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Abstract

This paper presents an innovative end-to-end framework for conformal antenna array design and
beam steering in Low Earth Orbit (LEO) satellite-based IoT communication systems. We propose
a multi-stage learning architecture that integrates machine learning (ML) for antenna parameter
prediction with reinforcement learning (RL) for adaptive beam steering. The ML module predicts
optimal geometric and material parameters for conformal antenna arrays based on mission-specific
performance requirements such as frequency, gain, coverage angle, and satellite constraints with an
accuracy of 99%. These predictions are then passed to a Deep Q-Network (DQN)-based offline RL
model, which learns beamforming strategies to maximize gain toward dynamic ground terminals,
without requiring real-time interaction. To enable this, a synthetic dataset grounded in statistical
principles and a static dataset is generated using CST Studio Suite and COMSOL Multiphysics
simulations, capturing the electromagnetic behavior of various conformal geometries. The results from
both the machine learning and reinforcement learning models show that the predicted antenna designs
and beam steering angles closely align with simulation benchmarks. Our approach demonstrates the
potential of combining data-driven ensemble models with offline reinforcement learning for scalable,
efficient, and autonomous antenna synthesis in resource-constrained space environments.

Keywords: conformal antenna array; Low Earth Orbit (LEO); satellite IoT; beam steering; antenna
synthesis; machine learning; reinforcement learning; deep Q-Network (DQN); Offline reinforcement
learning; electromagnetic simulation; CST studio; COMSOL multiphysics

1. Introduction
Phased antenna arrays are essential components in modern communication systems, radar

technologies, and satellite networks due to their capability to dynamically steer beams and control
radiation patterns [1]. Among these, conformal antenna arrays—those mounted on curved surfaces
such as satellite bodies or Unmanned Aerial Vehicle (UAV) fuselages—are gaining increased attention
for their mechanical adaptability and seamless integration into complex platforms [2,3]. However,
designing efficient conformal arrays is challenging due to the geometric constraints introduced by non-
planar surfaces. When arrays are mounted on curved structures like cylindrical or spherical surfaces,
traditional design methodologies often fall short of meeting stringent performance requirements [4,5].

Conventional synthesis of antenna arrays has relied on manual tuning or semi-automated op-
timization. Techniques such as particle swarm optimization (PSO), genetic algorithms (GA), and
differential evolution (DE) have been widely used to optimize array parameters based on predefined
objectives [6,7]. While effective in some cases, these methods are computationally intensive, require
repeated interactions with electromagnetic solvers, and lack scalability in high-dimensional or non-
convex design spaces—challenges that are amplified when dealing with conformal geometries [8].
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Gradient-based algorithms and simulated annealing (SA) also suffer from similar limitations in such
complex design environments [9,10].

Recent advances in machine learning (ML) have opened new possibilities in automating and
accelerating the antenna design process. Supervised learning using deep neural networks (DNNs) has
been applied to predict optimal parameters from labeled datasets, achieving significant speedups over
traditional methods [11,12]. However, these models are heavily dependent on large, diverse datasets
and struggle to generalize across novel antenna geometries or configurations [13]. Unsupervised
approaches, such as k-means clustering, have been used for design space exploration and pattern
recognition, but they do not directly optimize antenna performance [14].

A more recent and promising direction involves reinforcement learning (RL), which enables
agents to iteratively improve performance through feedback-based interactions with an environment
[15,16]. In antenna design, RL can optimize beam steering or array configurations by learning from
reward signals linked to communication performance metrics as seen in [17]. However, traditional RL
methods require extensive real-time interaction, which is not ideal for antenna synthesis especially
in resource-constrained environments due to the high cost and time associated with electromagnetic
simulations. To address this limitation, offline reinforcement learning, particularly the Deep Q-
Network (DQN) algorithm, has emerged as a viable solution. By learning from precomputed datasets,
offline RL significantly reduces resource consumption while maintaining robust policy learning [18].

The key advantages of offline RL in antenna synthesis include its ability to adapt to diverse
environments, scale to high-dimensional spaces, and learn optimal strategies without real-time
experimentation. When combined with predictive ML models, this approach enables end-to-end
automation of antenna array design and beam steering.

In this paper, we propose a multi-stage deep learning framework for conformal antenna array syn-
thesis and beam steering in LEO satellite-based IoT networks. Our architecture integrates a machine
learning module that predicts optimal geometric and material parameters based on mission-specific
input features such as frequency, gain, satellite altitude, and surface curvature. These parameters are
then passed to an offline reinforcement learning model based on the DQN algorithm, which learns to
optimize beam steering strategies to maximize signal gain toward dynamic ground terminals.

To train both stages, we generate a static simulation dataset using CST Studio Suite and COMSOL
Multiphysics, modeling realistic electromagnetic behaviors of curved antenna surfaces. The proposed
system is validated through simulation, demonstrating that the ML-predicted parameters align closely
with optimal configurations and that the RL policy enables effective adaptive beam steering under
LEO satellite constraints.

This work highlights the power of combining ensemble machine learning with offline reinforce-
ment learning for intelligent, scalable, and resource-efficient antenna design. It presents a viable
alternative to traditional optimization techniques, particularly suited to constrained environments
such as space-based IoT, where adaptability, efficiency, and autonomous operation are critical [19].

2. Materials and Methods
2.1. Overview

This work proposes a two-stage model to optimize antenna array design for conformal applica-
tions by combining machine learning and reinforcement learning techniques as outlined in Figure 1.
The first stage involves predicting antenna geometric parameters using a stacking ensemble model.
The second stage optimizes these parameters through a reinforcement learning approach to maximize
beam steering performance.
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Figure 1. Conceptual diagram outlining the multi-stage deep learning model comprised of an ensemble model, a
neural network and a deep reinforcement learning model.

2.2. Dataset Generation

To mitigate the challenges posed by the limited availability of real-world antenna datasets, we
generate a synthetic dataset by applying statistical distributions to key antenna parameters, including
resonant frequency, bandwidth, gain, and reflection coefficient [1,20]. These parameters are derived
from fundamental antenna theory [1], enabling the creation of a diverse dataset that significantly
reduces the computational costs associated with traditional simulation-based methods [21].

2.2.1. Antenna Gain Calculation

A key performance indicator of antenna design is the antenna’s gain, which measures how well
the antenna directs energy in a particular direction. To calculate gain, we use an aperture efficiency model
based on fundamental principles of antenna theory [1,22]. The gain G is given by:

G = 10 log10

π
(

d
λ

)2
· e2

2

 (1)

where:

• λ is the wavelength of the signal,
• d is the physical dimension (e.g., diameter of the antenna aperture),
• e is the efficiency factor,
• The term inside the logarithm represents the physical and geometric factors contributing to the

antenna’s directivity and efficiency.

This model approximates the antenna’s gain based on its physical dimensions and efficiency, key
factors influencing antenna performance [1,22,23].
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2.2.2. Resonant Frequency and Bandwidth

The resonant frequency and bandwidth are crucial parameters determining the antenna’s opera-
tional range [1,22]. These parameters are uniformly sampled within ranges observed from our CST
simulations and reported literature [1,24] to ensure realistic variability.

• Resonant frequency:
fres = Uniform( fmin, fmax) (2)

where fmin and fmax define the frequency range of interest.
• Bandwidth:

B = Uniform(Bmin, Bmax) (3)

where Bmin and Bmax define the bandwidth range.

The use of uniform distributions ensures exploration of a broad design space reflecting real-world
antenna performance [24].

2.2.3. Reflection Coefficient

The reflection coefficient S11 characterizes how well the antenna matches the transmission line
[1,25]. Lower values indicate better matching and signal transmission efficiency.

We estimate S11 using the empirical relation [26]:

S11 = k× (edr − edrd) + er11 (4)

where:

• k is a sensitivity constant related to antenna design,
• edr is the antenna’s effective radius or a related geometric feature,
• edrd is a baseline reference for effective radius,
• er11 is an offset constant related to baseline reflection characteristics.

This formulation provides realistic reflection characteristics based on physical dimensions and
design parameters [25,26].

2.2.4. Synthetic Dataset Generation Procedure

To create the synthetic dataset, the following procedure is applied:

1. Resonant frequency and bandwidth are sampled uniformly within ranges obtained from CST
simulations and literature [1,25].

2. Gain is computed using the aperture efficiency model to ensure realistic antenna performance
[1,27].

3. Reflection coefficient is estimated via the empirical formula to simulate antenna matching charac-
teristics [25,26].

This approach yields a comprehensive dataset capturing the complex relationships among antenna
parameters while avoiding the computational expense of full electromagnetic simulations. The
dataset serves as a robust foundation for training machine learning models to optimize antenna array
performance across diverse design spaces [1,25].

2.2.5. Reinforcement Learning Dataset

The dataset used for training both the Convolutional Neural Network and the Offline Reinforce-
ment Learning Model consists of tuples with the following components in addition to the output from
the stacking ensemble model:
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Table 1. Structure of each data sample used for training.

Component Description
State Phase distribution of a 1× 4 patch an-

tenna array. Discrete values represent
the state.

Action Phase change applied to each element:
−π/8, 0, or +π/8.

Next State Resulting state after applying the action
to the current state.

Gain Array Output from the stacking ensemble
model: 360-length array, each index rep-
resenting gain at a specific angle.

Max Gain Direction Angle corresponding to the maximum
value in the gain array for the given
configuration.

Reward Maximum gain in the direction com-
puted from the next state.

Figure 3 shows the 2D radiation pattern of a couple sample from our Reinforcement Learning
Dataset with the current state represented in blue and next state in yellow.

Figure 2. Heatmap of gain distribution across first 50 samples; The x-axis represents gain values; the y-axis
denotes sample indices from 1 to 50.

Figure 3. 2D radiation pattern showing the state and next state values of 3 samples from the Reinforcement
Learning Dataset with gain values measured in dBi.
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2.3. Stacking Ensemble Model

The stacking ensemble model predicts the geometric parameters of the antenna array based on its
input features. It integrates multiple learners to improve prediction accuracy.

2.3.1. Base Learner

A Linear Regression (LR) model serves as the base learner, capturing linear relationships between
input features and antenna parameters [28].

2.3.2. Primary Learners

The primary learners consist of:

• Support Vector Regression (SVR): Captures nonlinear relationships using kernel methods [29].
• Gradient Boosting (GB): An ensemble of weak learners to model complex data patterns [30].
• Extreme Gradient Boosting (XGBoost): An optimized boosting algorithm that enhances model

robustness and generalization [31].

2.3.3. Meta Learner

A Linear Regression meta-learner combines the outputs from the primary learners to generate
final geometric parameter predictions [32].

2.3.4. Input Features

The model inputs include key antenna geometric parameters, such as - array shape (e.g., lin-
ear, cylindrical), element spacing, element orientation, element size, surface curvature, operational
frequency range, beamwidth, radiation pattern.

2.3.5. Output

The output is the predicted set of antenna geometric parameters used as input for the reinforce-
ment learning optimization stage.

2.4. Reinforcement Learning Optimization

Reinforcement Learning (RL) is utilized to optimize the predicted antenna parameters by interact-
ing with a defined environment and maximizing a reward signal based on beam steering performance
[15,33].

2.4.1. Markov Decision Process Formulation

The RL problem is formulated as a Markov Decision Process (MDP) defined by:

• States (S): Current geometric parameters of the antenna array.
• Actions (A): Adjustments to antenna parameters (e.g., element spacing or orientation changes)

[12].
• Rewards (R): Feedback based on the improvement in beam steering quality [7].
• Policy (π): Mapping from states to actions.
• Value function (V): Expected cumulative reward for states following a policy [34].

2.4.2. Deep Q-Network (DQN)

A Deep Q-Network approximates the optimal action-value function using a neural network to
select actions that maximize expected rewards [15].

2.4.3. Batch DQN with Offline Learning

Batch DQN trains on a fixed dataset of experience tuples (s, a, r, s′) to avoid costly real-time
interactions [35]. Experience replay buffers store these samples to improve learning stability.
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2.4.4. Loss Function: Huber Loss

The Huber loss function is used for training, providing robustness against noisy data and outliers
[36]. It combines mean squared error and absolute error characteristics:

L(δ) =

 1
2 δ2, |δ| ≤ δmax

δmax(|δ| − 1
2 δmax), otherwise

(5)

where δ = ytrue − ypred and δmax is a threshold hyperparameter.

2.4.5. Algorithm

The Batch DQN training procedure follows the standard update of Q-values with target networks
and epsilon-greedy exploration. Pseudocode is provided in Algorithm 1. A fixed replay buffer is used
to sample mini-batches of transitions, and target values are computed using the Double DQN strategy
to mitigate overestimation bias. The Huber loss is used to stabilize training.

Algorithm 1 Batch DQN Algorithm

1: Initialize Q-network and Q-target network
2: Initialize experience replay buffer
3: Set hyperparameters: learning_rate, γ (discount factor), batch_size, ϵ (exploration rate), etc.
4: for episode = 1 to num_episodes do
5: state← reset_environment() ▷ Reset the environment to initial state
6: while not done do
7: if random() < ϵ then
8: action← random_action()
9: else

10: action← arg max Q-network(state)
11: end if
12: next_state, reward, done← take_action(state, action)
13: store (state, action, reward, next_state, done) in replay_buffer
14: sample_batch← sample_batch(replay_buffer, batch_size)
15: for (s, a, r, s’, done) in sample_batch do
16: if done then
17: target← r
18: else
19: target← r + γ max Q-target_network(s′)
20: end if
21: current_q_value← Q-network(s)[a]
22: δ← target - current_q_value
23: if |δ| ≤ δmax then
24: loss← 0.5 * δ2

25: else
26: loss← δmax * (|δ| - 0.5 * δmax)
27: end if
28: gradients← compute_gradients(Q-network, loss)
29: Q-network.update_weights(gradients)
30: end for
31: if episode % target_update_freq == 0 then
32: Q-target_network.copy_weights(Q-network)
33: end if
34: ϵ← ϵ * ϵdecay ▷ Decay epsilon for exploration-exploitation trade-off
35: end while
36: end for
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3. Results
3.1. Ensemble Model Performance

This section presents the results of the proposed end-to-end model for optimizing conformal
antenna arrays in IoT applications, focusing on the stacking ensemble model used for predicting
antenna design parameters and the reinforcement learning (RL) optimization for beam steering. The
evaluation metrics include prediction accuracy, optimization efficiency, and beamforming performance
relevant to typical IoT communication scenarios.

3.1.1. Stacking Ensemble Model

The stacking ensemble model, incorporating Linear Regression (LR), Support Vector Regression
(SVR), Gradient Boosting (GB), and Extreme Gradient Boosting (XGBoost) as base learners, demon-
strated strong predictive capability for key geometric parameters of the IoT antenna array design
[37]. Performance was assessed by comparing predicted parameters against ground truth values from
standard antenna design references [38]. Figure 5 shows the plot of true values vs predicted values
obtained from the stacking ensemble model.

Figure 4. Plot of true geometric parameter Vs Predicted Geometric parameters showing the results of the proposed
ensemble model.

Table 2. Mean Squared Error (MSE) of Ensemble Learners for IoT Antenna Parameter Prediction.

Model MSE
Base Model (Linear Regression) 0.48
Ensemble Model 0.20
Meta Learner 0.22
Overall Model (IoT Antenna Prediction) 0.06

The stacking ensemble reduced the prediction error significantly, achieving an average MSE of
0.06. The meta learner, combining base models, provided robust parameter estimation that enables
effective antenna optimization. An R² score of 0.91 confirms that the ensemble model explains 91% of
the variance in antenna design parameters relevant to IoT devices.

3.2. Reinforcement Learning-Based Optimization for IoT Beam Steering

Predicted antenna parameters were input to the RL optimization stage in addition to the RL
dataset, where a Batch Deep Q-Network (DQN) agent adjusted antenna array characteristics such
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as element spacing and orientation to maximize directional gain and signal quality in typical IoT
operating bands (e.g., 2.4 GHz ISM band) [39]. The offline learning approach minimizes the need for
costly real-time experimentation, suitable for resource-constrained IoT environments.

Figure 5. The Rate of Convergence of the Proposed Reinforcement Learning Model showing the decrease in the
training and testing loss over epochs.

Optimization results were benchmarked against a baseline rectangular patch antenna and a
traditional Particle Swarm Optimization (PSO) algorithm [40,41].

Table 3. Beamforming performance for IoT antenna array optimization.

Model Gain (dB) Reflection Coefficient (S11, dB)
Baseline patch antenna array [37,38] 8.5 -11
PSO optimization [40,41] 11.0 -14
DQN optimization (proposed) 12.5 -17

The proposed DQN model achieved the highest gain (12.5 dB) and best impedance matching (S11

of -17 dB), outperforming both the baseline and PSO optimization methods. These results demonstrate
improved antenna performance critical for IoT devices, where enhanced beam steering improves
communication range and reduces interference.

3.3. Generalization and Robustness

We tested the optimization model on a variety of IoT antenna array configurations with different
element sizes and operating frequencies to assess robustness. The model consistently improved gain
and reflection coefficient values across all configurations, validating its adaptability to diverse IoT
hardware constraints.

Table 4. Optimization Results on Various IoT Antenna Array Configurations.

Configuration Gain (dB) S11 (dB)
Small Element Size (Baseline) [1,42] 8.0 -11
Large Element Size (Baseline) [1,42] 8.3 -11
Small Element Size (Optimized) 10.8 -15
Large Element Size (Optimized) 11.3 -16

These findings highlight the model’s capability to generalize antenna optimization across multiple
IoT device form factors and environmental conditions.
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Figure 6. The synthesized antenna array’s gain values from CST simulations to cross validate the results from the
proposed deep learning model.

3.4. Limitations and Future Directions

Despite promising results, the Batch DQN approach relies on pre-collected offline datasets,
limiting adaptability to dynamic IoT environments with fluctuating signal conditions. Future work will
integrate online learning and explore policy-gradient methods such as Proximal Policy Optimization
(PPO) to improve real-time adaptability. Additionally, extending the model to multi-band and multi-
antenna (MIMO) IoT systems can further enhance communication reliability and throughput.

Figure 7. An electromagnetic simulation of a 1x4 patch antenna array from CST validating the results of the
proposed deep learning model; where A = 250 mm, B = 55.5 mm, L=W = 35.6 mm, FL = 9.7 mm, In = 1 mm, g = 1
mm, FW = 4.5 mm, d = 26.9 mm, a = 13.45 mm, and b = 10.2 mm.

4. Discussion
This paper presents a novel approach to antenna array synthesis for IoT applications by integrating

machine learning ensemble methods with reinforcement learning to predict and optimize antenna
array geometric parameters for conformal and resource-constrained devices. Our method addresses
traditional challenges in IoT antenna design, such as high-dimensional, nonconvex, and discontinuous
optimization problems, which are often exacerbated by IoT devices’ size, power, and deployment
constraints.
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4.1. Strengths and Contributions of the Approach

The multi-model stacking ensemble used for predicting antenna parameters significantly improves
prediction accuracy while reducing the need for extensive labeled datasets, which are difficult to obtain
for diverse IoT antenna designs. By coupling this ensemble with offline reinforcement learning
powered by a Deep Q-Network (DQN), the model iteratively refines antenna parameters to optimize
beam steering performance without requiring costly real-time experimentation or physical prototyping.

Offline reinforcement learning is especially advantageous in IoT contexts, where devices are often
deployed in environments where on-the-fly training or feedback collection is infeasible. Leveraging
simulation data from tools like CST and COMSOL, our approach enables rapid and scalable training
cycles while accommodating complex antenna geometries relevant to conformal and compact IoT
antennas.

The results confirm that the predicted antenna parameters correlate well with simulation bench-
marks, underscoring the model’s reliability and applicability for practical IoT antenna design tasks.
This reduces reliance on time-consuming manual tuning and enables the development of optimized
antenna arrays that improve communication range, energy efficiency, and interference mitigation in
IoT networks.

4.2. Comparison with Traditional Methods

Conventional IoT antenna design methods, including manual optimization, evolutionary al-
gorithms (e.g., PSO, Genetic Algorithms), or gradient-based techniques, typically require real-time
interaction with physical devices or extensive iterative testing. These approaches are often computa-
tionally expensive and poorly suited for high-dimensional, nonconvex antenna design spaces typical
of conformal IoT antennas.

Our integrated ensemble and reinforcement learning framework provides a scalable and efficient
alternative. By decoupling training from real-time experimentation and employing a global optimiza-
tion approach via reinforcement learning, it overcomes limitations of local optima entrapment and
high computational cost. This enables faster convergence to optimal antenna configurations, which is
critical for accelerating IoT device development and deployment cycles.

4.3. Practical Implications and Future Work

The proposed method has significant implications for IoT industries, including smart home
devices, wearable sensors, and industrial IoT, where antenna performance directly impacts device
reliability and network connectivity. The ability to autonomously optimize antenna arrays without
physical trial-and-error expedites device prototyping and facilitates adaptive antenna designs that can
adjust to dynamic deployment scenarios.

Nonetheless, some limitations warrant further investigation. The current reliance on simulation-
generated offline datasets may not capture all environmental variables encountered by IoT devices
in real-world deployments, such as multipath effects, interference, or device orientation variability.
Incorporating real-world measurement data and online learning mechanisms will be essential to
improve model robustness and adaptability.

Future work could also explore reinforcement learning algorithms beyond DQN, such as Proximal
Policy Optimization (PPO) or Advantage Actor-Critic (A2C), to enhance learning efficiency and
adaptability in complex IoT antenna optimization problems. Expanding the approach to support
multi-band antennas and MIMO (Multiple Input Multiple Output) systems would further broaden its
applicability and impact across diverse IoT communication standards.

Overall, this research lays the groundwork for fully autonomous, efficient, and scalable antenna
design frameworks tailored to the evolving demands of IoT technology ecosystems.
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5. Conclusions
In this work, a novel, data-driven framework for antenna array synthesis in IoT applications

was developed by integrating ensemble learning with offline reinforcement learning. The proposed
method overcomes the spatial and hardware constraints of conventional design approaches by au-
tomatically learning the relationships among geometric parameters and optimizing beam-steering
performance without relying on time-consuming physical prototyping. Experimental results demon-
strate substantial gains: for small-element arrays, antenna gain increased from 8.0 dB to 10.8 dB and
the reflection coefficient S11improved from –11 dB to –15 dB; for larger arrays, gain rose from 8.3 dB
to 11.3 dB with S11 enhancements from –11 dB to –16 dB. These findings confirm that the integrated
learning-based approach significantly elevates array performance in resource-limited settings. By
automating design and minimizing manual tuning, this framework establishes a scalable pathway
toward adaptive, conformal antenna systems capable of meeting the dynamic demands of emerging
IoT networks. Future work will focus on incorporating real-world deployment data and exploring
advanced reinforcement-learning strategies to further improve robustness and generalization across
diverse operational environments
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