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Abstract: Climate variability discourages smallholders from adopting yield-enhancing inputs,
perpetuating low agricultural productivity. Weather Index Insurance (WII) could mitigate this, but
empirical evidence remains inconsistent, with most insights drawn from controlled experiments
lacking real-world scalability. Using observational data from Kenyan smallholders across diverse
agroecological zones, this study employs instrumental variable regression to assess WII's influence
on agricultural input adoption and use intensity. Results demonstrate that WII significantly increases
adoption and intensification of improved inputs but displaces traditional practices, with effects
mediated by gender, financial access, and infrastructure. However, WII's efficacy diminishes under
extreme drought and in high-fertility soils, revealing threshold-dependent climate resilience shaped
by local agroecological conditions. Our results demonstrate that WII's productivity benefits are
context-dependent, urging policies that combine insurance with agroecological targeting and
complementary interventions like credit access to achieve sustainable agricultural transformation.
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1. Background

Sub-Saharan Africa faces escalating climate risks, with agricultural losses surpassing $15 billion
annually due to droughts, floods, and changing rainfall patterns since 2000 (FAO, 2023). Smallholder
farmers, who contribute 60% of the region's food production and rely predominantly on rainfed
systems, bear the brunt of these shocks (World Bank, 2023). In Kenya, where 98% of agriculture
depends on rainfall and only 5% of farms are irrigated, climate models predict a 20-40% yield decline
in staple crops by 2050 under current adaptation pathways (Kenya National Bureau of Statistics, 2022;
IPCC, 2023). This threatens food security for 10 million smallholder households (Government of
Kenya, 2023) underscoring the urgent need for solutions that mitigate climate risks and sustain
productivity.

Historically, agricultural intensification drove food security gains, as seen in Asia's Green
Revolution (Pingali and Sunder, 2017). However, climate change has destabilized this model in
rainfed systems. Kenyan farmers, for instance, reduce fertilizer use by 30-50% during droughts,
sacrificing potential yield gains of 4-6 tons per hectare (Sheahan et al., 2013). This behavior aligns
with prospect theory, which asserts that smallholders prioritize loss avoidance over profit
maximization in uncertain conditions (Schroder and Gilboa Freedman, 2020). While strategies like
crop diversification or distress sales provide short-term relief (Janzen and Carter, 2019), they incur
long-term costs. Droughts lower agricultural wages by 40% and asset values by 60%, reinforcing
cycles of poverty (Meza et al., 2021). Effective institutional interventions must, therefore, decouple
climate risk from productivity losses.

Agricultural insurance could bridge this gap, but traditional models struggle in developing
economies. Moral hazard and adverse selection inflate costs by 30-50% (Powell and Goldman, 2014),
while covariate risks necessitate expensive reinsurance (Kuhn et al., 2016). Due to fiscal constraints,
subsidized schemes in Kenya reach only 3% of farmers (Central Bank of Kenya, 2023). Weather Index
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Insurance (WII) offers a promising alternative. Its design reduces administrative costs by 60% relative
to indemnity-based models (World Bank, 2011) minimizes moral hazard through automated triggers
and mitigates adverse selection via standardized parameters. Importantly, WII's transparency
facilitates global reinsurance against catastrophic risks, enhancing insurer solvency (Sun, 2022; Benso
et al., 2023).

Despite promising pilot results, the causal mechanisms linking Weather Index Insurance (WII)
to sustained agricultural productivity remain contested. While WII's role in mitigating climate risks
is well-established (Benso et al., 2023), its secondary function as a catalyst for modern input adoption,
critical for breaking low-yield equilibria, lacks consistent empirical support. Some studies show that
WII reduces financial stress, enabling higher adoption rates of fertilizers and improved seeds among
insured smallholders (Isaboke et al., 2016; Belissa, 2024). Others find negligible effects, particularly in
the absence of complementary interventions such as credit access and extension services (Mobarak
and Rosenzweig, 2013; Castaing and Gazeaud, 2022). This divergence highlights contextual
heterogeneity, such as variations in risk perception, index design, and behavioral responses, which
existing literature has yet to disentangle.

Three limitations undermine the policy relevance of current WII research. First, an overreliance
on controlled experiments neglects real-world barriers, including distrust of insurers and liquidity
constraints that make premiums unaffordable (Aizaki et al., 2021; Tang et al., 2021). Second, the focus
on enrollment drivers and farmer preferences overlooks input use intensity, a critical factor in yield
impacts (Liu et al., 2019; Aizaki et al., 2021). Third, most evaluations ignore agroecological diversity.
WII designs effective in humid highlands often fail in arid lowlands due to mismatches between
index triggers and crop phenology (Dalhaus et al., 2018).

This study advances the WII research field through three key contributions. First, we bridge the
gap between controlled experiments and real-world conditions by analyzing observational data from
Kenyan smallholders across multiple WII programs and agroecological zones. This isolates how
behavioral and environmental factors shape WII's effectiveness, addressing a critical gap in RCT-
dominated literature. Second, we move beyond binary measures of input adoption to quantify WII's
impact on input-use intensity (Kg/acre) for both modern and traditional inputs, testing its potential
for sustainable agricultural intensification. Third, we translate our findings into actionable
recommendations for design improvements that enhance scalability across diverse farming systems
in Kenya and similar regions globally. Our results inform Kenya's National Agricultural Insurance
Program while refining theoretical frameworks at the intersection of climate-risk finance, behavioral
economics, and resilient food systems.

2. Weather Index Insurance in Kenya

Weather Index Insurance (WII) has become a cornerstone of climate risk management for
Kenyan smallholders, with operational schemes since the late 2000s (Sibiko and Qaim, 2020). The
Kilimo Salama ("Safe Farming") Program, launched in 2009, is a model for WII in sub-Saharan Africa,
integrating mobile technology and input-linked coverage to reduce basis risk and administrative
costs, which have hindered traditional insurance models (International Finance Corporation, 2015;
Seuret, 2010). Under this model, farmers who purchase insured inputs, such as hybrid maize seeds
or fertilizers from approved suppliers, are automatically enrolled in WII, with premiums typically
ranging from 10% to 20% of input costs, which raises retail prices proportionally (Seuret, 2010).

Enrollment is facilitated via SMS with product-packaging codes or agro-dealer networks,
ensuring geotagged plot alignment with nearby weather stations (Sibiko and Qaim, 2020). Payouts
are triggered when rainfall, measured by automated weather stations, deviates from predefined
thresholds during key crop growth phases. For example, a payout may occur if rainfall falls below
200mm over an 8-week sowing period for maize. Claims are processed through mobile money (M-
Pesa) within 14 days, enabling farmers to replant or smooth consumption in response to adverse
weather (Seuret, 2010).
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Despite these advancements, WII uptake remains low, with only 12.7% of eligible smallholders
enrolled as of 2022 (Kenya National Bureau of Statistics, 2022). Barriers to wider adoption include
liquidity constraints and uneven weather station coverage, with only 62% of Kenya's agro-zones
having reliable weather station density as of 2021 (Kenya Meteorological Department (KMD), 2023).
These constraints, along with other structural barriers, limit the effectiveness and reach of WIL
Kenya's Agriculture Sector Transformation Strategy (ASTS 2019-2029) prioritizes WII expansion
through partnerships involving insurers like APA, Jubilee, and the Kenya Agricultural Insurance
Programme (KAIP) (Government of Kenya, 2019). Despite policy efforts, persistent low WII uptake
reflects systemic barriers. Integrating WII with targeted infrastructure and risk-contingent financing
could bridge the gap between ambition and smallholder realities.

3. Methodology

3.1. Study Area

This study was conducted in Njoro Sub-County, Kenya (0°19'53"S, 35°56'31"E), a region that
exemplifies the challenges of rainfed smallholder agriculture in climate-vulnerable areas. Over 70%
of the population relies on rainfed maize farming as their staple crop and primary income source,
making livelihoods highly sensitive to weather variability. Spanning 713 km?, Njoro comprises six
administrative wards: Mau-Narok, Mauche, Kihingo, Nesuit, Lare, and Njoro. With an altitude
ranging from 1,300 to 2,000 meters above sea level, the climate is characterized by temperatures
between 25 and 30.5°C and annual rainfall of 850-1,000 mm. However, recurrent droughts and erratic
rainfall have led to 30-50% maize yield reductions in recent decades (Government of Kenya, 2022),
exacerbating food insecurity and poverty. This highlights a critical gap in smallholders' capacity to
manage escalating climate risks. Focusing on Njoro's maize systems, this study seeks to identify
scalable risk-mitigation strategies that balance agroecological resilience, economic feasibility, and
policy relevance for similar contexts across East Africa.

3.2. Sampling Procedure

A multi-stage sampling approach was used to select 400 smallholder maize farmers from Njoro
Sub-County (see Figure 1). The sub-county was first stratified into six administrative wards, from
which four, Kihingo, Lare, Nesuit, and Njoro, were purposively selected. These wards were chosen
based on the proportion of households engaged in maize farming, according to the Ministry of
Agriculture and Livestock Development (2023), and participation in Weather Index Insurance (WII)
initiatives. Within the selected wards, 20 villages were proportionally sampled based on the area
cultivated with maize. Respondents were randomly selected within these villages to ensure a
representative sample across the study area.
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Figure 1. Map of Njoro Sub-County.

3.3. Data Collection and Management

The study employed a rigorous mixed-methods approach to ensure validity and reliability.
Primary data were collected through direct field observations and structured farmer interviews,
allowing for real-time cross-verification of responses. Empirical methods were supplemented by a
systematic literature review of peer-reviewed journals and government reports to strengthen the
theoretical grounding and align the study with existing evidence. Instrument reliability was tested
with a pilot study (n=30) conducted in Njoro Sub-County, which identified ambiguities in the survey
instrument. These insights led to refinements that enhanced clarity and internal consistency. Data
was collected by trained enumerators with agricultural expertise, reducing potential measurement
error. Stata 17 was used for quantitative analysis, with statistical significance set at a=0.05 for
hypothesis testing.

3.4. Empirical Framework

Smallholder farmers' adoption of productivity-enhancing inputs is critical for poverty reduction,
yet underinvestment persists due to unmitigated weather risks. This study uses an IV-Probit model
to examine how Weather Index Insurance (WII) influences input adoption in Njoro Sub-County,
Kenya. Unobserved factors, such as risk preferences or latent trust in institutions, may jointly
influence farmers' decisions about WII adoption and input use, biasing standard probit estimates
through endogeneity (Sande and Ghosh, 2018). The IV-Probit model addresses endogeneity by using
instrumental variables (IVs) that meet two conditions: relevance (a strong correlation with WII
adoption) and exclusion (no direct effect on input use, except through WII) (Bastardoz et al., 2023).
Two IVs are used in this study. First, distance to the nearest weather station influences WII adoption
because proximity affects basis risk, the discrepancy between actual farm losses and insurance
payouts. Farmers farther from weather stations face higher basis risk, undermining trust in WII and
reducing adoption (Jensen et al., 2018). Second, insurance product training enhances farmers'
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understanding of WII's mechanisms, promoting trust and increasing uptake (Fonta et al., 2018).
Importantly, both IVs are plausibly exogenous. Distance is determined by geographic location, and
training programs are randomized across villages, minimizing direct effects on input decisions. The
IV-Probit model was estimated in two stages as follows:
First-stage regression (endogenous variable equation)
The endogenous variable (WII adoption) is estimated using the exogenous variables and
instruments.
Y = Xyl + X0, +y; (1)
where: Y; is the endogenous variable from the first stage (WIl adoption), X;; isa vector of exogenous
variables (e.g., farmer characteristics), X,; is a vector of instrumental variables (distance to the
weather station, training on insurance products), Il; and II, are estimated parameter values and v;
is the error term in the first-stage equation.
Second-stage regression (outcome equation)
The fitted values from the first stage (WII adoption) are used to estimate the effect on the
outcome variable (input adoption).
Y5y = YoB + XuY + 2)
where: Y;; is the latent dependent variable (input adoption), Y;, are the fitted values of the
endogenous variable from the first stage (WII adoption), X;; is the vector of exogenous covariates, f3
and Y are parameter estimates and u; is the error term.

4. Results and Discussion
4.1. Weather Index Insurance and Adoption of Agricultural Inputs

4.1.1. Descriptive Statistics of Insured and Non-Insured Smallholder Farmers

This section presents descriptive statistics comparing smallholder farmers who purchased
Weather Index Insurance (WII) and those who did not. Results in Table 1 show systematic differences
between insured and non-insured smallholders, highlighting how socio-economic, institutional, and
behavioral factors influence WII adoption. Insured farmers generally are older (p < 0.05), more
educated (p = 0.081), and have greater farming experience (p < 0.01). These findings align with life-
cycle models of technology adoption, which suggest that accumulated knowledge enhances the
uptake of risk management tools (Taherdoost, 2018).

Economic capacity is a key driver. Insured farmers earn 71% higher annual incomes (p < 0.001),
consistent with global evidence that financial resources enable participation in formal risk
mechanisms (World Bank, 2025). In contrast, non-insured farmers face significant financial
constraints (p < 0.05), echoing findings that even modest premiums exclude the most vulnerable (IFA,
2021). Household dynamics further differentiate the two groups. Insured farmers have larger families
(p < 0.01), suggesting that labor pooling aids premium payment, and they cultivate larger
landholdings (p < 0.001), supporting the idea that asset ownership incentivizes insurance uptake
(Janzen and Carter, 2019). Behaviorally, insured farmers display higher risk tolerance (62.05% vs.
14.96% engage in lottery games; p < 0.001), reinforcing the link between risk appetite and insurance
participation (Maccheroni et al., 2023).

Institutional access disparities highlight systemic barriers. Insured farmers live closer to
financial services (p < 0.001) and weather stations (p < 0.001), underscoring the role of physical
infrastructure in financial inclusion. Their greater participation in farmer groups (p < 0.01) and
insurance training (p < 0.001) illustrates how social networks reduce information asymmetries. A
slight advantage in market proximity (p < 0.05) suggests indirect incentives for adoption through
improved information flows.
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Table 1. Descriptive statistics of insured and non-insured smallholder farmers.
Total Insured Non-
Variables (N=400) (N=166) insured p-value
(n=234)
Mean (SD) Mean (SD) Mean (SD)
Socio-economic characteristics
Age 49.38 (8.29)  50.60 (7.65)  48.52(8.62) 0.013**
Gender (%) 69.75 (45.93) 74.10 (43.81) 66.67 (47.14) 0.111
Schooling (years) 13.37 (4.20)  13.81 (4.47)  13.06 (3.99) 0.081*
Household size 6.07 (2.47) 6.45 (2.55) 5.80 (2.37) 0.009%***
Log of annual average income (ksh) 12.78 (0.63)  13.03 (0.58) 7.61 (0.62) 0.000%***
Participation in lottery games (%) 34.50 (47.54) 62.05(48.53) 14.96 (35.67) 0.000%***
Experienced financial constraints (%) 95.50 (20.73) 92.77 (25.90) 97.44 (15.81) 0.027**
Farm characteristics
Maize farming (years) 14.66 (10.66) 16.51 (10.16) 13.35(10.83) 0.003***
Total land owned (acres) 1.77 (1.38) 2.32 (1.59) 1.38 (1.05) 0.000%**
Number of plots 1.34 (1.22) 1.41 (0.95) 1.41 (1.38) 0.565
Institutional characteristics
Accessed loan (credit) (%) 39.00 (48.77) 39.16 (48.81) 38.89 (48.75) 0.957
Farmer group membership (%) 50.75 (50.00) 59.04 (49.18) 44.87 (49.74) 0.005***
Distance to nearest market (km) 2.61 (0.97) 2.47 (0.93) 2.72 (0.99) 0.010%**
Distance to financial institution (km) 2.93 (1.54) 1.47 (0.54) 3.97 (1.12) 0.000***
Distance to weather station (km) 2.86 (1.28) 1.80 (0.58) 3.61 (1.11) 0.000 ***
Weather index insurance training (%)  23.25(42.24) 43.37 (49.56)  8.97 (2.86) 0.000%**
Weather/Weather-shock-related characteristics
Experienced weather shocks (%) 77.75 (41.59) 50.00 (50.00) 97.44 (15.81) 0.000%**
Access to weather information (%) 98.75 (11.11)  99.40 (7.74)  98.29 (12.96) 0.326
Average yield loss to weather shocks 83.78 (36.86) 75.51 (43.00) 87.88 (32.64) 0.017***

Notes: Means and standard deviations (SD) are shown in parentheses for each variable. ***, **, and * indicate
that the difference in means between sub-groups is statistically significant at 1%, 5%, and 10%, respectively. km

denotes kilometres.

Weather-related experiences reveal paradoxes. Despite reporting fewer yield losses (p < 0.05),
insured farmers experienced fewer weather shocks (p < 0.001), which may indicate better ex-ante risk
management or differing shock perceptions. With near-universal access to weather information
(98.75%), these findings suggest that awareness alone is insufficient for adoption, supporting calls for
complementary interventions (Aizaki et al., 2021).

These results demonstrate that economic capacity, physical access, behavioral factors, and
institutional linkages drive WII adoption. The significantly lower yield losses among insured farmers
suggest that WII protects productivity against climate shocks. However, the puzzle of insured
farmers reporting fewer losses despite fewer shocks highlights a gap that warrants further
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investigation. These insights emphasize that scaling WII’s benefits requires not only financial and
infrastructural investments but also targeted behavioral and institutional interventions to bridge
adoption disparities.

4.1.2. Descriptive Statistics of General Input Use Patterns Among Insured and Non-Insured Farmers

Table 2 presents descriptive statistics comparing input utilization between smallholder farmers
who purchased Weather Index Insurance (WII) and those who did not, reflecting general patterns of
input use. The results show significant differences in input use, risk management strategies, and
agricultural intensification practices between insured and non-insured farmers. Insured farmers
apply 58.98 kg/acre of chemical fertilizer, almost ten times the rate of non-insured farmers (6.13
kg/acre, p <0.001), aligning closely with agronomic recommendations for maize (Sheahan et al., 2013).
This suggests WII mitigates risk aversion and liquidity constraints, enabling more efficient input use
(Benso et al., 2023).

A substitution effect is observed in organic inputs. Insured farmers use less manure (p < 0.05)
and apply smaller quantities (p < 0.001). This likely results from increased access to synthetic
fertilizers and the labor-intensive nature of manure application. The lower standard deviation in
manure use among insured farmers (19.28 vs. 36.61) indicates more standardized, precision-driven
farming.

Table 2. Descriptive statistics of general input use patterns among insured and non-insured farmers.

d0i:10.20944/preprints202504.2032.v1

Total Insured Non-insured
Variables (n=400) (n=166) (n=234) p-value
Mean (SD) Mean (SD) Mean (SD)

Used chemical fertilizer (%) 46.50 (49.94) 86.75(34.01) 17.95(38.46)  0.000***
Chemical fertilizer quantity (kg/acre)  28.06 (35.80)  58.98 (33.47) 6.13 (15.39) 0.000%**
Used manure (%) 49.00 (50.05)  42.77 (49.62)  53.42 (49.88) 0.036**
Manure quantity (kg/acre) 2597 (31.92)  15.21(19.28)  33.60 (36.61)  0.000***
Used improved maize seeds (%) 59.50 (49.15)  89.76 (30.41)  38.03 (48.65)  0.000***
Improved maize seeds (kg/acre) 6.04 (5.59) 10.23 (4.24) 3.07 (4.41) 0.000%**
Used traditional maize seeds (%) 69.75 (45.99)  46.99 (50.06)  85.90 (34.88)  0.000***
Traditional maize seeds (kg/acre) 5.62 (4.81) 2.69 (3.46) 7.69 (4.56) 0.000%**
Hired labor (%) 83.00 (37.61)  95.78 (20.16)  73.93 (43.99)  0.000***
Labor (person-days/acre) 23.64 (15.37)  32.36 (13.63)  17.45(13.42)  0.000***
Average maize yield (bags/acre) 12.05 (5.56) 16.44 (5.26) 8.94 (3.15) 0.000***
Cultivated maize (acres) 1.16 (0.67) 1.49 (0.67) 0.92 (0.56) 0.000%**
Number of maize plots 1.39 (1.22) 1.34 (0.95) 1.41 (1.38) 0.565

Notes: Each variable is presented with its mean and standard deviation (SD) (in parentheses). ***, **, and * denote
statistically significant mean differences between sub-groups at the 1%, 5%, and 10% significance levels. 'Acre'

refers to the unit of land measurement, and 'kg' signifies kilograms.

Technological disparities are evident in seed selection. Insured farmers overwhelmingly adopt
improved maize varieties (p <0.001) and use three times as much seed (p <0.001), perhaps leveraging
climate-adapted genetics to maximize germination rates (Cacho et al., 2020). In contrast, non-insured
farmers rely on traditional seeds (p < 0.001), compensating for poor germination by using more seeds
(7.69 kg/acre vs. 2.69 kg/acre, p < 0.001).
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Labor market participation also differs significantly. Insured farmers hire labor more frequently
(p < 0.001) and use nearly double the number of person-days (32.36 vs. 17.45, p < 0.001), reflecting
expanded cultivation and more intensive farming practices. These increased labor inputs correlate
with an 84% yield advantage (16.44 vs. 8.94 bags/acre, p < 0.001), demonstrating that WII enables
synergistic effects from combined inputs. Despite significant differences in cultivation scale (p <
0.001), the number of plots remains similar (p = 0.565), indicating that insured farmers consolidate
their operations rather than fragment them. Yield-per-acre comparisons (p < 0.001) confirm that
intensification goes beyond simply scaling up land area.

These findings demonstrate that WII encourages smallholders to adopt capital- and knowledge-
intensive production practices, moving away from traditional risk-coping mechanisms while
fostering resilient, high-productivity systems. They also highlight WII's transformative potential as
a financial safety net and a catalyst for sustainable intensification.

4.1.3. Descriptive Statistics of Input Use Patterns for Active Users Among Insured and Non-Insured
Farmers

Building on the previous analysis of general input use patterns, this section examines the
quantities of inputs used by farmers who actively utilize them, comparing insured and non-insured
groups. The findings reveal that WII participation systematically alters input application intensity
among smallholder farmers, as seen in stark contrasts between insured and non-insured producers
(Table 6). Insured farmers apply 99% more chemical fertilizer (67.99 kg/acre vs. 34.14 kg/acre, p <
0.001), consistent with the risk-mitigation hypothesis that insurance reduces perceived investment
risks for costly, yield-enhancing inputs (Karlan et al., 2014). This trend holds across all fertilizer users
(60.35 kg/acre), with insured farmers driving overall intensification, a pattern also observed in
contexts where financial tools ease liquidity constraints (Suri, 2011).

Table 3. Descriptive analysis of input use among active users for insured and non-insured farmers.

Total Insured Not Insured
No. No. No.
Mean Mean Mean p-
of of of
usag usag usag value
user user user
e e e
s s s
0.000**
Chemical fertilizer quantity (kg/acre) 186 60.35 144 6799 42  34.14
0.000**
Manure quantity (kg/acre) 196 53.00 71 3556 125 6290
. . 0.000**
Improved maize seed quantity (kg/acre) 238 10.16 149 1140 89 8.08 |
Traditional maize seed quantity 0.000**
279 8.05 78 573 201 895
(kg/acre) *

Notes: Each variable is presented with its mean and number of farmers (in parentheses). ***, **, and * denote
statistically significant mean differences between sub-groups at the 1%, 5%, and 10% significance levels. 'acre’

denotes the unit of land measurement, and 'kg' denotes kilograms.

In contrast, non-insured farmers rely 77% more on manure (62.90 kg/acre vs. 35.56 kg/acre, p <
0.001), reflecting risk-coping strategies shaped by limited capital access and a strong aversion to
financial exposure. Their preference for slower-release organic inputs, despite their lower efficiency,
underscores how liquidity constraints perpetuate suboptimal nutrient management (Sheahan et al.,
2013). The intermediate average usage (53.00 kg/acre) further reveals heterogeneous risk tolerance,
even among uninsured farmers.
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Seed selection further highlights this divide. Insured farmers use 41% more improved seeds
(11.40 kg/acre vs. 8.08 kg/acre, p < 0.001), leveraging climate-resilient varieties to maximize planting
efficiency, an approach linked to higher yields under weather volatility (Cacho et al., 2020). In
contrast, non-insured farmers apply 56% more traditional seeds (8.95 kg/acre vs. 5.73 kg/acre, p <
0.001), compensating for poor germination rates or adhering to labor-intensive broadcast methods.
These differences highlight how WII accelerates the shift from subsistence to market-integrated
farming systems. The consistently significant differences (p <0.001) across all inputs underscore WII's
role in promoting agricultural modernization, reducing reliance on low-efficiency inputs, and
encouraging capital-intensive intensification. These findings show that WII stabilizes incomes and
actively reconfigures smallholder production systems, driving them toward higher productivity and
sustainability.

4.1.4. The Effectiveness of Weather Index Insurance in Promoting Input Adoption

This section builds on the descriptive analysis of input use patterns among insured and non-
insured farmers, employing more robust inferential methods to assess Weather Index Insurance (WII)
effects on input adoption. The IV-Probit model addresses endogeneity by using distance to the
nearest weather station and training on insurance as instruments for WII uptake, as they satisfy
exclusion restrictions(see the empirical framework for details). The primary focus is on the second-
stage regression, where fitted values from the first stage (WII adoption) estimate input adoption. The
first stage confirms the relevance of the instrumental variables, ensuring exogenous variation for
unbiased estimation in the second stage. In this stage, the outcome variable was modeled as a binary
input, where '1" indicates adoption of modern (chemical fertilizer and improved seeds) or traditional
inputs (manure and traditional seeds), and '0' indicates non-adoption.

Table 4. Regression analyses of the role of Weather Index Insurance in promoting input adoption.

First stage
Second-stage regression
regression
Chemical Improved Traditional
WII uptake Manure
fertilizer maize seeds maize seeds
Variables
Coeffici Coeffici Coeffici Coeffici Coeffici
ents ents ents ents ents
valu valu valu valu valu
(Robust (Robust (Robust (Robust (Robust
e e e e e
S.E) S.E) S.E) S.E) S.E.)
Distance to the nearest -3.731 0.00
weather station (0.622) 0***
Training on insurance 2977 0.00
products (0.512) 0***
1.230 0.00 -0.383 0.20 1.001 0.00 -1.249 0.00
WII uptake - -
(0.366) i (0.304) 8 (0.327) 2%%% (0.330) 0***
0.189 0.30 -0.083 0.40 0.041 0.038 0.69 -0.127 0.17
Age 0.64
(0.185) 6 (0.098) 1 (0.088) (0.098) 7 (0.093) 1
-0.002 0.26 0.001 0.47 0.000 0.81 0.000 0.72 0.001 0.14
Age squared
(0.002) 7 (0.001) 2 (0.001) 9 (0.001) 0 (0.001) 9
0.514 0.13 0.030 0.298 0.04 -0.100 0.54 0.046 0.78
Gender 0.86
(0.348) 9* (0.172) (0.148) 4** (0.165) 4 (0.171) 7
-0.143 0.00 -0.019 0.44 -0.013 0.49 -0.004 0.85 -0.036 0.07
Schooling

(0.048) 3 (0.024) 6 (0.019) 4 (0.023) 8 (0.020) 3%
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Training on agri- -0.926 0.05 0.476 0.01 0.006 0.97 -0.017 0.93 0.232 0.24
production technology (0.476) 2* (0.202) 9** (0.182) 6 (0.228) 9 (0.200) 6

-0.490 0.00 0.288 0.02 -0.023 0.81 0.176 0.20 -0.034
Total land owned 0.74
(0.186) [l (0.126) 2%* (0.097) 6 (0.138) 0 (0.102)

-0.756 0.00 0.058 0.074 0.45 0.192 0.16 0.000 0.99
Land leased out 0.63

(0.248) 284 (0.120) (0.099) 5 (0.138) 4 (0.100) 6

0.445 0.00 0.194 0.01 -0.056 0.39 0.299 0.00 -0.189 0.00
Wealth

(0.153) 435 (0.076) 0*** (0.065) 2 (0.077) 0*** (0.069) 6%
Household off-farm -0.157 0.03 0.023 0.56 0.019 0.58 0.086 0.04 -0.004 0.92
labor members (0.074) 4%* (0.040) 6 (0.035) 9 (0.042) 3¥* (0.039) 7
Household farm labor -0.189 0.32 -0.088 0.31 0.023 0.73 0.033 0.68 0.054 0.53
members (0.192) 5 (0.088) 5 (0.068) 2 (0.080) 1 (0.086) 2

1.322 0.00 0.004 0.98 0.116 0.44 -0.207 0.26 0.073 0.68
Rear livestock
(0.388) iiad (0.192) 3 (0.154) 8 (0.185) 3 (0.176) 1

Distance to nearest 0863 000 -0077 045 -0020 081 -0.118 021  -0.059 055
market (km) 0.245) 0"  (0.103) 3 (0.085) 3 (0.095) 1 (0.099) 5

-0.497 0.05 0.299 0.01 -0.197 0.06 0.058 0.63 -0.166 0.15
Road condition
(0.262) 8* (0.121) 3** (0.108) 8* (0.124) 7 (0.118) 9

Size of the largest maize 2327 000 -0365 014 -0.042 083 -0223 040 0257 023
plot (acres) 0.608) 0"  (0.252) 7 (0.197) 1 (0.265) 1 (0.214) 1

0.470 0.41 0.363 0.11 -0.188 0.38 -0.025 091 0.086 0.71
Land leased in
(0.578) 6 (0.229) 4 (0.217) 6 (0.248) 9 (0.237) 6

0.427 0.23 -0.342 0.09 0.129 0.38 0.482 0.00 -0.155 0.35
Soil fertility
(0.361) 7 (0.203) 1* (0.148) 4 (0.163)  3**  (0.167) 4

0.432 0.50 -0.764 0.06 -0.087 0.79 -0.376 0.36 -0.335 0.35
Financial constraints
(0.647) 5 (0.411) 3* (0.333) 4 (0.413) 2 (0.359) 2

-0.557 0.36 0.218 0.38 -0.589 0.00 0.262 0.31 -0.708 0.01
Drought 2022
(0.609) 1 (0.253) 9 (0.220) 8  (0.262) 7 (0.286) 3%

-2.016 0.00 -1.434 0.00 0.153 0.47 -1.429 0.00 0.082
Drought 2023 0.73
(0.595) e (0.323) 0™ (0.215) 7 (0.475)  3***  (0.237)

High-yield - weather- 0.328 0.071 0.69 -0.307 0.06 0.125 0.52 -0.317 0.07
0.46
sensitive (0.444) (0.180) 4 0.166) 5 (0.197) 3 0177y 3
-2.301 0.02 -0.385 0.568 -1.443 0.05 0.252
Weather Information 0.64 0.29 0.72
(0.987) 0*** (0.823) (0.537) (0.745) 3* (0.703)
10.168 0.06 3.437 0.20 -0.996 0.447 0.86 6.052 0.01
Constant 0.66
(5.581) 8* (2.710) 5 (2.266) (2.603) 4 (2.424) 3**
Wald Chi-squared 100.21*** 130.1%** 46.43*** 129.51*** 98.83***
Wald test of exogeneity - 7.58*** 0.77 0.29** 0.08

Notes: Coefficients are shown with robust standard errors (S.E.) in parentheses; ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively. "km" stands for kilometers, and "acres" denotes the

unit of land measurement.

IV-Probit results show significant treatment effects. Marginal effects at the sample means
indicate that WII adoption increases chemical fertilizer use by 123 percentage points (p < 0.01) and
improved seed adoption by 10.01 percentage points (coefficient = 1.001, p < 0.01). While manure
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adoption remains statistically insignificant (p = 0.208), insured farmers replace traditional seeds with
modern, insured alternatives (p < 0.01). This substitution aligns with agricultural transformation
theory, suggesting that financial products like WII alter the risk-return tradeoff, promoting
technology adoption (Karlan et al., 2014).

A comparative analysis of the coefficients reveals that WII adoption has a stronger effect on
chemical fertilizer use than improved maize seed adoption (p < 0.01). This supports Carter's capital
constraint hypothesis, which posits that WII alleviates liquidity barriers for high-cost inputs like
fertilizers (Carter ef al., 2016), which typically require 3-5 times the seasonal expenditure of seeds.
Farmers prioritize inputs with the steepest financial constraints when risk is mitigated. In contrast,
WII adoption reduces traditional seed use (p < 0.01), consistent with Karlan ef al. (2014) finding that
insured farmers shift toward modern inputs to reduce downside risk. The negligible effect on manure
(p = 0.208) suggests that WII does not uniformly promote all inputs, highlighting the role of input-
specific economic characteristics, such as cost and substitutability, in shaping adoption patterns
(Emerick et al., 2016). These findings underscore that WII's impacts are context-dependent. When risk
is mitigated, farmers allocate resources toward higher-return, capital-intensive technologies.

Gender significantly influences input adoption, with women 29.8 percentage points more likely
to use manure (p < 0.05). This aligns with findings by Feliciano (2019) on gendered agroecological
practices, where women's roles in resource management and livestock care lead them to favor organic
inputs. However, this preference may also result from structural constraints, as women often face
barriers to accessing credit, land, and markets for modern inputs (Agarwal, 2003). In contrast,
education shows a marginally significant negative association with traditional seed adoption (p <
0.1), supporting human capital theory, which suggests educated farmers use networks and market
access to adopt improved varieties (Wossen et al., 2015). These patterns highlight the complex
relationship between social stratification and agricultural modernization.

Wealth strongly influences input adoption. A one-unit increase in wealth raises the probability
of using chemical fertilizers by 19.4 percentage points (p <0.01) and adopting improved seeds by 29.9
percentage points (p <0.001), while reducing traditional seed use by 18.9 percentage points (p <0.01).
This supports the risk-coping hypothesis, which suggests that wealthier farmers, with greater
liquidity and assets, exhibit higher risk tolerance for adopting productivity-enhancing technologies
(Dercon and Christiaensen, 2011). However, this wealth-driven intensification may pose
sustainability challenges. Heavy reliance on chemical fertilizers risks long-term soil health and may
widen productivity gaps between resource-rich and resource-poor farmers (Ficiciyan et al., 2018).

The effectiveness of Weather Index Insurance (WII) depends on complementary institutional
support. Agricultural training boosts chemical fertilizer adoption by 47.6 percentage points (p < 0.05),
demonstrating that technical knowledge complements financial risk mitigation. This finding
supports the dual constraint framework, where WII alleviates liquidity barriers (Cole et al., 2013)
while extension services fill agronomic knowledge gaps (Lei and Yang, 2024). Notably, training has
no significant effect on traditional inputs, suggesting that extension programs are more effective in
promoting complex, knowledge-intensive technologies like fertilizers rather than simpler inputs like
seeds, consistent with trends in Sub-Saharan Africa (Anderson et al., 2020). This differential impact
suggests that combining insurance with input-specific training may be more effective than
standalone programs, particularly for capital-intensive technologies requiring financial security and
technical expertise.

The allocation of household labor to off-farm activities significantly influences agricultural input
decisions through opportunity cost mechanisms. Households engaged in off-farm work are 2.21
percentage points less likely to use chemical fertilizers (p < 0.10), supporting Ellis's (2000) theory that
labor markets compete with time-sensitive farm operations like fertilizer application. This labor
substitution effect does not extend to improved seed adoption (p > 0.10), consistent with Suri's
hypothesis (Suri, 2011) that labor-constrained farmers prioritize labor-saving technologies over
inputs that require intensive management. This selective adoption pattern aligns with findings from
India’s National Rural Employment Guarantee Scheme, where off-farm income increased fertilizer
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opportunity costs but did not affect hybrid seed uptake (Nandy et al., 2021). These results suggest
that labor market integration shifts input portfolios toward less management-intensive technologies.

Farm scale also plays a key role in input adoption. Larger farms are 28.8 percentage points more
likely to use chemical fertilizers than smallholdings (p < 0.05), supporting the minimum efficient scale
hypothesis (McAuliffe, 2015), where bulk procurement and mechanized application make fertilizers
economically viable only above certain operational thresholds. This effect mirrors Brazil's
agricultural transformation, where fertilizer application rates tripled on farms over 10 hectares
(Assungao and Braido, 2007). In contrast, manure adoption remains unaffected by scale (p > 0.10),
indicating that manure, a labor-intensive yet low-capital input, is still viable for smallholders. Its low
cost and no scale requirements allow its continued use despite agricultural modernization
(Sadeghpour and Afshar, 2024).

Transport infrastructure reshapes input adoption through cost reduction and market
integration. Improved road conditions increase chemical fertilizer use by 29.9 percentage points (p <
0.05) while reducing manure use by 19.7 percentage points (p < 0.05), demonstrating infrastructure's
polarizing effect. This aligns with global evidence that road development lowers fertilizer costs while
accelerating the abandonment of labor-intensive organic practices (Shamdasani, 2021). The lack of
significant effect on seed adoption (p = 0.15) highlights that infrastructure impacts inputs differently;
transport improvements primarily affect fertilizer use, while labor opportunity costs drive manure
adoption. These polarizing effects present sustainability trade-offs. Fertilizer use boosts short-term
yields but may undermine long-term soil health in vulnerable agroecosystems (Gao et al., 2022). This
underscores the need for policies that balance productivity gains with soil preservation, offering a
Pareto improvement over blanket subsidies.

Farmers demonstrate complex soil fertility management strategies that challenge universal
input use patterns. High-fertility soils increase improved seed adoption by 48.2 percentage points (p
< 0.01) while reducing synthetic fertilizer use by 34.2 percentage points (p < 0.10), revealing a
substitution effect where natural soil fertility reduces dependence on purchased inputs. This supports
Marenya’s findings in western Kenya (Marenya and Barrett, 2009), where smallholders selectively
applied fertilizer to marginal soils, leveraging natural fertility when crop responses plateaued,
contradicting the complementarity assumed in many WII programs. These results highlight the
inefficiency of blanket input prescriptions, suggesting that soil-test-based targeting could enhance
nutrient-use efficiency, as shown by Phiri et al. (2021) in Zimbabwe.

Financial constraints are the primary barrier to modern input adoption. Capital-constrained
households are 76.4 percentage points less likely to use fertilizer (p <0.10), nearly double the positive
impact of WII participation. This confirms liquidity constraints as the critical adoption bottleneck,
supporting observations by Sheahan et al. (2013) that input timing and credit access outweigh risk
mitigation. While WII addresses risk-related barriers, its effectiveness is limited by capital scarcity,
as seen in Ethiopia (Tofu et al., 2022). These findings underline the need for complementary financial
instruments, such as input credit or harvest-contingent repayment, to fully unlock W1I's potential, in
line with Karlan et al. (2014) framework on liquidity's role in agricultural technology adoption.

The relationship between drought severity and WII efficacy follows a nonlinear threshold
pattern. During the moderate 2022 drought, traditional inputs (manure: -58.9 percentage points;
traditional seeds: —70.8 percentage points) collapsed, while modern inputs remained stable among
insured farmers, confirming WII's ability to sustain adoption under moderate stress. However, the
extreme 2023 drought overwhelmed WII's protective mechanisms, causing sharp declines in modern
input use. This bifurcated response aligns with Carter et al. (2016) threshold models, highlighting a
vulnerability in index-based insurance systems. These findings emphasize the urgent need to
redesign WII to maintain effectiveness under escalating climate extremes, especially with the
projected increase in drought frequency and severity (IPCC, 2022).
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4.1.5. Effect of Weather Index Insurance on Agricultural Input Quantities for Active Users

This analysis moves beyond binary adoption metrics by quantifying how Weather Index
Insurance (WII) reshapes input intensification under climate risk. We employ a two-stage
instrumental variables (IV) approach, ensuring causal identification with strong first-stage validity
(p<0.001) and confirming the exclusion restriction through Wu-Hausman tests. Heteroscedasticity-
robust standard errors and endogeneity tests support the robustness of our estimates, mitigating
potential biases (Table 5).

Table 5. Analysis of the impact of Weather Index Insurance on agricultural input quantities for active users.

Chemical Improved Traditional
Manure
first stage fertilizer maize seeds maize seeds
(kg/acre)
(kg/acre) (kg/acre) (kg/acre)
Variables Coefficie Coefficie Coeffici Coeffici Coeffici
p- p- p- p- p-
nt nt ent ent ent
valu valu valu valu valu
(Robust (Robust (Robust (Robust (Robust
e e e e e
S.E.) S.E.) S.E.) S.E.) S.E.)

Distance to the

nearest weather -3.731 0.00
station (0.622) 0**
Training on insurance 2977 0.00
products (0.512) 0**
28.767 0.00 -27.072 0.00 2.549 0.00 -2.851 0.00
WII uptake - (5.736) 0** (4.350) 0*** (0.539) 0** 0.637)  0***

0.189 0.30 5.511 0.04 1.456 0.46 0.455 0.08 -0.063 0.82
Age (0.185) 6 (2.677) 1** (1.998) 7 (0.263) 6* (0.288) 7
-0.002 0.26 -0.055 0.03 -0.015 0.44 -0.004 0.11 0.001 0.82
Age squared (0.002) 7 (0.026) 8** (0.019) 9 (0.003) 3 (0.003) 3
0.514 0.13 8.987 0.04 1.276 0.76 0.493 0.25 -0.784 0.08
Gender (0.348) 9 (4.441) 5% (4.189) 1 (0.428) 1 (0.450) 2%
-0.143 0.00 -0.393 0.45 0.711 0.16 0.073 0.15 0.020 0.68
Schooling (0.048) 3 (0.527) 7 (0.508) 3 (0.051) 4 (0.050) 9
Training on Agri-
production -0.926 0.05 -2.060 0.60 -1.090 0.75 0.275 0.357 0.56
technology (0.476) 2% (4.019) 9 (3.471) 4 (0.398) 0.49 (0.619) 5
-0.490 0.00 -0.133 0.95 0.101 0.95 0.280 0.21 0.127 0.63

Total land owned 0.186) 9%+  (2.236) 3 (1.949) 9 0224y 3 (0265) 3
0756 000  -1449 055 0373 085 -0255 026 0178  0.60
Land leased out (0248) 2%+ (2.435) 3 (2.075) 7 (0230) 8  (0348) 9

0.445 0.00 0.439 0.81 0.163 0.92 0.215 0.20 -0.169

Wealth (0.153) 4% (1.842) 2 (1.722) 5  (0168) 3 (0210) 042
Household off-farm 0157 003  -0498 056 0384 0063 045  -0.044 067
labor members 0.074) 4  (0.861) 4 (0.642) 055 (0.083) 3  (0.103) 1

Household farm labor -0.189 0.32 -0.824 0.68 -3.581 0.02 -0.370 0.03 -0.225 0.27
members (0.192) 5 (2.018) 4 (1.608) 7** (0.177) 7* (0.205) 5
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1.322 0.00 0.526 0.90 -1.646 0.67 0.249 0.54 0.611 0.20

Rear livestock (0.388) 1 (4.494) 7 (3.939) 7 (0.408) 2 (0.477) 2
Distance to nearest -0.863 0.00 2.219 0.35 2.602 0.18 -0.132 0.53 0.367 0.13
market (km) (0.245) 0*** (2.381) 3 (1.944) 2 (0.211) 2 (0.245) 4

-0.497 0.05 1.846 0.58 2.872 0.28 0.087 0.77 0.171 0.58

Road condition (0.262) 8* (3.394) 7 (2.666) 3 (0.299) 2 (0.315) 8
Size of the largest 2.327 0.00 3.519 0.35 1.993 -0.331 0.45 0.431 0.47
maize plot (acres) (0.608) 0*** (3.793) 5 (4.674)  0.67  (0.444) 7 (0.603) 5

0.470 0.41 1.469 0.81 0.087 0.98 0.823 0.17 0.000 0.98

Land leased in (0.578) 6 (6.191) 3 (6.108) 9  (0608) 8  (0.679) 8
0.427 0.23 1.825 0814 082 0408 031 -0.626 0.4
Soil fertility (0.361) 7 4136) 066  (3.619) 2 (0406) 6  (0426) 3

0.432 050  -16677 000 8180 007 0510 040 0937 024
Financial constraints (0.647) 5 (6.096) 7% (4484) 0% (0615 8  (0.800) 3
0557 036 0.716 089 2831 046 0563 028 0533 039

Drought 2022 (0.609) 1 (5.511) 7 (3.862) 4 (0.529) 8 0.629) 7
2016 000  -1.183 078  -6593 008 -1.106 001 068 026
Drought 2023 0.595)  1***  (4.395) 8 (3.859)  9*  (0447) 4%  (0615) 8
High-yield - weather- 0.328 4256 031 4203 026 -0288 048 -0471 037
sensitive (0.444) 046  (4.218) 4 (3.736) 2 0412) 5 (0532) 6

2301 002 10772 013 11122 005 0697 045 1154 046
Weather Information 0987) 0%  (7.164) 5 (5673)  2* (0939 9  (1578) 5
10168 006  -108060 014 9880 085 -6560 031 6881

Constant (5.581) 8* (73.545) 4 (53.265) 3 (6.539) 7 (7.670) 037
Endogeneity test x2=0.987 x2=0.653 x*= 0.819 x2=0.534
Heteroscedasticity X2=

testb X2=2.75* X2=2.84* 26.88*** X2="7.64%*

Notes: Coefficients are shown with robust standard errors (S.E.) in parentheses; ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively. "km" stands for kilometres, and "acres" denotes the

unit of land measurement. a. Durbin-Wu-Hausman test statistic; b. Pagan-Hall test statistic.

Results in Table 5 show that WII induces asymmetric input substitution, consistent with the loss-
aversion framework of prospect theory (Shin ef al., 2022). Farmers increase high-yield inputs,
fertilizers (+28.7 kg/acre, p < 0.001) and improved seeds (+2.6 kg/acre, p < 0.05), while reducing
traditional risk-mitigating practices like manure (-27.0 kg/acre, p < 0.001) and traditional seeds (2.9
kg/acre, p < 0.05). This aligns with Karlan et al. (2014) liquidity hypothesis, where WII payouts
alleviate credit constraints, enabling the adoption of productivity-enhancing technologies. However,
the near-symmetric trade-off between fertilizer and manure adoption suggests competing risk-
management strategies. WII promotes short-term yield maximization at the potential expense of soil
health, echoing concerns about "technological lock-in" (Magrini et al., 2019). These findings extend
Sibiko and Qaim (2020) by quantifying input-level trade-offs, revealing unintended effects where WII
boosts productivity but may exacerbate soil degradation, a critical issue for sustainable intensification
(Gao et al., 2022).

Age also mediates input use, challenging conventional adoption narratives. Older farmers apply
5.5 kg/acre more fertilizer (p <0.01) and 0.5 kg/acre more improved seeds (p < 0.05) for each additional
year of age. This suggests a long-term risk-return calculus where experience outweighs initial risk
aversion. In contrast, younger farmers' slower adoption reflects liquidity constraints or shorter
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planning horizons despite their presumed adaptability (Rizzo et al, 2024). These generational
differences highlight the limitations of one-size-fits-all programs. Integrating older farmers'
experiential knowledge with targeted techno-financial support for younger farmers could better
balance productivity and sustainability.

Gender significantly shapes agricultural input allocation. Female-managed plots apply 8.99
kg/acre more chemical fertilizer (p < 0.01) but 0.78 kg/acre less traditional seed (p < 0.05) than male-
managed plots. These differences arise from two key factors: gendered labor roles and risk
preferences. Women's dual farm-household roles prioritize labor-saving inputs, as chemical
fertilizers reduce planting and maintenance demands compared to traditional seeds (Doss, 2015).
Additionally, women's greater responsibility for household food security leads to a preference for
yield-stabilizing strategies, with chemical fertilizers offering more predictable harvests than
traditional seeds, which are vulnerable to pests and climate variability (Doss, 2015). These findings
underscore how structural gender disparities, beyond access, shape input decisions, with
implications for designing labor-efficient and risk-contingent agricultural technologies.

Liquidity constraints further influence input use. Financial scarcity reduces chemical fertilizer
application by 16.7 kg/acre (p < 0.01) and increases manure use by 8.18 kg/acre (p < 0.05). This
substitution effect reflects a broader trend where cash-limited farmers prioritize affordability over
agronomic efficiency, especially in regions with underdeveloped input markets (Tofu ef al., 2022).
Manure is a soil amendment and a liquidity buffer, requiring no upfront cash and often sourced from
on-farm biomass (Sadeghpour and Afshar, 2024). This highlights the limitations of input promotion
programs that overlook household capital constraints, suggesting that financial instruments like
input credit are essential for enabling fertilizer adoption among resource-poor farmers.

Climate shocks also shape input decisions. While the 2022 drought had no detectable effect, the
prolonged 2023 drought reduced manure use by 6.59 kg/acre (p <0.05) and increased improved maize
seed adoption by 1.11 kg/acre (p < 0.1). This shift aligns with models of sequential climate shocks,
where short-term droughts are buffered by savings or informal insurance, but prolonged exposure
depletes adaptive reserves (Touch et al., 2024). The increased adoption of drought-tolerant seeds and
reduced manure use reflect a risk-avoidance strategy typical of smallholders facing recurrent climate
stress (Cacho et al., 2020). The nonlinear nature of these effects underscores that climate adaptation
policies must account for the duration of shocks, as single-year interventions may miss the
cumulative erosion of resilience under consecutive droughts.

Access to weather forecasts increased manure application by 11.12 kg per acre (p < 0.05),
demonstrating how climate information supports adaptive input optimization. Manure's dual
benefits, as a drought-resistant soil amendment and a low-risk investment during rainfall uncertainty
(Sadeghpour and Afshar, 2024), explain this effect. Weather-informed farmers prioritize low-capital,
locally adaptable inputs over volatile, capital-intensive ones, particularly in rainfed systems where
climate forecasts improve organic input efficacy (Guido et al., 2020).

These findings highlight the complex interplay of financial, gendered, and agroecological factors
in shaping input decisions under climate extremes. Weather Index Insurance (WII) alleviates liquidity
and risk constraints, prompting farmers to adopt yield-enhancing practices consistent with risk-
averse behavior under climate uncertainty. Notably, input substitution follows nonlinear thresholds.
Short-term climate shocks prompt minimal change, but prolonged droughts shift adoption toward
modern inputs. This observation, absent from traditional adoption models, shows how farmers'
decisions evolve with cumulative climate stress.

5. Conclusion and Policy Recommendations

Agricultural intensification is critical for poverty reduction and food security, yet weather
shocks disrupt smallholder farmers' ability to invest in yield-enhancing inputs. Weather Index
Insurance (WII) has emerged as a potential solution to mitigate these risks, but its effectiveness in
promoting sustained input use remains debated. This study demonstrates that WII accelerates both
the adoption and intensification of inputs, specifically chemical fertilizers (+28.7 kg/acre) and
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improved maize seeds (+2.6 kg/acre), while displacing traditional, low-yield alternatives like manure
(=27 kg/acre) and local seeds (-2.9 kg/acre). This dual effect underscores a dilemma: insurance
designed to mitigate risk may inadvertently amplify vulnerability by incentivizing input
monocultures and eroding agroecological resilience.

Socio-economic and environmental factors such as gender disparities, financial constraints, and
infrastructure influence WII's effectiveness. While our findings support prior studies on WII's
positive effects, they reveal critical nonlinearities. For example, female-headed households retain
manure despite adopting WII, suggesting rational adaptation (manure's drought resilience) or
exclusion from input markets, insights overlooked by standard adoption models. In contrast,
households with off-farm income use WII to invest more in high-yield inputs, reflecting a divergence
in adaptive capacity that mirrors broader rural financial inequalities. Spatial disparities further reveal
infrastructure's polarizing role. improved roads increase chemical fertilizer use and reduce manure
use, underscoring the need for geographically adaptive insurance to avoid entrenching unsustainable
input dependencies in marginalized areas.

Modern input use was resilient to moderate drought (2022) but declined during severe drought
(2023), demonstrating WII's threshold-dependent effectiveness, consistent with climate adaptation
models. Farmers deviated from standardized risk models, substituting inputs based on localized risk
perceptions, retaining traditional seeds in drought-prone areas despite insurance. In high-fertility
soils, WII's influence weakened further, highlighting how agroecological conditions shape the impact
of financial interventions. These findings challenge one-size-fits-all resilience models, emphasizing
the interplay of biophysical thresholds and local adaptation in determining WII's effectiveness.

These insights advance three theoretical contributions. First, WII's impact on input use is shaped
by risk-liquidity interdependence, where liquidity often outweighs risk reduction in marginal
environments. Second, socio-economic and agroecological factors influence farmers' responses to
WIL, highlighting heterogeneous adaptation pathways that challenge monolithic policy solutions.
Third, the 2022-2023 drought dichotomy demonstrates that WII's stabilizing effects collapse beyond
critical shock thresholds, revealing nonlinear climate resilience that calls for policy redesign to
address extreme climate events.

The findings emphasize that Weather Index Insurance (WII) must evolve from a standalone risk-
transfer tool to a key component of climate-resilient agricultural systems. Policies should prioritize
context-sensitive designs that address local infrastructure gaps, gendered access barriers, and
agroecological conditions. For instance, pairing WII with agroecological safeguards, such as premium
discounts for maintaining soil organic matter or bundled credit for hybrid fertilizers, can preserve
resilient practices like manure use. Gender-responsive delivery, including targeted extension
programs and flexible repayment schedules, can also address divergent adaptation pathways
between male- and female-headed households.

WII's threshold-dependent effectiveness requires layered resilience strategies to anticipate
extreme climate shocks. National agricultural policies should integrate WII with broader safety nets,
such as shock-responsive social protection and community seed banks, to prevent input use collapse
during severe droughts, as observed in 2023. Public-private partnerships, supported by digital
infrastructure, can enhance last-mile delivery in underserved areas, while insurance literacy
programs ensure farmers understand WII's limitations. Policymakers can balance short-term risk
reduction with long-term sustainability by embedding WII within adaptive agroecologically
informed systems, aligning with SDGs on zero hunger and climate action.

Despite the valuable insights of this study, key questions remain, including why female farmers
retain manure under WII, whether due to risk aversion, cultural factors, or adaptive strategies, and
how WII affects long-term soil carbon. Additionally, the reluctance of younger farmers to adopt
modern inputs, despite higher education, warrants further investigation. The cross-sectional design
limits causal inferences, and reliance on self-reported data may introduce bias. Future research
should employ mixed methods (behavioral experiments, soil monitoring) and quasi-experimental
designs to assess causality, alongside longitudinal studies to quantify the hidden costs of lost
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agroecological practices. Expanding studies to agroecological transition zones, such as semi-arid
irrigating regions, would further test WII's adaptability across diverse farming systems.
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