's drops from 0.4 to 0 (July 5th), rises slightly to ~0.2. NSES's PSO CCg starts
at 0.7, dropping to ~0.5 post-July 10th; SCE jitters ~0.2. PKGE's PSO CCS ~0.45, sharply drops to ~-0.4
post-July 5th; SCE initially jitters ~-0.4, spikes, then jitters ~-0.3. PMO's PSO CCS starts ~0.6, sharply
drops to ~-0.5 (July 6th), rises to ~0.2; SCE similar, starts ~0.8, drops to 0, rises to ~0.4. RMSES's PSO
CCs jitters, rises (0.5 to 0.8), stabilizing ~0.8 post-July 4th; SCE starts ~0.45, drops to ~0 (July 4th-6th),
rises, fluctuating ~0.26. For SMyscy's CCs, PSO and SCE consistently rank EMO > EKGE > MAES;
others exhibit unstable/inferior performance. Figure 14d depicts the overall CCg distribution for
SMgscm- Ranking metrics by the median CCg, from highest to lowest for PSO: EKGE > EMO > MAES
> RMSES > NSES > PMO > PKGE > CCS; for SCE: EKGE > EMO > MAES > PMO > NSES > RMSES >
PKGE > CCS. Notably, EKGE has the highest median CCg for both PSO and SCE, while CCS and
PKGE have the lowest, respectively.

Figure 14e displays temporal RMSEg variations for STyscy. CTR's RMSEg exhibits pronounced
diurnal fluctuations 10K. Metric performances are intricate due to overlapping diurnal error
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amplitudes (Figure 53-3-1). NSES, PKGE, PMO peak RMSEg > 15K (CTR's max), indicating inferior
performance. EMO, MAES, RMSES max RMSEg < 7K, superior to CTR. CCS, EKGE extreme
RMSEg 8K (except July 1-2), also outperform CTR. For STysc,, RMSEg hierarchically show EMO,
MAES, RMSES best, followed by CCS, EKGE, with NSES, PKGE, PMO worst. Moreover, Figure 14f
shows the RMSEg distribution for STys.y, ranked by median RMSEs. For PSO: PMO (7.5) > PKGE
(6.9) > NSES (6.6) > CCS (4) > EKGE (3) > RMSES (2.9) > MAES (2.7) > EMO (2); for SCE: PKGE (7) >
PMO (6.8) > NSES (6.4) > CCS (3.8) > EKGE (3.3) > MAES (2.7) > RMSES (2.5) > EMO (2.3). EMO has
the lowest median RMSEg for both methods, whereas PMO and PKGE have the highest for PSO and
SCE, respectively.

Figure 14g presents temporal CCg variations for STys.,, with CTR's CCg displaying strong
diurnal fluctuations between -0.7 and 0.7. Overlapping diurnal error amplitudes complicate
performance compared to SMyscy, (Figure S3-3-2). Notably, EMO, MAES, RMSE metrics exceed
CTR's extremes, demonstrating superior performance. Moreover, Figure 14h depicts the overall CCS
distribution for STys¢,. Ranking metrics by the median CCS, from highest to lowest for PSO: EMO >
RMSES > MAES > NSES > PMO > PKGE > CCS > EKGE; for SCE: RMSES > CCS > EMO > MAES >
EKGE > NSES > PKGE > PMO. Notably, EMO and RMSES has the highest median CCs for PSO and
SCE, respectively, while CCS and PMO have the lowest, respectively.

In summary, for SMyscr,, EKGE has the lowest median RMSEg and the highest median CCg for
both PSO and SCE, whereas CCS and PKGE behave oppositely, respectively. For ST05cm, EMO has
the lowest median RMSEg for both methods, whereas PMO and PKGE have the highest for PSO and
SCE, respectively; EMO and RMSES has the highest median CCg for PSO and SCE, respectively,
while CCS and PMO have the lowest, respectively. Generally, EKGE have the best RMSEg and CCg
performances of SMgscy, for both PSO and SCE, while EMO and RMSES has the best RMSEg and
CCs performances of STysc, for PSO and SCE, respectively.

4.3.3. Surface States Intercomparison

Figure 15 presents Taylor Diagram plots of calibrated and CTR simulations of SMys¢,, during
the forecast period, compared with observations and/or GLDAS data, across various metrics. For the
comparison of SMys¢y, simulations with observations (Figure 15a), CTR exhibits a root mean square
difference (RMSD) greater than 0.02 m®-m™3, surpassing other simulated metrics and GLDAS.
However, the correlation coefficient (CC) between CTR and observations is above 0.5, outperforming
other simulations and GLDAS except for EKGE and EMO metrics. Additionally, CTR's standard
deviation (STD) reaches approximately 0.03 m3-m™3, significantly higher than that of other
simulated metrics and GLDAS. Thus, EKGE and EMO metrics, when applied in PSO and/or SCE,
effectively improve the simulation of SMysy,. In the comparison of STys¢,, with observations (Figure
15b), CTR, GLDAS, and multiple simulations demonstrate no skill. Nevertheless, like SMyscpy,
simulations using EKGE and EMO metrics consistently yield the lowest RMSD and STD, as well as
the highest CC among all evaluated metrics.
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Figure 15. The different metrics’ impact on surface forecast. (a) and (b) The Taylor diagram against
observations for SMyscry, and STyse, respectively, and the CTR and GLDAS are shown in cross and
asterisk markers, while PSO and SCE are shown in circles and triangles respectively. (c) and (d) The
Taylor diagram against GLDAS for HFX and LH respectively, and the CTR are shown in cross
markers.

Furthermore, for the comparison of sensible heat flux (HFX) with GLDAS (Figure 15c), CTR
displays higher RMSD and lower CC than other simulated metrics, albeit with a relatively low STD.
This suggests that while most other metrics' HFX simulations outperform CTR in terms of RMSD and
CC, their STD values are relatively increased, with EKGE and EMO ranking top two in both PSO and
SCE for STD. In contrast, for the comparison of latent heat flux (LH) with GLDAS (Figure 15d), CTR
exhibits lower RMSD and higher CC than other simulated metrics, but with a relatively high STD.
Notably, CTR's LH simulation surpasses other metrics in both RMSD and CC. Specifically, EKGE and
EMO rank top two for both STD and RMSD in both PSO and SCE, which is a notable contrast to the
findings for HFX.

In summary, compared with observations, the SMyscy, and STysc, simulations of EKGE and
EMO exhibit higher Taylor diagram skill (TDS) in both PSO and SCE, significantly outperforming
CTR. In contrast, when compared with GLDAS reanalysis, the TDS of HFX simulations for all metrics
in both PSO and SCE are superior to CTR, whereas the performance of LH simulations is the opposite.
Evidently, the enhancement of surface SM and ST simulations often yields more divergent surface
flux simulation results, indicating the high complexity of modeling surface states and fluxes in arid
regions.
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4.4. Configure and Benefit

Figure 16 compares the parameter ranges of the "best metric’s simulations" between PSO and
SCE, alongside the KGE values of various metrics for surface soil moisture simulations against
observations. It is observable that in PSO, the optimal parameter range of EMO is larger than that of
EKGE, whereas the opposite holds true for SCE, where EMO's optimal parameter range is smaller
than EKGE's (Figure 16A). The KGE values of SMys., from optimal simulations of different metrics
indicate that in PSO, EKGE achieves the highest KGE value, whereas in SCE, EMO attains the peak
(Figure 16a). For STysc,, however, EKGE's optimal simulation yields the highest KGE value in both
PSO and SCE (Figure 16b). In terms of forecasted SMgsc,, EKGE consistently produces the highest
KGE values in both PSO and SCE. Conversely, for STyscy, CCS achieves the highest KGE values in
both PSO and SCE, with EKGE following closely.
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Figure 16. The best LSM parameters’ configuration (A), and the different metrics” impact on the KGE
indicators of surface simulation (B) in PSO and SCE. Among B, (a) and (b) represent the KGEs of the
calibration and forecast periods respectively for SMyscn,, while (c) and (d) are the same as (a) and (b),
but for STysem-

Figure 17 illustrates the changes in RMSEg reductions and CCg increases of the simulations for
various metrics and CTR during the calibration and validation periods. For SMyscy,, during the
calibration period, most metrics, except CCS, exhibit a reduction in RMSEg compared to CTR, with
EMO and EKGE showing the most significant improvements (Figure 17a), which is also reflected in
their highest CCg (Figure 17e). During the validation period, EKGE and EMO stand out among the
metrics, excluding CCS and PKGE, in terms of RMSEg reduction (Figure 17b), again accompanied by
the highest CCg (Figure 17e). For STyscy, during the calibration period, RMSEg reductions relative
to CTR are observed for most metrics except PKGE, PMO, and NSES, with MAES, RMSES, and EMO
demonstrating the most pronounced improvements (Figure 17c), which also correspond to the
highest CCs (Figure 17g). Similarly, during the validation period, RMSEg reductions are observed
for most metrics except PKGE, PMO, and NSES, with MAES, RMSES, and EMO continuing to show
the most significant improvements (Figure 17d), accompanied by the highest CCs (Figure 17h).
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Figure 17. The different metrics’ impact on the LSM’s spatial difference reduction and similarity
increment. (a) Time varied RMSEg reduction (PSO, solid; SCE, dotted) compared to CTR (left) and
the box-plotted RMSEg reduction during the calibration period for SMyscm, (b) is same to (a), but for
the validation period. (c) and (d) are the same as (a) and (b), but for STyscm. (€)~(h) are the same to
(a)~(d), but for the CCg increments when compared to CTR.

In summary, the parameter uncertainty range of EMO is slightly smaller than that of EKGE in
both PSO and SCE, but the two metrics exhibit a trade-off in terms of RMSEg reduction and CCg
increase during the forecast and calibration periods for SMyscy, and STyscy. Specifically, EKGE
shows the greatest RMSEg reduction for both calibration and forecast periods of SMysc, and the
largest CCg increase during the forecast period of SMyscy,. Notably, EMO demonstrates the largest
RMSEg reduction and CCg increase for both forecast and calibration of STyscy,, while EKGE performs
poorest. This is notably different from the clear advantage of EKGE observed in our previous studies
[9], which can be attributed to the use of four layers in all objective metrics in this study. This suggests
that the EKGE metric with different vertical dimensions (number of layers) can significantly impact
the improvement capability of STysc, forecasts. Additionally, the failure of PKGE and PMO during
the forecast and calibration of STysq, (e.g., even inferior to CTR) indicates the ineffectiveness of
using surface-layer-dominated Pareto objectives and highlights the limitations of adjusting
subsurface simulations through improvements in surface simulations within Noah LSM.

5. Discussion

Though a comparative analysis of eight kinds of the introduced multi-objective calibration has
effectively portrayed the multifaceted impacts of metric differences on the joint SM—ST calibration
under the month—long calibration —prediction framework, offering insights for ST modeling and
prediction in semi-arid regions, this study is nevertheless subject to limitations: 1) the imperfect
datasets such as the unavailability of the site scale forcing data [35,71], which may lay certain spatial
effects on the simulations; 2) the absence of solutions for calibration schemes based on the dominant
Pareto metrics (e.g., PKGE and PMO) (Figure 6), which might indicate a need for extended search
time or fewer physical constraints.
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Significant heterogeneities in optimal parameters are observed across different objective metrics
(Figure S1-1 and Table 2), while within the same metric, the heterogeneities are relatively closer across
different algorithms (e.g., PSO and SCE), indicating that the parameter heterogeneities are largely
determined by the choice of metrics rather than the algorithms themselves. Furthermore, for all
metrics, the uncertainty of optimal parameters associated with PSO is higher than that of SCE (Figure
5), consistent with our previous findings [9]. Additionally, the "Vegetation" type exhibits a general
pattern of null values (e.g., NA) in PNL and non-positive values in ONR compared to other types
(Table 3), suggesting higher relative uncertainty and more unexplainable factors within the
"Vegetation" type parameters. In particular, the EKGE metric comprehensively performs best in
reducing spatial heterogeneities and uncertainties in LSM parameters compared to other metrics.

Moreover, significant disparities exist in the fitness curves of identical algorithms with different
metrics, whereas the differences are relatively minor in the fitness curves of distinct algorithms with
the same metric (Figure 6), indicating that metric variations exert a more profound influence on the
convergence efficiency of calibration than the algorithm itself. Notably, the rapid convergence
observed in CCS and NSES, as well as the non-convergence in PKGE and PMO, likely signify the
presence of locality and sub-optimality in the numerical solutions [50]. Furthermore, substantial
variations in success rates across different metrics are evident in PSO, whereas minimal changes are
observed in SCE (Figure 7), suggesting that the evolutionary capability of the PSO algorithm is
constrained by metric differences. Analogous to convergence efficiency, the degree of enrichment in
numerical solutions also exhibits greater disparities between identical algorithms with different
metrics than between distinct algorithms with the same metric (Figure 8), highlighting that metric
variations have a more profound impact on the validity of numerical solutions compared to the
algorithm itself.

There are considerable discrepancies among different metrics in addressing the spatial
complexity of land surface modeling (e.g., fitting, errors, and similarities of land surface states during
calibration and forecasting), and they are sensitive to algorithmic variations (Section 4.3). Specifically,
the EKGE metric and the EMO metric exhibit the best overall performance for SMyscy, and STyscm,
respectively (Figure 9-14). However, the EKGE metric's performance for STys., is inferior to our
previous study [9], which can be attributed to the consideration of subsurface soil in the SM-ST target
dimension, also demonstrating significant vertical variability in regional land surface modeling
targets [36,49]. Although the EMO metric is not the overall best for SMysy,, its relatively balanced
performance with no notable weaknesses can mitigate this issue to some extent (Figure 16-17).

Opverall, the selection of calibration objectives must be carefully considered due to the profound
impact of metric differences on the spatial heterogeneity of parameters in calibration, the efficiency
and effectiveness of calibration, and the spatial complexity of surface conditions. Especially, the
establishment of an automated soil observation network at regional stations, with the entire SM—ST
sates serving as the joint calibration objective, can enhance operational land surface applications.
Considering the less restrictive nature of EMO that combine multiple metrics in various applications,
the benefits are relatively more robust. Future research should strengthen the regional application of
EMO to improve the representation of surface characteristics in regional weather and climate
numerical forecasting.

6. Conclusions

The surface conditions are crucial for both regional hydrology and weather. Using ITPCAS
dataset from April 1 to July 31, 2014, the present study investigates the performance of various multi-
objective metrics that combined with the multi-parameter tables as varied criteria of GSA on
enhancing the Noah LSM calibration and forecasting. Comprehensive comparisons are conducted
among these enhancements such as the optimal land parameters, objectives, and simulations, and the
objective-informed forecasts that brought by these different metrics, to identify the effect of metric’s
diversity on SM-ST calibration and surface forecast. Results have shown that:

The case study presented herein can be succinctly characterized as a configuration-forecasting
problem. Initially, in terms of model configuration, the forcing manifestations encompass locally
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elevated surface temperatures (>5°C), low relative humidity (<1%), feeble wind speeds (<5m s7), a
shift in wind direction from south to north, low atmospheric pressure (586hPa), and minor hourly
rainfall intensities (<5mm h). Subsequently, within the default model parameter configuration,
significant spatial disparities emerge in the parameter space due to the static parameters being set as
the globally optimal defaults, while the initial parameters are derived from forecasts spanning the
preceding three months. The surface forecasting challenge manifests in the form of consistent SMyscp,
simulations but poor STysc, simulations. Considering the variations in default model parameters
across the calibration and validation (or forecast) periods, these periods are analyzed separately.
Specifically, during the calibration and forecasting periods, the slope (s) and goodness of fit (12) for
the SMysey simulations under the default parameter configuration are 0.22/0.14 and 0.15/0.05,
respectively, with Gaussian fits of their errors exhibiting positive skew distributions centered at 0.16
and 0.13 m3.m-3. In contrast, the s/r?2 values for the ST05cm simulations are -0.48/0.17 and -0.4/0.15,
with their errors displaying broader bi-modal distributions.

Firstly, for the optimal parameters of SM-ST calibration of the same metric, SCE consistently
achieves lower parameter uncertainty than PSO, albeit at the cost of relatively higher spatial
heterogeneity; specifically, in terms of parameter uncertainty, MAES in PSO and CCS in SCE exhibit
the smallest; as for parameter spatial heterogeneity, EKGE and EMO in PSO yield the smallest, while
EKGE in SCE displays smallest. Moreover, apart from PKGE and PMO, for other metrics, PSO
typically exhibits better optimal solutions, i.e., enhanced effectiveness, compared to SCE, albeit at the
cost of relatively lower efficiency; notably, for CCS, EKGE, and RMSES, the optimal solutions
obtained by PSO demonstrate higher kernel densities than those by SCE; conversely, for EMO and
MAES, the performance trend is reversed. Furthermore, EMO’s and EKGE’s PSO (SCE) calibration
of SMyscy and STysc, with the maximum upward slope as 0.96 (0.83) and 0.18 (0.23), respectively,
showcase the optimal linear fitting (Figure 9); for Eq_s of SMyscm, EMO’s and EKGE's performances
in both PSO and SCE are closest to the normal distribution, whereas for that of STys.m, EKGE in PSO
and MAES in SCE exhibit the closest resemblance to normality (Figure 13); EKGE and EMO have the
best RMSEg and CCg performances of SMyscy, for PSO and SCE respectively, while EMO has the
best RMSEg and CCg performances of STysc, for both.

EKGE’s and MAES’s PSO (SCE) SMyscm and STysey, forecasts with the maximum upward slope
as 0.98 (0.84) and 0.14 (0.15), respectively, showcase the best linear fitting (Figure 12). For Eg_g of
SMysem, EMO’s and EKGE's performances in both PSO and SCE are closest to the normal distribution,
whereas for that of STysc, EKGE (in PSO) and MAES (in SCE) exhibit the closest resemblance to
normality (Figure 13). EKGE have the best RMSEg and CCg performances of SMysc, for both PSO
and SCE, while EMO and RMSES has the best RMSEg and CCg performances of STyscy, for PSO and
SCE, respectively. Furthermore, compared with observations, the SMyscy, and STyscy, simulations of
EKGE and EMO exhibit higher Taylor diagram skill (TDS) in both PSO and SCE, significantly
outperforming CTR. In contrast, when compared with GLDAS reanalysis, the TDS of HFX
simulations for all metrics in both PSO and SCE are superior to CTR, whereas the performance of LH
simulations is the opposite.

The parameter uncertainty range of EMO is slightly smaller than that of EKGE in both PSO and
SCE, but the two metrics exhibit a trade-off in terms of RMSEg reduction and CCg increase during
the forecast and calibration periods for SMgscy and STyscn. However, due to the failure of vertical
dimension expansion, EKGE performs poor in STys., simulation improvement. Evently, EMO
showcases the greatest benefit in surface forecast improvement among all metrics and with the
hopeful low parameter uncertainties, which shows the most promising application performance.

Specifically, in the SM-ST calibration of Noah LSM, for optimal parameters, MAES (in PSO) and
CCS (in SCE) exhibit the lowest levels of uncertainty; EKGE/EMO (in PSO) and EKGE (in SCE) yield
the smallest spatial heterogeneity, while other metrics demonstrate nearly irregular or non-
discriminatory patterns. For optimal solutions, apart from Pareto dominance-based metrics (e.g.,
PKGE and PMO), other metrics do not alter the generality of GSA algorithms (such as effectiveness
and convergence domain). Notably, although CCS and NSES can accelerate GSA convergence, their
impacts on model calibration and prediction remain highly uncertain or even negative. Furthermore,
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regarding optimal modeling performance for calibration and forecast compared to observations,
substantial variations exist among different metrics, among them, EMO and EKGE yield the best
SMgscm modeling abilities, while EKGE and MAES exhibit the best STys., modeling abilities,
respectively. In terms of observation-simulation error fitting, EMO and EKGE in SMs¢, both
perform optimally, while EKGE (in PSO) and MAES (in SCE) in STysc, demonstrate the best
performance. For optimal spatial error and similarity performance in calibration and forecast periods,
EKGE’s SMyscy performs best, while EMO’s STysc, excels.

Overall, the metrics, apart from their impact on GSA itself (e.g., convergence), could significantly
influence the performances (including parameters, numerical solutions, and simulations) in SM-ST
calibration and prediction. Furthermore, the vertical dimensionality of the objective metrics in this
study notably affects the modeling of STys.,, indicating that the improvement of surface states
through metrics based on subsurface soil conditions is not absolute. Additionally, since the optimal
performance of different metrics in individual or joint modeling of SMys.y, and STysey is not
entirely consistent, the selection criteria for metrics in GSA applications are not unique. Specifically,
EMO outperforms others in calibrating and predicting the surface layer states. These findings could
enhance our understanding of the spatial complexity of parameters and simulations in surface
forecasting in semi-arid regions, thereby facilitating the improvement of regional surface forecasting.
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