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Evidence from Smallholder Farmers in Kenya 

Price M. Amanya *, Yueqing Ji, Yongyi Fu, Shadrack Kipkogei 

College of Economics and Management, Nanjing Agricultural University, Jiangsu 210095, China 

* Correspondence: priseam28@gmail.com 

Abstract: Climate variability discourages smallholders from adopting yield-enhancing inputs, 

perpetuating low agricultural productivity. Weather Index Insurance (WII) could mitigate this, but 

empirical evidence remains inconsistent, with most insights drawn from controlled experiments 

lacking real-world scalability. Using observational data from Kenyan smallholders across diverse 

agroecological zones,  this study employs instrumental variable regression to assess WII's influence 

on agricultural input adoption and use intensity. Results demonstrate that WII significantly increases 

adoption and intensification of improved inputs but displaces traditional practices, with effects 

mediated by gender, financial access, and infrastructure. However, WII's efficacy diminishes under 

extreme drought and in high-fertility soils, revealing threshold-dependent climate resilience shaped 

by local agroecological conditions. Our results demonstrate that WII's productivity benefits are 

context-dependent, urging policies that combine insurance with agroecological targeting and 

complementary interventions like credit access to achieve sustainable agricultural transformation. 

Keywords: weather index insurance; input intensification; smallholder farmers; climate resilience 

 

1. Background 

Sub-Saharan Africa faces escalating climate risks, with agricultural losses surpassing $15 billion 

annually due to droughts, floods, and changing rainfall patterns since 2000 (FAO, 2023). Smallholder 

farmers, who contribute 60% of the region's food production and rely predominantly on rainfed 

systems, bear the brunt of these shocks (World Bank, 2023). In Kenya, where 98% of agriculture 

depends on rainfall and only 5% of farms are irrigated, climate models predict a 20–40% yield decline 

in staple crops by 2050 under current adaptation pathways (Kenya National Bureau of Statistics, 2022; 

IPCC, 2023). This threatens food security for 10 million smallholder households (Government of 

Kenya, 2023) underscoring the urgent need for solutions that mitigate climate risks and sustain 

productivity. 

Historically, agricultural intensification drove food security gains, as seen in Asia's Green 

Revolution (Pingali and Sunder, 2017). However, climate change has destabilized this model in 

rainfed systems. Kenyan farmers, for instance, reduce fertilizer use by 30–50% during droughts, 

sacrificing potential yield gains of 4–6 tons per hectare (Sheahan et al., 2013). This behavior aligns 

with prospect theory, which asserts that smallholders prioritize loss avoidance over profit 

maximization in uncertain conditions (Schröder and Gilboa Freedman, 2020). While strategies like 

crop diversification or distress sales provide short-term relief (Janzen and Carter, 2019), they incur 

long-term costs. Droughts lower agricultural wages by 40% and asset values by 60%, reinforcing 

cycles of poverty (Meza et al., 2021). Effective institutional interventions must, therefore, decouple 

climate risk from productivity losses. 

Agricultural insurance could bridge this gap, but traditional models struggle in developing 

economies. Moral hazard and adverse selection inflate costs by 30–50% (Powell and Goldman, 2014), 

while covariate risks necessitate expensive reinsurance (Kuhn et al., 2016). Due to fiscal constraints, 

subsidized schemes in Kenya reach only 3% of farmers (Central Bank of Kenya, 2023). Weather Index 
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Insurance (WII) offers a promising alternative. Its design reduces administrative costs by 60% relative 

to indemnity-based models (World Bank, 2011) minimizes moral hazard through automated triggers 

and mitigates adverse selection via standardized parameters. Importantly, WII's transparency 

facilitates global reinsurance against catastrophic risks, enhancing insurer solvency (Sun, 2022; Benso 

et al., 2023). 

Despite promising pilot results, the causal mechanisms linking Weather Index Insurance (WII) 

to sustained agricultural productivity remain contested. While WII's role in mitigating climate risks 

is well-established (Benso et al., 2023), its secondary function as a catalyst for modern input adoption, 

critical for breaking low-yield equilibria, lacks consistent empirical support. Some studies show that 

WII reduces financial stress, enabling higher adoption rates of fertilizers and improved seeds among 

insured smallholders (Isaboke et al., 2016; Belissa, 2024). Others find negligible effects, particularly in 

the absence of complementary interventions such as credit access and extension services (Mobarak 

and Rosenzweig, 2013; Castaing and Gazeaud, 2022). This divergence highlights contextual 

heterogeneity, such as variations in risk perception, index design, and behavioral responses, which 

existing literature has yet to disentangle. 

Three limitations undermine the policy relevance of current WII research. First, an overreliance 

on controlled experiments neglects real-world barriers, including distrust of insurers and liquidity 

constraints that make premiums unaffordable (Aizaki et al., 2021; Tang et al., 2021). Second, the focus 

on enrollment drivers and farmer preferences overlooks input use intensity, a critical factor in yield 

impacts (Liu et al., 2019; Aizaki et al., 2021). Third, most evaluations ignore agroecological diversity. 

WII designs effective in humid highlands often fail in arid lowlands due to mismatches between 

index triggers and crop phenology (Dalhaus et al., 2018). 

This study advances the WII research field through three key contributions. First, we bridge the 

gap between controlled experiments and real-world conditions by analyzing observational data from 

Kenyan smallholders across multiple WII programs and agroecological zones. This isolates how 

behavioral and environmental factors shape WII's effectiveness, addressing a critical gap in RCT-

dominated literature. Second, we move beyond binary measures of input adoption to quantify WII's 

impact on input-use intensity (Kg/acre) for both modern and traditional inputs, testing its potential 

for sustainable agricultural intensification. Third, we translate our findings into actionable 

recommendations for design improvements that enhance scalability across diverse farming systems 

in Kenya and similar regions globally. Our results inform Kenya's National Agricultural Insurance 

Program while refining theoretical frameworks at the intersection of climate-risk finance, behavioral 

economics, and resilient food systems. 

2. Weather Index Insurance in Kenya 

Weather Index Insurance (WII) has become a cornerstone of climate risk management for 

Kenyan smallholders, with operational schemes since the late 2000s (Sibiko and Qaim, 2020). The 

Kilimo Salama ("Safe Farming") Program, launched in 2009, is a model for WII in sub-Saharan Africa, 

integrating mobile technology and input-linked coverage to reduce basis risk and administrative 

costs, which have hindered traditional insurance models (International Finance Corporation, 2015; 

Seuret, 2010). Under this model, farmers who purchase insured inputs, such as hybrid maize seeds 

or fertilizers from approved suppliers, are automatically enrolled in WII, with premiums typically 

ranging from 10% to 20% of input costs, which raises retail prices proportionally (Seuret, 2010). 

Enrollment is facilitated via SMS with product-packaging codes or agro-dealer networks, 

ensuring geotagged plot alignment with nearby weather stations (Sibiko and Qaim, 2020). Payouts 

are triggered when rainfall, measured by automated weather stations, deviates from predefined 

thresholds during key crop growth phases. For example, a payout may occur if rainfall falls below 

200mm over an 8-week sowing period for maize. Claims are processed through mobile money (M-

Pesa) within 14 days, enabling farmers to replant or smooth consumption in response to adverse 

weather (Seuret, 2010). 
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Despite these advancements, WII uptake remains low, with only 12.7% of eligible smallholders 

enrolled as of 2022 (Kenya National Bureau of Statistics, 2022). Barriers to wider adoption include 

liquidity constraints and uneven weather station coverage, with only 62% of Kenya's agro-zones 

having reliable weather station density as of 2021 (Kenya Meteorological Department (KMD), 2023). 

These constraints, along with other structural barriers, limit the effectiveness and reach of WII. 

Kenya's Agriculture Sector Transformation Strategy (ASTS 2019–2029) prioritizes WII expansion 

through partnerships involving insurers like APA, Jubilee, and the Kenya Agricultural Insurance 

Programme (KAIP) (Government of Kenya, 2019). Despite policy efforts, persistent low WII uptake 

reflects systemic barriers. Integrating WII with targeted infrastructure and risk-contingent financing 

could bridge the gap between ambition and smallholder realities. 

3. Methodology 

3.1. Study Area 

This study was conducted in Njoro Sub-County, Kenya (0°19′53″S, 35°56′31″E), a region that 

exemplifies the challenges of rainfed smallholder agriculture in climate-vulnerable areas. Over 70% 

of the population relies on rainfed maize farming as their staple crop and primary income source, 

making livelihoods highly sensitive to weather variability. Spanning 713 km², Njoro comprises six 

administrative wards: Mau-Narok, Mauche, Kihingo, Nesuit, Lare, and Njoro. With an altitude 

ranging from 1,300 to 2,000 meters above sea level, the climate is characterized by temperatures 

between 25 and 30.5°C and annual rainfall of 850–1,000 mm. However, recurrent droughts and erratic 

rainfall have led to 30–50% maize yield reductions in recent decades (Government of Kenya, 2022), 

exacerbating food insecurity and poverty. This highlights a critical gap in smallholders' capacity to 

manage escalating climate risks. Focusing on Njoro's maize systems, this study seeks to identify 

scalable risk-mitigation strategies that balance agroecological resilience, economic feasibility, and 

policy relevance for similar contexts across East Africa. 

3.2. Sampling Procedure 

A multi-stage sampling approach was used to select 400 smallholder maize farmers from Njoro 

Sub-County (see Figure 1). The sub-county was first stratified into six administrative wards, from 

which four, Kihingo, Lare, Nesuit, and Njoro, were purposively selected. These wards were chosen 

based on the proportion of households engaged in maize farming, according to the Ministry of 

Agriculture and Livestock Development (2023), and participation in Weather Index Insurance (WII) 

initiatives. Within the selected wards, 20 villages were proportionally sampled based on the area 

cultivated with maize. Respondents were randomly selected within these villages to ensure a 

representative sample across the study area. 
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Figure 1. Map of Njoro Sub-County. 

3.3. Data Collection and Management 

The study employed a rigorous mixed-methods approach to ensure validity and reliability. 

Primary data were collected through direct field observations and structured farmer interviews, 

allowing for real-time cross-verification of responses. Empirical methods were supplemented by a 

systematic literature review of peer-reviewed journals and government reports to strengthen the 

theoretical grounding and align the study with existing evidence. Instrument reliability was tested 

with a pilot study (n=30) conducted in Njoro Sub-County, which identified ambiguities in the survey 

instrument. These insights led to refinements that enhanced clarity and internal consistency. Data 

was collected by trained enumerators with agricultural expertise, reducing potential measurement 

error. Stata 17 was used for quantitative analysis, with statistical significance set at α=0.05 for 

hypothesis testing. 

3.4. Empirical Framework 

Smallholder farmers' adoption of productivity-enhancing inputs is critical for poverty reduction, 

yet underinvestment persists due to unmitigated weather risks. This study uses an IV-Probit model 

to examine how Weather Index Insurance (WII) influences input adoption in Njoro Sub-County, 

Kenya. Unobserved factors, such as risk preferences or latent trust in institutions, may jointly 

influence farmers' decisions about WII adoption and input use, biasing standard probit estimates 

through endogeneity (Sande and Ghosh, 2018). The IV-Probit model addresses endogeneity by using 

instrumental variables (IVs) that meet two conditions: relevance (a strong correlation with WII 

adoption) and exclusion (no direct effect on input use, except through WII) (Bastardoz et al., 2023). 

Two IVs are used in this study. First, distance to the nearest weather station influences WII adoption 

because proximity affects basis risk, the discrepancy between actual farm losses and insurance 

payouts. Farmers farther from weather stations face higher basis risk, undermining trust in WII and 

reducing adoption (Jensen et al., 2018). Second, insurance product training enhances farmers' 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 April 2025 doi:10.20944/preprints202504.2032.v1

https://doi.org/10.20944/preprints202504.2032.v1


 5 of 20 

 

understanding of WII's mechanisms, promoting trust and increasing uptake (Fonta et al., 2018). 

Importantly, both IVs are plausibly exogenous. Distance is determined by geographic location, and 

training programs are randomized across villages, minimizing direct effects on input decisions. The 

IV-Probit model was estimated in two stages as follows: 

First-stage regression (endogenous variable equation) 

The endogenous variable (WII adoption) is estimated using the exogenous variables and 

instruments. 

Υ𝑖 = X1𝑖Π1 + X2𝑖Π2 + 𝜐𝑖        (1) 

where: Υ𝑖  is the endogenous variable from the first stage (WII adoption), 𝑋1𝑖 is a vector of exogenous 

variables (e.g., farmer characteristics), 𝑋2𝑖  is a vector of instrumental variables (distance to the 

weather station, training on insurance products), Π1 and Π2 are estimated parameter values and 𝜐𝑖 

is the error term in the first-stage equation. 

Second-stage regression (outcome equation) 

The fitted values from the first stage (WII adoption) are used to estimate the effect on the 

outcome variable (input adoption). 

Υ1𝑖
∗ = Y1𝑖̂β + X1𝑖Υ + 𝑢𝑖           (2) 

where: Υ1𝑖
∗  is the latent dependent variable (input adoption), Y1𝑖̂  are the fitted values of the 

endogenous variable from the first stage (WII adoption), X1𝑖  is the vector of exogenous covariates, β 

and Υ are parameter estimates and 𝑢𝑖 is the error term. 

4. Results and Discussion 

4.1. Weather Index Insurance and Adoption of Agricultural Inputs 

4.1.1. Descriptive Statistics of Insured and Non-Insured Smallholder Farmers 

This section presents descriptive statistics comparing smallholder farmers who purchased 

Weather Index Insurance (WII) and those who did not. Results in Table 1 show systematic differences 

between insured and non-insured smallholders, highlighting how socio-economic, institutional, and 

behavioral factors influence WII adoption. Insured farmers generally are older (p < 0.05), more 

educated (p = 0.081), and have greater farming experience (p < 0.01). These findings align with life-

cycle models of technology adoption, which suggest that accumulated knowledge enhances the 

uptake of risk management tools (Taherdoost, 2018). 

Economic capacity is a key driver. Insured farmers earn 71% higher annual incomes (p < 0.001), 

consistent with global evidence that financial resources enable participation in formal risk 

mechanisms (World Bank, 2025). In contrast, non-insured farmers face significant financial 

constraints (p < 0.05), echoing findings that even modest premiums exclude the most vulnerable (IFA, 

2021). Household dynamics further differentiate the two groups. Insured farmers have larger families 

(p < 0.01), suggesting that labor pooling aids premium payment, and they cultivate larger 

landholdings (p < 0.001), supporting the idea that asset ownership incentivizes insurance uptake 

(Janzen and Carter, 2019). Behaviorally, insured farmers display higher risk tolerance (62.05% vs. 

14.96% engage in lottery games; p < 0.001), reinforcing the link between risk appetite and insurance 

participation (Maccheroni et al., 2023). 

Institutional access disparities highlight systemic barriers. Insured farmers live closer to 

financial services (p < 0.001) and weather stations (p < 0.001), underscoring the role of physical 

infrastructure in financial inclusion. Their greater participation in farmer groups (p < 0.01) and 

insurance training (p < 0.001) illustrates how social networks reduce information asymmetries. A 

slight advantage in market proximity (p < 0.05) suggests indirect incentives for adoption through 

improved information flows. 
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Table 1. Descriptive statistics of insured and non-insured smallholder farmers. 

Variables 

Total 

(N=400) 

Insured 

(N=166) 

Non-

insured 

(n=234) 
p-value 

Mean (SD) Mean (SD) Mean (SD) 

Socio-economic characteristics     

Age 49.38 (8.29) 50.60 (7.65) 48.52 (8.62) 0.013** 

Gender (%) 69.75 (45.93) 74.10 (43.81) 66.67 (47.14) 0.111 

Schooling (years) 13.37 (4.20) 13.81 (4.47) 13.06 (3.99) 0.081* 

Household size 6.07 (2.47) 6.45 (2.55) 5.80 (2.37) 0.009*** 

Log of annual average income (ksh) 12.78 (0.63) 13.03 (0.58) 7.61 (0.62) 0.000*** 

Participation in lottery games (%) 34.50 (47.54) 62.05 (48.53) 14.96 (35.67) 0.000*** 

Experienced financial constraints (%) 95.50 (20.73) 92.77 (25.90) 97.44 (15.81) 0.027** 

Farm characteristics      

Maize farming (years) 14.66 (10.66) 16.51 (10.16) 13.35 (10.83) 0.003*** 

Total land owned (acres) 1.77 (1.38) 2.32 (1.59) 1.38 (1.05) 0.000*** 

Number of plots 1.34 (1.22) 1.41 (0.95) 1.41 (1.38) 0.565 

 Institutional characteristics     

Accessed loan (credit) (%) 39.00 (48.77) 39.16 (48.81) 38.89 (48.75) 0.957 

Farmer group membership (%) 50.75 (50.00) 59.04 (49.18) 44.87 (49.74) 0.005*** 

Distance to nearest market (km) 2.61 (0.97) 2.47 (0.93) 2.72 (0.99) 0.010** 

Distance to financial institution (km) 2.93 (1.54) 1.47 (0.54) 3.97 (1.12) 0.000*** 

Distance to weather station (km) 2.86 (1.28) 1.80 (0.58) 3.61 (1.11) 0.000 *** 

Weather index insurance training (%) 23.25 (42.24) 43.37 (49.56) 8.97 (2.86) 0.000*** 

Weather/Weather-shock-related characteristics 

Experienced weather shocks (%) 77.75 (41.59) 50.00 (50.00) 97.44 (15.81) 0.000*** 

Access to weather information (%) 98.75 (11.11) 99.40 (7.74) 98.29 (12.96) 0.326 

Average yield loss to weather shocks  83.78 (36.86) 75.51 (43.00) 87.88 (32.64) 0.017*** 

Notes: Means and standard deviations (SD) are shown in parentheses for each variable. ***, **, and * indicate 

that the difference in means between sub-groups is statistically significant at 1%, 5%, and 10%, respectively. km 

denotes kilometres. 

Weather-related experiences reveal paradoxes. Despite reporting fewer yield losses (p < 0.05), 

insured farmers experienced fewer weather shocks (p < 0.001), which may indicate better ex-ante risk 

management or differing shock perceptions. With near-universal access to weather information 

(98.75%), these findings suggest that awareness alone is insufficient for adoption, supporting calls for 

complementary interventions (Aizaki et al., 2021). 

These results demonstrate that economic capacity, physical access, behavioral factors, and 

institutional linkages drive WII adoption. The significantly lower yield losses among insured farmers 

suggest that WII protects productivity against climate shocks. However, the puzzle of insured 

farmers reporting fewer losses despite fewer shocks highlights a gap that warrants further 
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investigation. These insights emphasize that scaling WII’s benefits requires not only financial and 

infrastructural investments but also targeted behavioral and institutional interventions to bridge 

adoption disparities. 

4.1.2. Descriptive Statistics of General Input Use Patterns Among Insured and Non-Insured Farmers  

Table 2 presents descriptive statistics comparing input utilization between smallholder farmers 

who purchased Weather Index Insurance (WII) and those who did not, reflecting general patterns of 

input use. The results show significant differences in input use, risk management strategies, and 

agricultural intensification practices between insured and non-insured farmers. Insured farmers 

apply 58.98 kg/acre of chemical fertilizer, almost ten times the rate of non-insured farmers (6.13 

kg/acre, p < 0.001), aligning closely with agronomic recommendations for maize (Sheahan et al., 2013). 

This suggests WII mitigates risk aversion and liquidity constraints, enabling more efficient input use 

(Benso et al., 2023). 

A substitution effect is observed in organic inputs. Insured farmers use less manure (p < 0.05) 

and apply smaller quantities (p < 0.001). This likely results from increased access to synthetic 

fertilizers and the labor-intensive nature of manure application. The lower standard deviation in 

manure use among insured farmers (19.28 vs. 36.61) indicates more standardized, precision-driven 

farming.  

Table 2. Descriptive statistics of general input use patterns among insured and non-insured farmers. 

Variables 

Total Insured  

(n=166) 

Non-insured  

(n=234) p-value (n=400) 

Mean (SD) Mean (SD) Mean (SD) 

Used chemical fertilizer (%) 46.50 (49.94) 86.75 (34.01) 17.95 (38.46) 0.000*** 

Chemical fertilizer quantity (kg/acre) 28.06 (35.80) 58.98 (33.47) 6.13 (15.39) 0.000*** 

Used manure (%) 49.00 (50.05) 42.77 (49.62) 53.42 (49.88) 0.036** 

Manure quantity (kg/acre) 25.97 (31.92) 15.21 (19.28) 33.60 (36.61) 0.000*** 

Used improved maize seeds (%) 59.50 (49.15) 89.76 (30.41) 38.03 (48.65) 0.000*** 

Improved maize seeds (kg/acre) 6.04 (5.59) 10.23 (4.24) 3.07 (4.41) 0.000*** 

Used traditional maize seeds (%) 69.75 (45.99) 46.99 (50.06) 85.90 (34.88) 0.000*** 

Traditional maize seeds (kg/acre) 5.62 (4.81) 2.69 (3.46) 7.69 (4.56) 0.000*** 

Hired labor (%) 83.00 (37.61) 95.78 (20.16) 73.93 (43.99) 0.000*** 

Labor (person-days/acre) 23.64 (15.37) 32.36 (13.63) 17.45 (13.42) 0.000*** 

Average maize yield (bags/acre) 12.05 (5.56) 16.44 (5.26) 8.94 (3.15) 0.000*** 

Cultivated maize (acres) 1.16 (0.67) 1.49 (0.67) 0.92 (0.56) 0.000*** 

Number of maize plots 1.39 (1.22) 1.34 (0.95) 1.41 (1.38) 0.565 

Notes: Each variable is presented with its mean and standard deviation (SD) (in parentheses). ***, **, and * denote 

statistically significant mean differences between sub-groups at the 1%, 5%, and 10% significance levels. 'Acre' 

refers to the unit of land measurement, and 'kg' signifies kilograms. 

Technological disparities are evident in seed selection. Insured farmers overwhelmingly adopt 

improved maize varieties (p < 0.001) and use three times as much seed (p < 0.001), perhaps leveraging 

climate-adapted genetics to maximize germination rates (Cacho et al., 2020). In contrast, non-insured 

farmers rely on traditional seeds (p < 0.001), compensating for poor germination by using more seeds 

(7.69 kg/acre vs. 2.69 kg/acre, p < 0.001).  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 April 2025 doi:10.20944/preprints202504.2032.v1

https://doi.org/10.20944/preprints202504.2032.v1


 8 of 20 

 

Labor market participation also differs significantly. Insured farmers hire labor more frequently 

(p < 0.001) and use nearly double the number of person-days (32.36 vs. 17.45, p < 0.001), reflecting 

expanded cultivation and more intensive farming practices. These increased labor inputs correlate 

with an 84% yield advantage (16.44 vs. 8.94 bags/acre, p < 0.001), demonstrating that WII enables 

synergistic effects from combined inputs. Despite significant differences in cultivation scale (p < 

0.001), the number of plots remains similar (p = 0.565), indicating that insured farmers consolidate 

their operations rather than fragment them. Yield-per-acre comparisons (p < 0.001) confirm that 

intensification goes beyond simply scaling up land area. 

These findings demonstrate that WII encourages smallholders to adopt capital- and knowledge-

intensive production practices, moving away from traditional risk-coping mechanisms while 

fostering resilient, high-productivity systems. They also highlight WII’s transformative potential as 

a financial safety net and a catalyst for sustainable intensification.  

4.1.3. Descriptive Statistics of Input Use Patterns for Active Users Among Insured and Non-Insured 

Farmers  

Building on the previous analysis of general input use patterns, this section examines the 

quantities of inputs used by farmers who actively utilize them, comparing insured and non-insured 

groups. The findings reveal that WII participation systematically alters input application intensity 

among smallholder farmers, as seen in stark contrasts between insured and non-insured producers 

(Table 6). Insured farmers apply 99% more chemical fertilizer (67.99 kg/acre vs. 34.14 kg/acre, p < 

0.001), consistent with the risk-mitigation hypothesis that insurance reduces perceived investment 

risks for costly, yield-enhancing inputs (Karlan et al., 2014). This trend holds across all fertilizer users 

(60.35 kg/acre), with insured farmers driving overall intensification, a pattern also observed in 

contexts where financial tools ease liquidity constraints (Suri, 2011). 

Table 3. Descriptive analysis of input use among active users for insured and non-insured farmers. 

  Total Insured Not Insured 

p-

value   

No. 

of 

user

s 

Mean 

usag

e 

No. 

of 

user

s 

Mean 

usag

e 

No. 

of 

user

s 

Mean 

usag

e 

Chemical fertilizer quantity (kg/acre) 186 60.35 144 67.99 42 34.14 
0.000**

* 

Manure quantity (kg/acre) 196 53.00 71 35.56 125 62.90 
0.000**

* 

Improved maize seed quantity (kg/acre) 238 10.16 149 11.40 89 8.08 
0.000**

* 

Traditional maize seed quantity 

(kg/acre) 
279 8.05 78 5.73 201 8.95 

0.000**

* 

Notes: Each variable is presented with its mean and number of farmers (in parentheses). ***, **, and * denote 

statistically significant mean differences between sub-groups at the 1%, 5%, and 10% significance levels. 'acre' 

denotes the unit of land measurement, and 'kg' denotes kilograms. 

In contrast, non-insured farmers rely 77% more on manure (62.90 kg/acre vs. 35.56 kg/acre, p < 

0.001), reflecting risk-coping strategies shaped by limited capital access and a strong aversion to 

financial exposure. Their preference for slower-release organic inputs, despite their lower efficiency, 

underscores how liquidity constraints perpetuate suboptimal nutrient management (Sheahan et al., 

2013). The intermediate average usage (53.00 kg/acre) further reveals heterogeneous risk tolerance, 

even among uninsured farmers. 
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Seed selection further highlights this divide. Insured farmers use 41% more improved seeds 

(11.40 kg/acre vs. 8.08 kg/acre, p < 0.001), leveraging climate-resilient varieties to maximize planting 

efficiency, an approach linked to higher yields under weather volatility (Cacho et al., 2020). In 

contrast, non-insured farmers apply 56% more traditional seeds (8.95 kg/acre vs. 5.73 kg/acre, p < 

0.001), compensating for poor germination rates or adhering to labor-intensive broadcast methods. 

These differences highlight how WII accelerates the shift from subsistence to market-integrated 

farming systems. The consistently significant differences (p < 0.001) across all inputs underscore WII's 

role in promoting agricultural modernization, reducing reliance on low-efficiency inputs, and 

encouraging capital-intensive intensification. These findings show that WII stabilizes incomes and 

actively reconfigures smallholder production systems, driving them toward higher productivity and 

sustainability. 

4.1.4. The Effectiveness of Weather Index Insurance in Promoting Input Adoption 

This section builds on the descriptive analysis of input use patterns among insured and non-

insured farmers, employing more robust inferential methods to assess Weather Index Insurance (WII) 

effects on input adoption. The IV-Probit model addresses endogeneity by using distance to the 

nearest weather station and training on insurance as instruments for WII uptake, as they satisfy 

exclusion restrictions(see the empirical framework for details). The primary focus is on the second-

stage regression, where fitted values from the first stage (WII adoption) estimate input adoption. The 

first stage confirms the relevance of the instrumental variables, ensuring exogenous variation for 

unbiased estimation in the second stage. In this stage, the outcome variable was modeled as a binary 

input, where '1' indicates adoption of modern (chemical fertilizer and improved seeds) or traditional 

inputs (manure and traditional seeds), and '0' indicates non-adoption. 

Table 4. Regression analyses of the role of Weather Index Insurance in promoting input adoption. 

Variables 

First stage 

regression 
Second-stage regression 

WII uptake 
Chemical 

fertilizer 
Manure 

Improved 

maize seeds 

Traditional 

maize seeds 

Coeffici

ents 

(Robust 

S.E.) 

p-

valu

e 

Coeffici

ents 

(Robust 

S.E.) 

p-

valu

e 

Coeffici

ents 

(Robust 

S.E.) 

p-

valu

e 

Coeffici

ents 

(Robust 

S.E.) 

p-

valu

e 

Coeffici

ents 

(Robust 

S.E.) 

p-

valu

e 

Distance to the nearest 

weather station 

-3.731 

(0.622) 

0.00

0*** 
- - - - - - - - 

Training on insurance 

products 

2.977 

(0.512) 

0.00

0*** 
- - - - - - - - 

WII uptake - - 
1.230 

(0.366) 

0.00

1*** 

-0.383 

(0.304) 

0.20

8 

1.001 

(0.327) 

0.00

2*** 

-1.249 

(0.330) 

0.00

0*** 

Age 
0.189 

(0.185) 

0.30

6 

-0.083 

(0.098) 

0.40

1 

0.041 

(0.088) 
0.64 

0.038 

(0.098) 

0.69

7 

-0.127 

(0.093) 

0.17

1 

Age squared 
-0.002 

(0.002) 

0.26

7 

0.001 

(0.001) 

0.47

2 

0.000 

(0.001) 

0.81

9 

0.000 

(0.001) 

0.72

0 

0.001 

(0.001) 

0.14

9 

Gender 
0.514 

(0.348) 

0.13

9* 

0.030 

(0.172) 
0.86 

0.298 

(0.148) 

0.04

4** 

-0.100 

(0.165) 

0.54

4 

0.046 

(0.171) 

0.78

7 

Schooling 
-0.143 

(0.048) 

0.00

3*** 

-0.019 

(0.024) 

0.44

6 

-0.013 

(0.019) 

0.49

4 

-0.004 

(0.023) 

0.85

8 

-0.036 

(0.020) 

0.07

3 * 
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Training on agri-

production technology 

-0.926 

(0.476) 

0.05

2* 

0.476 

(0.202) 

0.01

9** 

0.006 

(0.182) 

0.97

6 

-0.017 

(0.228) 

0.93

9 

0.232 

(0.200) 

0.24

6 

Total land owned 
-0.490 

(0.186) 

0.00

9*** 

0.288 

(0.126) 

0.02

2** 

-0.023 

(0.097) 

0.81

6 

0.176 

(0.138) 

0.20

0 

-0.034 

(0.102) 
0.74 

Land leased out 
-0.756 

(0.248) 

0.00

2*** 

0.058 

(0.120) 
0.63 

0.074 

(0.099) 

0.45

5 

0.192 

(0.138) 

0.16

4 

0.000 

(0.100) 

0.99

6 

Wealth 
0.445 

(0.153) 

0.00

4*** 

0.194 

(0.076) 

0.01

0*** 

-0.056 

(0.065) 

0.39

2 

0.299 

(0.077) 

0.00

0*** 

-0.189 

(0.069) 

0.00

6*** 

Household off-farm 

labor members 

-0.157 

(0.074) 

0.03

4** 

0.023 

(0.040) 

0.56

6 

0.019 

(0.035) 

0.58

9 

0.086 

(0.042) 

0.04

3** 

-0.004 

(0.039) 

0.92

7 

Household farm labor 

members 

-0.189 

(0.192) 

0.32

5 

-0.088 

(0.088) 

0.31

5 

0.023 

(0.068) 

0.73

2 

0.033 

(0.080) 

0.68

1 

0.054 

(0.086) 

0.53

2 

Rear livestock 
1.322 

(0.388) 

0.00

1*** 

0.004 

(0.192) 

0.98

3 

0.116 

(0.154) 

0.44

8 

-0.207 

(0.185) 

0.26

3 

0.073 

(0.176) 

0.68

1 

Distance to nearest 

market (km) 

-0.863 

(0.245) 

0.00

0*** 

-0.077 

(0.103) 

0.45

3 

-0.020 

(0.085) 

0.81

3 

-0.118 

(0.095) 

0.21

1 

-0.059 

(0.099) 

0.55

5 

Road condition 
-0.497 

(0.262) 

0.05

8* 

0.299 

(0.121) 

0.01

3** 

-0.197 

(0.108) 

0.06

8* 

0.058 

(0.124) 

0.63

7 

-0.166 

(0.118) 

0.15

9 

Size of the largest maize 

plot (acres) 

2.327 

(0.608) 

0.00

0*** 

-0.365 

(0.252) 

0.14

7 

-0.042 

(0.197) 

0.83

1 

-0.223 

(0.265) 

0.40

1 

0.257 

(0.214) 

0.23

1 

Land leased in 
0.470 

(0.578) 

0.41

6 

0.363 

(0.229) 

0.11

4 

-0.188 

(0.217) 

0.38

6 

-0.025 

(0.248) 

0.91

9 

0.086 

(0.237) 

0.71

6 

Soil fertility 
0.427 

(0.361) 

0.23

7 

-0.342 

(0.203) 

0.09

1* 

0.129 

(0.148) 

0.38

4 

0.482 

(0.163) 

0.00

3*** 

-0.155 

(0.167) 

0.35

4 

Financial constraints 
0.432 

(0.647) 

0.50

5 

-0.764 

(0.411) 

0.06

3* 

-0.087 

(0.333) 

0.79

4 

-0.376 

(0.413) 

0.36

2 

-0.335 

(0.359) 

0.35

2 

Drought 2022 
-0.557 

(0.609) 

0.36

1 

0.218 

(0.253) 

0.38

9 

-0.589 

(0.220) 

0.00

8*** 

0.262 

(0.262) 

0.31

7 

-0.708 

(0.286) 

0.01

3** 

Drought 2023 
-2.016 

(0.595) 

0.00

1*** 

-1.434 

(0.323) 

0.00

0*** 

0.153 

(0.215) 

0.47

7 

-1.429 

(0.475) 

0.00

3*** 

0.082 

(0.237) 
0.73 

High-yield - weather-

sensitive 

0.328 

(0.444) 
0.46 

0.071 

(0.180) 

0.69

4 

-0.307 

(0.166) 

0.06

5* 

0.125 

(0.197) 

0.52

3 

-0.317 

(0.177) 

0.07

3* 

Weather Information 
-2.301 

(0.987) 

0.02

0*** 

-0.385 

(0.823) 
0.64 

0.568 

(0.537) 
0.29 

-1.443 

(0.745) 

0.05

3* 

0.252 

(0.703) 
0.72 

Constant 
10.168 

(5.581) 

0.06

8* 

3.437 

(2.710) 

0.20

5 

-0.996 

(2.266) 
0.66 

0.447 

(2.603) 

0.86

4 

6.052 

(2.424) 

0.01

3** 

Wald Chi-squared 100.21*** 130.1*** 46.43*** 129.51*** 98.83*** 

Wald test of exogeneity  - 7.58*** 0.77 0.29** 0.08 

Notes: Coefficients are shown with robust standard errors (S.E.) in parentheses; ***, **, and * indicate statistical 

significance at the 1%, 5%, and 10%  levels, respectively. "km" stands for kilometers, and "acres" denotes the 

unit of land measurement. 

IV-Probit results show significant treatment effects. Marginal effects at the sample means 

indicate that WII adoption increases chemical fertilizer use by 123 percentage points (p < 0.01) and 

improved seed adoption by 10.01 percentage points (coefficient = 1.001, p < 0.01). While manure 
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adoption remains statistically insignificant (p = 0.208), insured farmers replace traditional seeds with 

modern, insured alternatives (p < 0.01). This substitution aligns with agricultural transformation 

theory, suggesting that financial products like WII alter the risk-return tradeoff, promoting 

technology adoption (Karlan et al., 2014). 

A comparative analysis of the coefficients reveals that WII adoption has a stronger effect on 

chemical fertilizer use than improved maize seed adoption (p < 0.01). This supports Carter's capital 

constraint hypothesis, which posits that WII alleviates liquidity barriers for high-cost inputs like 

fertilizers (Carter et al., 2016), which typically require 3–5 times the seasonal expenditure of seeds. 

Farmers prioritize inputs with the steepest financial constraints when risk is mitigated. In contrast, 

WII adoption reduces traditional seed use (p < 0.01), consistent with Karlan et al. (2014) finding that 

insured farmers shift toward modern inputs to reduce downside risk. The negligible effect on manure 

(p = 0.208) suggests that WII does not uniformly promote all inputs, highlighting the role of input-

specific economic characteristics, such as cost and substitutability, in shaping adoption patterns 

(Emerick et al., 2016). These findings underscore that WII's impacts are context-dependent. When risk 

is mitigated, farmers allocate resources toward higher-return, capital-intensive technologies. 

Gender significantly influences input adoption, with women 29.8 percentage points more likely 

to use manure (p < 0.05). This aligns with findings by Feliciano (2019) on gendered agroecological 

practices, where women's roles in resource management and livestock care lead them to favor organic 

inputs. However, this preference may also result from structural constraints, as women often face 

barriers to accessing credit, land, and markets for modern inputs (Agarwal, 2003). In contrast, 

education shows a marginally significant negative association with traditional seed adoption (p < 

0.1), supporting human capital theory, which suggests educated farmers use networks and market 

access to adopt improved varieties (Wossen et al., 2015). These patterns highlight the complex 

relationship between social stratification and agricultural modernization. 

Wealth strongly influences input adoption. A one-unit increase in wealth raises the probability 

of using chemical fertilizers by 19.4 percentage points (p < 0.01) and adopting improved seeds by 29.9 

percentage points (p < 0.001), while reducing traditional seed use by 18.9 percentage points (p < 0.01). 

This supports the risk-coping hypothesis, which suggests that wealthier farmers, with greater 

liquidity and assets, exhibit higher risk tolerance for adopting productivity-enhancing technologies 

(Dercon and Christiaensen, 2011). However, this wealth-driven intensification may pose 

sustainability challenges. Heavy reliance on chemical fertilizers risks long-term soil health and may 

widen productivity gaps between resource-rich and resource-poor farmers (Ficiciyan et al., 2018). 

The effectiveness of Weather Index Insurance (WII) depends on complementary institutional 

support. Agricultural training boosts chemical fertilizer adoption by 47.6 percentage points (p < 0.05), 

demonstrating that technical knowledge complements financial risk mitigation. This finding 

supports the dual constraint framework, where WII alleviates liquidity barriers (Cole et al., 2013) 

while extension services fill agronomic knowledge gaps (Lei and Yang, 2024). Notably, training has 

no significant effect on traditional inputs, suggesting that extension programs are more effective in 

promoting complex, knowledge-intensive technologies like fertilizers rather than simpler inputs like 

seeds, consistent with trends in Sub-Saharan Africa (Anderson et al., 2020). This differential impact 

suggests that combining insurance with input-specific training may be more effective than 

standalone programs, particularly for capital-intensive technologies requiring financial security and 

technical expertise. 

The allocation of household labor to off-farm activities significantly influences agricultural input 

decisions through opportunity cost mechanisms. Households engaged in off-farm work are 2.21 

percentage points less likely to use chemical fertilizers (p < 0.10), supporting Ellis's (2000) theory that 

labor markets compete with time-sensitive farm operations like fertilizer application. This labor 

substitution effect does not extend to improved seed adoption (p > 0.10), consistent with Suri's 

hypothesis (Suri, 2011) that labor-constrained farmers prioritize labor-saving technologies over 

inputs that require intensive management. This selective adoption pattern aligns with findings from 

India's National Rural Employment Guarantee Scheme, where off-farm income increased fertilizer 
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opportunity costs but did not affect hybrid seed uptake (Nandy et al., 2021). These results suggest 

that labor market integration shifts input portfolios toward less management-intensive technologies. 

Farm scale also plays a key role in input adoption. Larger farms are 28.8 percentage points more 

likely to use chemical fertilizers than smallholdings (p < 0.05), supporting the minimum efficient scale 

hypothesis (McAuliffe, 2015), where bulk procurement and mechanized application make fertilizers 

economically viable only above certain operational thresholds. This effect mirrors Brazil's 

agricultural transformation, where fertilizer application rates tripled on farms over 10 hectares 

(Assunção and Braido, 2007). In contrast, manure adoption remains unaffected by scale (p > 0.10), 

indicating that manure, a labor-intensive yet low-capital input, is still viable for smallholders. Its low 

cost and no scale requirements allow its continued use despite agricultural modernization 

(Sadeghpour and Afshar, 2024). 

Transport infrastructure reshapes input adoption through cost reduction and market 

integration. Improved road conditions increase chemical fertilizer use by 29.9 percentage points (p < 

0.05) while reducing manure use by 19.7 percentage points (p < 0.05), demonstrating infrastructure's 

polarizing effect. This aligns with global evidence that road development lowers fertilizer costs while 

accelerating the abandonment of labor-intensive organic practices (Shamdasani, 2021). The lack of 

significant effect on seed adoption (p = 0.15) highlights that infrastructure impacts inputs differently; 

transport improvements primarily affect fertilizer use, while labor opportunity costs drive manure 

adoption. These polarizing effects present sustainability trade-offs. Fertilizer use boosts short-term 

yields but may undermine long-term soil health in vulnerable agroecosystems (Gao et al., 2022). This 

underscores the need for policies that balance productivity gains with soil preservation, offering a 

Pareto improvement over blanket subsidies. 

Farmers demonstrate complex soil fertility management strategies that challenge universal 

input use patterns. High-fertility soils increase improved seed adoption by 48.2 percentage points (p 

< 0.01) while reducing synthetic fertilizer use by 34.2 percentage points (p < 0.10), revealing a 

substitution effect where natural soil fertility reduces dependence on purchased inputs. This supports 

Marenya’s findings in western Kenya (Marenya and Barrett, 2009), where smallholders selectively 

applied fertilizer to marginal soils, leveraging natural fertility when crop responses plateaued, 

contradicting the complementarity assumed in many WII programs. These results highlight the 

inefficiency of blanket input prescriptions, suggesting that soil-test-based targeting could enhance 

nutrient-use efficiency, as shown by Phiri et al. (2021) in Zimbabwe. 

Financial constraints are the primary barrier to modern input adoption. Capital-constrained 

households are 76.4 percentage points less likely to use fertilizer (p < 0.10), nearly double the positive 

impact of WII participation. This confirms liquidity constraints as the critical adoption bottleneck, 

supporting observations by Sheahan et al. (2013) that input timing and credit access outweigh risk 

mitigation. While WII addresses risk-related barriers, its effectiveness is limited by capital scarcity, 

as seen in Ethiopia (Tofu et al., 2022). These findings underline the need for complementary financial 

instruments, such as input credit or harvest-contingent repayment, to fully unlock WII's potential, in 

line with Karlan et al. (2014) framework on liquidity's role in agricultural technology adoption. 

The relationship between drought severity and WII efficacy follows a nonlinear threshold 

pattern. During the moderate 2022 drought, traditional inputs (manure: −58.9 percentage points; 

traditional seeds: −70.8 percentage points) collapsed, while modern inputs remained stable among 

insured farmers, confirming WII's ability to sustain adoption under moderate stress. However, the 

extreme 2023 drought overwhelmed WII's protective mechanisms, causing sharp declines in modern 

input use. This bifurcated response aligns with Carter et al. (2016) threshold models, highlighting a 

vulnerability in index-based insurance systems. These findings emphasize the urgent need to 

redesign WII to maintain effectiveness under escalating climate extremes, especially with the 

projected increase in drought frequency and severity (IPCC, 2022). 
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4.1.5. Effect of Weather Index Insurance on Agricultural Input Quantities for Active Users 

This analysis moves beyond binary adoption metrics by quantifying how Weather Index 

Insurance (WII) reshapes input intensification under climate risk. We employ a two-stage 

instrumental variables (IV) approach, ensuring causal identification with strong first-stage validity 

(p<0.001) and confirming the exclusion restriction through Wu-Hausman tests. Heteroscedasticity-

robust standard errors and endogeneity tests support the robustness of our estimates, mitigating 

potential biases (Table 5). 

Table 5. Analysis of the impact of Weather Index Insurance on agricultural input quantities for active users. 

 first stage 

Chemical 

fertilizer 

(kg/acre) 

Manure 

(kg/acre) 

Improved 

maize seeds 

(kg/acre) 

Traditional 

maize seeds 

(kg/acre) 

Variables Coefficie

nt 

(Robust 

S.E.) 

p-

valu

e 

Coefficie

nt 

(Robust 

S.E.) 

p-

valu

e 

Coeffici

ent 

(Robust 

S.E.) 

p-

valu

e 

Coeffici

ent 

(Robust 

S.E.) 

p-

valu

e 

Coeffici

ent 

(Robust 

S.E.) 

p-

valu

e 

Distance to the 

nearest weather 

station 

-3.731 

(0.622) 

0.00

0*** 
        

Training on insurance 

products 

2.977 

(0.512) 

0.00

0*** 
        

WII uptake - 
 

28.767 

(5.736) 

0.00

0*** 

-27.072 

(4.350) 

0.00

0*** 

2.549 

(0.539) 

0.00

0*** 

-2.851 

(0.637) 

0.00

0*** 

Age 

0.189 

(0.185) 

0.30

6 

5.511 

(2.677) 

0.04

1** 

1.456 

(1.998) 

0.46

7 

0.455 

(0.263) 

0.08

6* 

-0.063 

(0.288) 

0.82

7 

Age squared 

-0.002 

(0.002) 

0.26

7 

-0.055 

(0.026) 

0.03

8** 

-0.015 

(0.019) 

0.44

9 

-0.004 

(0.003) 

0.11

3 

0.001 

(0.003) 

0.82

3 

Gender 

0.514 

(0.348) 

0.13

9 

8.987 

(4.441) 

0.04

5** 

1.276 

(4.189) 

0.76

1 

0.493 

(0.428) 

0.25

1 

-0.784 

(0.450) 

0.08

2* 

Schooling 

-0.143 

(0.048) 

0.00

3*** 

-0.393 

(0.527) 

0.45

7 

0.711 

(0.508) 

0.16

3 

0.073 

(0.051) 

0.15

4 

0.020 

(0.050) 

0.68

9 

Training on Agri-

production 

technology 

-0.926 

(0.476) 

0.05

2* 

-2.060 

(4.019) 

0.60

9 

-1.090 

(3.471) 

0.75

4 

0.275 

(0.398) 0.49 

0.357 

(0.619) 

0.56

5 

Total land owned 

-0.490 

(0.186) 

0.00

9*** 

-0.133 

(2.236) 

0.95

3 

0.101 

(1.949) 

0.95

9 

0.280 

(0.224) 

0.21

3 

0.127 

(0.265) 

0.63

3 

Land leased out 

-0.756 

(0.248) 

0.00

2*** 

-1.449 

(2.435) 

0.55

3 

0.373 

(2.075) 

0.85

7 

-0.255 

(0.230) 

0.26

8 

0.178 

(0.348) 

0.60

9 

Wealth 

0.445 

(0.153) 

0.00

4*** 

0.439 

(1.842) 

0.81

2 

0.163 

(1.722) 

0.92

5 

0.215 

(0.168) 

0.20

3 

-0.169 

(0.210) 0.42 

Household off-farm 

labor members 

-0.157 

(0.074) 

0.03

4** 

-0.498 

(0.861) 

0.56

4 

0.384 

(0.642) 0.55 

0.063 

(0.083) 

0.45

3 

-0.044 

(0.103) 

0.67

1 

Household farm labor 

members 

-0.189 

(0.192) 

0.32

5 

-0.824 

(2.018) 

0.68

4 

-3.581 

(1.608) 

0.02

7** 

-0.370 

(0.177) 

0.03

7** 

-0.225 

(0.205) 

0.27

5 
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Rear livestock 

1.322 

(0.388) 

0.00

1*** 

0.526 

(4.494) 

0.90

7 

-1.646 

(3.939) 

0.67

7 

0.249 

(0.408) 

0.54

2 

0.611 

(0.477) 

0.20

2 

Distance to nearest 

market (km) 

-0.863 

(0.245) 

0.00

0*** 

2.219 

(2.381) 

0.35

3 

2.602 

(1.944) 

0.18

2 

-0.132 

(0.211) 

0.53

2 

0.367 

(0.245) 

0.13

4 

Road condition 

-0.497 

(0.262) 

0.05

8* 

1.846 

(3.394) 

0.58

7 

2.872 

(2.666) 

0.28

3 

0.087 

(0.299) 

0.77

2 

0.171 

(0.315) 

0.58

8 

Size of the largest 

maize plot (acres) 

2.327 

(0.608) 

0.00

0*** 

3.519 

(3.793) 

0.35

5 

1.993 

(4.674) 0.67 

-0.331 

(0.444) 

0.45

7 

0.431 

(0.603) 

0.47

5 

Land leased in 

0.470 

(0.578) 

0.41

6 

1.469 

(6.191) 

0.81

3 

0.087 

(6.108) 

0.98

9 

0.823 

(0.608) 

0.17

8 

0.000 

(0.679) 

0.98

8 

Soil fertility 

0.427 

(0.361) 

0.23

7 

1.825 

(4.136) 0.66 

-0.814 

(3.619) 

0.82

2 

0.408 

(0.406) 

0.31

6 

-0.626 

(0.426) 

0.14

3 

Financial constraints 

0.432 

(0.647) 

0.50

5 

-16.677 

(6.096) 

0.00

7*** 

8.180 

(4.484) 

0.07

0* 

0.510 

(0.615) 

0.40

8 

0.937 

(0.800) 

0.24

3 

Drought 2022 

-0.557 

(0.609) 

0.36

1 

0.716 

(5.511) 

0.89

7 

2.831 

(3.862) 

0.46

4 

0.563 

(0.529) 

0.28

8 

0.533 

(0.629) 

0.39

7 

Drought 2023 

-2.016 

(0.595) 

0.00

1*** 

-1.183 

(4.395) 

0.78

8 

-6.593 

(3.859) 

0.08

9* 

-1.106 

(0.447) 

0.01

4** 

0.683 

(0.615) 

0.26

8 

High-yield - weather-

sensitive 

0.328 

(0.444) 0.46 

4.256 

(4.218) 

0.31

4 

4.203 

(3.736) 

0.26

2 

-0.288 

(0.412) 

0.48

5 

-0.471 

(0.532) 

0.37

6 

Weather Information 

-2.301 

(0.987) 

0.02

0** 

10.772 

(7.164) 

0.13

5 

11.122 

(5.673) 

0.05

2* 

0.697 

(0.939) 

0.45

9 

1.154 

(1.578) 

0.46

5 

Constant 

10.168 

(5.581) 

0.06

8* 

-108.060 

(73.545) 

0.14

4 

-9.880 

(53.265) 

0.85

3 

-6.560 

(6.539) 

0.31

7 

6.881 

(7.670) 0.37 

Endogeneity testa 
  

χ² = 0.987 χ² = 0.653 χ² =  0.819 χ² = 0.534 

Heteroscedasticity 

testb 
  

χ² = 2.75* χ² = 2.84* 

     χ² = 

26.88***   χ² = 7.64** 

Notes: Coefficients are shown with robust standard errors (S.E.) in parentheses; ***, **, and * indicate statistical 

significance at the 1%, 5%, and 10%  levels, respectively. "km" stands for kilometres, and "acres" denotes the 

unit of land measurement. a. Durbin-Wu-Hausman test statistic; b. Pagan-Hall test statistic. 

Results in Table 5 show that WII induces asymmetric input substitution, consistent with the loss-

aversion framework of prospect theory (Shin et al., 2022). Farmers increase high-yield inputs, 

fertilizers (+28.7 kg/acre, p < 0.001) and improved seeds (+2.6 kg/acre, p < 0.05), while reducing 

traditional risk-mitigating practices like manure (−27.0 kg/acre, p < 0.001) and traditional seeds (−2.9 

kg/acre, p < 0.05). This aligns with Karlan et al. (2014) liquidity hypothesis, where WII payouts 

alleviate credit constraints, enabling the adoption of productivity-enhancing technologies. However, 

the near-symmetric trade-off between fertilizer and manure adoption suggests competing risk-

management strategies. WII promotes short-term yield maximization at the potential expense of soil 

health, echoing concerns about "technological lock-in" (Magrini et al., 2019). These findings extend 

Sibiko and Qaim (2020) by quantifying input-level trade-offs, revealing unintended effects where WII 

boosts productivity but may exacerbate soil degradation, a critical issue for sustainable intensification 

(Gao et al., 2022). 

Age also mediates input use, challenging conventional adoption narratives. Older farmers apply 

5.5 kg/acre more fertilizer (p < 0.01) and 0.5 kg/acre more improved seeds (p < 0.05) for each additional 

year of age. This suggests a long-term risk-return calculus where experience outweighs initial risk 

aversion. In contrast, younger farmers' slower adoption reflects liquidity constraints or shorter 
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planning horizons despite their presumed adaptability (Rizzo et al., 2024). These generational 

differences highlight the limitations of one-size-fits-all programs. Integrating older farmers' 

experiential knowledge with targeted techno-financial support for younger farmers could better 

balance productivity and sustainability. 

Gender significantly shapes agricultural input allocation. Female-managed plots apply 8.99 

kg/acre more chemical fertilizer (p < 0.01) but 0.78 kg/acre less traditional seed (p < 0.05) than male-

managed plots. These differences arise from two key factors: gendered labor roles and risk 

preferences. Women's dual farm-household roles prioritize labor-saving inputs, as chemical 

fertilizers reduce planting and maintenance demands compared to traditional seeds (Doss, 2015). 

Additionally, women's greater responsibility for household food security leads to a preference for 

yield-stabilizing strategies, with chemical fertilizers offering more predictable harvests than 

traditional seeds, which are vulnerable to pests and climate variability (Doss, 2015). These findings 

underscore how structural gender disparities, beyond access, shape input decisions, with 

implications for designing labor-efficient and risk-contingent agricultural technologies. 

Liquidity constraints further influence input use. Financial scarcity reduces chemical fertilizer 

application by 16.7 kg/acre (p < 0.01) and increases manure use by 8.18 kg/acre (p < 0.05). This 

substitution effect reflects a broader trend where cash-limited farmers prioritize affordability over 

agronomic efficiency, especially in regions with underdeveloped input markets (Tofu et al., 2022). 

Manure is a soil amendment and a liquidity buffer, requiring no upfront cash and often sourced from 

on-farm biomass (Sadeghpour and Afshar, 2024). This highlights the limitations of input promotion 

programs that overlook household capital constraints, suggesting that financial instruments like 

input credit are essential for enabling fertilizer adoption among resource-poor farmers. 

Climate shocks also shape input decisions. While the 2022 drought had no detectable effect, the 

prolonged 2023 drought reduced manure use by 6.59 kg/acre (p < 0.05) and increased improved maize 

seed adoption by 1.11 kg/acre (p < 0.1). This shift aligns with models of sequential climate shocks, 

where short-term droughts are buffered by savings or informal insurance, but prolonged exposure 

depletes adaptive reserves (Touch et al., 2024). The increased adoption of drought-tolerant seeds and 

reduced manure use reflect a risk-avoidance strategy typical of smallholders facing recurrent climate 

stress (Cacho et al., 2020). The nonlinear nature of these effects underscores that climate adaptation 

policies must account for the duration of shocks, as single-year interventions may miss the 

cumulative erosion of resilience under consecutive droughts. 

Access to weather forecasts increased manure application by 11.12 kg per acre (p < 0.05), 

demonstrating how climate information supports adaptive input optimization. Manure's dual 

benefits, as a drought-resistant soil amendment and a low-risk investment during rainfall uncertainty 

(Sadeghpour and Afshar, 2024), explain this effect. Weather-informed farmers prioritize low-capital, 

locally adaptable inputs over volatile, capital-intensive ones, particularly in rainfed systems where 

climate forecasts improve organic input efficacy (Guido et al., 2020). 

These findings highlight the complex interplay of financial, gendered, and agroecological factors 

in shaping input decisions under climate extremes. Weather Index Insurance (WII) alleviates liquidity 

and risk constraints, prompting farmers to adopt yield-enhancing practices consistent with risk-

averse behavior under climate uncertainty. Notably, input substitution follows nonlinear thresholds. 

Short-term climate shocks prompt minimal change, but prolonged droughts shift adoption toward 

modern inputs. This observation, absent from traditional adoption models, shows how farmers' 

decisions evolve with cumulative climate stress. 

5. Conclusion and Policy Recommendations 

Agricultural intensification is critical for poverty reduction and food security, yet weather 

shocks disrupt smallholder farmers' ability to invest in yield-enhancing inputs. Weather Index 

Insurance (WII) has emerged as a potential solution to mitigate these risks, but its effectiveness in 

promoting sustained input use remains debated. This study demonstrates that WII accelerates both 

the adoption and intensification of inputs, specifically chemical fertilizers (+28.7 kg/acre) and 
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improved maize seeds (+2.6 kg/acre), while displacing traditional, low-yield alternatives like manure 

(−27 kg/acre) and local seeds (−2.9 kg/acre). This dual effect underscores a dilemma: insurance 

designed to mitigate risk may inadvertently amplify vulnerability by incentivizing input 

monocultures and eroding agroecological resilience. 

Socio-economic and environmental factors such as gender disparities, financial constraints, and 

infrastructure influence WII’s effectiveness. While our findings support prior studies on WII's 

positive effects, they reveal critical nonlinearities. For example, female-headed households retain 

manure despite adopting WII, suggesting rational adaptation (manure's drought resilience) or 

exclusion from input markets, insights overlooked by standard adoption models. In contrast, 

households with off-farm income use WII to invest more in high-yield inputs, reflecting a divergence 

in adaptive capacity that mirrors broader rural financial inequalities. Spatial disparities further reveal 

infrastructure's polarizing role. improved roads increase chemical fertilizer use and reduce manure 

use, underscoring the need for geographically adaptive insurance to avoid entrenching unsustainable 

input dependencies in marginalized areas. 

Modern input use was resilient to moderate drought (2022) but declined during severe drought 

(2023), demonstrating WII's threshold-dependent effectiveness, consistent with climate adaptation 

models. Farmers deviated from standardized risk models, substituting inputs based on localized risk 

perceptions, retaining traditional seeds in drought-prone areas despite insurance. In high-fertility 

soils, WII's influence weakened further, highlighting how agroecological conditions shape the impact 

of financial interventions. These findings challenge one-size-fits-all resilience models, emphasizing 

the interplay of biophysical thresholds and local adaptation in determining WII's effectiveness. 

These insights advance three theoretical contributions. First, WII's impact on input use is shaped 

by risk-liquidity interdependence, where liquidity often outweighs risk reduction in marginal 

environments. Second, socio-economic and agroecological factors influence farmers' responses to 

WII, highlighting heterogeneous adaptation pathways that challenge monolithic policy solutions. 

Third, the 2022–2023 drought dichotomy demonstrates that WII's stabilizing effects collapse beyond 

critical shock thresholds, revealing nonlinear climate resilience that calls for policy redesign to 

address extreme climate events. 

The findings emphasize that Weather Index Insurance (WII) must evolve from a standalone risk-

transfer tool to a key component of climate-resilient agricultural systems. Policies should prioritize 

context-sensitive designs that address local infrastructure gaps, gendered access barriers, and 

agroecological conditions. For instance, pairing WII with agroecological safeguards, such as premium 

discounts for maintaining soil organic matter or bundled credit for hybrid fertilizers, can preserve 

resilient practices like manure use. Gender-responsive delivery, including targeted extension 

programs and flexible repayment schedules, can also address divergent adaptation pathways 

between male- and female-headed households. 

WII's threshold-dependent effectiveness requires layered resilience strategies to anticipate 

extreme climate shocks. National agricultural policies should integrate WII with broader safety nets, 

such as shock-responsive social protection and community seed banks, to prevent input use collapse 

during severe droughts, as observed in 2023. Public-private partnerships, supported by digital 

infrastructure, can enhance last-mile delivery in underserved areas, while insurance literacy 

programs ensure farmers understand WII's limitations. Policymakers can balance short-term risk 

reduction with long-term sustainability by embedding WII within adaptive agroecologically 

informed systems, aligning with SDGs on zero hunger and climate action. 

Despite the valuable insights of this study, key questions remain, including why female farmers 

retain manure under WII, whether due to risk aversion, cultural factors, or adaptive strategies, and 

how WII affects long-term soil carbon. Additionally, the reluctance of younger farmers to adopt 

modern inputs, despite higher education, warrants further investigation. The cross-sectional design 

limits causal inferences, and reliance on self-reported data may introduce bias. Future research 

should employ mixed methods (behavioral experiments, soil monitoring) and quasi-experimental 

designs to assess causality, alongside longitudinal studies to quantify the hidden costs of lost 
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agroecological practices. Expanding studies to agroecological transition zones, such as semi-arid 

irrigating regions, would further test WII's adaptability across diverse farming systems. 
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